rtld.c revision 281849
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 281849 2015-04-22 10:59:05Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_pagesizes(Elf_Auxinfo **aux_info);
101static void init_rtld(caddr_t, Elf_Auxinfo **);
102static void initlist_add_neededs(Needed_Entry *, Objlist *);
103static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104static void linkmap_add(Obj_Entry *);
105static void linkmap_delete(Obj_Entry *);
106static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107static void unload_filtees(Obj_Entry *);
108static int load_needed_objects(Obj_Entry *, int);
109static int load_preload_objects(void);
110static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111static void map_stacks_exec(RtldLockState *);
112static Obj_Entry *obj_from_addr(const void *);
113static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114static void objlist_call_init(Objlist *, RtldLockState *);
115static void objlist_clear(Objlist *);
116static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117static void objlist_init(Objlist *);
118static void objlist_push_head(Objlist *, Obj_Entry *);
119static void objlist_push_tail(Objlist *, Obj_Entry *);
120static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121static void objlist_remove(Objlist *, Obj_Entry *);
122static void *path_enumerate(const char *, path_enum_proc, void *);
123static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126    int flags, RtldLockState *lockstate);
127static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128    RtldLockState *);
129static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130    int flags, RtldLockState *lockstate);
131static int rtld_dirname(const char *, char *);
132static int rtld_dirname_abs(const char *, char *);
133static void *rtld_dlopen(const char *name, int fd, int mode);
134static void rtld_exit(void);
135static char *search_library_path(const char *, const char *);
136static const void **get_program_var_addr(const char *, RtldLockState *);
137static void set_program_var(const char *, const void *);
138static int symlook_default(SymLook *, const Obj_Entry *refobj);
139static int symlook_global(SymLook *, DoneList *);
140static void symlook_init_from_req(SymLook *, const SymLook *);
141static int symlook_list(SymLook *, const Objlist *, DoneList *);
142static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
143static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
144static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
145static void trace_loaded_objects(Obj_Entry *);
146static void unlink_object(Obj_Entry *);
147static void unload_object(Obj_Entry *);
148static void unref_dag(Obj_Entry *);
149static void ref_dag(Obj_Entry *);
150static char *origin_subst_one(char *, const char *, const char *, bool);
151static char *origin_subst(char *, const char *);
152static void preinit_main(void);
153static int  rtld_verify_versions(const Objlist *);
154static int  rtld_verify_object_versions(Obj_Entry *);
155static void object_add_name(Obj_Entry *, const char *);
156static int  object_match_name(const Obj_Entry *, const char *);
157static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159    struct dl_phdr_info *phdr_info);
160static uint32_t gnu_hash(const char *);
161static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162    const unsigned long);
163
164void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
165void _r_debug_postinit(struct link_map *) __noinline __exported;
166
167/*
168 * Data declarations.
169 */
170static char *error_message;	/* Message for dlerror(), or NULL */
171struct r_debug r_debug __exported;	/* for GDB; */
172static bool libmap_disable;	/* Disable libmap */
173static bool ld_loadfltr;	/* Immediate filters processing */
174static char *libmap_override;	/* Maps to use in addition to libmap.conf */
175static bool trust;		/* False for setuid and setgid programs */
176static bool dangerous_ld_env;	/* True if environment variables have been
177				   used to affect the libraries loaded */
178static char *ld_bind_now;	/* Environment variable for immediate binding */
179static char *ld_debug;		/* Environment variable for debugging */
180static char *ld_library_path;	/* Environment variable for search path */
181static char *ld_preload;	/* Environment variable for libraries to
182				   load first */
183static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
184static char *ld_tracing;	/* Called from ldd to print libs */
185static char *ld_utrace;		/* Use utrace() to log events. */
186static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
187static Obj_Entry **obj_tail;	/* Link field of last object in list */
188static Obj_Entry *obj_main;	/* The main program shared object */
189static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
190static unsigned int obj_count;	/* Number of objects in obj_list */
191static unsigned int obj_loads;	/* Number of objects in obj_list */
192
193static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
194  STAILQ_HEAD_INITIALIZER(list_global);
195static Objlist list_main =	/* Objects loaded at program startup */
196  STAILQ_HEAD_INITIALIZER(list_main);
197static Objlist list_fini =	/* Objects needing fini() calls */
198  STAILQ_HEAD_INITIALIZER(list_fini);
199
200Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
201
202#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
203
204extern Elf_Dyn _DYNAMIC;
205#pragma weak _DYNAMIC
206#ifndef RTLD_IS_DYNAMIC
207#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
208#endif
209
210int dlclose(void *) __exported;
211char *dlerror(void) __exported;
212void *dlopen(const char *, int) __exported;
213void *fdlopen(int, int) __exported;
214void *dlsym(void *, const char *) __exported;
215dlfunc_t dlfunc(void *, const char *) __exported;
216void *dlvsym(void *, const char *, const char *) __exported;
217int dladdr(const void *, Dl_info *) __exported;
218void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
219    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
220int dlinfo(void *, int , void *) __exported;
221int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
222int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
223int _rtld_get_stack_prot(void) __exported;
224int _rtld_is_dlopened(void *) __exported;
225void _rtld_error(const char *, ...) __exported;
226
227int npagesizes, osreldate;
228size_t *pagesizes;
229
230long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
231
232static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
233static int max_stack_flags;
234
235/*
236 * Global declarations normally provided by crt1.  The dynamic linker is
237 * not built with crt1, so we have to provide them ourselves.
238 */
239char *__progname;
240char **environ;
241
242/*
243 * Used to pass argc, argv to init functions.
244 */
245int main_argc;
246char **main_argv;
247
248/*
249 * Globals to control TLS allocation.
250 */
251size_t tls_last_offset;		/* Static TLS offset of last module */
252size_t tls_last_size;		/* Static TLS size of last module */
253size_t tls_static_space;	/* Static TLS space allocated */
254size_t tls_static_max_align;
255int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
256int tls_max_index = 1;		/* Largest module index allocated */
257
258bool ld_library_path_rpath = false;
259
260/*
261 * Fill in a DoneList with an allocation large enough to hold all of
262 * the currently-loaded objects.  Keep this as a macro since it calls
263 * alloca and we want that to occur within the scope of the caller.
264 */
265#define donelist_init(dlp)					\
266    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
267    assert((dlp)->objs != NULL),				\
268    (dlp)->num_alloc = obj_count,				\
269    (dlp)->num_used = 0)
270
271#define	UTRACE_DLOPEN_START		1
272#define	UTRACE_DLOPEN_STOP		2
273#define	UTRACE_DLCLOSE_START		3
274#define	UTRACE_DLCLOSE_STOP		4
275#define	UTRACE_LOAD_OBJECT		5
276#define	UTRACE_UNLOAD_OBJECT		6
277#define	UTRACE_ADD_RUNDEP		7
278#define	UTRACE_PRELOAD_FINISHED		8
279#define	UTRACE_INIT_CALL		9
280#define	UTRACE_FINI_CALL		10
281
282struct utrace_rtld {
283	char sig[4];			/* 'RTLD' */
284	int event;
285	void *handle;
286	void *mapbase;			/* Used for 'parent' and 'init/fini' */
287	size_t mapsize;
288	int refcnt;			/* Used for 'mode' */
289	char name[MAXPATHLEN];
290};
291
292#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
293	if (ld_utrace != NULL)					\
294		ld_utrace_log(e, h, mb, ms, r, n);		\
295} while (0)
296
297static void
298ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
299    int refcnt, const char *name)
300{
301	struct utrace_rtld ut;
302
303	ut.sig[0] = 'R';
304	ut.sig[1] = 'T';
305	ut.sig[2] = 'L';
306	ut.sig[3] = 'D';
307	ut.event = event;
308	ut.handle = handle;
309	ut.mapbase = mapbase;
310	ut.mapsize = mapsize;
311	ut.refcnt = refcnt;
312	bzero(ut.name, sizeof(ut.name));
313	if (name)
314		strlcpy(ut.name, name, sizeof(ut.name));
315	utrace(&ut, sizeof(ut));
316}
317
318/*
319 * Main entry point for dynamic linking.  The first argument is the
320 * stack pointer.  The stack is expected to be laid out as described
321 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
322 * Specifically, the stack pointer points to a word containing
323 * ARGC.  Following that in the stack is a null-terminated sequence
324 * of pointers to argument strings.  Then comes a null-terminated
325 * sequence of pointers to environment strings.  Finally, there is a
326 * sequence of "auxiliary vector" entries.
327 *
328 * The second argument points to a place to store the dynamic linker's
329 * exit procedure pointer and the third to a place to store the main
330 * program's object.
331 *
332 * The return value is the main program's entry point.
333 */
334func_ptr_type
335_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
336{
337    Elf_Auxinfo *aux_info[AT_COUNT];
338    int i;
339    int argc;
340    char **argv;
341    char **env;
342    Elf_Auxinfo *aux;
343    Elf_Auxinfo *auxp;
344    const char *argv0;
345    Objlist_Entry *entry;
346    Obj_Entry *obj;
347    Obj_Entry **preload_tail;
348    Obj_Entry *last_interposer;
349    Objlist initlist;
350    RtldLockState lockstate;
351    char *library_path_rpath;
352    int mib[2];
353    size_t len;
354
355    /*
356     * On entry, the dynamic linker itself has not been relocated yet.
357     * Be very careful not to reference any global data until after
358     * init_rtld has returned.  It is OK to reference file-scope statics
359     * and string constants, and to call static and global functions.
360     */
361
362    /* Find the auxiliary vector on the stack. */
363    argc = *sp++;
364    argv = (char **) sp;
365    sp += argc + 1;	/* Skip over arguments and NULL terminator */
366    env = (char **) sp;
367    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
368	;
369    aux = (Elf_Auxinfo *) sp;
370
371    /* Digest the auxiliary vector. */
372    for (i = 0;  i < AT_COUNT;  i++)
373	aux_info[i] = NULL;
374    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
375	if (auxp->a_type < AT_COUNT)
376	    aux_info[auxp->a_type] = auxp;
377    }
378
379    /* Initialize and relocate ourselves. */
380    assert(aux_info[AT_BASE] != NULL);
381    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
382
383    __progname = obj_rtld.path;
384    argv0 = argv[0] != NULL ? argv[0] : "(null)";
385    environ = env;
386    main_argc = argc;
387    main_argv = argv;
388
389    if (aux_info[AT_CANARY] != NULL &&
390	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
391	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
392	    if (i > sizeof(__stack_chk_guard))
393		    i = sizeof(__stack_chk_guard);
394	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
395    } else {
396	mib[0] = CTL_KERN;
397	mib[1] = KERN_ARND;
398
399	len = sizeof(__stack_chk_guard);
400	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
401	    len != sizeof(__stack_chk_guard)) {
402		/* If sysctl was unsuccessful, use the "terminator canary". */
403		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
405		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
406		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
407	}
408    }
409
410    trust = !issetugid();
411
412    ld_bind_now = getenv(LD_ "BIND_NOW");
413    /*
414     * If the process is tainted, then we un-set the dangerous environment
415     * variables.  The process will be marked as tainted until setuid(2)
416     * is called.  If any child process calls setuid(2) we do not want any
417     * future processes to honor the potentially un-safe variables.
418     */
419    if (!trust) {
420        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
421	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
422	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
423	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
424		_rtld_error("environment corrupt; aborting");
425		die();
426	}
427    }
428    ld_debug = getenv(LD_ "DEBUG");
429    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
430    libmap_override = getenv(LD_ "LIBMAP");
431    ld_library_path = getenv(LD_ "LIBRARY_PATH");
432    ld_preload = getenv(LD_ "PRELOAD");
433    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
434    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
435    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
436    if (library_path_rpath != NULL) {
437	    if (library_path_rpath[0] == 'y' ||
438		library_path_rpath[0] == 'Y' ||
439		library_path_rpath[0] == '1')
440		    ld_library_path_rpath = true;
441	    else
442		    ld_library_path_rpath = false;
443    }
444    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
445	(ld_library_path != NULL) || (ld_preload != NULL) ||
446	(ld_elf_hints_path != NULL) || ld_loadfltr;
447    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
448    ld_utrace = getenv(LD_ "UTRACE");
449
450    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
451	ld_elf_hints_path = _PATH_ELF_HINTS;
452
453    if (ld_debug != NULL && *ld_debug != '\0')
454	debug = 1;
455    dbg("%s is initialized, base address = %p", __progname,
456	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
457    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
458    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
459
460    dbg("initializing thread locks");
461    lockdflt_init();
462
463    /*
464     * Load the main program, or process its program header if it is
465     * already loaded.
466     */
467    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
468	int fd = aux_info[AT_EXECFD]->a_un.a_val;
469	dbg("loading main program");
470	obj_main = map_object(fd, argv0, NULL);
471	close(fd);
472	if (obj_main == NULL)
473	    die();
474	max_stack_flags = obj->stack_flags;
475    } else {				/* Main program already loaded. */
476	const Elf_Phdr *phdr;
477	int phnum;
478	caddr_t entry;
479
480	dbg("processing main program's program header");
481	assert(aux_info[AT_PHDR] != NULL);
482	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
483	assert(aux_info[AT_PHNUM] != NULL);
484	phnum = aux_info[AT_PHNUM]->a_un.a_val;
485	assert(aux_info[AT_PHENT] != NULL);
486	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
487	assert(aux_info[AT_ENTRY] != NULL);
488	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
489	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
490	    die();
491    }
492
493    if (aux_info[AT_EXECPATH] != 0) {
494	    char *kexecpath;
495	    char buf[MAXPATHLEN];
496
497	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
498	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
499	    if (kexecpath[0] == '/')
500		    obj_main->path = kexecpath;
501	    else if (getcwd(buf, sizeof(buf)) == NULL ||
502		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
503		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
504		    obj_main->path = xstrdup(argv0);
505	    else
506		    obj_main->path = xstrdup(buf);
507    } else {
508	    dbg("No AT_EXECPATH");
509	    obj_main->path = xstrdup(argv0);
510    }
511    dbg("obj_main path %s", obj_main->path);
512    obj_main->mainprog = true;
513
514    if (aux_info[AT_STACKPROT] != NULL &&
515      aux_info[AT_STACKPROT]->a_un.a_val != 0)
516	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
517
518#ifndef COMPAT_32BIT
519    /*
520     * Get the actual dynamic linker pathname from the executable if
521     * possible.  (It should always be possible.)  That ensures that
522     * gdb will find the right dynamic linker even if a non-standard
523     * one is being used.
524     */
525    if (obj_main->interp != NULL &&
526      strcmp(obj_main->interp, obj_rtld.path) != 0) {
527	free(obj_rtld.path);
528	obj_rtld.path = xstrdup(obj_main->interp);
529        __progname = obj_rtld.path;
530    }
531#endif
532
533    digest_dynamic(obj_main, 0);
534    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
535	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
536	obj_main->dynsymcount);
537
538    linkmap_add(obj_main);
539    linkmap_add(&obj_rtld);
540
541    /* Link the main program into the list of objects. */
542    *obj_tail = obj_main;
543    obj_tail = &obj_main->next;
544    obj_count++;
545    obj_loads++;
546
547    /* Initialize a fake symbol for resolving undefined weak references. */
548    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
549    sym_zero.st_shndx = SHN_UNDEF;
550    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
551
552    if (!libmap_disable)
553        libmap_disable = (bool)lm_init(libmap_override);
554
555    dbg("loading LD_PRELOAD libraries");
556    if (load_preload_objects() == -1)
557	die();
558    preload_tail = obj_tail;
559
560    dbg("loading needed objects");
561    if (load_needed_objects(obj_main, 0) == -1)
562	die();
563
564    /* Make a list of all objects loaded at startup. */
565    last_interposer = obj_main;
566    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
567	if (obj->z_interpose && obj != obj_main) {
568	    objlist_put_after(&list_main, last_interposer, obj);
569	    last_interposer = obj;
570	} else {
571	    objlist_push_tail(&list_main, obj);
572	}
573    	obj->refcount++;
574    }
575
576    dbg("checking for required versions");
577    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
578	die();
579
580    if (ld_tracing) {		/* We're done */
581	trace_loaded_objects(obj_main);
582	exit(0);
583    }
584
585    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
586       dump_relocations(obj_main);
587       exit (0);
588    }
589
590    /*
591     * Processing tls relocations requires having the tls offsets
592     * initialized.  Prepare offsets before starting initial
593     * relocation processing.
594     */
595    dbg("initializing initial thread local storage offsets");
596    STAILQ_FOREACH(entry, &list_main, link) {
597	/*
598	 * Allocate all the initial objects out of the static TLS
599	 * block even if they didn't ask for it.
600	 */
601	allocate_tls_offset(entry->obj);
602    }
603
604    if (relocate_objects(obj_main,
605      ld_bind_now != NULL && *ld_bind_now != '\0',
606      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
607	die();
608
609    dbg("doing copy relocations");
610    if (do_copy_relocations(obj_main) == -1)
611	die();
612
613    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
614       dump_relocations(obj_main);
615       exit (0);
616    }
617
618    /*
619     * Setup TLS for main thread.  This must be done after the
620     * relocations are processed, since tls initialization section
621     * might be the subject for relocations.
622     */
623    dbg("initializing initial thread local storage");
624    allocate_initial_tls(obj_list);
625
626    dbg("initializing key program variables");
627    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
628    set_program_var("environ", env);
629    set_program_var("__elf_aux_vector", aux);
630
631    /* Make a list of init functions to call. */
632    objlist_init(&initlist);
633    initlist_add_objects(obj_list, preload_tail, &initlist);
634
635    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
636
637    map_stacks_exec(NULL);
638
639    dbg("resolving ifuncs");
640    if (resolve_objects_ifunc(obj_main,
641      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
642      NULL) == -1)
643	die();
644
645    if (!obj_main->crt_no_init) {
646	/*
647	 * Make sure we don't call the main program's init and fini
648	 * functions for binaries linked with old crt1 which calls
649	 * _init itself.
650	 */
651	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
652	obj_main->preinit_array = obj_main->init_array =
653	    obj_main->fini_array = (Elf_Addr)NULL;
654    }
655
656    wlock_acquire(rtld_bind_lock, &lockstate);
657    if (obj_main->crt_no_init)
658	preinit_main();
659    objlist_call_init(&initlist, &lockstate);
660    _r_debug_postinit(&obj_main->linkmap);
661    objlist_clear(&initlist);
662    dbg("loading filtees");
663    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
664	if (ld_loadfltr || obj->z_loadfltr)
665	    load_filtees(obj, 0, &lockstate);
666    }
667    lock_release(rtld_bind_lock, &lockstate);
668
669    dbg("transferring control to program entry point = %p", obj_main->entry);
670
671    /* Return the exit procedure and the program entry point. */
672    *exit_proc = rtld_exit;
673    *objp = obj_main;
674    return (func_ptr_type) obj_main->entry;
675}
676
677void *
678rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
679{
680	void *ptr;
681	Elf_Addr target;
682
683	ptr = (void *)make_function_pointer(def, obj);
684	target = ((Elf_Addr (*)(void))ptr)();
685	return ((void *)target);
686}
687
688Elf_Addr
689_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
690{
691    const Elf_Rel *rel;
692    const Elf_Sym *def;
693    const Obj_Entry *defobj;
694    Elf_Addr *where;
695    Elf_Addr target;
696    RtldLockState lockstate;
697
698    rlock_acquire(rtld_bind_lock, &lockstate);
699    if (sigsetjmp(lockstate.env, 0) != 0)
700	    lock_upgrade(rtld_bind_lock, &lockstate);
701    if (obj->pltrel)
702	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
703    else
704	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
705
706    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
707    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
708	&lockstate);
709    if (def == NULL)
710	die();
711    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
712	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
713    else
714	target = (Elf_Addr)(defobj->relocbase + def->st_value);
715
716    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
717      defobj->strtab + def->st_name, basename(obj->path),
718      (void *)target, basename(defobj->path));
719
720    /*
721     * Write the new contents for the jmpslot. Note that depending on
722     * architecture, the value which we need to return back to the
723     * lazy binding trampoline may or may not be the target
724     * address. The value returned from reloc_jmpslot() is the value
725     * that the trampoline needs.
726     */
727    target = reloc_jmpslot(where, target, defobj, obj, rel);
728    lock_release(rtld_bind_lock, &lockstate);
729    return target;
730}
731
732/*
733 * Error reporting function.  Use it like printf.  If formats the message
734 * into a buffer, and sets things up so that the next call to dlerror()
735 * will return the message.
736 */
737void
738_rtld_error(const char *fmt, ...)
739{
740    static char buf[512];
741    va_list ap;
742
743    va_start(ap, fmt);
744    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
745    error_message = buf;
746    va_end(ap);
747}
748
749/*
750 * Return a dynamically-allocated copy of the current error message, if any.
751 */
752static char *
753errmsg_save(void)
754{
755    return error_message == NULL ? NULL : xstrdup(error_message);
756}
757
758/*
759 * Restore the current error message from a copy which was previously saved
760 * by errmsg_save().  The copy is freed.
761 */
762static void
763errmsg_restore(char *saved_msg)
764{
765    if (saved_msg == NULL)
766	error_message = NULL;
767    else {
768	_rtld_error("%s", saved_msg);
769	free(saved_msg);
770    }
771}
772
773static const char *
774basename(const char *name)
775{
776    const char *p = strrchr(name, '/');
777    return p != NULL ? p + 1 : name;
778}
779
780static struct utsname uts;
781
782static char *
783origin_subst_one(char *real, const char *kw, const char *subst,
784    bool may_free)
785{
786	char *p, *p1, *res, *resp;
787	int subst_len, kw_len, subst_count, old_len, new_len;
788
789	kw_len = strlen(kw);
790
791	/*
792	 * First, count the number of the keyword occurences, to
793	 * preallocate the final string.
794	 */
795	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
796		p1 = strstr(p, kw);
797		if (p1 == NULL)
798			break;
799	}
800
801	/*
802	 * If the keyword is not found, just return.
803	 */
804	if (subst_count == 0)
805		return (may_free ? real : xstrdup(real));
806
807	/*
808	 * There is indeed something to substitute.  Calculate the
809	 * length of the resulting string, and allocate it.
810	 */
811	subst_len = strlen(subst);
812	old_len = strlen(real);
813	new_len = old_len + (subst_len - kw_len) * subst_count;
814	res = xmalloc(new_len + 1);
815
816	/*
817	 * Now, execute the substitution loop.
818	 */
819	for (p = real, resp = res, *resp = '\0';;) {
820		p1 = strstr(p, kw);
821		if (p1 != NULL) {
822			/* Copy the prefix before keyword. */
823			memcpy(resp, p, p1 - p);
824			resp += p1 - p;
825			/* Keyword replacement. */
826			memcpy(resp, subst, subst_len);
827			resp += subst_len;
828			*resp = '\0';
829			p = p1 + kw_len;
830		} else
831			break;
832	}
833
834	/* Copy to the end of string and finish. */
835	strcat(resp, p);
836	if (may_free)
837		free(real);
838	return (res);
839}
840
841static char *
842origin_subst(char *real, const char *origin_path)
843{
844	char *res1, *res2, *res3, *res4;
845
846	if (uts.sysname[0] == '\0') {
847		if (uname(&uts) != 0) {
848			_rtld_error("utsname failed: %d", errno);
849			return (NULL);
850		}
851	}
852	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
853	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
854	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
855	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
856	return (res4);
857}
858
859static void
860die(void)
861{
862    const char *msg = dlerror();
863
864    if (msg == NULL)
865	msg = "Fatal error";
866    rtld_fdputstr(STDERR_FILENO, msg);
867    rtld_fdputchar(STDERR_FILENO, '\n');
868    _exit(1);
869}
870
871/*
872 * Process a shared object's DYNAMIC section, and save the important
873 * information in its Obj_Entry structure.
874 */
875static void
876digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
877    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
878{
879    const Elf_Dyn *dynp;
880    Needed_Entry **needed_tail = &obj->needed;
881    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
882    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
883    const Elf_Hashelt *hashtab;
884    const Elf32_Word *hashval;
885    Elf32_Word bkt, nmaskwords;
886    int bloom_size32;
887    int plttype = DT_REL;
888
889    *dyn_rpath = NULL;
890    *dyn_soname = NULL;
891    *dyn_runpath = NULL;
892
893    obj->bind_now = false;
894    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
895	switch (dynp->d_tag) {
896
897	case DT_REL:
898	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
899	    break;
900
901	case DT_RELSZ:
902	    obj->relsize = dynp->d_un.d_val;
903	    break;
904
905	case DT_RELENT:
906	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
907	    break;
908
909	case DT_JMPREL:
910	    obj->pltrel = (const Elf_Rel *)
911	      (obj->relocbase + dynp->d_un.d_ptr);
912	    break;
913
914	case DT_PLTRELSZ:
915	    obj->pltrelsize = dynp->d_un.d_val;
916	    break;
917
918	case DT_RELA:
919	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
920	    break;
921
922	case DT_RELASZ:
923	    obj->relasize = dynp->d_un.d_val;
924	    break;
925
926	case DT_RELAENT:
927	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
928	    break;
929
930	case DT_PLTREL:
931	    plttype = dynp->d_un.d_val;
932	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
933	    break;
934
935	case DT_SYMTAB:
936	    obj->symtab = (const Elf_Sym *)
937	      (obj->relocbase + dynp->d_un.d_ptr);
938	    break;
939
940	case DT_SYMENT:
941	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
942	    break;
943
944	case DT_STRTAB:
945	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
946	    break;
947
948	case DT_STRSZ:
949	    obj->strsize = dynp->d_un.d_val;
950	    break;
951
952	case DT_VERNEED:
953	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
954		dynp->d_un.d_val);
955	    break;
956
957	case DT_VERNEEDNUM:
958	    obj->verneednum = dynp->d_un.d_val;
959	    break;
960
961	case DT_VERDEF:
962	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
963		dynp->d_un.d_val);
964	    break;
965
966	case DT_VERDEFNUM:
967	    obj->verdefnum = dynp->d_un.d_val;
968	    break;
969
970	case DT_VERSYM:
971	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
972		dynp->d_un.d_val);
973	    break;
974
975	case DT_HASH:
976	    {
977		hashtab = (const Elf_Hashelt *)(obj->relocbase +
978		    dynp->d_un.d_ptr);
979		obj->nbuckets = hashtab[0];
980		obj->nchains = hashtab[1];
981		obj->buckets = hashtab + 2;
982		obj->chains = obj->buckets + obj->nbuckets;
983		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
984		  obj->buckets != NULL;
985	    }
986	    break;
987
988	case DT_GNU_HASH:
989	    {
990		hashtab = (const Elf_Hashelt *)(obj->relocbase +
991		    dynp->d_un.d_ptr);
992		obj->nbuckets_gnu = hashtab[0];
993		obj->symndx_gnu = hashtab[1];
994		nmaskwords = hashtab[2];
995		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
996		obj->maskwords_bm_gnu = nmaskwords - 1;
997		obj->shift2_gnu = hashtab[3];
998		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
999		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1000		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1001		  obj->symndx_gnu;
1002		/* Number of bitmask words is required to be power of 2 */
1003		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1004		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1005	    }
1006	    break;
1007
1008	case DT_NEEDED:
1009	    if (!obj->rtld) {
1010		Needed_Entry *nep = NEW(Needed_Entry);
1011		nep->name = dynp->d_un.d_val;
1012		nep->obj = NULL;
1013		nep->next = NULL;
1014
1015		*needed_tail = nep;
1016		needed_tail = &nep->next;
1017	    }
1018	    break;
1019
1020	case DT_FILTER:
1021	    if (!obj->rtld) {
1022		Needed_Entry *nep = NEW(Needed_Entry);
1023		nep->name = dynp->d_un.d_val;
1024		nep->obj = NULL;
1025		nep->next = NULL;
1026
1027		*needed_filtees_tail = nep;
1028		needed_filtees_tail = &nep->next;
1029	    }
1030	    break;
1031
1032	case DT_AUXILIARY:
1033	    if (!obj->rtld) {
1034		Needed_Entry *nep = NEW(Needed_Entry);
1035		nep->name = dynp->d_un.d_val;
1036		nep->obj = NULL;
1037		nep->next = NULL;
1038
1039		*needed_aux_filtees_tail = nep;
1040		needed_aux_filtees_tail = &nep->next;
1041	    }
1042	    break;
1043
1044	case DT_PLTGOT:
1045	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1046	    break;
1047
1048	case DT_TEXTREL:
1049	    obj->textrel = true;
1050	    break;
1051
1052	case DT_SYMBOLIC:
1053	    obj->symbolic = true;
1054	    break;
1055
1056	case DT_RPATH:
1057	    /*
1058	     * We have to wait until later to process this, because we
1059	     * might not have gotten the address of the string table yet.
1060	     */
1061	    *dyn_rpath = dynp;
1062	    break;
1063
1064	case DT_SONAME:
1065	    *dyn_soname = dynp;
1066	    break;
1067
1068	case DT_RUNPATH:
1069	    *dyn_runpath = dynp;
1070	    break;
1071
1072	case DT_INIT:
1073	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1074	    break;
1075
1076	case DT_PREINIT_ARRAY:
1077	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1078	    break;
1079
1080	case DT_PREINIT_ARRAYSZ:
1081	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1082	    break;
1083
1084	case DT_INIT_ARRAY:
1085	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1086	    break;
1087
1088	case DT_INIT_ARRAYSZ:
1089	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1090	    break;
1091
1092	case DT_FINI:
1093	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1094	    break;
1095
1096	case DT_FINI_ARRAY:
1097	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1098	    break;
1099
1100	case DT_FINI_ARRAYSZ:
1101	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1102	    break;
1103
1104	/*
1105	 * Don't process DT_DEBUG on MIPS as the dynamic section
1106	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1107	 */
1108
1109#ifndef __mips__
1110	case DT_DEBUG:
1111	    /* XXX - not implemented yet */
1112	    if (!early)
1113		dbg("Filling in DT_DEBUG entry");
1114	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1115	    break;
1116#endif
1117
1118	case DT_FLAGS:
1119		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1120		    obj->z_origin = true;
1121		if (dynp->d_un.d_val & DF_SYMBOLIC)
1122		    obj->symbolic = true;
1123		if (dynp->d_un.d_val & DF_TEXTREL)
1124		    obj->textrel = true;
1125		if (dynp->d_un.d_val & DF_BIND_NOW)
1126		    obj->bind_now = true;
1127		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1128		    ;*/
1129	    break;
1130#ifdef __mips__
1131	case DT_MIPS_LOCAL_GOTNO:
1132		obj->local_gotno = dynp->d_un.d_val;
1133	    break;
1134
1135	case DT_MIPS_SYMTABNO:
1136		obj->symtabno = dynp->d_un.d_val;
1137		break;
1138
1139	case DT_MIPS_GOTSYM:
1140		obj->gotsym = dynp->d_un.d_val;
1141		break;
1142
1143	case DT_MIPS_RLD_MAP:
1144		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1145		break;
1146#endif
1147
1148	case DT_FLAGS_1:
1149		if (dynp->d_un.d_val & DF_1_NOOPEN)
1150		    obj->z_noopen = true;
1151		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1152		    obj->z_origin = true;
1153		if (dynp->d_un.d_val & DF_1_GLOBAL)
1154		    obj->z_global = true;
1155		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1156		    obj->bind_now = true;
1157		if (dynp->d_un.d_val & DF_1_NODELETE)
1158		    obj->z_nodelete = true;
1159		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1160		    obj->z_loadfltr = true;
1161		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1162		    obj->z_interpose = true;
1163		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1164		    obj->z_nodeflib = true;
1165	    break;
1166
1167	default:
1168	    if (!early) {
1169		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1170		    (long)dynp->d_tag);
1171	    }
1172	    break;
1173	}
1174    }
1175
1176    obj->traced = false;
1177
1178    if (plttype == DT_RELA) {
1179	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1180	obj->pltrel = NULL;
1181	obj->pltrelasize = obj->pltrelsize;
1182	obj->pltrelsize = 0;
1183    }
1184
1185    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1186    if (obj->valid_hash_sysv)
1187	obj->dynsymcount = obj->nchains;
1188    else if (obj->valid_hash_gnu) {
1189	obj->dynsymcount = 0;
1190	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1191	    if (obj->buckets_gnu[bkt] == 0)
1192		continue;
1193	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1194	    do
1195		obj->dynsymcount++;
1196	    while ((*hashval++ & 1u) == 0);
1197	}
1198	obj->dynsymcount += obj->symndx_gnu;
1199    }
1200}
1201
1202static void
1203digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1204    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1205{
1206
1207    if (obj->z_origin && obj->origin_path == NULL) {
1208	obj->origin_path = xmalloc(PATH_MAX);
1209	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1210	    die();
1211    }
1212
1213    if (dyn_runpath != NULL) {
1214	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1215	if (obj->z_origin)
1216	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1217    }
1218    else if (dyn_rpath != NULL) {
1219	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1220	if (obj->z_origin)
1221	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1222    }
1223
1224    if (dyn_soname != NULL)
1225	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1226}
1227
1228static void
1229digest_dynamic(Obj_Entry *obj, int early)
1230{
1231	const Elf_Dyn *dyn_rpath;
1232	const Elf_Dyn *dyn_soname;
1233	const Elf_Dyn *dyn_runpath;
1234
1235	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1236	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1237}
1238
1239/*
1240 * Process a shared object's program header.  This is used only for the
1241 * main program, when the kernel has already loaded the main program
1242 * into memory before calling the dynamic linker.  It creates and
1243 * returns an Obj_Entry structure.
1244 */
1245static Obj_Entry *
1246digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1247{
1248    Obj_Entry *obj;
1249    const Elf_Phdr *phlimit = phdr + phnum;
1250    const Elf_Phdr *ph;
1251    Elf_Addr note_start, note_end;
1252    int nsegs = 0;
1253
1254    obj = obj_new();
1255    for (ph = phdr;  ph < phlimit;  ph++) {
1256	if (ph->p_type != PT_PHDR)
1257	    continue;
1258
1259	obj->phdr = phdr;
1260	obj->phsize = ph->p_memsz;
1261	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1262	break;
1263    }
1264
1265    obj->stack_flags = PF_X | PF_R | PF_W;
1266
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	switch (ph->p_type) {
1269
1270	case PT_INTERP:
1271	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1272	    break;
1273
1274	case PT_LOAD:
1275	    if (nsegs == 0) {	/* First load segment */
1276		obj->vaddrbase = trunc_page(ph->p_vaddr);
1277		obj->mapbase = obj->vaddrbase + obj->relocbase;
1278		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1279		  obj->vaddrbase;
1280	    } else {		/* Last load segment */
1281		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1282		  obj->vaddrbase;
1283	    }
1284	    nsegs++;
1285	    break;
1286
1287	case PT_DYNAMIC:
1288	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1289	    break;
1290
1291	case PT_TLS:
1292	    obj->tlsindex = 1;
1293	    obj->tlssize = ph->p_memsz;
1294	    obj->tlsalign = ph->p_align;
1295	    obj->tlsinitsize = ph->p_filesz;
1296	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1297	    break;
1298
1299	case PT_GNU_STACK:
1300	    obj->stack_flags = ph->p_flags;
1301	    break;
1302
1303	case PT_GNU_RELRO:
1304	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1305	    obj->relro_size = round_page(ph->p_memsz);
1306	    break;
1307
1308	case PT_NOTE:
1309	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1310	    note_end = note_start + ph->p_filesz;
1311	    digest_notes(obj, note_start, note_end);
1312	    break;
1313	}
1314    }
1315    if (nsegs < 1) {
1316	_rtld_error("%s: too few PT_LOAD segments", path);
1317	return NULL;
1318    }
1319
1320    obj->entry = entry;
1321    return obj;
1322}
1323
1324void
1325digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1326{
1327	const Elf_Note *note;
1328	const char *note_name;
1329	uintptr_t p;
1330
1331	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1332	    note = (const Elf_Note *)((const char *)(note + 1) +
1333	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1334	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1335		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1336		    note->n_descsz != sizeof(int32_t))
1337			continue;
1338		if (note->n_type != ABI_NOTETYPE &&
1339		    note->n_type != CRT_NOINIT_NOTETYPE)
1340			continue;
1341		note_name = (const char *)(note + 1);
1342		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1343		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1344			continue;
1345		switch (note->n_type) {
1346		case ABI_NOTETYPE:
1347			/* FreeBSD osrel note */
1348			p = (uintptr_t)(note + 1);
1349			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1350			obj->osrel = *(const int32_t *)(p);
1351			dbg("note osrel %d", obj->osrel);
1352			break;
1353		case CRT_NOINIT_NOTETYPE:
1354			/* FreeBSD 'crt does not call init' note */
1355			obj->crt_no_init = true;
1356			dbg("note crt_no_init");
1357			break;
1358		}
1359	}
1360}
1361
1362static Obj_Entry *
1363dlcheck(void *handle)
1364{
1365    Obj_Entry *obj;
1366
1367    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1368	if (obj == (Obj_Entry *) handle)
1369	    break;
1370
1371    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1372	_rtld_error("Invalid shared object handle %p", handle);
1373	return NULL;
1374    }
1375    return obj;
1376}
1377
1378/*
1379 * If the given object is already in the donelist, return true.  Otherwise
1380 * add the object to the list and return false.
1381 */
1382static bool
1383donelist_check(DoneList *dlp, const Obj_Entry *obj)
1384{
1385    unsigned int i;
1386
1387    for (i = 0;  i < dlp->num_used;  i++)
1388	if (dlp->objs[i] == obj)
1389	    return true;
1390    /*
1391     * Our donelist allocation should always be sufficient.  But if
1392     * our threads locking isn't working properly, more shared objects
1393     * could have been loaded since we allocated the list.  That should
1394     * never happen, but we'll handle it properly just in case it does.
1395     */
1396    if (dlp->num_used < dlp->num_alloc)
1397	dlp->objs[dlp->num_used++] = obj;
1398    return false;
1399}
1400
1401/*
1402 * Hash function for symbol table lookup.  Don't even think about changing
1403 * this.  It is specified by the System V ABI.
1404 */
1405unsigned long
1406elf_hash(const char *name)
1407{
1408    const unsigned char *p = (const unsigned char *) name;
1409    unsigned long h = 0;
1410    unsigned long g;
1411
1412    while (*p != '\0') {
1413	h = (h << 4) + *p++;
1414	if ((g = h & 0xf0000000) != 0)
1415	    h ^= g >> 24;
1416	h &= ~g;
1417    }
1418    return h;
1419}
1420
1421/*
1422 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1423 * unsigned in case it's implemented with a wider type.
1424 */
1425static uint32_t
1426gnu_hash(const char *s)
1427{
1428	uint32_t h;
1429	unsigned char c;
1430
1431	h = 5381;
1432	for (c = *s; c != '\0'; c = *++s)
1433		h = h * 33 + c;
1434	return (h & 0xffffffff);
1435}
1436
1437/*
1438 * Find the library with the given name, and return its full pathname.
1439 * The returned string is dynamically allocated.  Generates an error
1440 * message and returns NULL if the library cannot be found.
1441 *
1442 * If the second argument is non-NULL, then it refers to an already-
1443 * loaded shared object, whose library search path will be searched.
1444 *
1445 * The search order is:
1446 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1447 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1448 *   LD_LIBRARY_PATH
1449 *   DT_RUNPATH in the referencing file
1450 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1451 *	 from list)
1452 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1453 *
1454 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1455 */
1456static char *
1457find_library(const char *xname, const Obj_Entry *refobj)
1458{
1459    char *pathname;
1460    char *name;
1461    bool nodeflib, objgiven;
1462
1463    objgiven = refobj != NULL;
1464    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1465	if (xname[0] != '/' && !trust) {
1466	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1467	      xname);
1468	    return NULL;
1469	}
1470	if (objgiven && refobj->z_origin) {
1471		return (origin_subst(__DECONST(char *, xname),
1472		    refobj->origin_path));
1473	} else {
1474		return (xstrdup(xname));
1475	}
1476    }
1477
1478    if (libmap_disable || !objgiven ||
1479	(name = lm_find(refobj->path, xname)) == NULL)
1480	name = (char *)xname;
1481
1482    dbg(" Searching for \"%s\"", name);
1483
1484    /*
1485     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1486     * back to pre-conforming behaviour if user requested so with
1487     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1488     * nodeflib.
1489     */
1490    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1491	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1492	  (refobj != NULL &&
1493	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1494          (pathname = search_library_path(name, gethints(false))) != NULL ||
1495	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1496	    return (pathname);
1497    } else {
1498	nodeflib = objgiven ? refobj->z_nodeflib : false;
1499	if ((objgiven &&
1500	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1501	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1502	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1503	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1504	  (objgiven &&
1505	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1506	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1507	  (objgiven && !nodeflib &&
1508	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1509	    return (pathname);
1510    }
1511
1512    if (objgiven && refobj->path != NULL) {
1513	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1514	  name, basename(refobj->path));
1515    } else {
1516	_rtld_error("Shared object \"%s\" not found", name);
1517    }
1518    return NULL;
1519}
1520
1521/*
1522 * Given a symbol number in a referencing object, find the corresponding
1523 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1524 * no definition was found.  Returns a pointer to the Obj_Entry of the
1525 * defining object via the reference parameter DEFOBJ_OUT.
1526 */
1527const Elf_Sym *
1528find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1529    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1530    RtldLockState *lockstate)
1531{
1532    const Elf_Sym *ref;
1533    const Elf_Sym *def;
1534    const Obj_Entry *defobj;
1535    SymLook req;
1536    const char *name;
1537    int res;
1538
1539    /*
1540     * If we have already found this symbol, get the information from
1541     * the cache.
1542     */
1543    if (symnum >= refobj->dynsymcount)
1544	return NULL;	/* Bad object */
1545    if (cache != NULL && cache[symnum].sym != NULL) {
1546	*defobj_out = cache[symnum].obj;
1547	return cache[symnum].sym;
1548    }
1549
1550    ref = refobj->symtab + symnum;
1551    name = refobj->strtab + ref->st_name;
1552    def = NULL;
1553    defobj = NULL;
1554
1555    /*
1556     * We don't have to do a full scale lookup if the symbol is local.
1557     * We know it will bind to the instance in this load module; to
1558     * which we already have a pointer (ie ref). By not doing a lookup,
1559     * we not only improve performance, but it also avoids unresolvable
1560     * symbols when local symbols are not in the hash table. This has
1561     * been seen with the ia64 toolchain.
1562     */
1563    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1564	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1565	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1566		symnum);
1567	}
1568	symlook_init(&req, name);
1569	req.flags = flags;
1570	req.ventry = fetch_ventry(refobj, symnum);
1571	req.lockstate = lockstate;
1572	res = symlook_default(&req, refobj);
1573	if (res == 0) {
1574	    def = req.sym_out;
1575	    defobj = req.defobj_out;
1576	}
1577    } else {
1578	def = ref;
1579	defobj = refobj;
1580    }
1581
1582    /*
1583     * If we found no definition and the reference is weak, treat the
1584     * symbol as having the value zero.
1585     */
1586    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1587	def = &sym_zero;
1588	defobj = obj_main;
1589    }
1590
1591    if (def != NULL) {
1592	*defobj_out = defobj;
1593	/* Record the information in the cache to avoid subsequent lookups. */
1594	if (cache != NULL) {
1595	    cache[symnum].sym = def;
1596	    cache[symnum].obj = defobj;
1597	}
1598    } else {
1599	if (refobj != &obj_rtld)
1600	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1601    }
1602    return def;
1603}
1604
1605/*
1606 * Return the search path from the ldconfig hints file, reading it if
1607 * necessary.  If nostdlib is true, then the default search paths are
1608 * not added to result.
1609 *
1610 * Returns NULL if there are problems with the hints file,
1611 * or if the search path there is empty.
1612 */
1613static const char *
1614gethints(bool nostdlib)
1615{
1616	static char *hints, *filtered_path;
1617	struct elfhints_hdr hdr;
1618	struct fill_search_info_args sargs, hargs;
1619	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1620	struct dl_serpath *SLPpath, *hintpath;
1621	char *p;
1622	unsigned int SLPndx, hintndx, fndx, fcount;
1623	int fd;
1624	size_t flen;
1625	bool skip;
1626
1627	/* First call, read the hints file */
1628	if (hints == NULL) {
1629		/* Keep from trying again in case the hints file is bad. */
1630		hints = "";
1631
1632		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1633			return (NULL);
1634		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1635		    hdr.magic != ELFHINTS_MAGIC ||
1636		    hdr.version != 1) {
1637			close(fd);
1638			return (NULL);
1639		}
1640		p = xmalloc(hdr.dirlistlen + 1);
1641		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1642		    read(fd, p, hdr.dirlistlen + 1) !=
1643		    (ssize_t)hdr.dirlistlen + 1) {
1644			free(p);
1645			close(fd);
1646			return (NULL);
1647		}
1648		hints = p;
1649		close(fd);
1650	}
1651
1652	/*
1653	 * If caller agreed to receive list which includes the default
1654	 * paths, we are done. Otherwise, if we still did not
1655	 * calculated filtered result, do it now.
1656	 */
1657	if (!nostdlib)
1658		return (hints[0] != '\0' ? hints : NULL);
1659	if (filtered_path != NULL)
1660		goto filt_ret;
1661
1662	/*
1663	 * Obtain the list of all configured search paths, and the
1664	 * list of the default paths.
1665	 *
1666	 * First estimate the size of the results.
1667	 */
1668	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1669	smeta.dls_cnt = 0;
1670	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1671	hmeta.dls_cnt = 0;
1672
1673	sargs.request = RTLD_DI_SERINFOSIZE;
1674	sargs.serinfo = &smeta;
1675	hargs.request = RTLD_DI_SERINFOSIZE;
1676	hargs.serinfo = &hmeta;
1677
1678	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1679	path_enumerate(p, fill_search_info, &hargs);
1680
1681	SLPinfo = xmalloc(smeta.dls_size);
1682	hintinfo = xmalloc(hmeta.dls_size);
1683
1684	/*
1685	 * Next fetch both sets of paths.
1686	 */
1687	sargs.request = RTLD_DI_SERINFO;
1688	sargs.serinfo = SLPinfo;
1689	sargs.serpath = &SLPinfo->dls_serpath[0];
1690	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1691
1692	hargs.request = RTLD_DI_SERINFO;
1693	hargs.serinfo = hintinfo;
1694	hargs.serpath = &hintinfo->dls_serpath[0];
1695	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1696
1697	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1698	path_enumerate(p, fill_search_info, &hargs);
1699
1700	/*
1701	 * Now calculate the difference between two sets, by excluding
1702	 * standard paths from the full set.
1703	 */
1704	fndx = 0;
1705	fcount = 0;
1706	filtered_path = xmalloc(hdr.dirlistlen + 1);
1707	hintpath = &hintinfo->dls_serpath[0];
1708	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1709		skip = false;
1710		SLPpath = &SLPinfo->dls_serpath[0];
1711		/*
1712		 * Check each standard path against current.
1713		 */
1714		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1715			/* matched, skip the path */
1716			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1717				skip = true;
1718				break;
1719			}
1720		}
1721		if (skip)
1722			continue;
1723		/*
1724		 * Not matched against any standard path, add the path
1725		 * to result. Separate consequtive paths with ':'.
1726		 */
1727		if (fcount > 0) {
1728			filtered_path[fndx] = ':';
1729			fndx++;
1730		}
1731		fcount++;
1732		flen = strlen(hintpath->dls_name);
1733		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1734		fndx += flen;
1735	}
1736	filtered_path[fndx] = '\0';
1737
1738	free(SLPinfo);
1739	free(hintinfo);
1740
1741filt_ret:
1742	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1743}
1744
1745static void
1746init_dag(Obj_Entry *root)
1747{
1748    const Needed_Entry *needed;
1749    const Objlist_Entry *elm;
1750    DoneList donelist;
1751
1752    if (root->dag_inited)
1753	return;
1754    donelist_init(&donelist);
1755
1756    /* Root object belongs to own DAG. */
1757    objlist_push_tail(&root->dldags, root);
1758    objlist_push_tail(&root->dagmembers, root);
1759    donelist_check(&donelist, root);
1760
1761    /*
1762     * Add dependencies of root object to DAG in breadth order
1763     * by exploiting the fact that each new object get added
1764     * to the tail of the dagmembers list.
1765     */
1766    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1767	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1768	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1769		continue;
1770	    objlist_push_tail(&needed->obj->dldags, root);
1771	    objlist_push_tail(&root->dagmembers, needed->obj);
1772	}
1773    }
1774    root->dag_inited = true;
1775}
1776
1777static void
1778process_z(Obj_Entry *root)
1779{
1780	const Objlist_Entry *elm;
1781	Obj_Entry *obj;
1782
1783	/*
1784	 * Walk over object DAG and process every dependent object
1785	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1786	 * to grow their own DAG.
1787	 *
1788	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1789	 * symlook_global() to work.
1790	 *
1791	 * For DF_1_NODELETE, the DAG should have its reference upped.
1792	 */
1793	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1794		obj = elm->obj;
1795		if (obj == NULL)
1796			continue;
1797		if (obj->z_nodelete && !obj->ref_nodel) {
1798			dbg("obj %s -z nodelete", obj->path);
1799			init_dag(obj);
1800			ref_dag(obj);
1801			obj->ref_nodel = true;
1802		}
1803		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1804			dbg("obj %s -z global", obj->path);
1805			objlist_push_tail(&list_global, obj);
1806			init_dag(obj);
1807		}
1808	}
1809}
1810/*
1811 * Initialize the dynamic linker.  The argument is the address at which
1812 * the dynamic linker has been mapped into memory.  The primary task of
1813 * this function is to relocate the dynamic linker.
1814 */
1815static void
1816init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1817{
1818    Obj_Entry objtmp;	/* Temporary rtld object */
1819    const Elf_Dyn *dyn_rpath;
1820    const Elf_Dyn *dyn_soname;
1821    const Elf_Dyn *dyn_runpath;
1822
1823#ifdef RTLD_INIT_PAGESIZES_EARLY
1824    /* The page size is required by the dynamic memory allocator. */
1825    init_pagesizes(aux_info);
1826#endif
1827
1828    /*
1829     * Conjure up an Obj_Entry structure for the dynamic linker.
1830     *
1831     * The "path" member can't be initialized yet because string constants
1832     * cannot yet be accessed. Below we will set it correctly.
1833     */
1834    memset(&objtmp, 0, sizeof(objtmp));
1835    objtmp.path = NULL;
1836    objtmp.rtld = true;
1837    objtmp.mapbase = mapbase;
1838#ifdef PIC
1839    objtmp.relocbase = mapbase;
1840#endif
1841    if (RTLD_IS_DYNAMIC()) {
1842	objtmp.dynamic = rtld_dynamic(&objtmp);
1843	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1844	assert(objtmp.needed == NULL);
1845#if !defined(__mips__)
1846	/* MIPS has a bogus DT_TEXTREL. */
1847	assert(!objtmp.textrel);
1848#endif
1849
1850	/*
1851	 * Temporarily put the dynamic linker entry into the object list, so
1852	 * that symbols can be found.
1853	 */
1854
1855	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1856    }
1857
1858    /* Initialize the object list. */
1859    obj_tail = &obj_list;
1860
1861    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1862    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1863
1864#ifndef RTLD_INIT_PAGESIZES_EARLY
1865    /* The page size is required by the dynamic memory allocator. */
1866    init_pagesizes(aux_info);
1867#endif
1868
1869    if (aux_info[AT_OSRELDATE] != NULL)
1870	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1871
1872    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1873
1874    /* Replace the path with a dynamically allocated copy. */
1875    obj_rtld.path = xstrdup(PATH_RTLD);
1876
1877    r_debug.r_brk = r_debug_state;
1878    r_debug.r_state = RT_CONSISTENT;
1879}
1880
1881/*
1882 * Retrieve the array of supported page sizes.  The kernel provides the page
1883 * sizes in increasing order.
1884 */
1885static void
1886init_pagesizes(Elf_Auxinfo **aux_info)
1887{
1888	static size_t psa[MAXPAGESIZES];
1889	int mib[2];
1890	size_t len, size;
1891
1892	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1893	    NULL) {
1894		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1895		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1896	} else {
1897		len = 2;
1898		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1899			size = sizeof(psa);
1900		else {
1901			/* As a fallback, retrieve the base page size. */
1902			size = sizeof(psa[0]);
1903			if (aux_info[AT_PAGESZ] != NULL) {
1904				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1905				goto psa_filled;
1906			} else {
1907				mib[0] = CTL_HW;
1908				mib[1] = HW_PAGESIZE;
1909				len = 2;
1910			}
1911		}
1912		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1913			_rtld_error("sysctl for hw.pagesize(s) failed");
1914			die();
1915		}
1916psa_filled:
1917		pagesizes = psa;
1918	}
1919	npagesizes = size / sizeof(pagesizes[0]);
1920	/* Discard any invalid entries at the end of the array. */
1921	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1922		npagesizes--;
1923}
1924
1925/*
1926 * Add the init functions from a needed object list (and its recursive
1927 * needed objects) to "list".  This is not used directly; it is a helper
1928 * function for initlist_add_objects().  The write lock must be held
1929 * when this function is called.
1930 */
1931static void
1932initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1933{
1934    /* Recursively process the successor needed objects. */
1935    if (needed->next != NULL)
1936	initlist_add_neededs(needed->next, list);
1937
1938    /* Process the current needed object. */
1939    if (needed->obj != NULL)
1940	initlist_add_objects(needed->obj, &needed->obj->next, list);
1941}
1942
1943/*
1944 * Scan all of the DAGs rooted in the range of objects from "obj" to
1945 * "tail" and add their init functions to "list".  This recurses over
1946 * the DAGs and ensure the proper init ordering such that each object's
1947 * needed libraries are initialized before the object itself.  At the
1948 * same time, this function adds the objects to the global finalization
1949 * list "list_fini" in the opposite order.  The write lock must be
1950 * held when this function is called.
1951 */
1952static void
1953initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1954{
1955
1956    if (obj->init_scanned || obj->init_done)
1957	return;
1958    obj->init_scanned = true;
1959
1960    /* Recursively process the successor objects. */
1961    if (&obj->next != tail)
1962	initlist_add_objects(obj->next, tail, list);
1963
1964    /* Recursively process the needed objects. */
1965    if (obj->needed != NULL)
1966	initlist_add_neededs(obj->needed, list);
1967    if (obj->needed_filtees != NULL)
1968	initlist_add_neededs(obj->needed_filtees, list);
1969    if (obj->needed_aux_filtees != NULL)
1970	initlist_add_neededs(obj->needed_aux_filtees, list);
1971
1972    /* Add the object to the init list. */
1973    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1974      obj->init_array != (Elf_Addr)NULL)
1975	objlist_push_tail(list, obj);
1976
1977    /* Add the object to the global fini list in the reverse order. */
1978    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1979      && !obj->on_fini_list) {
1980	objlist_push_head(&list_fini, obj);
1981	obj->on_fini_list = true;
1982    }
1983}
1984
1985#ifndef FPTR_TARGET
1986#define FPTR_TARGET(f)	((Elf_Addr) (f))
1987#endif
1988
1989static void
1990free_needed_filtees(Needed_Entry *n)
1991{
1992    Needed_Entry *needed, *needed1;
1993
1994    for (needed = n; needed != NULL; needed = needed->next) {
1995	if (needed->obj != NULL) {
1996	    dlclose(needed->obj);
1997	    needed->obj = NULL;
1998	}
1999    }
2000    for (needed = n; needed != NULL; needed = needed1) {
2001	needed1 = needed->next;
2002	free(needed);
2003    }
2004}
2005
2006static void
2007unload_filtees(Obj_Entry *obj)
2008{
2009
2010    free_needed_filtees(obj->needed_filtees);
2011    obj->needed_filtees = NULL;
2012    free_needed_filtees(obj->needed_aux_filtees);
2013    obj->needed_aux_filtees = NULL;
2014    obj->filtees_loaded = false;
2015}
2016
2017static void
2018load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2019    RtldLockState *lockstate)
2020{
2021
2022    for (; needed != NULL; needed = needed->next) {
2023	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2024	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2025	  RTLD_LOCAL, lockstate);
2026    }
2027}
2028
2029static void
2030load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2031{
2032
2033    lock_restart_for_upgrade(lockstate);
2034    if (!obj->filtees_loaded) {
2035	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2036	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2037	obj->filtees_loaded = true;
2038    }
2039}
2040
2041static int
2042process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2043{
2044    Obj_Entry *obj1;
2045
2046    for (; needed != NULL; needed = needed->next) {
2047	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2048	  flags & ~RTLD_LO_NOLOAD);
2049	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2050	    return (-1);
2051    }
2052    return (0);
2053}
2054
2055/*
2056 * Given a shared object, traverse its list of needed objects, and load
2057 * each of them.  Returns 0 on success.  Generates an error message and
2058 * returns -1 on failure.
2059 */
2060static int
2061load_needed_objects(Obj_Entry *first, int flags)
2062{
2063    Obj_Entry *obj;
2064
2065    for (obj = first;  obj != NULL;  obj = obj->next) {
2066	if (process_needed(obj, obj->needed, flags) == -1)
2067	    return (-1);
2068    }
2069    return (0);
2070}
2071
2072static int
2073load_preload_objects(void)
2074{
2075    char *p = ld_preload;
2076    Obj_Entry *obj;
2077    static const char delim[] = " \t:;";
2078
2079    if (p == NULL)
2080	return 0;
2081
2082    p += strspn(p, delim);
2083    while (*p != '\0') {
2084	size_t len = strcspn(p, delim);
2085	char savech;
2086
2087	savech = p[len];
2088	p[len] = '\0';
2089	obj = load_object(p, -1, NULL, 0);
2090	if (obj == NULL)
2091	    return -1;	/* XXX - cleanup */
2092	obj->z_interpose = true;
2093	p[len] = savech;
2094	p += len;
2095	p += strspn(p, delim);
2096    }
2097    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2098    return 0;
2099}
2100
2101static const char *
2102printable_path(const char *path)
2103{
2104
2105	return (path == NULL ? "<unknown>" : path);
2106}
2107
2108/*
2109 * Load a shared object into memory, if it is not already loaded.  The
2110 * object may be specified by name or by user-supplied file descriptor
2111 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2112 * duplicate is.
2113 *
2114 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2115 * on failure.
2116 */
2117static Obj_Entry *
2118load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2119{
2120    Obj_Entry *obj;
2121    int fd;
2122    struct stat sb;
2123    char *path;
2124
2125    if (name != NULL) {
2126	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2127	    if (object_match_name(obj, name))
2128		return (obj);
2129	}
2130
2131	path = find_library(name, refobj);
2132	if (path == NULL)
2133	    return (NULL);
2134    } else
2135	path = NULL;
2136
2137    /*
2138     * If we didn't find a match by pathname, or the name is not
2139     * supplied, open the file and check again by device and inode.
2140     * This avoids false mismatches caused by multiple links or ".."
2141     * in pathnames.
2142     *
2143     * To avoid a race, we open the file and use fstat() rather than
2144     * using stat().
2145     */
2146    fd = -1;
2147    if (fd_u == -1) {
2148	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2149	    _rtld_error("Cannot open \"%s\"", path);
2150	    free(path);
2151	    return (NULL);
2152	}
2153    } else {
2154	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2155	if (fd == -1) {
2156	    _rtld_error("Cannot dup fd");
2157	    free(path);
2158	    return (NULL);
2159	}
2160    }
2161    if (fstat(fd, &sb) == -1) {
2162	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2163	close(fd);
2164	free(path);
2165	return NULL;
2166    }
2167    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2168	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2169	    break;
2170    if (obj != NULL && name != NULL) {
2171	object_add_name(obj, name);
2172	free(path);
2173	close(fd);
2174	return obj;
2175    }
2176    if (flags & RTLD_LO_NOLOAD) {
2177	free(path);
2178	close(fd);
2179	return (NULL);
2180    }
2181
2182    /* First use of this object, so we must map it in */
2183    obj = do_load_object(fd, name, path, &sb, flags);
2184    if (obj == NULL)
2185	free(path);
2186    close(fd);
2187
2188    return obj;
2189}
2190
2191static Obj_Entry *
2192do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2193  int flags)
2194{
2195    Obj_Entry *obj;
2196    struct statfs fs;
2197
2198    /*
2199     * but first, make sure that environment variables haven't been
2200     * used to circumvent the noexec flag on a filesystem.
2201     */
2202    if (dangerous_ld_env) {
2203	if (fstatfs(fd, &fs) != 0) {
2204	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2205	    return NULL;
2206	}
2207	if (fs.f_flags & MNT_NOEXEC) {
2208	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2209	    return NULL;
2210	}
2211    }
2212    dbg("loading \"%s\"", printable_path(path));
2213    obj = map_object(fd, printable_path(path), sbp);
2214    if (obj == NULL)
2215        return NULL;
2216
2217    /*
2218     * If DT_SONAME is present in the object, digest_dynamic2 already
2219     * added it to the object names.
2220     */
2221    if (name != NULL)
2222	object_add_name(obj, name);
2223    obj->path = path;
2224    digest_dynamic(obj, 0);
2225    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2226	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2227    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2228      RTLD_LO_DLOPEN) {
2229	dbg("refusing to load non-loadable \"%s\"", obj->path);
2230	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2231	munmap(obj->mapbase, obj->mapsize);
2232	obj_free(obj);
2233	return (NULL);
2234    }
2235
2236    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2237    *obj_tail = obj;
2238    obj_tail = &obj->next;
2239    obj_count++;
2240    obj_loads++;
2241    linkmap_add(obj);	/* for GDB & dlinfo() */
2242    max_stack_flags |= obj->stack_flags;
2243
2244    dbg("  %p .. %p: %s", obj->mapbase,
2245         obj->mapbase + obj->mapsize - 1, obj->path);
2246    if (obj->textrel)
2247	dbg("  WARNING: %s has impure text", obj->path);
2248    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2249	obj->path);
2250
2251    return obj;
2252}
2253
2254static Obj_Entry *
2255obj_from_addr(const void *addr)
2256{
2257    Obj_Entry *obj;
2258
2259    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2260	if (addr < (void *) obj->mapbase)
2261	    continue;
2262	if (addr < (void *) (obj->mapbase + obj->mapsize))
2263	    return obj;
2264    }
2265    return NULL;
2266}
2267
2268static void
2269preinit_main(void)
2270{
2271    Elf_Addr *preinit_addr;
2272    int index;
2273
2274    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2275    if (preinit_addr == NULL)
2276	return;
2277
2278    for (index = 0; index < obj_main->preinit_array_num; index++) {
2279	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2280	    dbg("calling preinit function for %s at %p", obj_main->path,
2281	      (void *)preinit_addr[index]);
2282	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2283	      0, 0, obj_main->path);
2284	    call_init_pointer(obj_main, preinit_addr[index]);
2285	}
2286    }
2287}
2288
2289/*
2290 * Call the finalization functions for each of the objects in "list"
2291 * belonging to the DAG of "root" and referenced once. If NULL "root"
2292 * is specified, every finalization function will be called regardless
2293 * of the reference count and the list elements won't be freed. All of
2294 * the objects are expected to have non-NULL fini functions.
2295 */
2296static void
2297objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2298{
2299    Objlist_Entry *elm;
2300    char *saved_msg;
2301    Elf_Addr *fini_addr;
2302    int index;
2303
2304    assert(root == NULL || root->refcount == 1);
2305
2306    /*
2307     * Preserve the current error message since a fini function might
2308     * call into the dynamic linker and overwrite it.
2309     */
2310    saved_msg = errmsg_save();
2311    do {
2312	STAILQ_FOREACH(elm, list, link) {
2313	    if (root != NULL && (elm->obj->refcount != 1 ||
2314	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2315		continue;
2316	    /* Remove object from fini list to prevent recursive invocation. */
2317	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2318	    /*
2319	     * XXX: If a dlopen() call references an object while the
2320	     * fini function is in progress, we might end up trying to
2321	     * unload the referenced object in dlclose() or the object
2322	     * won't be unloaded although its fini function has been
2323	     * called.
2324	     */
2325	    lock_release(rtld_bind_lock, lockstate);
2326
2327	    /*
2328	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2329	     * When this happens, DT_FINI_ARRAY is processed first.
2330	     */
2331	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2332	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2333		for (index = elm->obj->fini_array_num - 1; index >= 0;
2334		  index--) {
2335		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2336			dbg("calling fini function for %s at %p",
2337			    elm->obj->path, (void *)fini_addr[index]);
2338			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2339			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2340			call_initfini_pointer(elm->obj, fini_addr[index]);
2341		    }
2342		}
2343	    }
2344	    if (elm->obj->fini != (Elf_Addr)NULL) {
2345		dbg("calling fini function for %s at %p", elm->obj->path,
2346		    (void *)elm->obj->fini);
2347		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2348		    0, 0, elm->obj->path);
2349		call_initfini_pointer(elm->obj, elm->obj->fini);
2350	    }
2351	    wlock_acquire(rtld_bind_lock, lockstate);
2352	    /* No need to free anything if process is going down. */
2353	    if (root != NULL)
2354	    	free(elm);
2355	    /*
2356	     * We must restart the list traversal after every fini call
2357	     * because a dlclose() call from the fini function or from
2358	     * another thread might have modified the reference counts.
2359	     */
2360	    break;
2361	}
2362    } while (elm != NULL);
2363    errmsg_restore(saved_msg);
2364}
2365
2366/*
2367 * Call the initialization functions for each of the objects in
2368 * "list".  All of the objects are expected to have non-NULL init
2369 * functions.
2370 */
2371static void
2372objlist_call_init(Objlist *list, RtldLockState *lockstate)
2373{
2374    Objlist_Entry *elm;
2375    Obj_Entry *obj;
2376    char *saved_msg;
2377    Elf_Addr *init_addr;
2378    int index;
2379
2380    /*
2381     * Clean init_scanned flag so that objects can be rechecked and
2382     * possibly initialized earlier if any of vectors called below
2383     * cause the change by using dlopen.
2384     */
2385    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2386	obj->init_scanned = false;
2387
2388    /*
2389     * Preserve the current error message since an init function might
2390     * call into the dynamic linker and overwrite it.
2391     */
2392    saved_msg = errmsg_save();
2393    STAILQ_FOREACH(elm, list, link) {
2394	if (elm->obj->init_done) /* Initialized early. */
2395	    continue;
2396	/*
2397	 * Race: other thread might try to use this object before current
2398	 * one completes the initilization. Not much can be done here
2399	 * without better locking.
2400	 */
2401	elm->obj->init_done = true;
2402	lock_release(rtld_bind_lock, lockstate);
2403
2404        /*
2405         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2406         * When this happens, DT_INIT is processed first.
2407         */
2408	if (elm->obj->init != (Elf_Addr)NULL) {
2409	    dbg("calling init function for %s at %p", elm->obj->path,
2410	        (void *)elm->obj->init);
2411	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2412	        0, 0, elm->obj->path);
2413	    call_initfini_pointer(elm->obj, elm->obj->init);
2414	}
2415	init_addr = (Elf_Addr *)elm->obj->init_array;
2416	if (init_addr != NULL) {
2417	    for (index = 0; index < elm->obj->init_array_num; index++) {
2418		if (init_addr[index] != 0 && init_addr[index] != 1) {
2419		    dbg("calling init function for %s at %p", elm->obj->path,
2420			(void *)init_addr[index]);
2421		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2422			(void *)init_addr[index], 0, 0, elm->obj->path);
2423		    call_init_pointer(elm->obj, init_addr[index]);
2424		}
2425	    }
2426	}
2427	wlock_acquire(rtld_bind_lock, lockstate);
2428    }
2429    errmsg_restore(saved_msg);
2430}
2431
2432static void
2433objlist_clear(Objlist *list)
2434{
2435    Objlist_Entry *elm;
2436
2437    while (!STAILQ_EMPTY(list)) {
2438	elm = STAILQ_FIRST(list);
2439	STAILQ_REMOVE_HEAD(list, link);
2440	free(elm);
2441    }
2442}
2443
2444static Objlist_Entry *
2445objlist_find(Objlist *list, const Obj_Entry *obj)
2446{
2447    Objlist_Entry *elm;
2448
2449    STAILQ_FOREACH(elm, list, link)
2450	if (elm->obj == obj)
2451	    return elm;
2452    return NULL;
2453}
2454
2455static void
2456objlist_init(Objlist *list)
2457{
2458    STAILQ_INIT(list);
2459}
2460
2461static void
2462objlist_push_head(Objlist *list, Obj_Entry *obj)
2463{
2464    Objlist_Entry *elm;
2465
2466    elm = NEW(Objlist_Entry);
2467    elm->obj = obj;
2468    STAILQ_INSERT_HEAD(list, elm, link);
2469}
2470
2471static void
2472objlist_push_tail(Objlist *list, Obj_Entry *obj)
2473{
2474    Objlist_Entry *elm;
2475
2476    elm = NEW(Objlist_Entry);
2477    elm->obj = obj;
2478    STAILQ_INSERT_TAIL(list, elm, link);
2479}
2480
2481static void
2482objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2483{
2484	Objlist_Entry *elm, *listelm;
2485
2486	STAILQ_FOREACH(listelm, list, link) {
2487		if (listelm->obj == listobj)
2488			break;
2489	}
2490	elm = NEW(Objlist_Entry);
2491	elm->obj = obj;
2492	if (listelm != NULL)
2493		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2494	else
2495		STAILQ_INSERT_TAIL(list, elm, link);
2496}
2497
2498static void
2499objlist_remove(Objlist *list, Obj_Entry *obj)
2500{
2501    Objlist_Entry *elm;
2502
2503    if ((elm = objlist_find(list, obj)) != NULL) {
2504	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2505	free(elm);
2506    }
2507}
2508
2509/*
2510 * Relocate dag rooted in the specified object.
2511 * Returns 0 on success, or -1 on failure.
2512 */
2513
2514static int
2515relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2516    int flags, RtldLockState *lockstate)
2517{
2518	Objlist_Entry *elm;
2519	int error;
2520
2521	error = 0;
2522	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2523		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2524		    lockstate);
2525		if (error == -1)
2526			break;
2527	}
2528	return (error);
2529}
2530
2531/*
2532 * Relocate single object.
2533 * Returns 0 on success, or -1 on failure.
2534 */
2535static int
2536relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2537    int flags, RtldLockState *lockstate)
2538{
2539
2540	if (obj->relocated)
2541		return (0);
2542	obj->relocated = true;
2543	if (obj != rtldobj)
2544		dbg("relocating \"%s\"", obj->path);
2545
2546	if (obj->symtab == NULL || obj->strtab == NULL ||
2547	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2548		_rtld_error("%s: Shared object has no run-time symbol table",
2549			    obj->path);
2550		return (-1);
2551	}
2552
2553	if (obj->textrel) {
2554		/* There are relocations to the write-protected text segment. */
2555		if (mprotect(obj->mapbase, obj->textsize,
2556		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2557			_rtld_error("%s: Cannot write-enable text segment: %s",
2558			    obj->path, rtld_strerror(errno));
2559			return (-1);
2560		}
2561	}
2562
2563	/* Process the non-PLT non-IFUNC relocations. */
2564	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2565		return (-1);
2566
2567	if (obj->textrel) {	/* Re-protected the text segment. */
2568		if (mprotect(obj->mapbase, obj->textsize,
2569		    PROT_READ|PROT_EXEC) == -1) {
2570			_rtld_error("%s: Cannot write-protect text segment: %s",
2571			    obj->path, rtld_strerror(errno));
2572			return (-1);
2573		}
2574	}
2575
2576	/* Set the special PLT or GOT entries. */
2577	init_pltgot(obj);
2578
2579	/* Process the PLT relocations. */
2580	if (reloc_plt(obj) == -1)
2581		return (-1);
2582	/* Relocate the jump slots if we are doing immediate binding. */
2583	if (obj->bind_now || bind_now)
2584		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2585			return (-1);
2586
2587	/*
2588	 * Process the non-PLT IFUNC relocations.  The relocations are
2589	 * processed in two phases, because IFUNC resolvers may
2590	 * reference other symbols, which must be readily processed
2591	 * before resolvers are called.
2592	 */
2593	if (obj->non_plt_gnu_ifunc &&
2594	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2595		return (-1);
2596
2597	if (obj->relro_size > 0) {
2598		if (mprotect(obj->relro_page, obj->relro_size,
2599		    PROT_READ) == -1) {
2600			_rtld_error("%s: Cannot enforce relro protection: %s",
2601			    obj->path, rtld_strerror(errno));
2602			return (-1);
2603		}
2604	}
2605
2606	/*
2607	 * Set up the magic number and version in the Obj_Entry.  These
2608	 * were checked in the crt1.o from the original ElfKit, so we
2609	 * set them for backward compatibility.
2610	 */
2611	obj->magic = RTLD_MAGIC;
2612	obj->version = RTLD_VERSION;
2613
2614	return (0);
2615}
2616
2617/*
2618 * Relocate newly-loaded shared objects.  The argument is a pointer to
2619 * the Obj_Entry for the first such object.  All objects from the first
2620 * to the end of the list of objects are relocated.  Returns 0 on success,
2621 * or -1 on failure.
2622 */
2623static int
2624relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2625    int flags, RtldLockState *lockstate)
2626{
2627	Obj_Entry *obj;
2628	int error;
2629
2630	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2631		error = relocate_object(obj, bind_now, rtldobj, flags,
2632		    lockstate);
2633		if (error == -1)
2634			break;
2635	}
2636	return (error);
2637}
2638
2639/*
2640 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2641 * referencing STT_GNU_IFUNC symbols is postponed till the other
2642 * relocations are done.  The indirect functions specified as
2643 * ifunc are allowed to call other symbols, so we need to have
2644 * objects relocated before asking for resolution from indirects.
2645 *
2646 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2647 * instead of the usual lazy handling of PLT slots.  It is
2648 * consistent with how GNU does it.
2649 */
2650static int
2651resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2652    RtldLockState *lockstate)
2653{
2654	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2655		return (-1);
2656	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2657	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2658		return (-1);
2659	return (0);
2660}
2661
2662static int
2663resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2664    RtldLockState *lockstate)
2665{
2666	Obj_Entry *obj;
2667
2668	for (obj = first;  obj != NULL;  obj = obj->next) {
2669		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2670			return (-1);
2671	}
2672	return (0);
2673}
2674
2675static int
2676initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2677    RtldLockState *lockstate)
2678{
2679	Objlist_Entry *elm;
2680
2681	STAILQ_FOREACH(elm, list, link) {
2682		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2683		    lockstate) == -1)
2684			return (-1);
2685	}
2686	return (0);
2687}
2688
2689/*
2690 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2691 * before the process exits.
2692 */
2693static void
2694rtld_exit(void)
2695{
2696    RtldLockState lockstate;
2697
2698    wlock_acquire(rtld_bind_lock, &lockstate);
2699    dbg("rtld_exit()");
2700    objlist_call_fini(&list_fini, NULL, &lockstate);
2701    /* No need to remove the items from the list, since we are exiting. */
2702    if (!libmap_disable)
2703        lm_fini();
2704    lock_release(rtld_bind_lock, &lockstate);
2705}
2706
2707/*
2708 * Iterate over a search path, translate each element, and invoke the
2709 * callback on the result.
2710 */
2711static void *
2712path_enumerate(const char *path, path_enum_proc callback, void *arg)
2713{
2714    const char *trans;
2715    if (path == NULL)
2716	return (NULL);
2717
2718    path += strspn(path, ":;");
2719    while (*path != '\0') {
2720	size_t len;
2721	char  *res;
2722
2723	len = strcspn(path, ":;");
2724	trans = lm_findn(NULL, path, len);
2725	if (trans)
2726	    res = callback(trans, strlen(trans), arg);
2727	else
2728	    res = callback(path, len, arg);
2729
2730	if (res != NULL)
2731	    return (res);
2732
2733	path += len;
2734	path += strspn(path, ":;");
2735    }
2736
2737    return (NULL);
2738}
2739
2740struct try_library_args {
2741    const char	*name;
2742    size_t	 namelen;
2743    char	*buffer;
2744    size_t	 buflen;
2745};
2746
2747static void *
2748try_library_path(const char *dir, size_t dirlen, void *param)
2749{
2750    struct try_library_args *arg;
2751
2752    arg = param;
2753    if (*dir == '/' || trust) {
2754	char *pathname;
2755
2756	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2757		return (NULL);
2758
2759	pathname = arg->buffer;
2760	strncpy(pathname, dir, dirlen);
2761	pathname[dirlen] = '/';
2762	strcpy(pathname + dirlen + 1, arg->name);
2763
2764	dbg("  Trying \"%s\"", pathname);
2765	if (access(pathname, F_OK) == 0) {		/* We found it */
2766	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2767	    strcpy(pathname, arg->buffer);
2768	    return (pathname);
2769	}
2770    }
2771    return (NULL);
2772}
2773
2774static char *
2775search_library_path(const char *name, const char *path)
2776{
2777    char *p;
2778    struct try_library_args arg;
2779
2780    if (path == NULL)
2781	return NULL;
2782
2783    arg.name = name;
2784    arg.namelen = strlen(name);
2785    arg.buffer = xmalloc(PATH_MAX);
2786    arg.buflen = PATH_MAX;
2787
2788    p = path_enumerate(path, try_library_path, &arg);
2789
2790    free(arg.buffer);
2791
2792    return (p);
2793}
2794
2795int
2796dlclose(void *handle)
2797{
2798    Obj_Entry *root;
2799    RtldLockState lockstate;
2800
2801    wlock_acquire(rtld_bind_lock, &lockstate);
2802    root = dlcheck(handle);
2803    if (root == NULL) {
2804	lock_release(rtld_bind_lock, &lockstate);
2805	return -1;
2806    }
2807    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2808	root->path);
2809
2810    /* Unreference the object and its dependencies. */
2811    root->dl_refcount--;
2812
2813    if (root->refcount == 1) {
2814	/*
2815	 * The object will be no longer referenced, so we must unload it.
2816	 * First, call the fini functions.
2817	 */
2818	objlist_call_fini(&list_fini, root, &lockstate);
2819
2820	unref_dag(root);
2821
2822	/* Finish cleaning up the newly-unreferenced objects. */
2823	GDB_STATE(RT_DELETE,&root->linkmap);
2824	unload_object(root);
2825	GDB_STATE(RT_CONSISTENT,NULL);
2826    } else
2827	unref_dag(root);
2828
2829    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2830    lock_release(rtld_bind_lock, &lockstate);
2831    return 0;
2832}
2833
2834char *
2835dlerror(void)
2836{
2837    char *msg = error_message;
2838    error_message = NULL;
2839    return msg;
2840}
2841
2842/*
2843 * This function is deprecated and has no effect.
2844 */
2845void
2846dllockinit(void *context,
2847	   void *(*lock_create)(void *context),
2848           void (*rlock_acquire)(void *lock),
2849           void (*wlock_acquire)(void *lock),
2850           void (*lock_release)(void *lock),
2851           void (*lock_destroy)(void *lock),
2852	   void (*context_destroy)(void *context))
2853{
2854    static void *cur_context;
2855    static void (*cur_context_destroy)(void *);
2856
2857    /* Just destroy the context from the previous call, if necessary. */
2858    if (cur_context_destroy != NULL)
2859	cur_context_destroy(cur_context);
2860    cur_context = context;
2861    cur_context_destroy = context_destroy;
2862}
2863
2864void *
2865dlopen(const char *name, int mode)
2866{
2867
2868	return (rtld_dlopen(name, -1, mode));
2869}
2870
2871void *
2872fdlopen(int fd, int mode)
2873{
2874
2875	return (rtld_dlopen(NULL, fd, mode));
2876}
2877
2878static void *
2879rtld_dlopen(const char *name, int fd, int mode)
2880{
2881    RtldLockState lockstate;
2882    int lo_flags;
2883
2884    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2885    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2886    if (ld_tracing != NULL) {
2887	rlock_acquire(rtld_bind_lock, &lockstate);
2888	if (sigsetjmp(lockstate.env, 0) != 0)
2889	    lock_upgrade(rtld_bind_lock, &lockstate);
2890	environ = (char **)*get_program_var_addr("environ", &lockstate);
2891	lock_release(rtld_bind_lock, &lockstate);
2892    }
2893    lo_flags = RTLD_LO_DLOPEN;
2894    if (mode & RTLD_NODELETE)
2895	    lo_flags |= RTLD_LO_NODELETE;
2896    if (mode & RTLD_NOLOAD)
2897	    lo_flags |= RTLD_LO_NOLOAD;
2898    if (ld_tracing != NULL)
2899	    lo_flags |= RTLD_LO_TRACE;
2900
2901    return (dlopen_object(name, fd, obj_main, lo_flags,
2902      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2903}
2904
2905static void
2906dlopen_cleanup(Obj_Entry *obj)
2907{
2908
2909	obj->dl_refcount--;
2910	unref_dag(obj);
2911	if (obj->refcount == 0)
2912		unload_object(obj);
2913}
2914
2915static Obj_Entry *
2916dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2917    int mode, RtldLockState *lockstate)
2918{
2919    Obj_Entry **old_obj_tail;
2920    Obj_Entry *obj;
2921    Objlist initlist;
2922    RtldLockState mlockstate;
2923    int result;
2924
2925    objlist_init(&initlist);
2926
2927    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2928	wlock_acquire(rtld_bind_lock, &mlockstate);
2929	lockstate = &mlockstate;
2930    }
2931    GDB_STATE(RT_ADD,NULL);
2932
2933    old_obj_tail = obj_tail;
2934    obj = NULL;
2935    if (name == NULL && fd == -1) {
2936	obj = obj_main;
2937	obj->refcount++;
2938    } else {
2939	obj = load_object(name, fd, refobj, lo_flags);
2940    }
2941
2942    if (obj) {
2943	obj->dl_refcount++;
2944	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2945	    objlist_push_tail(&list_global, obj);
2946	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2947	    assert(*old_obj_tail == obj);
2948	    result = load_needed_objects(obj,
2949		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2950	    init_dag(obj);
2951	    ref_dag(obj);
2952	    if (result != -1)
2953		result = rtld_verify_versions(&obj->dagmembers);
2954	    if (result != -1 && ld_tracing)
2955		goto trace;
2956	    if (result == -1 || relocate_object_dag(obj,
2957	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2958	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2959	      lockstate) == -1) {
2960		dlopen_cleanup(obj);
2961		obj = NULL;
2962	    } else if (lo_flags & RTLD_LO_EARLY) {
2963		/*
2964		 * Do not call the init functions for early loaded
2965		 * filtees.  The image is still not initialized enough
2966		 * for them to work.
2967		 *
2968		 * Our object is found by the global object list and
2969		 * will be ordered among all init calls done right
2970		 * before transferring control to main.
2971		 */
2972	    } else {
2973		/* Make list of init functions to call. */
2974		initlist_add_objects(obj, &obj->next, &initlist);
2975	    }
2976	    /*
2977	     * Process all no_delete or global objects here, given
2978	     * them own DAGs to prevent their dependencies from being
2979	     * unloaded.  This has to be done after we have loaded all
2980	     * of the dependencies, so that we do not miss any.
2981	     */
2982	    if (obj != NULL)
2983		process_z(obj);
2984	} else {
2985	    /*
2986	     * Bump the reference counts for objects on this DAG.  If
2987	     * this is the first dlopen() call for the object that was
2988	     * already loaded as a dependency, initialize the dag
2989	     * starting at it.
2990	     */
2991	    init_dag(obj);
2992	    ref_dag(obj);
2993
2994	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2995		goto trace;
2996	}
2997	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2998	  obj->z_nodelete) && !obj->ref_nodel) {
2999	    dbg("obj %s nodelete", obj->path);
3000	    ref_dag(obj);
3001	    obj->z_nodelete = obj->ref_nodel = true;
3002	}
3003    }
3004
3005    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3006	name);
3007    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3008
3009    if (!(lo_flags & RTLD_LO_EARLY)) {
3010	map_stacks_exec(lockstate);
3011    }
3012
3013    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3014      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3015      lockstate) == -1) {
3016	objlist_clear(&initlist);
3017	dlopen_cleanup(obj);
3018	if (lockstate == &mlockstate)
3019	    lock_release(rtld_bind_lock, lockstate);
3020	return (NULL);
3021    }
3022
3023    if (!(lo_flags & RTLD_LO_EARLY)) {
3024	/* Call the init functions. */
3025	objlist_call_init(&initlist, lockstate);
3026    }
3027    objlist_clear(&initlist);
3028    if (lockstate == &mlockstate)
3029	lock_release(rtld_bind_lock, lockstate);
3030    return obj;
3031trace:
3032    trace_loaded_objects(obj);
3033    if (lockstate == &mlockstate)
3034	lock_release(rtld_bind_lock, lockstate);
3035    exit(0);
3036}
3037
3038static void *
3039do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3040    int flags)
3041{
3042    DoneList donelist;
3043    const Obj_Entry *obj, *defobj;
3044    const Elf_Sym *def;
3045    SymLook req;
3046    RtldLockState lockstate;
3047#ifndef __ia64__
3048    tls_index ti;
3049#endif
3050    int res;
3051
3052    def = NULL;
3053    defobj = NULL;
3054    symlook_init(&req, name);
3055    req.ventry = ve;
3056    req.flags = flags | SYMLOOK_IN_PLT;
3057    req.lockstate = &lockstate;
3058
3059    rlock_acquire(rtld_bind_lock, &lockstate);
3060    if (sigsetjmp(lockstate.env, 0) != 0)
3061	    lock_upgrade(rtld_bind_lock, &lockstate);
3062    if (handle == NULL || handle == RTLD_NEXT ||
3063	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3064
3065	if ((obj = obj_from_addr(retaddr)) == NULL) {
3066	    _rtld_error("Cannot determine caller's shared object");
3067	    lock_release(rtld_bind_lock, &lockstate);
3068	    return NULL;
3069	}
3070	if (handle == NULL) {	/* Just the caller's shared object. */
3071	    res = symlook_obj(&req, obj);
3072	    if (res == 0) {
3073		def = req.sym_out;
3074		defobj = req.defobj_out;
3075	    }
3076	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3077		   handle == RTLD_SELF) { /* ... caller included */
3078	    if (handle == RTLD_NEXT)
3079		obj = obj->next;
3080	    for (; obj != NULL; obj = obj->next) {
3081		res = symlook_obj(&req, obj);
3082		if (res == 0) {
3083		    if (def == NULL ||
3084		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3085			def = req.sym_out;
3086			defobj = req.defobj_out;
3087			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3088			    break;
3089		    }
3090		}
3091	    }
3092	    /*
3093	     * Search the dynamic linker itself, and possibly resolve the
3094	     * symbol from there.  This is how the application links to
3095	     * dynamic linker services such as dlopen.
3096	     */
3097	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3098		res = symlook_obj(&req, &obj_rtld);
3099		if (res == 0) {
3100		    def = req.sym_out;
3101		    defobj = req.defobj_out;
3102		}
3103	    }
3104	} else {
3105	    assert(handle == RTLD_DEFAULT);
3106	    res = symlook_default(&req, obj);
3107	    if (res == 0) {
3108		defobj = req.defobj_out;
3109		def = req.sym_out;
3110	    }
3111	}
3112    } else {
3113	if ((obj = dlcheck(handle)) == NULL) {
3114	    lock_release(rtld_bind_lock, &lockstate);
3115	    return NULL;
3116	}
3117
3118	donelist_init(&donelist);
3119	if (obj->mainprog) {
3120            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3121	    res = symlook_global(&req, &donelist);
3122	    if (res == 0) {
3123		def = req.sym_out;
3124		defobj = req.defobj_out;
3125	    }
3126	    /*
3127	     * Search the dynamic linker itself, and possibly resolve the
3128	     * symbol from there.  This is how the application links to
3129	     * dynamic linker services such as dlopen.
3130	     */
3131	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3132		res = symlook_obj(&req, &obj_rtld);
3133		if (res == 0) {
3134		    def = req.sym_out;
3135		    defobj = req.defobj_out;
3136		}
3137	    }
3138	}
3139	else {
3140	    /* Search the whole DAG rooted at the given object. */
3141	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3142	    if (res == 0) {
3143		def = req.sym_out;
3144		defobj = req.defobj_out;
3145	    }
3146	}
3147    }
3148
3149    if (def != NULL) {
3150	lock_release(rtld_bind_lock, &lockstate);
3151
3152	/*
3153	 * The value required by the caller is derived from the value
3154	 * of the symbol. For the ia64 architecture, we need to
3155	 * construct a function descriptor which the caller can use to
3156	 * call the function with the right 'gp' value. For other
3157	 * architectures and for non-functions, the value is simply
3158	 * the relocated value of the symbol.
3159	 */
3160	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3161	    return (make_function_pointer(def, defobj));
3162	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3163	    return (rtld_resolve_ifunc(defobj, def));
3164	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3165#ifdef __ia64__
3166	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3167#else
3168	    ti.ti_module = defobj->tlsindex;
3169	    ti.ti_offset = def->st_value;
3170	    return (__tls_get_addr(&ti));
3171#endif
3172	} else
3173	    return (defobj->relocbase + def->st_value);
3174    }
3175
3176    _rtld_error("Undefined symbol \"%s\"", name);
3177    lock_release(rtld_bind_lock, &lockstate);
3178    return NULL;
3179}
3180
3181void *
3182dlsym(void *handle, const char *name)
3183{
3184	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3185	    SYMLOOK_DLSYM);
3186}
3187
3188dlfunc_t
3189dlfunc(void *handle, const char *name)
3190{
3191	union {
3192		void *d;
3193		dlfunc_t f;
3194	} rv;
3195
3196	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3197	    SYMLOOK_DLSYM);
3198	return (rv.f);
3199}
3200
3201void *
3202dlvsym(void *handle, const char *name, const char *version)
3203{
3204	Ver_Entry ventry;
3205
3206	ventry.name = version;
3207	ventry.file = NULL;
3208	ventry.hash = elf_hash(version);
3209	ventry.flags= 0;
3210	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3211	    SYMLOOK_DLSYM);
3212}
3213
3214int
3215_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3216{
3217    const Obj_Entry *obj;
3218    RtldLockState lockstate;
3219
3220    rlock_acquire(rtld_bind_lock, &lockstate);
3221    obj = obj_from_addr(addr);
3222    if (obj == NULL) {
3223        _rtld_error("No shared object contains address");
3224	lock_release(rtld_bind_lock, &lockstate);
3225        return (0);
3226    }
3227    rtld_fill_dl_phdr_info(obj, phdr_info);
3228    lock_release(rtld_bind_lock, &lockstate);
3229    return (1);
3230}
3231
3232int
3233dladdr(const void *addr, Dl_info *info)
3234{
3235    const Obj_Entry *obj;
3236    const Elf_Sym *def;
3237    void *symbol_addr;
3238    unsigned long symoffset;
3239    RtldLockState lockstate;
3240
3241    rlock_acquire(rtld_bind_lock, &lockstate);
3242    obj = obj_from_addr(addr);
3243    if (obj == NULL) {
3244        _rtld_error("No shared object contains address");
3245	lock_release(rtld_bind_lock, &lockstate);
3246        return 0;
3247    }
3248    info->dli_fname = obj->path;
3249    info->dli_fbase = obj->mapbase;
3250    info->dli_saddr = (void *)0;
3251    info->dli_sname = NULL;
3252
3253    /*
3254     * Walk the symbol list looking for the symbol whose address is
3255     * closest to the address sent in.
3256     */
3257    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3258        def = obj->symtab + symoffset;
3259
3260        /*
3261         * For skip the symbol if st_shndx is either SHN_UNDEF or
3262         * SHN_COMMON.
3263         */
3264        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3265            continue;
3266
3267        /*
3268         * If the symbol is greater than the specified address, or if it
3269         * is further away from addr than the current nearest symbol,
3270         * then reject it.
3271         */
3272        symbol_addr = obj->relocbase + def->st_value;
3273        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3274            continue;
3275
3276        /* Update our idea of the nearest symbol. */
3277        info->dli_sname = obj->strtab + def->st_name;
3278        info->dli_saddr = symbol_addr;
3279
3280        /* Exact match? */
3281        if (info->dli_saddr == addr)
3282            break;
3283    }
3284    lock_release(rtld_bind_lock, &lockstate);
3285    return 1;
3286}
3287
3288int
3289dlinfo(void *handle, int request, void *p)
3290{
3291    const Obj_Entry *obj;
3292    RtldLockState lockstate;
3293    int error;
3294
3295    rlock_acquire(rtld_bind_lock, &lockstate);
3296
3297    if (handle == NULL || handle == RTLD_SELF) {
3298	void *retaddr;
3299
3300	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3301	if ((obj = obj_from_addr(retaddr)) == NULL)
3302	    _rtld_error("Cannot determine caller's shared object");
3303    } else
3304	obj = dlcheck(handle);
3305
3306    if (obj == NULL) {
3307	lock_release(rtld_bind_lock, &lockstate);
3308	return (-1);
3309    }
3310
3311    error = 0;
3312    switch (request) {
3313    case RTLD_DI_LINKMAP:
3314	*((struct link_map const **)p) = &obj->linkmap;
3315	break;
3316    case RTLD_DI_ORIGIN:
3317	error = rtld_dirname(obj->path, p);
3318	break;
3319
3320    case RTLD_DI_SERINFOSIZE:
3321    case RTLD_DI_SERINFO:
3322	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3323	break;
3324
3325    default:
3326	_rtld_error("Invalid request %d passed to dlinfo()", request);
3327	error = -1;
3328    }
3329
3330    lock_release(rtld_bind_lock, &lockstate);
3331
3332    return (error);
3333}
3334
3335static void
3336rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3337{
3338
3339	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3340	phdr_info->dlpi_name = obj->path;
3341	phdr_info->dlpi_phdr = obj->phdr;
3342	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3343	phdr_info->dlpi_tls_modid = obj->tlsindex;
3344	phdr_info->dlpi_tls_data = obj->tlsinit;
3345	phdr_info->dlpi_adds = obj_loads;
3346	phdr_info->dlpi_subs = obj_loads - obj_count;
3347}
3348
3349int
3350dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3351{
3352    struct dl_phdr_info phdr_info;
3353    const Obj_Entry *obj;
3354    RtldLockState bind_lockstate, phdr_lockstate;
3355    int error;
3356
3357    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3358    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3359
3360    error = 0;
3361
3362    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3363	rtld_fill_dl_phdr_info(obj, &phdr_info);
3364	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3365		break;
3366
3367    }
3368    lock_release(rtld_bind_lock, &bind_lockstate);
3369    lock_release(rtld_phdr_lock, &phdr_lockstate);
3370
3371    return (error);
3372}
3373
3374static void *
3375fill_search_info(const char *dir, size_t dirlen, void *param)
3376{
3377    struct fill_search_info_args *arg;
3378
3379    arg = param;
3380
3381    if (arg->request == RTLD_DI_SERINFOSIZE) {
3382	arg->serinfo->dls_cnt ++;
3383	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3384    } else {
3385	struct dl_serpath *s_entry;
3386
3387	s_entry = arg->serpath;
3388	s_entry->dls_name  = arg->strspace;
3389	s_entry->dls_flags = arg->flags;
3390
3391	strncpy(arg->strspace, dir, dirlen);
3392	arg->strspace[dirlen] = '\0';
3393
3394	arg->strspace += dirlen + 1;
3395	arg->serpath++;
3396    }
3397
3398    return (NULL);
3399}
3400
3401static int
3402do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3403{
3404    struct dl_serinfo _info;
3405    struct fill_search_info_args args;
3406
3407    args.request = RTLD_DI_SERINFOSIZE;
3408    args.serinfo = &_info;
3409
3410    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3411    _info.dls_cnt  = 0;
3412
3413    path_enumerate(obj->rpath, fill_search_info, &args);
3414    path_enumerate(ld_library_path, fill_search_info, &args);
3415    path_enumerate(obj->runpath, fill_search_info, &args);
3416    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3417    if (!obj->z_nodeflib)
3418      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3419
3420
3421    if (request == RTLD_DI_SERINFOSIZE) {
3422	info->dls_size = _info.dls_size;
3423	info->dls_cnt = _info.dls_cnt;
3424	return (0);
3425    }
3426
3427    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3428	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3429	return (-1);
3430    }
3431
3432    args.request  = RTLD_DI_SERINFO;
3433    args.serinfo  = info;
3434    args.serpath  = &info->dls_serpath[0];
3435    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3436
3437    args.flags = LA_SER_RUNPATH;
3438    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3439	return (-1);
3440
3441    args.flags = LA_SER_LIBPATH;
3442    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3443	return (-1);
3444
3445    args.flags = LA_SER_RUNPATH;
3446    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3447	return (-1);
3448
3449    args.flags = LA_SER_CONFIG;
3450    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3451      != NULL)
3452	return (-1);
3453
3454    args.flags = LA_SER_DEFAULT;
3455    if (!obj->z_nodeflib &&
3456      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3457	return (-1);
3458    return (0);
3459}
3460
3461static int
3462rtld_dirname(const char *path, char *bname)
3463{
3464    const char *endp;
3465
3466    /* Empty or NULL string gets treated as "." */
3467    if (path == NULL || *path == '\0') {
3468	bname[0] = '.';
3469	bname[1] = '\0';
3470	return (0);
3471    }
3472
3473    /* Strip trailing slashes */
3474    endp = path + strlen(path) - 1;
3475    while (endp > path && *endp == '/')
3476	endp--;
3477
3478    /* Find the start of the dir */
3479    while (endp > path && *endp != '/')
3480	endp--;
3481
3482    /* Either the dir is "/" or there are no slashes */
3483    if (endp == path) {
3484	bname[0] = *endp == '/' ? '/' : '.';
3485	bname[1] = '\0';
3486	return (0);
3487    } else {
3488	do {
3489	    endp--;
3490	} while (endp > path && *endp == '/');
3491    }
3492
3493    if (endp - path + 2 > PATH_MAX)
3494    {
3495	_rtld_error("Filename is too long: %s", path);
3496	return(-1);
3497    }
3498
3499    strncpy(bname, path, endp - path + 1);
3500    bname[endp - path + 1] = '\0';
3501    return (0);
3502}
3503
3504static int
3505rtld_dirname_abs(const char *path, char *base)
3506{
3507	char *last;
3508
3509	if (realpath(path, base) == NULL)
3510		return (-1);
3511	dbg("%s -> %s", path, base);
3512	last = strrchr(base, '/');
3513	if (last == NULL)
3514		return (-1);
3515	if (last != base)
3516		*last = '\0';
3517	return (0);
3518}
3519
3520static void
3521linkmap_add(Obj_Entry *obj)
3522{
3523    struct link_map *l = &obj->linkmap;
3524    struct link_map *prev;
3525
3526    obj->linkmap.l_name = obj->path;
3527    obj->linkmap.l_addr = obj->mapbase;
3528    obj->linkmap.l_ld = obj->dynamic;
3529#ifdef __mips__
3530    /* GDB needs load offset on MIPS to use the symbols */
3531    obj->linkmap.l_offs = obj->relocbase;
3532#endif
3533
3534    if (r_debug.r_map == NULL) {
3535	r_debug.r_map = l;
3536	return;
3537    }
3538
3539    /*
3540     * Scan to the end of the list, but not past the entry for the
3541     * dynamic linker, which we want to keep at the very end.
3542     */
3543    for (prev = r_debug.r_map;
3544      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3545      prev = prev->l_next)
3546	;
3547
3548    /* Link in the new entry. */
3549    l->l_prev = prev;
3550    l->l_next = prev->l_next;
3551    if (l->l_next != NULL)
3552	l->l_next->l_prev = l;
3553    prev->l_next = l;
3554}
3555
3556static void
3557linkmap_delete(Obj_Entry *obj)
3558{
3559    struct link_map *l = &obj->linkmap;
3560
3561    if (l->l_prev == NULL) {
3562	if ((r_debug.r_map = l->l_next) != NULL)
3563	    l->l_next->l_prev = NULL;
3564	return;
3565    }
3566
3567    if ((l->l_prev->l_next = l->l_next) != NULL)
3568	l->l_next->l_prev = l->l_prev;
3569}
3570
3571/*
3572 * Function for the debugger to set a breakpoint on to gain control.
3573 *
3574 * The two parameters allow the debugger to easily find and determine
3575 * what the runtime loader is doing and to whom it is doing it.
3576 *
3577 * When the loadhook trap is hit (r_debug_state, set at program
3578 * initialization), the arguments can be found on the stack:
3579 *
3580 *  +8   struct link_map *m
3581 *  +4   struct r_debug  *rd
3582 *  +0   RetAddr
3583 */
3584void
3585r_debug_state(struct r_debug* rd, struct link_map *m)
3586{
3587    /*
3588     * The following is a hack to force the compiler to emit calls to
3589     * this function, even when optimizing.  If the function is empty,
3590     * the compiler is not obliged to emit any code for calls to it,
3591     * even when marked __noinline.  However, gdb depends on those
3592     * calls being made.
3593     */
3594    __compiler_membar();
3595}
3596
3597/*
3598 * A function called after init routines have completed. This can be used to
3599 * break before a program's entry routine is called, and can be used when
3600 * main is not available in the symbol table.
3601 */
3602void
3603_r_debug_postinit(struct link_map *m)
3604{
3605
3606	/* See r_debug_state(). */
3607	__compiler_membar();
3608}
3609
3610/*
3611 * Get address of the pointer variable in the main program.
3612 * Prefer non-weak symbol over the weak one.
3613 */
3614static const void **
3615get_program_var_addr(const char *name, RtldLockState *lockstate)
3616{
3617    SymLook req;
3618    DoneList donelist;
3619
3620    symlook_init(&req, name);
3621    req.lockstate = lockstate;
3622    donelist_init(&donelist);
3623    if (symlook_global(&req, &donelist) != 0)
3624	return (NULL);
3625    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3626	return ((const void **)make_function_pointer(req.sym_out,
3627	  req.defobj_out));
3628    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3629	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3630    else
3631	return ((const void **)(req.defobj_out->relocbase +
3632	  req.sym_out->st_value));
3633}
3634
3635/*
3636 * Set a pointer variable in the main program to the given value.  This
3637 * is used to set key variables such as "environ" before any of the
3638 * init functions are called.
3639 */
3640static void
3641set_program_var(const char *name, const void *value)
3642{
3643    const void **addr;
3644
3645    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3646	dbg("\"%s\": *%p <-- %p", name, addr, value);
3647	*addr = value;
3648    }
3649}
3650
3651/*
3652 * Search the global objects, including dependencies and main object,
3653 * for the given symbol.
3654 */
3655static int
3656symlook_global(SymLook *req, DoneList *donelist)
3657{
3658    SymLook req1;
3659    const Objlist_Entry *elm;
3660    int res;
3661
3662    symlook_init_from_req(&req1, req);
3663
3664    /* Search all objects loaded at program start up. */
3665    if (req->defobj_out == NULL ||
3666      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3667	res = symlook_list(&req1, &list_main, donelist);
3668	if (res == 0 && (req->defobj_out == NULL ||
3669	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3670	    req->sym_out = req1.sym_out;
3671	    req->defobj_out = req1.defobj_out;
3672	    assert(req->defobj_out != NULL);
3673	}
3674    }
3675
3676    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3677    STAILQ_FOREACH(elm, &list_global, link) {
3678	if (req->defobj_out != NULL &&
3679	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3680	    break;
3681	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3682	if (res == 0 && (req->defobj_out == NULL ||
3683	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3684	    req->sym_out = req1.sym_out;
3685	    req->defobj_out = req1.defobj_out;
3686	    assert(req->defobj_out != NULL);
3687	}
3688    }
3689
3690    return (req->sym_out != NULL ? 0 : ESRCH);
3691}
3692
3693/*
3694 * Given a symbol name in a referencing object, find the corresponding
3695 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3696 * no definition was found.  Returns a pointer to the Obj_Entry of the
3697 * defining object via the reference parameter DEFOBJ_OUT.
3698 */
3699static int
3700symlook_default(SymLook *req, const Obj_Entry *refobj)
3701{
3702    DoneList donelist;
3703    const Objlist_Entry *elm;
3704    SymLook req1;
3705    int res;
3706
3707    donelist_init(&donelist);
3708    symlook_init_from_req(&req1, req);
3709
3710    /* Look first in the referencing object if linked symbolically. */
3711    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3712	res = symlook_obj(&req1, refobj);
3713	if (res == 0) {
3714	    req->sym_out = req1.sym_out;
3715	    req->defobj_out = req1.defobj_out;
3716	    assert(req->defobj_out != NULL);
3717	}
3718    }
3719
3720    symlook_global(req, &donelist);
3721
3722    /* Search all dlopened DAGs containing the referencing object. */
3723    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3724	if (req->sym_out != NULL &&
3725	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3726	    break;
3727	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3728	if (res == 0 && (req->sym_out == NULL ||
3729	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3730	    req->sym_out = req1.sym_out;
3731	    req->defobj_out = req1.defobj_out;
3732	    assert(req->defobj_out != NULL);
3733	}
3734    }
3735
3736    /*
3737     * Search the dynamic linker itself, and possibly resolve the
3738     * symbol from there.  This is how the application links to
3739     * dynamic linker services such as dlopen.
3740     */
3741    if (req->sym_out == NULL ||
3742      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3743	res = symlook_obj(&req1, &obj_rtld);
3744	if (res == 0) {
3745	    req->sym_out = req1.sym_out;
3746	    req->defobj_out = req1.defobj_out;
3747	    assert(req->defobj_out != NULL);
3748	}
3749    }
3750
3751    return (req->sym_out != NULL ? 0 : ESRCH);
3752}
3753
3754static int
3755symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3756{
3757    const Elf_Sym *def;
3758    const Obj_Entry *defobj;
3759    const Objlist_Entry *elm;
3760    SymLook req1;
3761    int res;
3762
3763    def = NULL;
3764    defobj = NULL;
3765    STAILQ_FOREACH(elm, objlist, link) {
3766	if (donelist_check(dlp, elm->obj))
3767	    continue;
3768	symlook_init_from_req(&req1, req);
3769	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3770	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3771		def = req1.sym_out;
3772		defobj = req1.defobj_out;
3773		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3774		    break;
3775	    }
3776	}
3777    }
3778    if (def != NULL) {
3779	req->sym_out = def;
3780	req->defobj_out = defobj;
3781	return (0);
3782    }
3783    return (ESRCH);
3784}
3785
3786/*
3787 * Search the chain of DAGS cointed to by the given Needed_Entry
3788 * for a symbol of the given name.  Each DAG is scanned completely
3789 * before advancing to the next one.  Returns a pointer to the symbol,
3790 * or NULL if no definition was found.
3791 */
3792static int
3793symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3794{
3795    const Elf_Sym *def;
3796    const Needed_Entry *n;
3797    const Obj_Entry *defobj;
3798    SymLook req1;
3799    int res;
3800
3801    def = NULL;
3802    defobj = NULL;
3803    symlook_init_from_req(&req1, req);
3804    for (n = needed; n != NULL; n = n->next) {
3805	if (n->obj == NULL ||
3806	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3807	    continue;
3808	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3809	    def = req1.sym_out;
3810	    defobj = req1.defobj_out;
3811	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3812		break;
3813	}
3814    }
3815    if (def != NULL) {
3816	req->sym_out = def;
3817	req->defobj_out = defobj;
3818	return (0);
3819    }
3820    return (ESRCH);
3821}
3822
3823/*
3824 * Search the symbol table of a single shared object for a symbol of
3825 * the given name and version, if requested.  Returns a pointer to the
3826 * symbol, or NULL if no definition was found.  If the object is
3827 * filter, return filtered symbol from filtee.
3828 *
3829 * The symbol's hash value is passed in for efficiency reasons; that
3830 * eliminates many recomputations of the hash value.
3831 */
3832int
3833symlook_obj(SymLook *req, const Obj_Entry *obj)
3834{
3835    DoneList donelist;
3836    SymLook req1;
3837    int flags, res, mres;
3838
3839    /*
3840     * If there is at least one valid hash at this point, we prefer to
3841     * use the faster GNU version if available.
3842     */
3843    if (obj->valid_hash_gnu)
3844	mres = symlook_obj1_gnu(req, obj);
3845    else if (obj->valid_hash_sysv)
3846	mres = symlook_obj1_sysv(req, obj);
3847    else
3848	return (EINVAL);
3849
3850    if (mres == 0) {
3851	if (obj->needed_filtees != NULL) {
3852	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3853	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3854	    donelist_init(&donelist);
3855	    symlook_init_from_req(&req1, req);
3856	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3857	    if (res == 0) {
3858		req->sym_out = req1.sym_out;
3859		req->defobj_out = req1.defobj_out;
3860	    }
3861	    return (res);
3862	}
3863	if (obj->needed_aux_filtees != NULL) {
3864	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3865	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3866	    donelist_init(&donelist);
3867	    symlook_init_from_req(&req1, req);
3868	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3869	    if (res == 0) {
3870		req->sym_out = req1.sym_out;
3871		req->defobj_out = req1.defobj_out;
3872		return (res);
3873	    }
3874	}
3875    }
3876    return (mres);
3877}
3878
3879/* Symbol match routine common to both hash functions */
3880static bool
3881matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3882    const unsigned long symnum)
3883{
3884	Elf_Versym verndx;
3885	const Elf_Sym *symp;
3886	const char *strp;
3887
3888	symp = obj->symtab + symnum;
3889	strp = obj->strtab + symp->st_name;
3890
3891	switch (ELF_ST_TYPE(symp->st_info)) {
3892	case STT_FUNC:
3893	case STT_NOTYPE:
3894	case STT_OBJECT:
3895	case STT_COMMON:
3896	case STT_GNU_IFUNC:
3897		if (symp->st_value == 0)
3898			return (false);
3899		/* fallthrough */
3900	case STT_TLS:
3901		if (symp->st_shndx != SHN_UNDEF)
3902			break;
3903#ifndef __mips__
3904		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3905		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3906			break;
3907		/* fallthrough */
3908#endif
3909	default:
3910		return (false);
3911	}
3912	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3913		return (false);
3914
3915	if (req->ventry == NULL) {
3916		if (obj->versyms != NULL) {
3917			verndx = VER_NDX(obj->versyms[symnum]);
3918			if (verndx > obj->vernum) {
3919				_rtld_error(
3920				    "%s: symbol %s references wrong version %d",
3921				    obj->path, obj->strtab + symnum, verndx);
3922				return (false);
3923			}
3924			/*
3925			 * If we are not called from dlsym (i.e. this
3926			 * is a normal relocation from unversioned
3927			 * binary), accept the symbol immediately if
3928			 * it happens to have first version after this
3929			 * shared object became versioned.  Otherwise,
3930			 * if symbol is versioned and not hidden,
3931			 * remember it. If it is the only symbol with
3932			 * this name exported by the shared object, it
3933			 * will be returned as a match by the calling
3934			 * function. If symbol is global (verndx < 2)
3935			 * accept it unconditionally.
3936			 */
3937			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3938			    verndx == VER_NDX_GIVEN) {
3939				result->sym_out = symp;
3940				return (true);
3941			}
3942			else if (verndx >= VER_NDX_GIVEN) {
3943				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3944				    == 0) {
3945					if (result->vsymp == NULL)
3946						result->vsymp = symp;
3947					result->vcount++;
3948				}
3949				return (false);
3950			}
3951		}
3952		result->sym_out = symp;
3953		return (true);
3954	}
3955	if (obj->versyms == NULL) {
3956		if (object_match_name(obj, req->ventry->name)) {
3957			_rtld_error("%s: object %s should provide version %s "
3958			    "for symbol %s", obj_rtld.path, obj->path,
3959			    req->ventry->name, obj->strtab + symnum);
3960			return (false);
3961		}
3962	} else {
3963		verndx = VER_NDX(obj->versyms[symnum]);
3964		if (verndx > obj->vernum) {
3965			_rtld_error("%s: symbol %s references wrong version %d",
3966			    obj->path, obj->strtab + symnum, verndx);
3967			return (false);
3968		}
3969		if (obj->vertab[verndx].hash != req->ventry->hash ||
3970		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3971			/*
3972			 * Version does not match. Look if this is a
3973			 * global symbol and if it is not hidden. If
3974			 * global symbol (verndx < 2) is available,
3975			 * use it. Do not return symbol if we are
3976			 * called by dlvsym, because dlvsym looks for
3977			 * a specific version and default one is not
3978			 * what dlvsym wants.
3979			 */
3980			if ((req->flags & SYMLOOK_DLSYM) ||
3981			    (verndx >= VER_NDX_GIVEN) ||
3982			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3983				return (false);
3984		}
3985	}
3986	result->sym_out = symp;
3987	return (true);
3988}
3989
3990/*
3991 * Search for symbol using SysV hash function.
3992 * obj->buckets is known not to be NULL at this point; the test for this was
3993 * performed with the obj->valid_hash_sysv assignment.
3994 */
3995static int
3996symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3997{
3998	unsigned long symnum;
3999	Sym_Match_Result matchres;
4000
4001	matchres.sym_out = NULL;
4002	matchres.vsymp = NULL;
4003	matchres.vcount = 0;
4004
4005	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4006	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4007		if (symnum >= obj->nchains)
4008			return (ESRCH);	/* Bad object */
4009
4010		if (matched_symbol(req, obj, &matchres, symnum)) {
4011			req->sym_out = matchres.sym_out;
4012			req->defobj_out = obj;
4013			return (0);
4014		}
4015	}
4016	if (matchres.vcount == 1) {
4017		req->sym_out = matchres.vsymp;
4018		req->defobj_out = obj;
4019		return (0);
4020	}
4021	return (ESRCH);
4022}
4023
4024/* Search for symbol using GNU hash function */
4025static int
4026symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4027{
4028	Elf_Addr bloom_word;
4029	const Elf32_Word *hashval;
4030	Elf32_Word bucket;
4031	Sym_Match_Result matchres;
4032	unsigned int h1, h2;
4033	unsigned long symnum;
4034
4035	matchres.sym_out = NULL;
4036	matchres.vsymp = NULL;
4037	matchres.vcount = 0;
4038
4039	/* Pick right bitmask word from Bloom filter array */
4040	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4041	    obj->maskwords_bm_gnu];
4042
4043	/* Calculate modulus word size of gnu hash and its derivative */
4044	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4045	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4046
4047	/* Filter out the "definitely not in set" queries */
4048	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4049		return (ESRCH);
4050
4051	/* Locate hash chain and corresponding value element*/
4052	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4053	if (bucket == 0)
4054		return (ESRCH);
4055	hashval = &obj->chain_zero_gnu[bucket];
4056	do {
4057		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4058			symnum = hashval - obj->chain_zero_gnu;
4059			if (matched_symbol(req, obj, &matchres, symnum)) {
4060				req->sym_out = matchres.sym_out;
4061				req->defobj_out = obj;
4062				return (0);
4063			}
4064		}
4065	} while ((*hashval++ & 1) == 0);
4066	if (matchres.vcount == 1) {
4067		req->sym_out = matchres.vsymp;
4068		req->defobj_out = obj;
4069		return (0);
4070	}
4071	return (ESRCH);
4072}
4073
4074static void
4075trace_loaded_objects(Obj_Entry *obj)
4076{
4077    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4078    int		c;
4079
4080    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4081	main_local = "";
4082
4083    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4084	fmt1 = "\t%o => %p (%x)\n";
4085
4086    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4087	fmt2 = "\t%o (%x)\n";
4088
4089    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4090
4091    for (; obj; obj = obj->next) {
4092	Needed_Entry		*needed;
4093	char			*name, *path;
4094	bool			is_lib;
4095
4096	if (list_containers && obj->needed != NULL)
4097	    rtld_printf("%s:\n", obj->path);
4098	for (needed = obj->needed; needed; needed = needed->next) {
4099	    if (needed->obj != NULL) {
4100		if (needed->obj->traced && !list_containers)
4101		    continue;
4102		needed->obj->traced = true;
4103		path = needed->obj->path;
4104	    } else
4105		path = "not found";
4106
4107	    name = (char *)obj->strtab + needed->name;
4108	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4109
4110	    fmt = is_lib ? fmt1 : fmt2;
4111	    while ((c = *fmt++) != '\0') {
4112		switch (c) {
4113		default:
4114		    rtld_putchar(c);
4115		    continue;
4116		case '\\':
4117		    switch (c = *fmt) {
4118		    case '\0':
4119			continue;
4120		    case 'n':
4121			rtld_putchar('\n');
4122			break;
4123		    case 't':
4124			rtld_putchar('\t');
4125			break;
4126		    }
4127		    break;
4128		case '%':
4129		    switch (c = *fmt) {
4130		    case '\0':
4131			continue;
4132		    case '%':
4133		    default:
4134			rtld_putchar(c);
4135			break;
4136		    case 'A':
4137			rtld_putstr(main_local);
4138			break;
4139		    case 'a':
4140			rtld_putstr(obj_main->path);
4141			break;
4142		    case 'o':
4143			rtld_putstr(name);
4144			break;
4145#if 0
4146		    case 'm':
4147			rtld_printf("%d", sodp->sod_major);
4148			break;
4149		    case 'n':
4150			rtld_printf("%d", sodp->sod_minor);
4151			break;
4152#endif
4153		    case 'p':
4154			rtld_putstr(path);
4155			break;
4156		    case 'x':
4157			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4158			  0);
4159			break;
4160		    }
4161		    break;
4162		}
4163		++fmt;
4164	    }
4165	}
4166    }
4167}
4168
4169/*
4170 * Unload a dlopened object and its dependencies from memory and from
4171 * our data structures.  It is assumed that the DAG rooted in the
4172 * object has already been unreferenced, and that the object has a
4173 * reference count of 0.
4174 */
4175static void
4176unload_object(Obj_Entry *root)
4177{
4178    Obj_Entry *obj;
4179    Obj_Entry **linkp;
4180
4181    assert(root->refcount == 0);
4182
4183    /*
4184     * Pass over the DAG removing unreferenced objects from
4185     * appropriate lists.
4186     */
4187    unlink_object(root);
4188
4189    /* Unmap all objects that are no longer referenced. */
4190    linkp = &obj_list->next;
4191    while ((obj = *linkp) != NULL) {
4192	if (obj->refcount == 0) {
4193	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4194		obj->path);
4195	    dbg("unloading \"%s\"", obj->path);
4196	    unload_filtees(root);
4197	    munmap(obj->mapbase, obj->mapsize);
4198	    linkmap_delete(obj);
4199	    *linkp = obj->next;
4200	    obj_count--;
4201	    obj_free(obj);
4202	} else
4203	    linkp = &obj->next;
4204    }
4205    obj_tail = linkp;
4206}
4207
4208static void
4209unlink_object(Obj_Entry *root)
4210{
4211    Objlist_Entry *elm;
4212
4213    if (root->refcount == 0) {
4214	/* Remove the object from the RTLD_GLOBAL list. */
4215	objlist_remove(&list_global, root);
4216
4217    	/* Remove the object from all objects' DAG lists. */
4218    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4219	    objlist_remove(&elm->obj->dldags, root);
4220	    if (elm->obj != root)
4221		unlink_object(elm->obj);
4222	}
4223    }
4224}
4225
4226static void
4227ref_dag(Obj_Entry *root)
4228{
4229    Objlist_Entry *elm;
4230
4231    assert(root->dag_inited);
4232    STAILQ_FOREACH(elm, &root->dagmembers, link)
4233	elm->obj->refcount++;
4234}
4235
4236static void
4237unref_dag(Obj_Entry *root)
4238{
4239    Objlist_Entry *elm;
4240
4241    assert(root->dag_inited);
4242    STAILQ_FOREACH(elm, &root->dagmembers, link)
4243	elm->obj->refcount--;
4244}
4245
4246/*
4247 * Common code for MD __tls_get_addr().
4248 */
4249static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4250static void *
4251tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4252{
4253    Elf_Addr *newdtv, *dtv;
4254    RtldLockState lockstate;
4255    int to_copy;
4256
4257    dtv = *dtvp;
4258    /* Check dtv generation in case new modules have arrived */
4259    if (dtv[0] != tls_dtv_generation) {
4260	wlock_acquire(rtld_bind_lock, &lockstate);
4261	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4262	to_copy = dtv[1];
4263	if (to_copy > tls_max_index)
4264	    to_copy = tls_max_index;
4265	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4266	newdtv[0] = tls_dtv_generation;
4267	newdtv[1] = tls_max_index;
4268	free(dtv);
4269	lock_release(rtld_bind_lock, &lockstate);
4270	dtv = *dtvp = newdtv;
4271    }
4272
4273    /* Dynamically allocate module TLS if necessary */
4274    if (dtv[index + 1] == 0) {
4275	/* Signal safe, wlock will block out signals. */
4276	wlock_acquire(rtld_bind_lock, &lockstate);
4277	if (!dtv[index + 1])
4278	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4279	lock_release(rtld_bind_lock, &lockstate);
4280    }
4281    return ((void *)(dtv[index + 1] + offset));
4282}
4283
4284void *
4285tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4286{
4287	Elf_Addr *dtv;
4288
4289	dtv = *dtvp;
4290	/* Check dtv generation in case new modules have arrived */
4291	if (__predict_true(dtv[0] == tls_dtv_generation &&
4292	    dtv[index + 1] != 0))
4293		return ((void *)(dtv[index + 1] + offset));
4294	return (tls_get_addr_slow(dtvp, index, offset));
4295}
4296
4297#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4298
4299/*
4300 * Allocate Static TLS using the Variant I method.
4301 */
4302void *
4303allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4304{
4305    Obj_Entry *obj;
4306    char *tcb;
4307    Elf_Addr **tls;
4308    Elf_Addr *dtv;
4309    Elf_Addr addr;
4310    int i;
4311
4312    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4313	return (oldtcb);
4314
4315    assert(tcbsize >= TLS_TCB_SIZE);
4316    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4317    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4318
4319    if (oldtcb != NULL) {
4320	memcpy(tls, oldtcb, tls_static_space);
4321	free(oldtcb);
4322
4323	/* Adjust the DTV. */
4324	dtv = tls[0];
4325	for (i = 0; i < dtv[1]; i++) {
4326	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4327		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4328		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4329	    }
4330	}
4331    } else {
4332	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4333	tls[0] = dtv;
4334	dtv[0] = tls_dtv_generation;
4335	dtv[1] = tls_max_index;
4336
4337	for (obj = objs; obj; obj = obj->next) {
4338	    if (obj->tlsoffset > 0) {
4339		addr = (Elf_Addr)tls + obj->tlsoffset;
4340		if (obj->tlsinitsize > 0)
4341		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4342		if (obj->tlssize > obj->tlsinitsize)
4343		    memset((void*) (addr + obj->tlsinitsize), 0,
4344			   obj->tlssize - obj->tlsinitsize);
4345		dtv[obj->tlsindex + 1] = addr;
4346	    }
4347	}
4348    }
4349
4350    return (tcb);
4351}
4352
4353void
4354free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4355{
4356    Elf_Addr *dtv;
4357    Elf_Addr tlsstart, tlsend;
4358    int dtvsize, i;
4359
4360    assert(tcbsize >= TLS_TCB_SIZE);
4361
4362    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4363    tlsend = tlsstart + tls_static_space;
4364
4365    dtv = *(Elf_Addr **)tlsstart;
4366    dtvsize = dtv[1];
4367    for (i = 0; i < dtvsize; i++) {
4368	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4369	    free((void*)dtv[i+2]);
4370	}
4371    }
4372    free(dtv);
4373    free(tcb);
4374}
4375
4376#endif
4377
4378#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4379
4380/*
4381 * Allocate Static TLS using the Variant II method.
4382 */
4383void *
4384allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4385{
4386    Obj_Entry *obj;
4387    size_t size, ralign;
4388    char *tls;
4389    Elf_Addr *dtv, *olddtv;
4390    Elf_Addr segbase, oldsegbase, addr;
4391    int i;
4392
4393    ralign = tcbalign;
4394    if (tls_static_max_align > ralign)
4395	    ralign = tls_static_max_align;
4396    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4397
4398    assert(tcbsize >= 2*sizeof(Elf_Addr));
4399    tls = malloc_aligned(size, ralign);
4400    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4401
4402    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4403    ((Elf_Addr*)segbase)[0] = segbase;
4404    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4405
4406    dtv[0] = tls_dtv_generation;
4407    dtv[1] = tls_max_index;
4408
4409    if (oldtls) {
4410	/*
4411	 * Copy the static TLS block over whole.
4412	 */
4413	oldsegbase = (Elf_Addr) oldtls;
4414	memcpy((void *)(segbase - tls_static_space),
4415	       (const void *)(oldsegbase - tls_static_space),
4416	       tls_static_space);
4417
4418	/*
4419	 * If any dynamic TLS blocks have been created tls_get_addr(),
4420	 * move them over.
4421	 */
4422	olddtv = ((Elf_Addr**)oldsegbase)[1];
4423	for (i = 0; i < olddtv[1]; i++) {
4424	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4425		dtv[i+2] = olddtv[i+2];
4426		olddtv[i+2] = 0;
4427	    }
4428	}
4429
4430	/*
4431	 * We assume that this block was the one we created with
4432	 * allocate_initial_tls().
4433	 */
4434	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4435    } else {
4436	for (obj = objs; obj; obj = obj->next) {
4437	    if (obj->tlsoffset) {
4438		addr = segbase - obj->tlsoffset;
4439		memset((void*) (addr + obj->tlsinitsize),
4440		       0, obj->tlssize - obj->tlsinitsize);
4441		if (obj->tlsinit)
4442		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4443		dtv[obj->tlsindex + 1] = addr;
4444	    }
4445	}
4446    }
4447
4448    return (void*) segbase;
4449}
4450
4451void
4452free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4453{
4454    Elf_Addr* dtv;
4455    size_t size, ralign;
4456    int dtvsize, i;
4457    Elf_Addr tlsstart, tlsend;
4458
4459    /*
4460     * Figure out the size of the initial TLS block so that we can
4461     * find stuff which ___tls_get_addr() allocated dynamically.
4462     */
4463    ralign = tcbalign;
4464    if (tls_static_max_align > ralign)
4465	    ralign = tls_static_max_align;
4466    size = round(tls_static_space, ralign);
4467
4468    dtv = ((Elf_Addr**)tls)[1];
4469    dtvsize = dtv[1];
4470    tlsend = (Elf_Addr) tls;
4471    tlsstart = tlsend - size;
4472    for (i = 0; i < dtvsize; i++) {
4473	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4474		free_aligned((void *)dtv[i + 2]);
4475	}
4476    }
4477
4478    free_aligned((void *)tlsstart);
4479    free((void*) dtv);
4480}
4481
4482#endif
4483
4484/*
4485 * Allocate TLS block for module with given index.
4486 */
4487void *
4488allocate_module_tls(int index)
4489{
4490    Obj_Entry* obj;
4491    char* p;
4492
4493    for (obj = obj_list; obj; obj = obj->next) {
4494	if (obj->tlsindex == index)
4495	    break;
4496    }
4497    if (!obj) {
4498	_rtld_error("Can't find module with TLS index %d", index);
4499	die();
4500    }
4501
4502    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4503    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4504    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4505
4506    return p;
4507}
4508
4509bool
4510allocate_tls_offset(Obj_Entry *obj)
4511{
4512    size_t off;
4513
4514    if (obj->tls_done)
4515	return true;
4516
4517    if (obj->tlssize == 0) {
4518	obj->tls_done = true;
4519	return true;
4520    }
4521
4522    if (obj->tlsindex == 1)
4523	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4524    else
4525	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4526				   obj->tlssize, obj->tlsalign);
4527
4528    /*
4529     * If we have already fixed the size of the static TLS block, we
4530     * must stay within that size. When allocating the static TLS, we
4531     * leave a small amount of space spare to be used for dynamically
4532     * loading modules which use static TLS.
4533     */
4534    if (tls_static_space != 0) {
4535	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4536	    return false;
4537    } else if (obj->tlsalign > tls_static_max_align) {
4538	    tls_static_max_align = obj->tlsalign;
4539    }
4540
4541    tls_last_offset = obj->tlsoffset = off;
4542    tls_last_size = obj->tlssize;
4543    obj->tls_done = true;
4544
4545    return true;
4546}
4547
4548void
4549free_tls_offset(Obj_Entry *obj)
4550{
4551
4552    /*
4553     * If we were the last thing to allocate out of the static TLS
4554     * block, we give our space back to the 'allocator'. This is a
4555     * simplistic workaround to allow libGL.so.1 to be loaded and
4556     * unloaded multiple times.
4557     */
4558    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4559	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4560	tls_last_offset -= obj->tlssize;
4561	tls_last_size = 0;
4562    }
4563}
4564
4565void *
4566_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4567{
4568    void *ret;
4569    RtldLockState lockstate;
4570
4571    wlock_acquire(rtld_bind_lock, &lockstate);
4572    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4573    lock_release(rtld_bind_lock, &lockstate);
4574    return (ret);
4575}
4576
4577void
4578_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4579{
4580    RtldLockState lockstate;
4581
4582    wlock_acquire(rtld_bind_lock, &lockstate);
4583    free_tls(tcb, tcbsize, tcbalign);
4584    lock_release(rtld_bind_lock, &lockstate);
4585}
4586
4587static void
4588object_add_name(Obj_Entry *obj, const char *name)
4589{
4590    Name_Entry *entry;
4591    size_t len;
4592
4593    len = strlen(name);
4594    entry = malloc(sizeof(Name_Entry) + len);
4595
4596    if (entry != NULL) {
4597	strcpy(entry->name, name);
4598	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4599    }
4600}
4601
4602static int
4603object_match_name(const Obj_Entry *obj, const char *name)
4604{
4605    Name_Entry *entry;
4606
4607    STAILQ_FOREACH(entry, &obj->names, link) {
4608	if (strcmp(name, entry->name) == 0)
4609	    return (1);
4610    }
4611    return (0);
4612}
4613
4614static Obj_Entry *
4615locate_dependency(const Obj_Entry *obj, const char *name)
4616{
4617    const Objlist_Entry *entry;
4618    const Needed_Entry *needed;
4619
4620    STAILQ_FOREACH(entry, &list_main, link) {
4621	if (object_match_name(entry->obj, name))
4622	    return entry->obj;
4623    }
4624
4625    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4626	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4627	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4628	    /*
4629	     * If there is DT_NEEDED for the name we are looking for,
4630	     * we are all set.  Note that object might not be found if
4631	     * dependency was not loaded yet, so the function can
4632	     * return NULL here.  This is expected and handled
4633	     * properly by the caller.
4634	     */
4635	    return (needed->obj);
4636	}
4637    }
4638    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4639	obj->path, name);
4640    die();
4641}
4642
4643static int
4644check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4645    const Elf_Vernaux *vna)
4646{
4647    const Elf_Verdef *vd;
4648    const char *vername;
4649
4650    vername = refobj->strtab + vna->vna_name;
4651    vd = depobj->verdef;
4652    if (vd == NULL) {
4653	_rtld_error("%s: version %s required by %s not defined",
4654	    depobj->path, vername, refobj->path);
4655	return (-1);
4656    }
4657    for (;;) {
4658	if (vd->vd_version != VER_DEF_CURRENT) {
4659	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4660		depobj->path, vd->vd_version);
4661	    return (-1);
4662	}
4663	if (vna->vna_hash == vd->vd_hash) {
4664	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4665		((char *)vd + vd->vd_aux);
4666	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4667		return (0);
4668	}
4669	if (vd->vd_next == 0)
4670	    break;
4671	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4672    }
4673    if (vna->vna_flags & VER_FLG_WEAK)
4674	return (0);
4675    _rtld_error("%s: version %s required by %s not found",
4676	depobj->path, vername, refobj->path);
4677    return (-1);
4678}
4679
4680static int
4681rtld_verify_object_versions(Obj_Entry *obj)
4682{
4683    const Elf_Verneed *vn;
4684    const Elf_Verdef  *vd;
4685    const Elf_Verdaux *vda;
4686    const Elf_Vernaux *vna;
4687    const Obj_Entry *depobj;
4688    int maxvernum, vernum;
4689
4690    if (obj->ver_checked)
4691	return (0);
4692    obj->ver_checked = true;
4693
4694    maxvernum = 0;
4695    /*
4696     * Walk over defined and required version records and figure out
4697     * max index used by any of them. Do very basic sanity checking
4698     * while there.
4699     */
4700    vn = obj->verneed;
4701    while (vn != NULL) {
4702	if (vn->vn_version != VER_NEED_CURRENT) {
4703	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4704		obj->path, vn->vn_version);
4705	    return (-1);
4706	}
4707	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4708	for (;;) {
4709	    vernum = VER_NEED_IDX(vna->vna_other);
4710	    if (vernum > maxvernum)
4711		maxvernum = vernum;
4712	    if (vna->vna_next == 0)
4713		 break;
4714	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4715	}
4716	if (vn->vn_next == 0)
4717	    break;
4718	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4719    }
4720
4721    vd = obj->verdef;
4722    while (vd != NULL) {
4723	if (vd->vd_version != VER_DEF_CURRENT) {
4724	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4725		obj->path, vd->vd_version);
4726	    return (-1);
4727	}
4728	vernum = VER_DEF_IDX(vd->vd_ndx);
4729	if (vernum > maxvernum)
4730		maxvernum = vernum;
4731	if (vd->vd_next == 0)
4732	    break;
4733	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4734    }
4735
4736    if (maxvernum == 0)
4737	return (0);
4738
4739    /*
4740     * Store version information in array indexable by version index.
4741     * Verify that object version requirements are satisfied along the
4742     * way.
4743     */
4744    obj->vernum = maxvernum + 1;
4745    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4746
4747    vd = obj->verdef;
4748    while (vd != NULL) {
4749	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4750	    vernum = VER_DEF_IDX(vd->vd_ndx);
4751	    assert(vernum <= maxvernum);
4752	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4753	    obj->vertab[vernum].hash = vd->vd_hash;
4754	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4755	    obj->vertab[vernum].file = NULL;
4756	    obj->vertab[vernum].flags = 0;
4757	}
4758	if (vd->vd_next == 0)
4759	    break;
4760	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4761    }
4762
4763    vn = obj->verneed;
4764    while (vn != NULL) {
4765	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4766	if (depobj == NULL)
4767	    return (-1);
4768	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4769	for (;;) {
4770	    if (check_object_provided_version(obj, depobj, vna))
4771		return (-1);
4772	    vernum = VER_NEED_IDX(vna->vna_other);
4773	    assert(vernum <= maxvernum);
4774	    obj->vertab[vernum].hash = vna->vna_hash;
4775	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4776	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4777	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4778		VER_INFO_HIDDEN : 0;
4779	    if (vna->vna_next == 0)
4780		 break;
4781	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4782	}
4783	if (vn->vn_next == 0)
4784	    break;
4785	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4786    }
4787    return 0;
4788}
4789
4790static int
4791rtld_verify_versions(const Objlist *objlist)
4792{
4793    Objlist_Entry *entry;
4794    int rc;
4795
4796    rc = 0;
4797    STAILQ_FOREACH(entry, objlist, link) {
4798	/*
4799	 * Skip dummy objects or objects that have their version requirements
4800	 * already checked.
4801	 */
4802	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4803	    continue;
4804	if (rtld_verify_object_versions(entry->obj) == -1) {
4805	    rc = -1;
4806	    if (ld_tracing == NULL)
4807		break;
4808	}
4809    }
4810    if (rc == 0 || ld_tracing != NULL)
4811    	rc = rtld_verify_object_versions(&obj_rtld);
4812    return rc;
4813}
4814
4815const Ver_Entry *
4816fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4817{
4818    Elf_Versym vernum;
4819
4820    if (obj->vertab) {
4821	vernum = VER_NDX(obj->versyms[symnum]);
4822	if (vernum >= obj->vernum) {
4823	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4824		obj->path, obj->strtab + symnum, vernum);
4825	} else if (obj->vertab[vernum].hash != 0) {
4826	    return &obj->vertab[vernum];
4827	}
4828    }
4829    return NULL;
4830}
4831
4832int
4833_rtld_get_stack_prot(void)
4834{
4835
4836	return (stack_prot);
4837}
4838
4839int
4840_rtld_is_dlopened(void *arg)
4841{
4842	Obj_Entry *obj;
4843	RtldLockState lockstate;
4844	int res;
4845
4846	rlock_acquire(rtld_bind_lock, &lockstate);
4847	obj = dlcheck(arg);
4848	if (obj == NULL)
4849		obj = obj_from_addr(arg);
4850	if (obj == NULL) {
4851		_rtld_error("No shared object contains address");
4852		lock_release(rtld_bind_lock, &lockstate);
4853		return (-1);
4854	}
4855	res = obj->dlopened ? 1 : 0;
4856	lock_release(rtld_bind_lock, &lockstate);
4857	return (res);
4858}
4859
4860static void
4861map_stacks_exec(RtldLockState *lockstate)
4862{
4863	void (*thr_map_stacks_exec)(void);
4864
4865	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4866		return;
4867	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4868	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4869	if (thr_map_stacks_exec != NULL) {
4870		stack_prot |= PROT_EXEC;
4871		thr_map_stacks_exec();
4872	}
4873}
4874
4875void
4876symlook_init(SymLook *dst, const char *name)
4877{
4878
4879	bzero(dst, sizeof(*dst));
4880	dst->name = name;
4881	dst->hash = elf_hash(name);
4882	dst->hash_gnu = gnu_hash(name);
4883}
4884
4885static void
4886symlook_init_from_req(SymLook *dst, const SymLook *src)
4887{
4888
4889	dst->name = src->name;
4890	dst->hash = src->hash;
4891	dst->hash_gnu = src->hash_gnu;
4892	dst->ventry = src->ventry;
4893	dst->flags = src->flags;
4894	dst->defobj_out = NULL;
4895	dst->sym_out = NULL;
4896	dst->lockstate = src->lockstate;
4897}
4898
4899/*
4900 * Overrides for libc_pic-provided functions.
4901 */
4902
4903int
4904__getosreldate(void)
4905{
4906	size_t len;
4907	int oid[2];
4908	int error, osrel;
4909
4910	if (osreldate != 0)
4911		return (osreldate);
4912
4913	oid[0] = CTL_KERN;
4914	oid[1] = KERN_OSRELDATE;
4915	osrel = 0;
4916	len = sizeof(osrel);
4917	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4918	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4919		osreldate = osrel;
4920	return (osreldate);
4921}
4922
4923void
4924exit(int status)
4925{
4926
4927	_exit(status);
4928}
4929
4930void (*__cleanup)(void);
4931int __isthreaded = 0;
4932int _thread_autoinit_dummy_decl = 1;
4933
4934/*
4935 * No unresolved symbols for rtld.
4936 */
4937void
4938__pthread_cxa_finalize(struct dl_phdr_info *a)
4939{
4940}
4941
4942void
4943__stack_chk_fail(void)
4944{
4945
4946	_rtld_error("stack overflow detected; terminated");
4947	die();
4948}
4949__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4950
4951void
4952__chk_fail(void)
4953{
4954
4955	_rtld_error("buffer overflow detected; terminated");
4956	die();
4957}
4958
4959const char *
4960rtld_strerror(int errnum)
4961{
4962
4963	if (errnum < 0 || errnum >= sys_nerr)
4964		return ("Unknown error");
4965	return (sys_errlist[errnum]);
4966}
4967