rtld.c revision 281452
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 281452 2015-04-12 06:43:13Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_pagesizes(Elf_Auxinfo **aux_info);
101static void init_rtld(caddr_t, Elf_Auxinfo **);
102static void initlist_add_neededs(Needed_Entry *, Objlist *);
103static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104static void linkmap_add(Obj_Entry *);
105static void linkmap_delete(Obj_Entry *);
106static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107static void unload_filtees(Obj_Entry *);
108static int load_needed_objects(Obj_Entry *, int);
109static int load_preload_objects(void);
110static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111static void map_stacks_exec(RtldLockState *);
112static Obj_Entry *obj_from_addr(const void *);
113static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114static void objlist_call_init(Objlist *, RtldLockState *);
115static void objlist_clear(Objlist *);
116static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117static void objlist_init(Objlist *);
118static void objlist_push_head(Objlist *, Obj_Entry *);
119static void objlist_push_tail(Objlist *, Obj_Entry *);
120static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121static void objlist_remove(Objlist *, Obj_Entry *);
122static void *path_enumerate(const char *, path_enum_proc, void *);
123static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126    int flags, RtldLockState *lockstate);
127static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128    RtldLockState *);
129static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130    int flags, RtldLockState *lockstate);
131static int rtld_dirname(const char *, char *);
132static int rtld_dirname_abs(const char *, char *);
133static void *rtld_dlopen(const char *name, int fd, int mode);
134static void rtld_exit(void);
135static char *search_library_path(const char *, const char *);
136static const void **get_program_var_addr(const char *, RtldLockState *);
137static void set_program_var(const char *, const void *);
138static int symlook_default(SymLook *, const Obj_Entry *refobj);
139static int symlook_global(SymLook *, DoneList *);
140static void symlook_init_from_req(SymLook *, const SymLook *);
141static int symlook_list(SymLook *, const Objlist *, DoneList *);
142static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
143static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
144static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
145static void trace_loaded_objects(Obj_Entry *);
146static void unlink_object(Obj_Entry *);
147static void unload_object(Obj_Entry *);
148static void unref_dag(Obj_Entry *);
149static void ref_dag(Obj_Entry *);
150static char *origin_subst_one(char *, const char *, const char *, bool);
151static char *origin_subst(char *, const char *);
152static void preinit_main(void);
153static int  rtld_verify_versions(const Objlist *);
154static int  rtld_verify_object_versions(Obj_Entry *);
155static void object_add_name(Obj_Entry *, const char *);
156static int  object_match_name(const Obj_Entry *, const char *);
157static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159    struct dl_phdr_info *phdr_info);
160static uint32_t gnu_hash(const char *);
161static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162    const unsigned long);
163
164void r_debug_state(struct r_debug *, struct link_map *) __noinline;
165void _r_debug_postinit(struct link_map *) __noinline;
166
167/*
168 * Data declarations.
169 */
170static char *error_message;	/* Message for dlerror(), or NULL */
171struct r_debug r_debug;		/* for GDB; */
172static bool libmap_disable;	/* Disable libmap */
173static bool ld_loadfltr;	/* Immediate filters processing */
174static char *libmap_override;	/* Maps to use in addition to libmap.conf */
175static bool trust;		/* False for setuid and setgid programs */
176static bool dangerous_ld_env;	/* True if environment variables have been
177				   used to affect the libraries loaded */
178static char *ld_bind_now;	/* Environment variable for immediate binding */
179static char *ld_debug;		/* Environment variable for debugging */
180static char *ld_library_path;	/* Environment variable for search path */
181static char *ld_preload;	/* Environment variable for libraries to
182				   load first */
183static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
184static char *ld_tracing;	/* Called from ldd to print libs */
185static char *ld_utrace;		/* Use utrace() to log events. */
186static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
187static Obj_Entry **obj_tail;	/* Link field of last object in list */
188static Obj_Entry *obj_main;	/* The main program shared object */
189static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
190static unsigned int obj_count;	/* Number of objects in obj_list */
191static unsigned int obj_loads;	/* Number of objects in obj_list */
192
193static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
194  STAILQ_HEAD_INITIALIZER(list_global);
195static Objlist list_main =	/* Objects loaded at program startup */
196  STAILQ_HEAD_INITIALIZER(list_main);
197static Objlist list_fini =	/* Objects needing fini() calls */
198  STAILQ_HEAD_INITIALIZER(list_fini);
199
200Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
201
202#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
203
204extern Elf_Dyn _DYNAMIC;
205#pragma weak _DYNAMIC
206#ifndef RTLD_IS_DYNAMIC
207#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
208#endif
209
210int npagesizes, osreldate;
211size_t *pagesizes;
212
213long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
214
215static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
216static int max_stack_flags;
217
218/*
219 * Global declarations normally provided by crt1.  The dynamic linker is
220 * not built with crt1, so we have to provide them ourselves.
221 */
222char *__progname;
223char **environ;
224
225/*
226 * Used to pass argc, argv to init functions.
227 */
228int main_argc;
229char **main_argv;
230
231/*
232 * Globals to control TLS allocation.
233 */
234size_t tls_last_offset;		/* Static TLS offset of last module */
235size_t tls_last_size;		/* Static TLS size of last module */
236size_t tls_static_space;	/* Static TLS space allocated */
237size_t tls_static_max_align;
238int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
239int tls_max_index = 1;		/* Largest module index allocated */
240
241bool ld_library_path_rpath = false;
242
243/*
244 * Fill in a DoneList with an allocation large enough to hold all of
245 * the currently-loaded objects.  Keep this as a macro since it calls
246 * alloca and we want that to occur within the scope of the caller.
247 */
248#define donelist_init(dlp)					\
249    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
250    assert((dlp)->objs != NULL),				\
251    (dlp)->num_alloc = obj_count,				\
252    (dlp)->num_used = 0)
253
254#define	UTRACE_DLOPEN_START		1
255#define	UTRACE_DLOPEN_STOP		2
256#define	UTRACE_DLCLOSE_START		3
257#define	UTRACE_DLCLOSE_STOP		4
258#define	UTRACE_LOAD_OBJECT		5
259#define	UTRACE_UNLOAD_OBJECT		6
260#define	UTRACE_ADD_RUNDEP		7
261#define	UTRACE_PRELOAD_FINISHED		8
262#define	UTRACE_INIT_CALL		9
263#define	UTRACE_FINI_CALL		10
264
265struct utrace_rtld {
266	char sig[4];			/* 'RTLD' */
267	int event;
268	void *handle;
269	void *mapbase;			/* Used for 'parent' and 'init/fini' */
270	size_t mapsize;
271	int refcnt;			/* Used for 'mode' */
272	char name[MAXPATHLEN];
273};
274
275#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
276	if (ld_utrace != NULL)					\
277		ld_utrace_log(e, h, mb, ms, r, n);		\
278} while (0)
279
280static void
281ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
282    int refcnt, const char *name)
283{
284	struct utrace_rtld ut;
285
286	ut.sig[0] = 'R';
287	ut.sig[1] = 'T';
288	ut.sig[2] = 'L';
289	ut.sig[3] = 'D';
290	ut.event = event;
291	ut.handle = handle;
292	ut.mapbase = mapbase;
293	ut.mapsize = mapsize;
294	ut.refcnt = refcnt;
295	bzero(ut.name, sizeof(ut.name));
296	if (name)
297		strlcpy(ut.name, name, sizeof(ut.name));
298	utrace(&ut, sizeof(ut));
299}
300
301/*
302 * Main entry point for dynamic linking.  The first argument is the
303 * stack pointer.  The stack is expected to be laid out as described
304 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
305 * Specifically, the stack pointer points to a word containing
306 * ARGC.  Following that in the stack is a null-terminated sequence
307 * of pointers to argument strings.  Then comes a null-terminated
308 * sequence of pointers to environment strings.  Finally, there is a
309 * sequence of "auxiliary vector" entries.
310 *
311 * The second argument points to a place to store the dynamic linker's
312 * exit procedure pointer and the third to a place to store the main
313 * program's object.
314 *
315 * The return value is the main program's entry point.
316 */
317func_ptr_type
318_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
319{
320    Elf_Auxinfo *aux_info[AT_COUNT];
321    int i;
322    int argc;
323    char **argv;
324    char **env;
325    Elf_Auxinfo *aux;
326    Elf_Auxinfo *auxp;
327    const char *argv0;
328    Objlist_Entry *entry;
329    Obj_Entry *obj;
330    Obj_Entry **preload_tail;
331    Obj_Entry *last_interposer;
332    Objlist initlist;
333    RtldLockState lockstate;
334    char *library_path_rpath;
335    int mib[2];
336    size_t len;
337
338    /*
339     * On entry, the dynamic linker itself has not been relocated yet.
340     * Be very careful not to reference any global data until after
341     * init_rtld has returned.  It is OK to reference file-scope statics
342     * and string constants, and to call static and global functions.
343     */
344
345    /* Find the auxiliary vector on the stack. */
346    argc = *sp++;
347    argv = (char **) sp;
348    sp += argc + 1;	/* Skip over arguments and NULL terminator */
349    env = (char **) sp;
350    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
351	;
352    aux = (Elf_Auxinfo *) sp;
353
354    /* Digest the auxiliary vector. */
355    for (i = 0;  i < AT_COUNT;  i++)
356	aux_info[i] = NULL;
357    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
358	if (auxp->a_type < AT_COUNT)
359	    aux_info[auxp->a_type] = auxp;
360    }
361
362    /* Initialize and relocate ourselves. */
363    assert(aux_info[AT_BASE] != NULL);
364    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
365
366    __progname = obj_rtld.path;
367    argv0 = argv[0] != NULL ? argv[0] : "(null)";
368    environ = env;
369    main_argc = argc;
370    main_argv = argv;
371
372    if (aux_info[AT_CANARY] != NULL &&
373	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
374	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
375	    if (i > sizeof(__stack_chk_guard))
376		    i = sizeof(__stack_chk_guard);
377	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
378    } else {
379	mib[0] = CTL_KERN;
380	mib[1] = KERN_ARND;
381
382	len = sizeof(__stack_chk_guard);
383	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
384	    len != sizeof(__stack_chk_guard)) {
385		/* If sysctl was unsuccessful, use the "terminator canary". */
386		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
387		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
388		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
389		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
390	}
391    }
392
393    trust = !issetugid();
394
395    ld_bind_now = getenv(LD_ "BIND_NOW");
396    /*
397     * If the process is tainted, then we un-set the dangerous environment
398     * variables.  The process will be marked as tainted until setuid(2)
399     * is called.  If any child process calls setuid(2) we do not want any
400     * future processes to honor the potentially un-safe variables.
401     */
402    if (!trust) {
403        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
404	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
405	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
406	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
407		_rtld_error("environment corrupt; aborting");
408		die();
409	}
410    }
411    ld_debug = getenv(LD_ "DEBUG");
412    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
413    libmap_override = getenv(LD_ "LIBMAP");
414    ld_library_path = getenv(LD_ "LIBRARY_PATH");
415    ld_preload = getenv(LD_ "PRELOAD");
416    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
417    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
418    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
419    if (library_path_rpath != NULL) {
420	    if (library_path_rpath[0] == 'y' ||
421		library_path_rpath[0] == 'Y' ||
422		library_path_rpath[0] == '1')
423		    ld_library_path_rpath = true;
424	    else
425		    ld_library_path_rpath = false;
426    }
427    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
428	(ld_library_path != NULL) || (ld_preload != NULL) ||
429	(ld_elf_hints_path != NULL) || ld_loadfltr;
430    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
431    ld_utrace = getenv(LD_ "UTRACE");
432
433    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
434	ld_elf_hints_path = _PATH_ELF_HINTS;
435
436    if (ld_debug != NULL && *ld_debug != '\0')
437	debug = 1;
438    dbg("%s is initialized, base address = %p", __progname,
439	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
440    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
441    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
442
443    dbg("initializing thread locks");
444    lockdflt_init();
445
446    /*
447     * Load the main program, or process its program header if it is
448     * already loaded.
449     */
450    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
451	int fd = aux_info[AT_EXECFD]->a_un.a_val;
452	dbg("loading main program");
453	obj_main = map_object(fd, argv0, NULL);
454	close(fd);
455	if (obj_main == NULL)
456	    die();
457	max_stack_flags = obj->stack_flags;
458    } else {				/* Main program already loaded. */
459	const Elf_Phdr *phdr;
460	int phnum;
461	caddr_t entry;
462
463	dbg("processing main program's program header");
464	assert(aux_info[AT_PHDR] != NULL);
465	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
466	assert(aux_info[AT_PHNUM] != NULL);
467	phnum = aux_info[AT_PHNUM]->a_un.a_val;
468	assert(aux_info[AT_PHENT] != NULL);
469	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
470	assert(aux_info[AT_ENTRY] != NULL);
471	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
472	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
473	    die();
474    }
475
476    if (aux_info[AT_EXECPATH] != 0) {
477	    char *kexecpath;
478	    char buf[MAXPATHLEN];
479
480	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
481	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
482	    if (kexecpath[0] == '/')
483		    obj_main->path = kexecpath;
484	    else if (getcwd(buf, sizeof(buf)) == NULL ||
485		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
486		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
487		    obj_main->path = xstrdup(argv0);
488	    else
489		    obj_main->path = xstrdup(buf);
490    } else {
491	    dbg("No AT_EXECPATH");
492	    obj_main->path = xstrdup(argv0);
493    }
494    dbg("obj_main path %s", obj_main->path);
495    obj_main->mainprog = true;
496
497    if (aux_info[AT_STACKPROT] != NULL &&
498      aux_info[AT_STACKPROT]->a_un.a_val != 0)
499	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
500
501#ifndef COMPAT_32BIT
502    /*
503     * Get the actual dynamic linker pathname from the executable if
504     * possible.  (It should always be possible.)  That ensures that
505     * gdb will find the right dynamic linker even if a non-standard
506     * one is being used.
507     */
508    if (obj_main->interp != NULL &&
509      strcmp(obj_main->interp, obj_rtld.path) != 0) {
510	free(obj_rtld.path);
511	obj_rtld.path = xstrdup(obj_main->interp);
512        __progname = obj_rtld.path;
513    }
514#endif
515
516    digest_dynamic(obj_main, 0);
517    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
518	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
519	obj_main->dynsymcount);
520
521    linkmap_add(obj_main);
522    linkmap_add(&obj_rtld);
523
524    /* Link the main program into the list of objects. */
525    *obj_tail = obj_main;
526    obj_tail = &obj_main->next;
527    obj_count++;
528    obj_loads++;
529
530    /* Initialize a fake symbol for resolving undefined weak references. */
531    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
532    sym_zero.st_shndx = SHN_UNDEF;
533    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
534
535    if (!libmap_disable)
536        libmap_disable = (bool)lm_init(libmap_override);
537
538    dbg("loading LD_PRELOAD libraries");
539    if (load_preload_objects() == -1)
540	die();
541    preload_tail = obj_tail;
542
543    dbg("loading needed objects");
544    if (load_needed_objects(obj_main, 0) == -1)
545	die();
546
547    /* Make a list of all objects loaded at startup. */
548    last_interposer = obj_main;
549    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
550	if (obj->z_interpose && obj != obj_main) {
551	    objlist_put_after(&list_main, last_interposer, obj);
552	    last_interposer = obj;
553	} else {
554	    objlist_push_tail(&list_main, obj);
555	}
556    	obj->refcount++;
557    }
558
559    dbg("checking for required versions");
560    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
561	die();
562
563    if (ld_tracing) {		/* We're done */
564	trace_loaded_objects(obj_main);
565	exit(0);
566    }
567
568    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
569       dump_relocations(obj_main);
570       exit (0);
571    }
572
573    /*
574     * Processing tls relocations requires having the tls offsets
575     * initialized.  Prepare offsets before starting initial
576     * relocation processing.
577     */
578    dbg("initializing initial thread local storage offsets");
579    STAILQ_FOREACH(entry, &list_main, link) {
580	/*
581	 * Allocate all the initial objects out of the static TLS
582	 * block even if they didn't ask for it.
583	 */
584	allocate_tls_offset(entry->obj);
585    }
586
587    if (relocate_objects(obj_main,
588      ld_bind_now != NULL && *ld_bind_now != '\0',
589      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
590	die();
591
592    dbg("doing copy relocations");
593    if (do_copy_relocations(obj_main) == -1)
594	die();
595
596    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
597       dump_relocations(obj_main);
598       exit (0);
599    }
600
601    /*
602     * Setup TLS for main thread.  This must be done after the
603     * relocations are processed, since tls initialization section
604     * might be the subject for relocations.
605     */
606    dbg("initializing initial thread local storage");
607    allocate_initial_tls(obj_list);
608
609    dbg("initializing key program variables");
610    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
611    set_program_var("environ", env);
612    set_program_var("__elf_aux_vector", aux);
613
614    /* Make a list of init functions to call. */
615    objlist_init(&initlist);
616    initlist_add_objects(obj_list, preload_tail, &initlist);
617
618    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
619
620    map_stacks_exec(NULL);
621
622    dbg("resolving ifuncs");
623    if (resolve_objects_ifunc(obj_main,
624      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
625      NULL) == -1)
626	die();
627
628    if (!obj_main->crt_no_init) {
629	/*
630	 * Make sure we don't call the main program's init and fini
631	 * functions for binaries linked with old crt1 which calls
632	 * _init itself.
633	 */
634	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
635	obj_main->preinit_array = obj_main->init_array =
636	    obj_main->fini_array = (Elf_Addr)NULL;
637    }
638
639    wlock_acquire(rtld_bind_lock, &lockstate);
640    if (obj_main->crt_no_init)
641	preinit_main();
642    objlist_call_init(&initlist, &lockstate);
643    _r_debug_postinit(&obj_main->linkmap);
644    objlist_clear(&initlist);
645    dbg("loading filtees");
646    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
647	if (ld_loadfltr || obj->z_loadfltr)
648	    load_filtees(obj, 0, &lockstate);
649    }
650    lock_release(rtld_bind_lock, &lockstate);
651
652    dbg("transferring control to program entry point = %p", obj_main->entry);
653
654    /* Return the exit procedure and the program entry point. */
655    *exit_proc = rtld_exit;
656    *objp = obj_main;
657    return (func_ptr_type) obj_main->entry;
658}
659
660void *
661rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
662{
663	void *ptr;
664	Elf_Addr target;
665
666	ptr = (void *)make_function_pointer(def, obj);
667	target = ((Elf_Addr (*)(void))ptr)();
668	return ((void *)target);
669}
670
671Elf_Addr
672_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
673{
674    const Elf_Rel *rel;
675    const Elf_Sym *def;
676    const Obj_Entry *defobj;
677    Elf_Addr *where;
678    Elf_Addr target;
679    RtldLockState lockstate;
680
681    rlock_acquire(rtld_bind_lock, &lockstate);
682    if (sigsetjmp(lockstate.env, 0) != 0)
683	    lock_upgrade(rtld_bind_lock, &lockstate);
684    if (obj->pltrel)
685	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
686    else
687	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
688
689    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
690    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
691	&lockstate);
692    if (def == NULL)
693	die();
694    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
695	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
696    else
697	target = (Elf_Addr)(defobj->relocbase + def->st_value);
698
699    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
700      defobj->strtab + def->st_name, basename(obj->path),
701      (void *)target, basename(defobj->path));
702
703    /*
704     * Write the new contents for the jmpslot. Note that depending on
705     * architecture, the value which we need to return back to the
706     * lazy binding trampoline may or may not be the target
707     * address. The value returned from reloc_jmpslot() is the value
708     * that the trampoline needs.
709     */
710    target = reloc_jmpslot(where, target, defobj, obj, rel);
711    lock_release(rtld_bind_lock, &lockstate);
712    return target;
713}
714
715/*
716 * Error reporting function.  Use it like printf.  If formats the message
717 * into a buffer, and sets things up so that the next call to dlerror()
718 * will return the message.
719 */
720void
721_rtld_error(const char *fmt, ...)
722{
723    static char buf[512];
724    va_list ap;
725
726    va_start(ap, fmt);
727    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
728    error_message = buf;
729    va_end(ap);
730}
731
732/*
733 * Return a dynamically-allocated copy of the current error message, if any.
734 */
735static char *
736errmsg_save(void)
737{
738    return error_message == NULL ? NULL : xstrdup(error_message);
739}
740
741/*
742 * Restore the current error message from a copy which was previously saved
743 * by errmsg_save().  The copy is freed.
744 */
745static void
746errmsg_restore(char *saved_msg)
747{
748    if (saved_msg == NULL)
749	error_message = NULL;
750    else {
751	_rtld_error("%s", saved_msg);
752	free(saved_msg);
753    }
754}
755
756static const char *
757basename(const char *name)
758{
759    const char *p = strrchr(name, '/');
760    return p != NULL ? p + 1 : name;
761}
762
763static struct utsname uts;
764
765static char *
766origin_subst_one(char *real, const char *kw, const char *subst,
767    bool may_free)
768{
769	char *p, *p1, *res, *resp;
770	int subst_len, kw_len, subst_count, old_len, new_len;
771
772	kw_len = strlen(kw);
773
774	/*
775	 * First, count the number of the keyword occurences, to
776	 * preallocate the final string.
777	 */
778	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
779		p1 = strstr(p, kw);
780		if (p1 == NULL)
781			break;
782	}
783
784	/*
785	 * If the keyword is not found, just return.
786	 */
787	if (subst_count == 0)
788		return (may_free ? real : xstrdup(real));
789
790	/*
791	 * There is indeed something to substitute.  Calculate the
792	 * length of the resulting string, and allocate it.
793	 */
794	subst_len = strlen(subst);
795	old_len = strlen(real);
796	new_len = old_len + (subst_len - kw_len) * subst_count;
797	res = xmalloc(new_len + 1);
798
799	/*
800	 * Now, execute the substitution loop.
801	 */
802	for (p = real, resp = res, *resp = '\0';;) {
803		p1 = strstr(p, kw);
804		if (p1 != NULL) {
805			/* Copy the prefix before keyword. */
806			memcpy(resp, p, p1 - p);
807			resp += p1 - p;
808			/* Keyword replacement. */
809			memcpy(resp, subst, subst_len);
810			resp += subst_len;
811			*resp = '\0';
812			p = p1 + kw_len;
813		} else
814			break;
815	}
816
817	/* Copy to the end of string and finish. */
818	strcat(resp, p);
819	if (may_free)
820		free(real);
821	return (res);
822}
823
824static char *
825origin_subst(char *real, const char *origin_path)
826{
827	char *res1, *res2, *res3, *res4;
828
829	if (uts.sysname[0] == '\0') {
830		if (uname(&uts) != 0) {
831			_rtld_error("utsname failed: %d", errno);
832			return (NULL);
833		}
834	}
835	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
836	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
837	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
838	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
839	return (res4);
840}
841
842static void
843die(void)
844{
845    const char *msg = dlerror();
846
847    if (msg == NULL)
848	msg = "Fatal error";
849    rtld_fdputstr(STDERR_FILENO, msg);
850    rtld_fdputchar(STDERR_FILENO, '\n');
851    _exit(1);
852}
853
854/*
855 * Process a shared object's DYNAMIC section, and save the important
856 * information in its Obj_Entry structure.
857 */
858static void
859digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
860    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
861{
862    const Elf_Dyn *dynp;
863    Needed_Entry **needed_tail = &obj->needed;
864    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
865    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
866    const Elf_Hashelt *hashtab;
867    const Elf32_Word *hashval;
868    Elf32_Word bkt, nmaskwords;
869    int bloom_size32;
870    int plttype = DT_REL;
871
872    *dyn_rpath = NULL;
873    *dyn_soname = NULL;
874    *dyn_runpath = NULL;
875
876    obj->bind_now = false;
877    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
878	switch (dynp->d_tag) {
879
880	case DT_REL:
881	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
882	    break;
883
884	case DT_RELSZ:
885	    obj->relsize = dynp->d_un.d_val;
886	    break;
887
888	case DT_RELENT:
889	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
890	    break;
891
892	case DT_JMPREL:
893	    obj->pltrel = (const Elf_Rel *)
894	      (obj->relocbase + dynp->d_un.d_ptr);
895	    break;
896
897	case DT_PLTRELSZ:
898	    obj->pltrelsize = dynp->d_un.d_val;
899	    break;
900
901	case DT_RELA:
902	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
903	    break;
904
905	case DT_RELASZ:
906	    obj->relasize = dynp->d_un.d_val;
907	    break;
908
909	case DT_RELAENT:
910	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
911	    break;
912
913	case DT_PLTREL:
914	    plttype = dynp->d_un.d_val;
915	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
916	    break;
917
918	case DT_SYMTAB:
919	    obj->symtab = (const Elf_Sym *)
920	      (obj->relocbase + dynp->d_un.d_ptr);
921	    break;
922
923	case DT_SYMENT:
924	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
925	    break;
926
927	case DT_STRTAB:
928	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
929	    break;
930
931	case DT_STRSZ:
932	    obj->strsize = dynp->d_un.d_val;
933	    break;
934
935	case DT_VERNEED:
936	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
937		dynp->d_un.d_val);
938	    break;
939
940	case DT_VERNEEDNUM:
941	    obj->verneednum = dynp->d_un.d_val;
942	    break;
943
944	case DT_VERDEF:
945	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
946		dynp->d_un.d_val);
947	    break;
948
949	case DT_VERDEFNUM:
950	    obj->verdefnum = dynp->d_un.d_val;
951	    break;
952
953	case DT_VERSYM:
954	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
955		dynp->d_un.d_val);
956	    break;
957
958	case DT_HASH:
959	    {
960		hashtab = (const Elf_Hashelt *)(obj->relocbase +
961		    dynp->d_un.d_ptr);
962		obj->nbuckets = hashtab[0];
963		obj->nchains = hashtab[1];
964		obj->buckets = hashtab + 2;
965		obj->chains = obj->buckets + obj->nbuckets;
966		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
967		  obj->buckets != NULL;
968	    }
969	    break;
970
971	case DT_GNU_HASH:
972	    {
973		hashtab = (const Elf_Hashelt *)(obj->relocbase +
974		    dynp->d_un.d_ptr);
975		obj->nbuckets_gnu = hashtab[0];
976		obj->symndx_gnu = hashtab[1];
977		nmaskwords = hashtab[2];
978		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
979		obj->maskwords_bm_gnu = nmaskwords - 1;
980		obj->shift2_gnu = hashtab[3];
981		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
982		obj->buckets_gnu = hashtab + 4 + bloom_size32;
983		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
984		  obj->symndx_gnu;
985		/* Number of bitmask words is required to be power of 2 */
986		obj->valid_hash_gnu = powerof2(nmaskwords) &&
987		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
988	    }
989	    break;
990
991	case DT_NEEDED:
992	    if (!obj->rtld) {
993		Needed_Entry *nep = NEW(Needed_Entry);
994		nep->name = dynp->d_un.d_val;
995		nep->obj = NULL;
996		nep->next = NULL;
997
998		*needed_tail = nep;
999		needed_tail = &nep->next;
1000	    }
1001	    break;
1002
1003	case DT_FILTER:
1004	    if (!obj->rtld) {
1005		Needed_Entry *nep = NEW(Needed_Entry);
1006		nep->name = dynp->d_un.d_val;
1007		nep->obj = NULL;
1008		nep->next = NULL;
1009
1010		*needed_filtees_tail = nep;
1011		needed_filtees_tail = &nep->next;
1012	    }
1013	    break;
1014
1015	case DT_AUXILIARY:
1016	    if (!obj->rtld) {
1017		Needed_Entry *nep = NEW(Needed_Entry);
1018		nep->name = dynp->d_un.d_val;
1019		nep->obj = NULL;
1020		nep->next = NULL;
1021
1022		*needed_aux_filtees_tail = nep;
1023		needed_aux_filtees_tail = &nep->next;
1024	    }
1025	    break;
1026
1027	case DT_PLTGOT:
1028	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1029	    break;
1030
1031	case DT_TEXTREL:
1032	    obj->textrel = true;
1033	    break;
1034
1035	case DT_SYMBOLIC:
1036	    obj->symbolic = true;
1037	    break;
1038
1039	case DT_RPATH:
1040	    /*
1041	     * We have to wait until later to process this, because we
1042	     * might not have gotten the address of the string table yet.
1043	     */
1044	    *dyn_rpath = dynp;
1045	    break;
1046
1047	case DT_SONAME:
1048	    *dyn_soname = dynp;
1049	    break;
1050
1051	case DT_RUNPATH:
1052	    *dyn_runpath = dynp;
1053	    break;
1054
1055	case DT_INIT:
1056	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1057	    break;
1058
1059	case DT_PREINIT_ARRAY:
1060	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1061	    break;
1062
1063	case DT_PREINIT_ARRAYSZ:
1064	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1065	    break;
1066
1067	case DT_INIT_ARRAY:
1068	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1069	    break;
1070
1071	case DT_INIT_ARRAYSZ:
1072	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1073	    break;
1074
1075	case DT_FINI:
1076	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1077	    break;
1078
1079	case DT_FINI_ARRAY:
1080	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1081	    break;
1082
1083	case DT_FINI_ARRAYSZ:
1084	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1085	    break;
1086
1087	/*
1088	 * Don't process DT_DEBUG on MIPS as the dynamic section
1089	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1090	 */
1091
1092#ifndef __mips__
1093	case DT_DEBUG:
1094	    /* XXX - not implemented yet */
1095	    if (!early)
1096		dbg("Filling in DT_DEBUG entry");
1097	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1098	    break;
1099#endif
1100
1101	case DT_FLAGS:
1102		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1103		    obj->z_origin = true;
1104		if (dynp->d_un.d_val & DF_SYMBOLIC)
1105		    obj->symbolic = true;
1106		if (dynp->d_un.d_val & DF_TEXTREL)
1107		    obj->textrel = true;
1108		if (dynp->d_un.d_val & DF_BIND_NOW)
1109		    obj->bind_now = true;
1110		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1111		    ;*/
1112	    break;
1113#ifdef __mips__
1114	case DT_MIPS_LOCAL_GOTNO:
1115		obj->local_gotno = dynp->d_un.d_val;
1116	    break;
1117
1118	case DT_MIPS_SYMTABNO:
1119		obj->symtabno = dynp->d_un.d_val;
1120		break;
1121
1122	case DT_MIPS_GOTSYM:
1123		obj->gotsym = dynp->d_un.d_val;
1124		break;
1125
1126	case DT_MIPS_RLD_MAP:
1127		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1128		break;
1129#endif
1130
1131	case DT_FLAGS_1:
1132		if (dynp->d_un.d_val & DF_1_NOOPEN)
1133		    obj->z_noopen = true;
1134		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1135		    obj->z_origin = true;
1136		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1137		    XXX ;*/
1138		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1139		    obj->bind_now = true;
1140		if (dynp->d_un.d_val & DF_1_NODELETE)
1141		    obj->z_nodelete = true;
1142		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1143		    obj->z_loadfltr = true;
1144		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1145		    obj->z_interpose = true;
1146		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1147		    obj->z_nodeflib = true;
1148	    break;
1149
1150	default:
1151	    if (!early) {
1152		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1153		    (long)dynp->d_tag);
1154	    }
1155	    break;
1156	}
1157    }
1158
1159    obj->traced = false;
1160
1161    if (plttype == DT_RELA) {
1162	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1163	obj->pltrel = NULL;
1164	obj->pltrelasize = obj->pltrelsize;
1165	obj->pltrelsize = 0;
1166    }
1167
1168    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1169    if (obj->valid_hash_sysv)
1170	obj->dynsymcount = obj->nchains;
1171    else if (obj->valid_hash_gnu) {
1172	obj->dynsymcount = 0;
1173	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1174	    if (obj->buckets_gnu[bkt] == 0)
1175		continue;
1176	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1177	    do
1178		obj->dynsymcount++;
1179	    while ((*hashval++ & 1u) == 0);
1180	}
1181	obj->dynsymcount += obj->symndx_gnu;
1182    }
1183}
1184
1185static void
1186digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1187    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1188{
1189
1190    if (obj->z_origin && obj->origin_path == NULL) {
1191	obj->origin_path = xmalloc(PATH_MAX);
1192	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1193	    die();
1194    }
1195
1196    if (dyn_runpath != NULL) {
1197	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1198	if (obj->z_origin)
1199	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1200    }
1201    else if (dyn_rpath != NULL) {
1202	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1203	if (obj->z_origin)
1204	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1205    }
1206
1207    if (dyn_soname != NULL)
1208	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1209}
1210
1211static void
1212digest_dynamic(Obj_Entry *obj, int early)
1213{
1214	const Elf_Dyn *dyn_rpath;
1215	const Elf_Dyn *dyn_soname;
1216	const Elf_Dyn *dyn_runpath;
1217
1218	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1219	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1220}
1221
1222/*
1223 * Process a shared object's program header.  This is used only for the
1224 * main program, when the kernel has already loaded the main program
1225 * into memory before calling the dynamic linker.  It creates and
1226 * returns an Obj_Entry structure.
1227 */
1228static Obj_Entry *
1229digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1230{
1231    Obj_Entry *obj;
1232    const Elf_Phdr *phlimit = phdr + phnum;
1233    const Elf_Phdr *ph;
1234    Elf_Addr note_start, note_end;
1235    int nsegs = 0;
1236
1237    obj = obj_new();
1238    for (ph = phdr;  ph < phlimit;  ph++) {
1239	if (ph->p_type != PT_PHDR)
1240	    continue;
1241
1242	obj->phdr = phdr;
1243	obj->phsize = ph->p_memsz;
1244	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1245	break;
1246    }
1247
1248    obj->stack_flags = PF_X | PF_R | PF_W;
1249
1250    for (ph = phdr;  ph < phlimit;  ph++) {
1251	switch (ph->p_type) {
1252
1253	case PT_INTERP:
1254	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1255	    break;
1256
1257	case PT_LOAD:
1258	    if (nsegs == 0) {	/* First load segment */
1259		obj->vaddrbase = trunc_page(ph->p_vaddr);
1260		obj->mapbase = obj->vaddrbase + obj->relocbase;
1261		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1262		  obj->vaddrbase;
1263	    } else {		/* Last load segment */
1264		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1265		  obj->vaddrbase;
1266	    }
1267	    nsegs++;
1268	    break;
1269
1270	case PT_DYNAMIC:
1271	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1272	    break;
1273
1274	case PT_TLS:
1275	    obj->tlsindex = 1;
1276	    obj->tlssize = ph->p_memsz;
1277	    obj->tlsalign = ph->p_align;
1278	    obj->tlsinitsize = ph->p_filesz;
1279	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1280	    break;
1281
1282	case PT_GNU_STACK:
1283	    obj->stack_flags = ph->p_flags;
1284	    break;
1285
1286	case PT_GNU_RELRO:
1287	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1288	    obj->relro_size = round_page(ph->p_memsz);
1289	    break;
1290
1291	case PT_NOTE:
1292	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1293	    note_end = note_start + ph->p_filesz;
1294	    digest_notes(obj, note_start, note_end);
1295	    break;
1296	}
1297    }
1298    if (nsegs < 1) {
1299	_rtld_error("%s: too few PT_LOAD segments", path);
1300	return NULL;
1301    }
1302
1303    obj->entry = entry;
1304    return obj;
1305}
1306
1307void
1308digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1309{
1310	const Elf_Note *note;
1311	const char *note_name;
1312	uintptr_t p;
1313
1314	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1315	    note = (const Elf_Note *)((const char *)(note + 1) +
1316	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1317	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1318		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1319		    note->n_descsz != sizeof(int32_t))
1320			continue;
1321		if (note->n_type != ABI_NOTETYPE &&
1322		    note->n_type != CRT_NOINIT_NOTETYPE)
1323			continue;
1324		note_name = (const char *)(note + 1);
1325		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1326		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1327			continue;
1328		switch (note->n_type) {
1329		case ABI_NOTETYPE:
1330			/* FreeBSD osrel note */
1331			p = (uintptr_t)(note + 1);
1332			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1333			obj->osrel = *(const int32_t *)(p);
1334			dbg("note osrel %d", obj->osrel);
1335			break;
1336		case CRT_NOINIT_NOTETYPE:
1337			/* FreeBSD 'crt does not call init' note */
1338			obj->crt_no_init = true;
1339			dbg("note crt_no_init");
1340			break;
1341		}
1342	}
1343}
1344
1345static Obj_Entry *
1346dlcheck(void *handle)
1347{
1348    Obj_Entry *obj;
1349
1350    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1351	if (obj == (Obj_Entry *) handle)
1352	    break;
1353
1354    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1355	_rtld_error("Invalid shared object handle %p", handle);
1356	return NULL;
1357    }
1358    return obj;
1359}
1360
1361/*
1362 * If the given object is already in the donelist, return true.  Otherwise
1363 * add the object to the list and return false.
1364 */
1365static bool
1366donelist_check(DoneList *dlp, const Obj_Entry *obj)
1367{
1368    unsigned int i;
1369
1370    for (i = 0;  i < dlp->num_used;  i++)
1371	if (dlp->objs[i] == obj)
1372	    return true;
1373    /*
1374     * Our donelist allocation should always be sufficient.  But if
1375     * our threads locking isn't working properly, more shared objects
1376     * could have been loaded since we allocated the list.  That should
1377     * never happen, but we'll handle it properly just in case it does.
1378     */
1379    if (dlp->num_used < dlp->num_alloc)
1380	dlp->objs[dlp->num_used++] = obj;
1381    return false;
1382}
1383
1384/*
1385 * Hash function for symbol table lookup.  Don't even think about changing
1386 * this.  It is specified by the System V ABI.
1387 */
1388unsigned long
1389elf_hash(const char *name)
1390{
1391    const unsigned char *p = (const unsigned char *) name;
1392    unsigned long h = 0;
1393    unsigned long g;
1394
1395    while (*p != '\0') {
1396	h = (h << 4) + *p++;
1397	if ((g = h & 0xf0000000) != 0)
1398	    h ^= g >> 24;
1399	h &= ~g;
1400    }
1401    return h;
1402}
1403
1404/*
1405 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1406 * unsigned in case it's implemented with a wider type.
1407 */
1408static uint32_t
1409gnu_hash(const char *s)
1410{
1411	uint32_t h;
1412	unsigned char c;
1413
1414	h = 5381;
1415	for (c = *s; c != '\0'; c = *++s)
1416		h = h * 33 + c;
1417	return (h & 0xffffffff);
1418}
1419
1420/*
1421 * Find the library with the given name, and return its full pathname.
1422 * The returned string is dynamically allocated.  Generates an error
1423 * message and returns NULL if the library cannot be found.
1424 *
1425 * If the second argument is non-NULL, then it refers to an already-
1426 * loaded shared object, whose library search path will be searched.
1427 *
1428 * The search order is:
1429 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1430 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1431 *   LD_LIBRARY_PATH
1432 *   DT_RUNPATH in the referencing file
1433 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1434 *	 from list)
1435 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1436 *
1437 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1438 */
1439static char *
1440find_library(const char *xname, const Obj_Entry *refobj)
1441{
1442    char *pathname;
1443    char *name;
1444    bool nodeflib, objgiven;
1445
1446    objgiven = refobj != NULL;
1447    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1448	if (xname[0] != '/' && !trust) {
1449	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1450	      xname);
1451	    return NULL;
1452	}
1453	if (objgiven && refobj->z_origin) {
1454		return (origin_subst(__DECONST(char *, xname),
1455		    refobj->origin_path));
1456	} else {
1457		return (xstrdup(xname));
1458	}
1459    }
1460
1461    if (libmap_disable || !objgiven ||
1462	(name = lm_find(refobj->path, xname)) == NULL)
1463	name = (char *)xname;
1464
1465    dbg(" Searching for \"%s\"", name);
1466
1467    /*
1468     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1469     * back to pre-conforming behaviour if user requested so with
1470     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1471     * nodeflib.
1472     */
1473    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1474	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1475	  (refobj != NULL &&
1476	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1477          (pathname = search_library_path(name, gethints(false))) != NULL ||
1478	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1479	    return (pathname);
1480    } else {
1481	nodeflib = objgiven ? refobj->z_nodeflib : false;
1482	if ((objgiven &&
1483	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1484	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1485	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1486	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1487	  (objgiven &&
1488	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1489	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1490	  (objgiven && !nodeflib &&
1491	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1492	    return (pathname);
1493    }
1494
1495    if (objgiven && refobj->path != NULL) {
1496	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1497	  name, basename(refobj->path));
1498    } else {
1499	_rtld_error("Shared object \"%s\" not found", name);
1500    }
1501    return NULL;
1502}
1503
1504/*
1505 * Given a symbol number in a referencing object, find the corresponding
1506 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1507 * no definition was found.  Returns a pointer to the Obj_Entry of the
1508 * defining object via the reference parameter DEFOBJ_OUT.
1509 */
1510const Elf_Sym *
1511find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1512    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1513    RtldLockState *lockstate)
1514{
1515    const Elf_Sym *ref;
1516    const Elf_Sym *def;
1517    const Obj_Entry *defobj;
1518    SymLook req;
1519    const char *name;
1520    int res;
1521
1522    /*
1523     * If we have already found this symbol, get the information from
1524     * the cache.
1525     */
1526    if (symnum >= refobj->dynsymcount)
1527	return NULL;	/* Bad object */
1528    if (cache != NULL && cache[symnum].sym != NULL) {
1529	*defobj_out = cache[symnum].obj;
1530	return cache[symnum].sym;
1531    }
1532
1533    ref = refobj->symtab + symnum;
1534    name = refobj->strtab + ref->st_name;
1535    def = NULL;
1536    defobj = NULL;
1537
1538    /*
1539     * We don't have to do a full scale lookup if the symbol is local.
1540     * We know it will bind to the instance in this load module; to
1541     * which we already have a pointer (ie ref). By not doing a lookup,
1542     * we not only improve performance, but it also avoids unresolvable
1543     * symbols when local symbols are not in the hash table. This has
1544     * been seen with the ia64 toolchain.
1545     */
1546    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1547	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1548	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1549		symnum);
1550	}
1551	symlook_init(&req, name);
1552	req.flags = flags;
1553	req.ventry = fetch_ventry(refobj, symnum);
1554	req.lockstate = lockstate;
1555	res = symlook_default(&req, refobj);
1556	if (res == 0) {
1557	    def = req.sym_out;
1558	    defobj = req.defobj_out;
1559	}
1560    } else {
1561	def = ref;
1562	defobj = refobj;
1563    }
1564
1565    /*
1566     * If we found no definition and the reference is weak, treat the
1567     * symbol as having the value zero.
1568     */
1569    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1570	def = &sym_zero;
1571	defobj = obj_main;
1572    }
1573
1574    if (def != NULL) {
1575	*defobj_out = defobj;
1576	/* Record the information in the cache to avoid subsequent lookups. */
1577	if (cache != NULL) {
1578	    cache[symnum].sym = def;
1579	    cache[symnum].obj = defobj;
1580	}
1581    } else {
1582	if (refobj != &obj_rtld)
1583	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1584    }
1585    return def;
1586}
1587
1588/*
1589 * Return the search path from the ldconfig hints file, reading it if
1590 * necessary.  If nostdlib is true, then the default search paths are
1591 * not added to result.
1592 *
1593 * Returns NULL if there are problems with the hints file,
1594 * or if the search path there is empty.
1595 */
1596static const char *
1597gethints(bool nostdlib)
1598{
1599	static char *hints, *filtered_path;
1600	struct elfhints_hdr hdr;
1601	struct fill_search_info_args sargs, hargs;
1602	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1603	struct dl_serpath *SLPpath, *hintpath;
1604	char *p;
1605	unsigned int SLPndx, hintndx, fndx, fcount;
1606	int fd;
1607	size_t flen;
1608	bool skip;
1609
1610	/* First call, read the hints file */
1611	if (hints == NULL) {
1612		/* Keep from trying again in case the hints file is bad. */
1613		hints = "";
1614
1615		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1616			return (NULL);
1617		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1618		    hdr.magic != ELFHINTS_MAGIC ||
1619		    hdr.version != 1) {
1620			close(fd);
1621			return (NULL);
1622		}
1623		p = xmalloc(hdr.dirlistlen + 1);
1624		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1625		    read(fd, p, hdr.dirlistlen + 1) !=
1626		    (ssize_t)hdr.dirlistlen + 1) {
1627			free(p);
1628			close(fd);
1629			return (NULL);
1630		}
1631		hints = p;
1632		close(fd);
1633	}
1634
1635	/*
1636	 * If caller agreed to receive list which includes the default
1637	 * paths, we are done. Otherwise, if we still did not
1638	 * calculated filtered result, do it now.
1639	 */
1640	if (!nostdlib)
1641		return (hints[0] != '\0' ? hints : NULL);
1642	if (filtered_path != NULL)
1643		goto filt_ret;
1644
1645	/*
1646	 * Obtain the list of all configured search paths, and the
1647	 * list of the default paths.
1648	 *
1649	 * First estimate the size of the results.
1650	 */
1651	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1652	smeta.dls_cnt = 0;
1653	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1654	hmeta.dls_cnt = 0;
1655
1656	sargs.request = RTLD_DI_SERINFOSIZE;
1657	sargs.serinfo = &smeta;
1658	hargs.request = RTLD_DI_SERINFOSIZE;
1659	hargs.serinfo = &hmeta;
1660
1661	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1662	path_enumerate(p, fill_search_info, &hargs);
1663
1664	SLPinfo = xmalloc(smeta.dls_size);
1665	hintinfo = xmalloc(hmeta.dls_size);
1666
1667	/*
1668	 * Next fetch both sets of paths.
1669	 */
1670	sargs.request = RTLD_DI_SERINFO;
1671	sargs.serinfo = SLPinfo;
1672	sargs.serpath = &SLPinfo->dls_serpath[0];
1673	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1674
1675	hargs.request = RTLD_DI_SERINFO;
1676	hargs.serinfo = hintinfo;
1677	hargs.serpath = &hintinfo->dls_serpath[0];
1678	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1679
1680	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1681	path_enumerate(p, fill_search_info, &hargs);
1682
1683	/*
1684	 * Now calculate the difference between two sets, by excluding
1685	 * standard paths from the full set.
1686	 */
1687	fndx = 0;
1688	fcount = 0;
1689	filtered_path = xmalloc(hdr.dirlistlen + 1);
1690	hintpath = &hintinfo->dls_serpath[0];
1691	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1692		skip = false;
1693		SLPpath = &SLPinfo->dls_serpath[0];
1694		/*
1695		 * Check each standard path against current.
1696		 */
1697		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1698			/* matched, skip the path */
1699			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1700				skip = true;
1701				break;
1702			}
1703		}
1704		if (skip)
1705			continue;
1706		/*
1707		 * Not matched against any standard path, add the path
1708		 * to result. Separate consequtive paths with ':'.
1709		 */
1710		if (fcount > 0) {
1711			filtered_path[fndx] = ':';
1712			fndx++;
1713		}
1714		fcount++;
1715		flen = strlen(hintpath->dls_name);
1716		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1717		fndx += flen;
1718	}
1719	filtered_path[fndx] = '\0';
1720
1721	free(SLPinfo);
1722	free(hintinfo);
1723
1724filt_ret:
1725	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1726}
1727
1728static void
1729init_dag(Obj_Entry *root)
1730{
1731    const Needed_Entry *needed;
1732    const Objlist_Entry *elm;
1733    DoneList donelist;
1734
1735    if (root->dag_inited)
1736	return;
1737    donelist_init(&donelist);
1738
1739    /* Root object belongs to own DAG. */
1740    objlist_push_tail(&root->dldags, root);
1741    objlist_push_tail(&root->dagmembers, root);
1742    donelist_check(&donelist, root);
1743
1744    /*
1745     * Add dependencies of root object to DAG in breadth order
1746     * by exploiting the fact that each new object get added
1747     * to the tail of the dagmembers list.
1748     */
1749    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1750	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1751	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1752		continue;
1753	    objlist_push_tail(&needed->obj->dldags, root);
1754	    objlist_push_tail(&root->dagmembers, needed->obj);
1755	}
1756    }
1757    root->dag_inited = true;
1758}
1759
1760static void
1761process_nodelete(Obj_Entry *root)
1762{
1763	const Objlist_Entry *elm;
1764
1765	/*
1766	 * Walk over object DAG and process every dependent object that
1767	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1768	 * which then should have its reference upped separately.
1769	 */
1770	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1771		if (elm->obj != NULL && elm->obj->z_nodelete &&
1772		    !elm->obj->ref_nodel) {
1773			dbg("obj %s nodelete", elm->obj->path);
1774			init_dag(elm->obj);
1775			ref_dag(elm->obj);
1776			elm->obj->ref_nodel = true;
1777		}
1778	}
1779}
1780/*
1781 * Initialize the dynamic linker.  The argument is the address at which
1782 * the dynamic linker has been mapped into memory.  The primary task of
1783 * this function is to relocate the dynamic linker.
1784 */
1785static void
1786init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1787{
1788    Obj_Entry objtmp;	/* Temporary rtld object */
1789    const Elf_Dyn *dyn_rpath;
1790    const Elf_Dyn *dyn_soname;
1791    const Elf_Dyn *dyn_runpath;
1792
1793    /*
1794     * Conjure up an Obj_Entry structure for the dynamic linker.
1795     *
1796     * The "path" member can't be initialized yet because string constants
1797     * cannot yet be accessed. Below we will set it correctly.
1798     */
1799    memset(&objtmp, 0, sizeof(objtmp));
1800    objtmp.path = NULL;
1801    objtmp.rtld = true;
1802    objtmp.mapbase = mapbase;
1803#ifdef PIC
1804    objtmp.relocbase = mapbase;
1805#endif
1806    if (RTLD_IS_DYNAMIC()) {
1807	objtmp.dynamic = rtld_dynamic(&objtmp);
1808	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1809	assert(objtmp.needed == NULL);
1810#if !defined(__mips__)
1811	/* MIPS has a bogus DT_TEXTREL. */
1812	assert(!objtmp.textrel);
1813#endif
1814
1815	/*
1816	 * Temporarily put the dynamic linker entry into the object list, so
1817	 * that symbols can be found.
1818	 */
1819
1820	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1821    }
1822
1823    /* Initialize the object list. */
1824    obj_tail = &obj_list;
1825
1826    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1827    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1828
1829    /* The page size is required by the dynamic memory allocator. */
1830    init_pagesizes(aux_info);
1831
1832    if (aux_info[AT_OSRELDATE] != NULL)
1833	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1834
1835    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1836
1837    /* Replace the path with a dynamically allocated copy. */
1838    obj_rtld.path = xstrdup(PATH_RTLD);
1839
1840    r_debug.r_brk = r_debug_state;
1841    r_debug.r_state = RT_CONSISTENT;
1842}
1843
1844/*
1845 * Retrieve the array of supported page sizes.  The kernel provides the page
1846 * sizes in increasing order.
1847 */
1848static void
1849init_pagesizes(Elf_Auxinfo **aux_info)
1850{
1851	static size_t psa[MAXPAGESIZES];
1852	int mib[2];
1853	size_t len, size;
1854
1855	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1856	    NULL) {
1857		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1858		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1859	} else {
1860		len = 2;
1861		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1862			size = sizeof(psa);
1863		else {
1864			/* As a fallback, retrieve the base page size. */
1865			size = sizeof(psa[0]);
1866			if (aux_info[AT_PAGESZ] != NULL) {
1867				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1868				goto psa_filled;
1869			} else {
1870				mib[0] = CTL_HW;
1871				mib[1] = HW_PAGESIZE;
1872				len = 2;
1873			}
1874		}
1875		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1876			_rtld_error("sysctl for hw.pagesize(s) failed");
1877			die();
1878		}
1879psa_filled:
1880		pagesizes = psa;
1881	}
1882	npagesizes = size / sizeof(pagesizes[0]);
1883	/* Discard any invalid entries at the end of the array. */
1884	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1885		npagesizes--;
1886}
1887
1888/*
1889 * Add the init functions from a needed object list (and its recursive
1890 * needed objects) to "list".  This is not used directly; it is a helper
1891 * function for initlist_add_objects().  The write lock must be held
1892 * when this function is called.
1893 */
1894static void
1895initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1896{
1897    /* Recursively process the successor needed objects. */
1898    if (needed->next != NULL)
1899	initlist_add_neededs(needed->next, list);
1900
1901    /* Process the current needed object. */
1902    if (needed->obj != NULL)
1903	initlist_add_objects(needed->obj, &needed->obj->next, list);
1904}
1905
1906/*
1907 * Scan all of the DAGs rooted in the range of objects from "obj" to
1908 * "tail" and add their init functions to "list".  This recurses over
1909 * the DAGs and ensure the proper init ordering such that each object's
1910 * needed libraries are initialized before the object itself.  At the
1911 * same time, this function adds the objects to the global finalization
1912 * list "list_fini" in the opposite order.  The write lock must be
1913 * held when this function is called.
1914 */
1915static void
1916initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1917{
1918
1919    if (obj->init_scanned || obj->init_done)
1920	return;
1921    obj->init_scanned = true;
1922
1923    /* Recursively process the successor objects. */
1924    if (&obj->next != tail)
1925	initlist_add_objects(obj->next, tail, list);
1926
1927    /* Recursively process the needed objects. */
1928    if (obj->needed != NULL)
1929	initlist_add_neededs(obj->needed, list);
1930    if (obj->needed_filtees != NULL)
1931	initlist_add_neededs(obj->needed_filtees, list);
1932    if (obj->needed_aux_filtees != NULL)
1933	initlist_add_neededs(obj->needed_aux_filtees, list);
1934
1935    /* Add the object to the init list. */
1936    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1937      obj->init_array != (Elf_Addr)NULL)
1938	objlist_push_tail(list, obj);
1939
1940    /* Add the object to the global fini list in the reverse order. */
1941    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1942      && !obj->on_fini_list) {
1943	objlist_push_head(&list_fini, obj);
1944	obj->on_fini_list = true;
1945    }
1946}
1947
1948#ifndef FPTR_TARGET
1949#define FPTR_TARGET(f)	((Elf_Addr) (f))
1950#endif
1951
1952static void
1953free_needed_filtees(Needed_Entry *n)
1954{
1955    Needed_Entry *needed, *needed1;
1956
1957    for (needed = n; needed != NULL; needed = needed->next) {
1958	if (needed->obj != NULL) {
1959	    dlclose(needed->obj);
1960	    needed->obj = NULL;
1961	}
1962    }
1963    for (needed = n; needed != NULL; needed = needed1) {
1964	needed1 = needed->next;
1965	free(needed);
1966    }
1967}
1968
1969static void
1970unload_filtees(Obj_Entry *obj)
1971{
1972
1973    free_needed_filtees(obj->needed_filtees);
1974    obj->needed_filtees = NULL;
1975    free_needed_filtees(obj->needed_aux_filtees);
1976    obj->needed_aux_filtees = NULL;
1977    obj->filtees_loaded = false;
1978}
1979
1980static void
1981load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1982    RtldLockState *lockstate)
1983{
1984
1985    for (; needed != NULL; needed = needed->next) {
1986	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1987	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1988	  RTLD_LOCAL, lockstate);
1989    }
1990}
1991
1992static void
1993load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1994{
1995
1996    lock_restart_for_upgrade(lockstate);
1997    if (!obj->filtees_loaded) {
1998	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1999	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2000	obj->filtees_loaded = true;
2001    }
2002}
2003
2004static int
2005process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2006{
2007    Obj_Entry *obj1;
2008
2009    for (; needed != NULL; needed = needed->next) {
2010	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2011	  flags & ~RTLD_LO_NOLOAD);
2012	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2013	    return (-1);
2014    }
2015    return (0);
2016}
2017
2018/*
2019 * Given a shared object, traverse its list of needed objects, and load
2020 * each of them.  Returns 0 on success.  Generates an error message and
2021 * returns -1 on failure.
2022 */
2023static int
2024load_needed_objects(Obj_Entry *first, int flags)
2025{
2026    Obj_Entry *obj;
2027
2028    for (obj = first;  obj != NULL;  obj = obj->next) {
2029	if (process_needed(obj, obj->needed, flags) == -1)
2030	    return (-1);
2031    }
2032    return (0);
2033}
2034
2035static int
2036load_preload_objects(void)
2037{
2038    char *p = ld_preload;
2039    Obj_Entry *obj;
2040    static const char delim[] = " \t:;";
2041
2042    if (p == NULL)
2043	return 0;
2044
2045    p += strspn(p, delim);
2046    while (*p != '\0') {
2047	size_t len = strcspn(p, delim);
2048	char savech;
2049
2050	savech = p[len];
2051	p[len] = '\0';
2052	obj = load_object(p, -1, NULL, 0);
2053	if (obj == NULL)
2054	    return -1;	/* XXX - cleanup */
2055	obj->z_interpose = true;
2056	p[len] = savech;
2057	p += len;
2058	p += strspn(p, delim);
2059    }
2060    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2061    return 0;
2062}
2063
2064static const char *
2065printable_path(const char *path)
2066{
2067
2068	return (path == NULL ? "<unknown>" : path);
2069}
2070
2071/*
2072 * Load a shared object into memory, if it is not already loaded.  The
2073 * object may be specified by name or by user-supplied file descriptor
2074 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2075 * duplicate is.
2076 *
2077 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2078 * on failure.
2079 */
2080static Obj_Entry *
2081load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2082{
2083    Obj_Entry *obj;
2084    int fd;
2085    struct stat sb;
2086    char *path;
2087
2088    if (name != NULL) {
2089	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2090	    if (object_match_name(obj, name))
2091		return (obj);
2092	}
2093
2094	path = find_library(name, refobj);
2095	if (path == NULL)
2096	    return (NULL);
2097    } else
2098	path = NULL;
2099
2100    /*
2101     * If we didn't find a match by pathname, or the name is not
2102     * supplied, open the file and check again by device and inode.
2103     * This avoids false mismatches caused by multiple links or ".."
2104     * in pathnames.
2105     *
2106     * To avoid a race, we open the file and use fstat() rather than
2107     * using stat().
2108     */
2109    fd = -1;
2110    if (fd_u == -1) {
2111	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2112	    _rtld_error("Cannot open \"%s\"", path);
2113	    free(path);
2114	    return (NULL);
2115	}
2116    } else {
2117	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2118	if (fd == -1) {
2119	    _rtld_error("Cannot dup fd");
2120	    free(path);
2121	    return (NULL);
2122	}
2123    }
2124    if (fstat(fd, &sb) == -1) {
2125	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2126	close(fd);
2127	free(path);
2128	return NULL;
2129    }
2130    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2131	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2132	    break;
2133    if (obj != NULL && name != NULL) {
2134	object_add_name(obj, name);
2135	free(path);
2136	close(fd);
2137	return obj;
2138    }
2139    if (flags & RTLD_LO_NOLOAD) {
2140	free(path);
2141	close(fd);
2142	return (NULL);
2143    }
2144
2145    /* First use of this object, so we must map it in */
2146    obj = do_load_object(fd, name, path, &sb, flags);
2147    if (obj == NULL)
2148	free(path);
2149    close(fd);
2150
2151    return obj;
2152}
2153
2154static Obj_Entry *
2155do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2156  int flags)
2157{
2158    Obj_Entry *obj;
2159    struct statfs fs;
2160
2161    /*
2162     * but first, make sure that environment variables haven't been
2163     * used to circumvent the noexec flag on a filesystem.
2164     */
2165    if (dangerous_ld_env) {
2166	if (fstatfs(fd, &fs) != 0) {
2167	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2168	    return NULL;
2169	}
2170	if (fs.f_flags & MNT_NOEXEC) {
2171	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2172	    return NULL;
2173	}
2174    }
2175    dbg("loading \"%s\"", printable_path(path));
2176    obj = map_object(fd, printable_path(path), sbp);
2177    if (obj == NULL)
2178        return NULL;
2179
2180    /*
2181     * If DT_SONAME is present in the object, digest_dynamic2 already
2182     * added it to the object names.
2183     */
2184    if (name != NULL)
2185	object_add_name(obj, name);
2186    obj->path = path;
2187    digest_dynamic(obj, 0);
2188    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2189	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2190    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2191      RTLD_LO_DLOPEN) {
2192	dbg("refusing to load non-loadable \"%s\"", obj->path);
2193	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2194	munmap(obj->mapbase, obj->mapsize);
2195	obj_free(obj);
2196	return (NULL);
2197    }
2198
2199    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2200    *obj_tail = obj;
2201    obj_tail = &obj->next;
2202    obj_count++;
2203    obj_loads++;
2204    linkmap_add(obj);	/* for GDB & dlinfo() */
2205    max_stack_flags |= obj->stack_flags;
2206
2207    dbg("  %p .. %p: %s", obj->mapbase,
2208         obj->mapbase + obj->mapsize - 1, obj->path);
2209    if (obj->textrel)
2210	dbg("  WARNING: %s has impure text", obj->path);
2211    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2212	obj->path);
2213
2214    return obj;
2215}
2216
2217static Obj_Entry *
2218obj_from_addr(const void *addr)
2219{
2220    Obj_Entry *obj;
2221
2222    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2223	if (addr < (void *) obj->mapbase)
2224	    continue;
2225	if (addr < (void *) (obj->mapbase + obj->mapsize))
2226	    return obj;
2227    }
2228    return NULL;
2229}
2230
2231static void
2232preinit_main(void)
2233{
2234    Elf_Addr *preinit_addr;
2235    int index;
2236
2237    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2238    if (preinit_addr == NULL)
2239	return;
2240
2241    for (index = 0; index < obj_main->preinit_array_num; index++) {
2242	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2243	    dbg("calling preinit function for %s at %p", obj_main->path,
2244	      (void *)preinit_addr[index]);
2245	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2246	      0, 0, obj_main->path);
2247	    call_init_pointer(obj_main, preinit_addr[index]);
2248	}
2249    }
2250}
2251
2252/*
2253 * Call the finalization functions for each of the objects in "list"
2254 * belonging to the DAG of "root" and referenced once. If NULL "root"
2255 * is specified, every finalization function will be called regardless
2256 * of the reference count and the list elements won't be freed. All of
2257 * the objects are expected to have non-NULL fini functions.
2258 */
2259static void
2260objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2261{
2262    Objlist_Entry *elm;
2263    char *saved_msg;
2264    Elf_Addr *fini_addr;
2265    int index;
2266
2267    assert(root == NULL || root->refcount == 1);
2268
2269    /*
2270     * Preserve the current error message since a fini function might
2271     * call into the dynamic linker and overwrite it.
2272     */
2273    saved_msg = errmsg_save();
2274    do {
2275	STAILQ_FOREACH(elm, list, link) {
2276	    if (root != NULL && (elm->obj->refcount != 1 ||
2277	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2278		continue;
2279	    /* Remove object from fini list to prevent recursive invocation. */
2280	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2281	    /*
2282	     * XXX: If a dlopen() call references an object while the
2283	     * fini function is in progress, we might end up trying to
2284	     * unload the referenced object in dlclose() or the object
2285	     * won't be unloaded although its fini function has been
2286	     * called.
2287	     */
2288	    lock_release(rtld_bind_lock, lockstate);
2289
2290	    /*
2291	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2292	     * When this happens, DT_FINI_ARRAY is processed first.
2293	     */
2294	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2295	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2296		for (index = elm->obj->fini_array_num - 1; index >= 0;
2297		  index--) {
2298		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2299			dbg("calling fini function for %s at %p",
2300			    elm->obj->path, (void *)fini_addr[index]);
2301			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2302			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2303			call_initfini_pointer(elm->obj, fini_addr[index]);
2304		    }
2305		}
2306	    }
2307	    if (elm->obj->fini != (Elf_Addr)NULL) {
2308		dbg("calling fini function for %s at %p", elm->obj->path,
2309		    (void *)elm->obj->fini);
2310		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2311		    0, 0, elm->obj->path);
2312		call_initfini_pointer(elm->obj, elm->obj->fini);
2313	    }
2314	    wlock_acquire(rtld_bind_lock, lockstate);
2315	    /* No need to free anything if process is going down. */
2316	    if (root != NULL)
2317	    	free(elm);
2318	    /*
2319	     * We must restart the list traversal after every fini call
2320	     * because a dlclose() call from the fini function or from
2321	     * another thread might have modified the reference counts.
2322	     */
2323	    break;
2324	}
2325    } while (elm != NULL);
2326    errmsg_restore(saved_msg);
2327}
2328
2329/*
2330 * Call the initialization functions for each of the objects in
2331 * "list".  All of the objects are expected to have non-NULL init
2332 * functions.
2333 */
2334static void
2335objlist_call_init(Objlist *list, RtldLockState *lockstate)
2336{
2337    Objlist_Entry *elm;
2338    Obj_Entry *obj;
2339    char *saved_msg;
2340    Elf_Addr *init_addr;
2341    int index;
2342
2343    /*
2344     * Clean init_scanned flag so that objects can be rechecked and
2345     * possibly initialized earlier if any of vectors called below
2346     * cause the change by using dlopen.
2347     */
2348    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2349	obj->init_scanned = false;
2350
2351    /*
2352     * Preserve the current error message since an init function might
2353     * call into the dynamic linker and overwrite it.
2354     */
2355    saved_msg = errmsg_save();
2356    STAILQ_FOREACH(elm, list, link) {
2357	if (elm->obj->init_done) /* Initialized early. */
2358	    continue;
2359	/*
2360	 * Race: other thread might try to use this object before current
2361	 * one completes the initilization. Not much can be done here
2362	 * without better locking.
2363	 */
2364	elm->obj->init_done = true;
2365	lock_release(rtld_bind_lock, lockstate);
2366
2367        /*
2368         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2369         * When this happens, DT_INIT is processed first.
2370         */
2371	if (elm->obj->init != (Elf_Addr)NULL) {
2372	    dbg("calling init function for %s at %p", elm->obj->path,
2373	        (void *)elm->obj->init);
2374	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2375	        0, 0, elm->obj->path);
2376	    call_initfini_pointer(elm->obj, elm->obj->init);
2377	}
2378	init_addr = (Elf_Addr *)elm->obj->init_array;
2379	if (init_addr != NULL) {
2380	    for (index = 0; index < elm->obj->init_array_num; index++) {
2381		if (init_addr[index] != 0 && init_addr[index] != 1) {
2382		    dbg("calling init function for %s at %p", elm->obj->path,
2383			(void *)init_addr[index]);
2384		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2385			(void *)init_addr[index], 0, 0, elm->obj->path);
2386		    call_init_pointer(elm->obj, init_addr[index]);
2387		}
2388	    }
2389	}
2390	wlock_acquire(rtld_bind_lock, lockstate);
2391    }
2392    errmsg_restore(saved_msg);
2393}
2394
2395static void
2396objlist_clear(Objlist *list)
2397{
2398    Objlist_Entry *elm;
2399
2400    while (!STAILQ_EMPTY(list)) {
2401	elm = STAILQ_FIRST(list);
2402	STAILQ_REMOVE_HEAD(list, link);
2403	free(elm);
2404    }
2405}
2406
2407static Objlist_Entry *
2408objlist_find(Objlist *list, const Obj_Entry *obj)
2409{
2410    Objlist_Entry *elm;
2411
2412    STAILQ_FOREACH(elm, list, link)
2413	if (elm->obj == obj)
2414	    return elm;
2415    return NULL;
2416}
2417
2418static void
2419objlist_init(Objlist *list)
2420{
2421    STAILQ_INIT(list);
2422}
2423
2424static void
2425objlist_push_head(Objlist *list, Obj_Entry *obj)
2426{
2427    Objlist_Entry *elm;
2428
2429    elm = NEW(Objlist_Entry);
2430    elm->obj = obj;
2431    STAILQ_INSERT_HEAD(list, elm, link);
2432}
2433
2434static void
2435objlist_push_tail(Objlist *list, Obj_Entry *obj)
2436{
2437    Objlist_Entry *elm;
2438
2439    elm = NEW(Objlist_Entry);
2440    elm->obj = obj;
2441    STAILQ_INSERT_TAIL(list, elm, link);
2442}
2443
2444static void
2445objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2446{
2447	Objlist_Entry *elm, *listelm;
2448
2449	STAILQ_FOREACH(listelm, list, link) {
2450		if (listelm->obj == listobj)
2451			break;
2452	}
2453	elm = NEW(Objlist_Entry);
2454	elm->obj = obj;
2455	if (listelm != NULL)
2456		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2457	else
2458		STAILQ_INSERT_TAIL(list, elm, link);
2459}
2460
2461static void
2462objlist_remove(Objlist *list, Obj_Entry *obj)
2463{
2464    Objlist_Entry *elm;
2465
2466    if ((elm = objlist_find(list, obj)) != NULL) {
2467	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2468	free(elm);
2469    }
2470}
2471
2472/*
2473 * Relocate dag rooted in the specified object.
2474 * Returns 0 on success, or -1 on failure.
2475 */
2476
2477static int
2478relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2479    int flags, RtldLockState *lockstate)
2480{
2481	Objlist_Entry *elm;
2482	int error;
2483
2484	error = 0;
2485	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2486		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2487		    lockstate);
2488		if (error == -1)
2489			break;
2490	}
2491	return (error);
2492}
2493
2494/*
2495 * Relocate single object.
2496 * Returns 0 on success, or -1 on failure.
2497 */
2498static int
2499relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2500    int flags, RtldLockState *lockstate)
2501{
2502
2503	if (obj->relocated)
2504		return (0);
2505	obj->relocated = true;
2506	if (obj != rtldobj)
2507		dbg("relocating \"%s\"", obj->path);
2508
2509	if (obj->symtab == NULL || obj->strtab == NULL ||
2510	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2511		_rtld_error("%s: Shared object has no run-time symbol table",
2512			    obj->path);
2513		return (-1);
2514	}
2515
2516	if (obj->textrel) {
2517		/* There are relocations to the write-protected text segment. */
2518		if (mprotect(obj->mapbase, obj->textsize,
2519		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2520			_rtld_error("%s: Cannot write-enable text segment: %s",
2521			    obj->path, rtld_strerror(errno));
2522			return (-1);
2523		}
2524	}
2525
2526	/* Process the non-PLT non-IFUNC relocations. */
2527	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2528		return (-1);
2529
2530	if (obj->textrel) {	/* Re-protected the text segment. */
2531		if (mprotect(obj->mapbase, obj->textsize,
2532		    PROT_READ|PROT_EXEC) == -1) {
2533			_rtld_error("%s: Cannot write-protect text segment: %s",
2534			    obj->path, rtld_strerror(errno));
2535			return (-1);
2536		}
2537	}
2538
2539	/* Set the special PLT or GOT entries. */
2540	init_pltgot(obj);
2541
2542	/* Process the PLT relocations. */
2543	if (reloc_plt(obj) == -1)
2544		return (-1);
2545	/* Relocate the jump slots if we are doing immediate binding. */
2546	if (obj->bind_now || bind_now)
2547		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2548			return (-1);
2549
2550	/*
2551	 * Process the non-PLT IFUNC relocations.  The relocations are
2552	 * processed in two phases, because IFUNC resolvers may
2553	 * reference other symbols, which must be readily processed
2554	 * before resolvers are called.
2555	 */
2556	if (obj->non_plt_gnu_ifunc &&
2557	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2558		return (-1);
2559
2560	if (obj->relro_size > 0) {
2561		if (mprotect(obj->relro_page, obj->relro_size,
2562		    PROT_READ) == -1) {
2563			_rtld_error("%s: Cannot enforce relro protection: %s",
2564			    obj->path, rtld_strerror(errno));
2565			return (-1);
2566		}
2567	}
2568
2569	/*
2570	 * Set up the magic number and version in the Obj_Entry.  These
2571	 * were checked in the crt1.o from the original ElfKit, so we
2572	 * set them for backward compatibility.
2573	 */
2574	obj->magic = RTLD_MAGIC;
2575	obj->version = RTLD_VERSION;
2576
2577	return (0);
2578}
2579
2580/*
2581 * Relocate newly-loaded shared objects.  The argument is a pointer to
2582 * the Obj_Entry for the first such object.  All objects from the first
2583 * to the end of the list of objects are relocated.  Returns 0 on success,
2584 * or -1 on failure.
2585 */
2586static int
2587relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2588    int flags, RtldLockState *lockstate)
2589{
2590	Obj_Entry *obj;
2591	int error;
2592
2593	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2594		error = relocate_object(obj, bind_now, rtldobj, flags,
2595		    lockstate);
2596		if (error == -1)
2597			break;
2598	}
2599	return (error);
2600}
2601
2602/*
2603 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2604 * referencing STT_GNU_IFUNC symbols is postponed till the other
2605 * relocations are done.  The indirect functions specified as
2606 * ifunc are allowed to call other symbols, so we need to have
2607 * objects relocated before asking for resolution from indirects.
2608 *
2609 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2610 * instead of the usual lazy handling of PLT slots.  It is
2611 * consistent with how GNU does it.
2612 */
2613static int
2614resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2615    RtldLockState *lockstate)
2616{
2617	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2618		return (-1);
2619	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2620	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2621		return (-1);
2622	return (0);
2623}
2624
2625static int
2626resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2627    RtldLockState *lockstate)
2628{
2629	Obj_Entry *obj;
2630
2631	for (obj = first;  obj != NULL;  obj = obj->next) {
2632		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2633			return (-1);
2634	}
2635	return (0);
2636}
2637
2638static int
2639initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2640    RtldLockState *lockstate)
2641{
2642	Objlist_Entry *elm;
2643
2644	STAILQ_FOREACH(elm, list, link) {
2645		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2646		    lockstate) == -1)
2647			return (-1);
2648	}
2649	return (0);
2650}
2651
2652/*
2653 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2654 * before the process exits.
2655 */
2656static void
2657rtld_exit(void)
2658{
2659    RtldLockState lockstate;
2660
2661    wlock_acquire(rtld_bind_lock, &lockstate);
2662    dbg("rtld_exit()");
2663    objlist_call_fini(&list_fini, NULL, &lockstate);
2664    /* No need to remove the items from the list, since we are exiting. */
2665    if (!libmap_disable)
2666        lm_fini();
2667    lock_release(rtld_bind_lock, &lockstate);
2668}
2669
2670/*
2671 * Iterate over a search path, translate each element, and invoke the
2672 * callback on the result.
2673 */
2674static void *
2675path_enumerate(const char *path, path_enum_proc callback, void *arg)
2676{
2677    const char *trans;
2678    if (path == NULL)
2679	return (NULL);
2680
2681    path += strspn(path, ":;");
2682    while (*path != '\0') {
2683	size_t len;
2684	char  *res;
2685
2686	len = strcspn(path, ":;");
2687	trans = lm_findn(NULL, path, len);
2688	if (trans)
2689	    res = callback(trans, strlen(trans), arg);
2690	else
2691	    res = callback(path, len, arg);
2692
2693	if (res != NULL)
2694	    return (res);
2695
2696	path += len;
2697	path += strspn(path, ":;");
2698    }
2699
2700    return (NULL);
2701}
2702
2703struct try_library_args {
2704    const char	*name;
2705    size_t	 namelen;
2706    char	*buffer;
2707    size_t	 buflen;
2708};
2709
2710static void *
2711try_library_path(const char *dir, size_t dirlen, void *param)
2712{
2713    struct try_library_args *arg;
2714
2715    arg = param;
2716    if (*dir == '/' || trust) {
2717	char *pathname;
2718
2719	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2720		return (NULL);
2721
2722	pathname = arg->buffer;
2723	strncpy(pathname, dir, dirlen);
2724	pathname[dirlen] = '/';
2725	strcpy(pathname + dirlen + 1, arg->name);
2726
2727	dbg("  Trying \"%s\"", pathname);
2728	if (access(pathname, F_OK) == 0) {		/* We found it */
2729	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2730	    strcpy(pathname, arg->buffer);
2731	    return (pathname);
2732	}
2733    }
2734    return (NULL);
2735}
2736
2737static char *
2738search_library_path(const char *name, const char *path)
2739{
2740    char *p;
2741    struct try_library_args arg;
2742
2743    if (path == NULL)
2744	return NULL;
2745
2746    arg.name = name;
2747    arg.namelen = strlen(name);
2748    arg.buffer = xmalloc(PATH_MAX);
2749    arg.buflen = PATH_MAX;
2750
2751    p = path_enumerate(path, try_library_path, &arg);
2752
2753    free(arg.buffer);
2754
2755    return (p);
2756}
2757
2758int
2759dlclose(void *handle)
2760{
2761    Obj_Entry *root;
2762    RtldLockState lockstate;
2763
2764    wlock_acquire(rtld_bind_lock, &lockstate);
2765    root = dlcheck(handle);
2766    if (root == NULL) {
2767	lock_release(rtld_bind_lock, &lockstate);
2768	return -1;
2769    }
2770    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2771	root->path);
2772
2773    /* Unreference the object and its dependencies. */
2774    root->dl_refcount--;
2775
2776    if (root->refcount == 1) {
2777	/*
2778	 * The object will be no longer referenced, so we must unload it.
2779	 * First, call the fini functions.
2780	 */
2781	objlist_call_fini(&list_fini, root, &lockstate);
2782
2783	unref_dag(root);
2784
2785	/* Finish cleaning up the newly-unreferenced objects. */
2786	GDB_STATE(RT_DELETE,&root->linkmap);
2787	unload_object(root);
2788	GDB_STATE(RT_CONSISTENT,NULL);
2789    } else
2790	unref_dag(root);
2791
2792    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2793    lock_release(rtld_bind_lock, &lockstate);
2794    return 0;
2795}
2796
2797char *
2798dlerror(void)
2799{
2800    char *msg = error_message;
2801    error_message = NULL;
2802    return msg;
2803}
2804
2805/*
2806 * This function is deprecated and has no effect.
2807 */
2808void
2809dllockinit(void *context,
2810	   void *(*lock_create)(void *context),
2811           void (*rlock_acquire)(void *lock),
2812           void (*wlock_acquire)(void *lock),
2813           void (*lock_release)(void *lock),
2814           void (*lock_destroy)(void *lock),
2815	   void (*context_destroy)(void *context))
2816{
2817    static void *cur_context;
2818    static void (*cur_context_destroy)(void *);
2819
2820    /* Just destroy the context from the previous call, if necessary. */
2821    if (cur_context_destroy != NULL)
2822	cur_context_destroy(cur_context);
2823    cur_context = context;
2824    cur_context_destroy = context_destroy;
2825}
2826
2827void *
2828dlopen(const char *name, int mode)
2829{
2830
2831	return (rtld_dlopen(name, -1, mode));
2832}
2833
2834void *
2835fdlopen(int fd, int mode)
2836{
2837
2838	return (rtld_dlopen(NULL, fd, mode));
2839}
2840
2841static void *
2842rtld_dlopen(const char *name, int fd, int mode)
2843{
2844    RtldLockState lockstate;
2845    int lo_flags;
2846
2847    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2848    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2849    if (ld_tracing != NULL) {
2850	rlock_acquire(rtld_bind_lock, &lockstate);
2851	if (sigsetjmp(lockstate.env, 0) != 0)
2852	    lock_upgrade(rtld_bind_lock, &lockstate);
2853	environ = (char **)*get_program_var_addr("environ", &lockstate);
2854	lock_release(rtld_bind_lock, &lockstate);
2855    }
2856    lo_flags = RTLD_LO_DLOPEN;
2857    if (mode & RTLD_NODELETE)
2858	    lo_flags |= RTLD_LO_NODELETE;
2859    if (mode & RTLD_NOLOAD)
2860	    lo_flags |= RTLD_LO_NOLOAD;
2861    if (ld_tracing != NULL)
2862	    lo_flags |= RTLD_LO_TRACE;
2863
2864    return (dlopen_object(name, fd, obj_main, lo_flags,
2865      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2866}
2867
2868static void
2869dlopen_cleanup(Obj_Entry *obj)
2870{
2871
2872	obj->dl_refcount--;
2873	unref_dag(obj);
2874	if (obj->refcount == 0)
2875		unload_object(obj);
2876}
2877
2878static Obj_Entry *
2879dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2880    int mode, RtldLockState *lockstate)
2881{
2882    Obj_Entry **old_obj_tail;
2883    Obj_Entry *obj;
2884    Objlist initlist;
2885    RtldLockState mlockstate;
2886    int result;
2887
2888    objlist_init(&initlist);
2889
2890    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2891	wlock_acquire(rtld_bind_lock, &mlockstate);
2892	lockstate = &mlockstate;
2893    }
2894    GDB_STATE(RT_ADD,NULL);
2895
2896    old_obj_tail = obj_tail;
2897    obj = NULL;
2898    if (name == NULL && fd == -1) {
2899	obj = obj_main;
2900	obj->refcount++;
2901    } else {
2902	obj = load_object(name, fd, refobj, lo_flags);
2903    }
2904
2905    if (obj) {
2906	obj->dl_refcount++;
2907	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2908	    objlist_push_tail(&list_global, obj);
2909	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2910	    assert(*old_obj_tail == obj);
2911	    result = load_needed_objects(obj,
2912		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2913	    init_dag(obj);
2914	    ref_dag(obj);
2915	    if (result != -1)
2916		result = rtld_verify_versions(&obj->dagmembers);
2917	    if (result != -1 && ld_tracing)
2918		goto trace;
2919	    if (result == -1 || relocate_object_dag(obj,
2920	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2921	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2922	      lockstate) == -1) {
2923		dlopen_cleanup(obj);
2924		obj = NULL;
2925	    } else if (lo_flags & RTLD_LO_EARLY) {
2926		/*
2927		 * Do not call the init functions for early loaded
2928		 * filtees.  The image is still not initialized enough
2929		 * for them to work.
2930		 *
2931		 * Our object is found by the global object list and
2932		 * will be ordered among all init calls done right
2933		 * before transferring control to main.
2934		 */
2935	    } else {
2936		/* Make list of init functions to call. */
2937		initlist_add_objects(obj, &obj->next, &initlist);
2938	    }
2939	    /*
2940	     * Process all no_delete objects here, given them own
2941	     * DAGs to prevent their dependencies from being unloaded.
2942	     * This has to be done after we have loaded all of the
2943	     * dependencies, so that we do not miss any.
2944	     */
2945	    if (obj != NULL)
2946		process_nodelete(obj);
2947	} else {
2948	    /*
2949	     * Bump the reference counts for objects on this DAG.  If
2950	     * this is the first dlopen() call for the object that was
2951	     * already loaded as a dependency, initialize the dag
2952	     * starting at it.
2953	     */
2954	    init_dag(obj);
2955	    ref_dag(obj);
2956
2957	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2958		goto trace;
2959	}
2960	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2961	  obj->z_nodelete) && !obj->ref_nodel) {
2962	    dbg("obj %s nodelete", obj->path);
2963	    ref_dag(obj);
2964	    obj->z_nodelete = obj->ref_nodel = true;
2965	}
2966    }
2967
2968    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2969	name);
2970    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2971
2972    if (!(lo_flags & RTLD_LO_EARLY)) {
2973	map_stacks_exec(lockstate);
2974    }
2975
2976    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2977      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2978      lockstate) == -1) {
2979	objlist_clear(&initlist);
2980	dlopen_cleanup(obj);
2981	if (lockstate == &mlockstate)
2982	    lock_release(rtld_bind_lock, lockstate);
2983	return (NULL);
2984    }
2985
2986    if (!(lo_flags & RTLD_LO_EARLY)) {
2987	/* Call the init functions. */
2988	objlist_call_init(&initlist, lockstate);
2989    }
2990    objlist_clear(&initlist);
2991    if (lockstate == &mlockstate)
2992	lock_release(rtld_bind_lock, lockstate);
2993    return obj;
2994trace:
2995    trace_loaded_objects(obj);
2996    if (lockstate == &mlockstate)
2997	lock_release(rtld_bind_lock, lockstate);
2998    exit(0);
2999}
3000
3001static void *
3002do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3003    int flags)
3004{
3005    DoneList donelist;
3006    const Obj_Entry *obj, *defobj;
3007    const Elf_Sym *def;
3008    SymLook req;
3009    RtldLockState lockstate;
3010#ifndef __ia64__
3011    tls_index ti;
3012#endif
3013    int res;
3014
3015    def = NULL;
3016    defobj = NULL;
3017    symlook_init(&req, name);
3018    req.ventry = ve;
3019    req.flags = flags | SYMLOOK_IN_PLT;
3020    req.lockstate = &lockstate;
3021
3022    rlock_acquire(rtld_bind_lock, &lockstate);
3023    if (sigsetjmp(lockstate.env, 0) != 0)
3024	    lock_upgrade(rtld_bind_lock, &lockstate);
3025    if (handle == NULL || handle == RTLD_NEXT ||
3026	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3027
3028	if ((obj = obj_from_addr(retaddr)) == NULL) {
3029	    _rtld_error("Cannot determine caller's shared object");
3030	    lock_release(rtld_bind_lock, &lockstate);
3031	    return NULL;
3032	}
3033	if (handle == NULL) {	/* Just the caller's shared object. */
3034	    res = symlook_obj(&req, obj);
3035	    if (res == 0) {
3036		def = req.sym_out;
3037		defobj = req.defobj_out;
3038	    }
3039	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3040		   handle == RTLD_SELF) { /* ... caller included */
3041	    if (handle == RTLD_NEXT)
3042		obj = obj->next;
3043	    for (; obj != NULL; obj = obj->next) {
3044		res = symlook_obj(&req, obj);
3045		if (res == 0) {
3046		    if (def == NULL ||
3047		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3048			def = req.sym_out;
3049			defobj = req.defobj_out;
3050			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3051			    break;
3052		    }
3053		}
3054	    }
3055	    /*
3056	     * Search the dynamic linker itself, and possibly resolve the
3057	     * symbol from there.  This is how the application links to
3058	     * dynamic linker services such as dlopen.
3059	     */
3060	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3061		res = symlook_obj(&req, &obj_rtld);
3062		if (res == 0) {
3063		    def = req.sym_out;
3064		    defobj = req.defobj_out;
3065		}
3066	    }
3067	} else {
3068	    assert(handle == RTLD_DEFAULT);
3069	    res = symlook_default(&req, obj);
3070	    if (res == 0) {
3071		defobj = req.defobj_out;
3072		def = req.sym_out;
3073	    }
3074	}
3075    } else {
3076	if ((obj = dlcheck(handle)) == NULL) {
3077	    lock_release(rtld_bind_lock, &lockstate);
3078	    return NULL;
3079	}
3080
3081	donelist_init(&donelist);
3082	if (obj->mainprog) {
3083            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3084	    res = symlook_global(&req, &donelist);
3085	    if (res == 0) {
3086		def = req.sym_out;
3087		defobj = req.defobj_out;
3088	    }
3089	    /*
3090	     * Search the dynamic linker itself, and possibly resolve the
3091	     * symbol from there.  This is how the application links to
3092	     * dynamic linker services such as dlopen.
3093	     */
3094	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3095		res = symlook_obj(&req, &obj_rtld);
3096		if (res == 0) {
3097		    def = req.sym_out;
3098		    defobj = req.defobj_out;
3099		}
3100	    }
3101	}
3102	else {
3103	    /* Search the whole DAG rooted at the given object. */
3104	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3105	    if (res == 0) {
3106		def = req.sym_out;
3107		defobj = req.defobj_out;
3108	    }
3109	}
3110    }
3111
3112    if (def != NULL) {
3113	lock_release(rtld_bind_lock, &lockstate);
3114
3115	/*
3116	 * The value required by the caller is derived from the value
3117	 * of the symbol. For the ia64 architecture, we need to
3118	 * construct a function descriptor which the caller can use to
3119	 * call the function with the right 'gp' value. For other
3120	 * architectures and for non-functions, the value is simply
3121	 * the relocated value of the symbol.
3122	 */
3123	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3124	    return (make_function_pointer(def, defobj));
3125	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3126	    return (rtld_resolve_ifunc(defobj, def));
3127	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3128#ifdef __ia64__
3129	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3130#else
3131	    ti.ti_module = defobj->tlsindex;
3132	    ti.ti_offset = def->st_value;
3133	    return (__tls_get_addr(&ti));
3134#endif
3135	} else
3136	    return (defobj->relocbase + def->st_value);
3137    }
3138
3139    _rtld_error("Undefined symbol \"%s\"", name);
3140    lock_release(rtld_bind_lock, &lockstate);
3141    return NULL;
3142}
3143
3144void *
3145dlsym(void *handle, const char *name)
3146{
3147	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3148	    SYMLOOK_DLSYM);
3149}
3150
3151dlfunc_t
3152dlfunc(void *handle, const char *name)
3153{
3154	union {
3155		void *d;
3156		dlfunc_t f;
3157	} rv;
3158
3159	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3160	    SYMLOOK_DLSYM);
3161	return (rv.f);
3162}
3163
3164void *
3165dlvsym(void *handle, const char *name, const char *version)
3166{
3167	Ver_Entry ventry;
3168
3169	ventry.name = version;
3170	ventry.file = NULL;
3171	ventry.hash = elf_hash(version);
3172	ventry.flags= 0;
3173	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3174	    SYMLOOK_DLSYM);
3175}
3176
3177int
3178_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3179{
3180    const Obj_Entry *obj;
3181    RtldLockState lockstate;
3182
3183    rlock_acquire(rtld_bind_lock, &lockstate);
3184    obj = obj_from_addr(addr);
3185    if (obj == NULL) {
3186        _rtld_error("No shared object contains address");
3187	lock_release(rtld_bind_lock, &lockstate);
3188        return (0);
3189    }
3190    rtld_fill_dl_phdr_info(obj, phdr_info);
3191    lock_release(rtld_bind_lock, &lockstate);
3192    return (1);
3193}
3194
3195int
3196dladdr(const void *addr, Dl_info *info)
3197{
3198    const Obj_Entry *obj;
3199    const Elf_Sym *def;
3200    void *symbol_addr;
3201    unsigned long symoffset;
3202    RtldLockState lockstate;
3203
3204    rlock_acquire(rtld_bind_lock, &lockstate);
3205    obj = obj_from_addr(addr);
3206    if (obj == NULL) {
3207        _rtld_error("No shared object contains address");
3208	lock_release(rtld_bind_lock, &lockstate);
3209        return 0;
3210    }
3211    info->dli_fname = obj->path;
3212    info->dli_fbase = obj->mapbase;
3213    info->dli_saddr = (void *)0;
3214    info->dli_sname = NULL;
3215
3216    /*
3217     * Walk the symbol list looking for the symbol whose address is
3218     * closest to the address sent in.
3219     */
3220    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3221        def = obj->symtab + symoffset;
3222
3223        /*
3224         * For skip the symbol if st_shndx is either SHN_UNDEF or
3225         * SHN_COMMON.
3226         */
3227        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3228            continue;
3229
3230        /*
3231         * If the symbol is greater than the specified address, or if it
3232         * is further away from addr than the current nearest symbol,
3233         * then reject it.
3234         */
3235        symbol_addr = obj->relocbase + def->st_value;
3236        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3237            continue;
3238
3239        /* Update our idea of the nearest symbol. */
3240        info->dli_sname = obj->strtab + def->st_name;
3241        info->dli_saddr = symbol_addr;
3242
3243        /* Exact match? */
3244        if (info->dli_saddr == addr)
3245            break;
3246    }
3247    lock_release(rtld_bind_lock, &lockstate);
3248    return 1;
3249}
3250
3251int
3252dlinfo(void *handle, int request, void *p)
3253{
3254    const Obj_Entry *obj;
3255    RtldLockState lockstate;
3256    int error;
3257
3258    rlock_acquire(rtld_bind_lock, &lockstate);
3259
3260    if (handle == NULL || handle == RTLD_SELF) {
3261	void *retaddr;
3262
3263	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3264	if ((obj = obj_from_addr(retaddr)) == NULL)
3265	    _rtld_error("Cannot determine caller's shared object");
3266    } else
3267	obj = dlcheck(handle);
3268
3269    if (obj == NULL) {
3270	lock_release(rtld_bind_lock, &lockstate);
3271	return (-1);
3272    }
3273
3274    error = 0;
3275    switch (request) {
3276    case RTLD_DI_LINKMAP:
3277	*((struct link_map const **)p) = &obj->linkmap;
3278	break;
3279    case RTLD_DI_ORIGIN:
3280	error = rtld_dirname(obj->path, p);
3281	break;
3282
3283    case RTLD_DI_SERINFOSIZE:
3284    case RTLD_DI_SERINFO:
3285	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3286	break;
3287
3288    default:
3289	_rtld_error("Invalid request %d passed to dlinfo()", request);
3290	error = -1;
3291    }
3292
3293    lock_release(rtld_bind_lock, &lockstate);
3294
3295    return (error);
3296}
3297
3298static void
3299rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3300{
3301
3302	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3303	phdr_info->dlpi_name = obj->path;
3304	phdr_info->dlpi_phdr = obj->phdr;
3305	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3306	phdr_info->dlpi_tls_modid = obj->tlsindex;
3307	phdr_info->dlpi_tls_data = obj->tlsinit;
3308	phdr_info->dlpi_adds = obj_loads;
3309	phdr_info->dlpi_subs = obj_loads - obj_count;
3310}
3311
3312int
3313dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3314{
3315    struct dl_phdr_info phdr_info;
3316    const Obj_Entry *obj;
3317    RtldLockState bind_lockstate, phdr_lockstate;
3318    int error;
3319
3320    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3321    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3322
3323    error = 0;
3324
3325    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3326	rtld_fill_dl_phdr_info(obj, &phdr_info);
3327	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3328		break;
3329
3330    }
3331    lock_release(rtld_bind_lock, &bind_lockstate);
3332    lock_release(rtld_phdr_lock, &phdr_lockstate);
3333
3334    return (error);
3335}
3336
3337static void *
3338fill_search_info(const char *dir, size_t dirlen, void *param)
3339{
3340    struct fill_search_info_args *arg;
3341
3342    arg = param;
3343
3344    if (arg->request == RTLD_DI_SERINFOSIZE) {
3345	arg->serinfo->dls_cnt ++;
3346	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3347    } else {
3348	struct dl_serpath *s_entry;
3349
3350	s_entry = arg->serpath;
3351	s_entry->dls_name  = arg->strspace;
3352	s_entry->dls_flags = arg->flags;
3353
3354	strncpy(arg->strspace, dir, dirlen);
3355	arg->strspace[dirlen] = '\0';
3356
3357	arg->strspace += dirlen + 1;
3358	arg->serpath++;
3359    }
3360
3361    return (NULL);
3362}
3363
3364static int
3365do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3366{
3367    struct dl_serinfo _info;
3368    struct fill_search_info_args args;
3369
3370    args.request = RTLD_DI_SERINFOSIZE;
3371    args.serinfo = &_info;
3372
3373    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3374    _info.dls_cnt  = 0;
3375
3376    path_enumerate(obj->rpath, fill_search_info, &args);
3377    path_enumerate(ld_library_path, fill_search_info, &args);
3378    path_enumerate(obj->runpath, fill_search_info, &args);
3379    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3380    if (!obj->z_nodeflib)
3381      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3382
3383
3384    if (request == RTLD_DI_SERINFOSIZE) {
3385	info->dls_size = _info.dls_size;
3386	info->dls_cnt = _info.dls_cnt;
3387	return (0);
3388    }
3389
3390    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3391	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3392	return (-1);
3393    }
3394
3395    args.request  = RTLD_DI_SERINFO;
3396    args.serinfo  = info;
3397    args.serpath  = &info->dls_serpath[0];
3398    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3399
3400    args.flags = LA_SER_RUNPATH;
3401    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3402	return (-1);
3403
3404    args.flags = LA_SER_LIBPATH;
3405    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3406	return (-1);
3407
3408    args.flags = LA_SER_RUNPATH;
3409    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3410	return (-1);
3411
3412    args.flags = LA_SER_CONFIG;
3413    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3414      != NULL)
3415	return (-1);
3416
3417    args.flags = LA_SER_DEFAULT;
3418    if (!obj->z_nodeflib &&
3419      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3420	return (-1);
3421    return (0);
3422}
3423
3424static int
3425rtld_dirname(const char *path, char *bname)
3426{
3427    const char *endp;
3428
3429    /* Empty or NULL string gets treated as "." */
3430    if (path == NULL || *path == '\0') {
3431	bname[0] = '.';
3432	bname[1] = '\0';
3433	return (0);
3434    }
3435
3436    /* Strip trailing slashes */
3437    endp = path + strlen(path) - 1;
3438    while (endp > path && *endp == '/')
3439	endp--;
3440
3441    /* Find the start of the dir */
3442    while (endp > path && *endp != '/')
3443	endp--;
3444
3445    /* Either the dir is "/" or there are no slashes */
3446    if (endp == path) {
3447	bname[0] = *endp == '/' ? '/' : '.';
3448	bname[1] = '\0';
3449	return (0);
3450    } else {
3451	do {
3452	    endp--;
3453	} while (endp > path && *endp == '/');
3454    }
3455
3456    if (endp - path + 2 > PATH_MAX)
3457    {
3458	_rtld_error("Filename is too long: %s", path);
3459	return(-1);
3460    }
3461
3462    strncpy(bname, path, endp - path + 1);
3463    bname[endp - path + 1] = '\0';
3464    return (0);
3465}
3466
3467static int
3468rtld_dirname_abs(const char *path, char *base)
3469{
3470	char *last;
3471
3472	if (realpath(path, base) == NULL)
3473		return (-1);
3474	dbg("%s -> %s", path, base);
3475	last = strrchr(base, '/');
3476	if (last == NULL)
3477		return (-1);
3478	if (last != base)
3479		*last = '\0';
3480	return (0);
3481}
3482
3483static void
3484linkmap_add(Obj_Entry *obj)
3485{
3486    struct link_map *l = &obj->linkmap;
3487    struct link_map *prev;
3488
3489    obj->linkmap.l_name = obj->path;
3490    obj->linkmap.l_addr = obj->mapbase;
3491    obj->linkmap.l_ld = obj->dynamic;
3492#ifdef __mips__
3493    /* GDB needs load offset on MIPS to use the symbols */
3494    obj->linkmap.l_offs = obj->relocbase;
3495#endif
3496
3497    if (r_debug.r_map == NULL) {
3498	r_debug.r_map = l;
3499	return;
3500    }
3501
3502    /*
3503     * Scan to the end of the list, but not past the entry for the
3504     * dynamic linker, which we want to keep at the very end.
3505     */
3506    for (prev = r_debug.r_map;
3507      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3508      prev = prev->l_next)
3509	;
3510
3511    /* Link in the new entry. */
3512    l->l_prev = prev;
3513    l->l_next = prev->l_next;
3514    if (l->l_next != NULL)
3515	l->l_next->l_prev = l;
3516    prev->l_next = l;
3517}
3518
3519static void
3520linkmap_delete(Obj_Entry *obj)
3521{
3522    struct link_map *l = &obj->linkmap;
3523
3524    if (l->l_prev == NULL) {
3525	if ((r_debug.r_map = l->l_next) != NULL)
3526	    l->l_next->l_prev = NULL;
3527	return;
3528    }
3529
3530    if ((l->l_prev->l_next = l->l_next) != NULL)
3531	l->l_next->l_prev = l->l_prev;
3532}
3533
3534/*
3535 * Function for the debugger to set a breakpoint on to gain control.
3536 *
3537 * The two parameters allow the debugger to easily find and determine
3538 * what the runtime loader is doing and to whom it is doing it.
3539 *
3540 * When the loadhook trap is hit (r_debug_state, set at program
3541 * initialization), the arguments can be found on the stack:
3542 *
3543 *  +8   struct link_map *m
3544 *  +4   struct r_debug  *rd
3545 *  +0   RetAddr
3546 */
3547void
3548r_debug_state(struct r_debug* rd, struct link_map *m)
3549{
3550    /*
3551     * The following is a hack to force the compiler to emit calls to
3552     * this function, even when optimizing.  If the function is empty,
3553     * the compiler is not obliged to emit any code for calls to it,
3554     * even when marked __noinline.  However, gdb depends on those
3555     * calls being made.
3556     */
3557    __compiler_membar();
3558}
3559
3560/*
3561 * A function called after init routines have completed. This can be used to
3562 * break before a program's entry routine is called, and can be used when
3563 * main is not available in the symbol table.
3564 */
3565void
3566_r_debug_postinit(struct link_map *m)
3567{
3568
3569	/* See r_debug_state(). */
3570	__compiler_membar();
3571}
3572
3573/*
3574 * Get address of the pointer variable in the main program.
3575 * Prefer non-weak symbol over the weak one.
3576 */
3577static const void **
3578get_program_var_addr(const char *name, RtldLockState *lockstate)
3579{
3580    SymLook req;
3581    DoneList donelist;
3582
3583    symlook_init(&req, name);
3584    req.lockstate = lockstate;
3585    donelist_init(&donelist);
3586    if (symlook_global(&req, &donelist) != 0)
3587	return (NULL);
3588    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3589	return ((const void **)make_function_pointer(req.sym_out,
3590	  req.defobj_out));
3591    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3592	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3593    else
3594	return ((const void **)(req.defobj_out->relocbase +
3595	  req.sym_out->st_value));
3596}
3597
3598/*
3599 * Set a pointer variable in the main program to the given value.  This
3600 * is used to set key variables such as "environ" before any of the
3601 * init functions are called.
3602 */
3603static void
3604set_program_var(const char *name, const void *value)
3605{
3606    const void **addr;
3607
3608    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3609	dbg("\"%s\": *%p <-- %p", name, addr, value);
3610	*addr = value;
3611    }
3612}
3613
3614/*
3615 * Search the global objects, including dependencies and main object,
3616 * for the given symbol.
3617 */
3618static int
3619symlook_global(SymLook *req, DoneList *donelist)
3620{
3621    SymLook req1;
3622    const Objlist_Entry *elm;
3623    int res;
3624
3625    symlook_init_from_req(&req1, req);
3626
3627    /* Search all objects loaded at program start up. */
3628    if (req->defobj_out == NULL ||
3629      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3630	res = symlook_list(&req1, &list_main, donelist);
3631	if (res == 0 && (req->defobj_out == NULL ||
3632	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3633	    req->sym_out = req1.sym_out;
3634	    req->defobj_out = req1.defobj_out;
3635	    assert(req->defobj_out != NULL);
3636	}
3637    }
3638
3639    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3640    STAILQ_FOREACH(elm, &list_global, link) {
3641	if (req->defobj_out != NULL &&
3642	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3643	    break;
3644	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3645	if (res == 0 && (req->defobj_out == NULL ||
3646	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3647	    req->sym_out = req1.sym_out;
3648	    req->defobj_out = req1.defobj_out;
3649	    assert(req->defobj_out != NULL);
3650	}
3651    }
3652
3653    return (req->sym_out != NULL ? 0 : ESRCH);
3654}
3655
3656/*
3657 * Given a symbol name in a referencing object, find the corresponding
3658 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3659 * no definition was found.  Returns a pointer to the Obj_Entry of the
3660 * defining object via the reference parameter DEFOBJ_OUT.
3661 */
3662static int
3663symlook_default(SymLook *req, const Obj_Entry *refobj)
3664{
3665    DoneList donelist;
3666    const Objlist_Entry *elm;
3667    SymLook req1;
3668    int res;
3669
3670    donelist_init(&donelist);
3671    symlook_init_from_req(&req1, req);
3672
3673    /* Look first in the referencing object if linked symbolically. */
3674    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3675	res = symlook_obj(&req1, refobj);
3676	if (res == 0) {
3677	    req->sym_out = req1.sym_out;
3678	    req->defobj_out = req1.defobj_out;
3679	    assert(req->defobj_out != NULL);
3680	}
3681    }
3682
3683    symlook_global(req, &donelist);
3684
3685    /* Search all dlopened DAGs containing the referencing object. */
3686    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3687	if (req->sym_out != NULL &&
3688	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3689	    break;
3690	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3691	if (res == 0 && (req->sym_out == NULL ||
3692	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3693	    req->sym_out = req1.sym_out;
3694	    req->defobj_out = req1.defobj_out;
3695	    assert(req->defobj_out != NULL);
3696	}
3697    }
3698
3699    /*
3700     * Search the dynamic linker itself, and possibly resolve the
3701     * symbol from there.  This is how the application links to
3702     * dynamic linker services such as dlopen.
3703     */
3704    if (req->sym_out == NULL ||
3705      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3706	res = symlook_obj(&req1, &obj_rtld);
3707	if (res == 0) {
3708	    req->sym_out = req1.sym_out;
3709	    req->defobj_out = req1.defobj_out;
3710	    assert(req->defobj_out != NULL);
3711	}
3712    }
3713
3714    return (req->sym_out != NULL ? 0 : ESRCH);
3715}
3716
3717static int
3718symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3719{
3720    const Elf_Sym *def;
3721    const Obj_Entry *defobj;
3722    const Objlist_Entry *elm;
3723    SymLook req1;
3724    int res;
3725
3726    def = NULL;
3727    defobj = NULL;
3728    STAILQ_FOREACH(elm, objlist, link) {
3729	if (donelist_check(dlp, elm->obj))
3730	    continue;
3731	symlook_init_from_req(&req1, req);
3732	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3733	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3734		def = req1.sym_out;
3735		defobj = req1.defobj_out;
3736		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3737		    break;
3738	    }
3739	}
3740    }
3741    if (def != NULL) {
3742	req->sym_out = def;
3743	req->defobj_out = defobj;
3744	return (0);
3745    }
3746    return (ESRCH);
3747}
3748
3749/*
3750 * Search the chain of DAGS cointed to by the given Needed_Entry
3751 * for a symbol of the given name.  Each DAG is scanned completely
3752 * before advancing to the next one.  Returns a pointer to the symbol,
3753 * or NULL if no definition was found.
3754 */
3755static int
3756symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3757{
3758    const Elf_Sym *def;
3759    const Needed_Entry *n;
3760    const Obj_Entry *defobj;
3761    SymLook req1;
3762    int res;
3763
3764    def = NULL;
3765    defobj = NULL;
3766    symlook_init_from_req(&req1, req);
3767    for (n = needed; n != NULL; n = n->next) {
3768	if (n->obj == NULL ||
3769	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3770	    continue;
3771	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3772	    def = req1.sym_out;
3773	    defobj = req1.defobj_out;
3774	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3775		break;
3776	}
3777    }
3778    if (def != NULL) {
3779	req->sym_out = def;
3780	req->defobj_out = defobj;
3781	return (0);
3782    }
3783    return (ESRCH);
3784}
3785
3786/*
3787 * Search the symbol table of a single shared object for a symbol of
3788 * the given name and version, if requested.  Returns a pointer to the
3789 * symbol, or NULL if no definition was found.  If the object is
3790 * filter, return filtered symbol from filtee.
3791 *
3792 * The symbol's hash value is passed in for efficiency reasons; that
3793 * eliminates many recomputations of the hash value.
3794 */
3795int
3796symlook_obj(SymLook *req, const Obj_Entry *obj)
3797{
3798    DoneList donelist;
3799    SymLook req1;
3800    int flags, res, mres;
3801
3802    /*
3803     * If there is at least one valid hash at this point, we prefer to
3804     * use the faster GNU version if available.
3805     */
3806    if (obj->valid_hash_gnu)
3807	mres = symlook_obj1_gnu(req, obj);
3808    else if (obj->valid_hash_sysv)
3809	mres = symlook_obj1_sysv(req, obj);
3810    else
3811	return (EINVAL);
3812
3813    if (mres == 0) {
3814	if (obj->needed_filtees != NULL) {
3815	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3816	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3817	    donelist_init(&donelist);
3818	    symlook_init_from_req(&req1, req);
3819	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3820	    if (res == 0) {
3821		req->sym_out = req1.sym_out;
3822		req->defobj_out = req1.defobj_out;
3823	    }
3824	    return (res);
3825	}
3826	if (obj->needed_aux_filtees != NULL) {
3827	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3828	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3829	    donelist_init(&donelist);
3830	    symlook_init_from_req(&req1, req);
3831	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3832	    if (res == 0) {
3833		req->sym_out = req1.sym_out;
3834		req->defobj_out = req1.defobj_out;
3835		return (res);
3836	    }
3837	}
3838    }
3839    return (mres);
3840}
3841
3842/* Symbol match routine common to both hash functions */
3843static bool
3844matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3845    const unsigned long symnum)
3846{
3847	Elf_Versym verndx;
3848	const Elf_Sym *symp;
3849	const char *strp;
3850
3851	symp = obj->symtab + symnum;
3852	strp = obj->strtab + symp->st_name;
3853
3854	switch (ELF_ST_TYPE(symp->st_info)) {
3855	case STT_FUNC:
3856	case STT_NOTYPE:
3857	case STT_OBJECT:
3858	case STT_COMMON:
3859	case STT_GNU_IFUNC:
3860		if (symp->st_value == 0)
3861			return (false);
3862		/* fallthrough */
3863	case STT_TLS:
3864		if (symp->st_shndx != SHN_UNDEF)
3865			break;
3866#ifndef __mips__
3867		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3868		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3869			break;
3870		/* fallthrough */
3871#endif
3872	default:
3873		return (false);
3874	}
3875	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3876		return (false);
3877
3878	if (req->ventry == NULL) {
3879		if (obj->versyms != NULL) {
3880			verndx = VER_NDX(obj->versyms[symnum]);
3881			if (verndx > obj->vernum) {
3882				_rtld_error(
3883				    "%s: symbol %s references wrong version %d",
3884				    obj->path, obj->strtab + symnum, verndx);
3885				return (false);
3886			}
3887			/*
3888			 * If we are not called from dlsym (i.e. this
3889			 * is a normal relocation from unversioned
3890			 * binary), accept the symbol immediately if
3891			 * it happens to have first version after this
3892			 * shared object became versioned.  Otherwise,
3893			 * if symbol is versioned and not hidden,
3894			 * remember it. If it is the only symbol with
3895			 * this name exported by the shared object, it
3896			 * will be returned as a match by the calling
3897			 * function. If symbol is global (verndx < 2)
3898			 * accept it unconditionally.
3899			 */
3900			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3901			    verndx == VER_NDX_GIVEN) {
3902				result->sym_out = symp;
3903				return (true);
3904			}
3905			else if (verndx >= VER_NDX_GIVEN) {
3906				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3907				    == 0) {
3908					if (result->vsymp == NULL)
3909						result->vsymp = symp;
3910					result->vcount++;
3911				}
3912				return (false);
3913			}
3914		}
3915		result->sym_out = symp;
3916		return (true);
3917	}
3918	if (obj->versyms == NULL) {
3919		if (object_match_name(obj, req->ventry->name)) {
3920			_rtld_error("%s: object %s should provide version %s "
3921			    "for symbol %s", obj_rtld.path, obj->path,
3922			    req->ventry->name, obj->strtab + symnum);
3923			return (false);
3924		}
3925	} else {
3926		verndx = VER_NDX(obj->versyms[symnum]);
3927		if (verndx > obj->vernum) {
3928			_rtld_error("%s: symbol %s references wrong version %d",
3929			    obj->path, obj->strtab + symnum, verndx);
3930			return (false);
3931		}
3932		if (obj->vertab[verndx].hash != req->ventry->hash ||
3933		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3934			/*
3935			 * Version does not match. Look if this is a
3936			 * global symbol and if it is not hidden. If
3937			 * global symbol (verndx < 2) is available,
3938			 * use it. Do not return symbol if we are
3939			 * called by dlvsym, because dlvsym looks for
3940			 * a specific version and default one is not
3941			 * what dlvsym wants.
3942			 */
3943			if ((req->flags & SYMLOOK_DLSYM) ||
3944			    (verndx >= VER_NDX_GIVEN) ||
3945			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3946				return (false);
3947		}
3948	}
3949	result->sym_out = symp;
3950	return (true);
3951}
3952
3953/*
3954 * Search for symbol using SysV hash function.
3955 * obj->buckets is known not to be NULL at this point; the test for this was
3956 * performed with the obj->valid_hash_sysv assignment.
3957 */
3958static int
3959symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3960{
3961	unsigned long symnum;
3962	Sym_Match_Result matchres;
3963
3964	matchres.sym_out = NULL;
3965	matchres.vsymp = NULL;
3966	matchres.vcount = 0;
3967
3968	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3969	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3970		if (symnum >= obj->nchains)
3971			return (ESRCH);	/* Bad object */
3972
3973		if (matched_symbol(req, obj, &matchres, symnum)) {
3974			req->sym_out = matchres.sym_out;
3975			req->defobj_out = obj;
3976			return (0);
3977		}
3978	}
3979	if (matchres.vcount == 1) {
3980		req->sym_out = matchres.vsymp;
3981		req->defobj_out = obj;
3982		return (0);
3983	}
3984	return (ESRCH);
3985}
3986
3987/* Search for symbol using GNU hash function */
3988static int
3989symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3990{
3991	Elf_Addr bloom_word;
3992	const Elf32_Word *hashval;
3993	Elf32_Word bucket;
3994	Sym_Match_Result matchres;
3995	unsigned int h1, h2;
3996	unsigned long symnum;
3997
3998	matchres.sym_out = NULL;
3999	matchres.vsymp = NULL;
4000	matchres.vcount = 0;
4001
4002	/* Pick right bitmask word from Bloom filter array */
4003	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4004	    obj->maskwords_bm_gnu];
4005
4006	/* Calculate modulus word size of gnu hash and its derivative */
4007	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4008	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4009
4010	/* Filter out the "definitely not in set" queries */
4011	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4012		return (ESRCH);
4013
4014	/* Locate hash chain and corresponding value element*/
4015	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4016	if (bucket == 0)
4017		return (ESRCH);
4018	hashval = &obj->chain_zero_gnu[bucket];
4019	do {
4020		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4021			symnum = hashval - obj->chain_zero_gnu;
4022			if (matched_symbol(req, obj, &matchres, symnum)) {
4023				req->sym_out = matchres.sym_out;
4024				req->defobj_out = obj;
4025				return (0);
4026			}
4027		}
4028	} while ((*hashval++ & 1) == 0);
4029	if (matchres.vcount == 1) {
4030		req->sym_out = matchres.vsymp;
4031		req->defobj_out = obj;
4032		return (0);
4033	}
4034	return (ESRCH);
4035}
4036
4037static void
4038trace_loaded_objects(Obj_Entry *obj)
4039{
4040    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4041    int		c;
4042
4043    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4044	main_local = "";
4045
4046    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4047	fmt1 = "\t%o => %p (%x)\n";
4048
4049    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4050	fmt2 = "\t%o (%x)\n";
4051
4052    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4053
4054    for (; obj; obj = obj->next) {
4055	Needed_Entry		*needed;
4056	char			*name, *path;
4057	bool			is_lib;
4058
4059	if (list_containers && obj->needed != NULL)
4060	    rtld_printf("%s:\n", obj->path);
4061	for (needed = obj->needed; needed; needed = needed->next) {
4062	    if (needed->obj != NULL) {
4063		if (needed->obj->traced && !list_containers)
4064		    continue;
4065		needed->obj->traced = true;
4066		path = needed->obj->path;
4067	    } else
4068		path = "not found";
4069
4070	    name = (char *)obj->strtab + needed->name;
4071	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4072
4073	    fmt = is_lib ? fmt1 : fmt2;
4074	    while ((c = *fmt++) != '\0') {
4075		switch (c) {
4076		default:
4077		    rtld_putchar(c);
4078		    continue;
4079		case '\\':
4080		    switch (c = *fmt) {
4081		    case '\0':
4082			continue;
4083		    case 'n':
4084			rtld_putchar('\n');
4085			break;
4086		    case 't':
4087			rtld_putchar('\t');
4088			break;
4089		    }
4090		    break;
4091		case '%':
4092		    switch (c = *fmt) {
4093		    case '\0':
4094			continue;
4095		    case '%':
4096		    default:
4097			rtld_putchar(c);
4098			break;
4099		    case 'A':
4100			rtld_putstr(main_local);
4101			break;
4102		    case 'a':
4103			rtld_putstr(obj_main->path);
4104			break;
4105		    case 'o':
4106			rtld_putstr(name);
4107			break;
4108#if 0
4109		    case 'm':
4110			rtld_printf("%d", sodp->sod_major);
4111			break;
4112		    case 'n':
4113			rtld_printf("%d", sodp->sod_minor);
4114			break;
4115#endif
4116		    case 'p':
4117			rtld_putstr(path);
4118			break;
4119		    case 'x':
4120			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4121			  0);
4122			break;
4123		    }
4124		    break;
4125		}
4126		++fmt;
4127	    }
4128	}
4129    }
4130}
4131
4132/*
4133 * Unload a dlopened object and its dependencies from memory and from
4134 * our data structures.  It is assumed that the DAG rooted in the
4135 * object has already been unreferenced, and that the object has a
4136 * reference count of 0.
4137 */
4138static void
4139unload_object(Obj_Entry *root)
4140{
4141    Obj_Entry *obj;
4142    Obj_Entry **linkp;
4143
4144    assert(root->refcount == 0);
4145
4146    /*
4147     * Pass over the DAG removing unreferenced objects from
4148     * appropriate lists.
4149     */
4150    unlink_object(root);
4151
4152    /* Unmap all objects that are no longer referenced. */
4153    linkp = &obj_list->next;
4154    while ((obj = *linkp) != NULL) {
4155	if (obj->refcount == 0) {
4156	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4157		obj->path);
4158	    dbg("unloading \"%s\"", obj->path);
4159	    unload_filtees(root);
4160	    munmap(obj->mapbase, obj->mapsize);
4161	    linkmap_delete(obj);
4162	    *linkp = obj->next;
4163	    obj_count--;
4164	    obj_free(obj);
4165	} else
4166	    linkp = &obj->next;
4167    }
4168    obj_tail = linkp;
4169}
4170
4171static void
4172unlink_object(Obj_Entry *root)
4173{
4174    Objlist_Entry *elm;
4175
4176    if (root->refcount == 0) {
4177	/* Remove the object from the RTLD_GLOBAL list. */
4178	objlist_remove(&list_global, root);
4179
4180    	/* Remove the object from all objects' DAG lists. */
4181    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4182	    objlist_remove(&elm->obj->dldags, root);
4183	    if (elm->obj != root)
4184		unlink_object(elm->obj);
4185	}
4186    }
4187}
4188
4189static void
4190ref_dag(Obj_Entry *root)
4191{
4192    Objlist_Entry *elm;
4193
4194    assert(root->dag_inited);
4195    STAILQ_FOREACH(elm, &root->dagmembers, link)
4196	elm->obj->refcount++;
4197}
4198
4199static void
4200unref_dag(Obj_Entry *root)
4201{
4202    Objlist_Entry *elm;
4203
4204    assert(root->dag_inited);
4205    STAILQ_FOREACH(elm, &root->dagmembers, link)
4206	elm->obj->refcount--;
4207}
4208
4209/*
4210 * Common code for MD __tls_get_addr().
4211 */
4212static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4213static void *
4214tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4215{
4216    Elf_Addr *newdtv, *dtv;
4217    RtldLockState lockstate;
4218    int to_copy;
4219
4220    dtv = *dtvp;
4221    /* Check dtv generation in case new modules have arrived */
4222    if (dtv[0] != tls_dtv_generation) {
4223	wlock_acquire(rtld_bind_lock, &lockstate);
4224	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4225	to_copy = dtv[1];
4226	if (to_copy > tls_max_index)
4227	    to_copy = tls_max_index;
4228	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4229	newdtv[0] = tls_dtv_generation;
4230	newdtv[1] = tls_max_index;
4231	free(dtv);
4232	lock_release(rtld_bind_lock, &lockstate);
4233	dtv = *dtvp = newdtv;
4234    }
4235
4236    /* Dynamically allocate module TLS if necessary */
4237    if (dtv[index + 1] == 0) {
4238	/* Signal safe, wlock will block out signals. */
4239	wlock_acquire(rtld_bind_lock, &lockstate);
4240	if (!dtv[index + 1])
4241	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4242	lock_release(rtld_bind_lock, &lockstate);
4243    }
4244    return ((void *)(dtv[index + 1] + offset));
4245}
4246
4247void *
4248tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4249{
4250	Elf_Addr *dtv;
4251
4252	dtv = *dtvp;
4253	/* Check dtv generation in case new modules have arrived */
4254	if (__predict_true(dtv[0] == tls_dtv_generation &&
4255	    dtv[index + 1] != 0))
4256		return ((void *)(dtv[index + 1] + offset));
4257	return (tls_get_addr_slow(dtvp, index, offset));
4258}
4259
4260#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4261
4262/*
4263 * Allocate Static TLS using the Variant I method.
4264 */
4265void *
4266allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4267{
4268    Obj_Entry *obj;
4269    char *tcb;
4270    Elf_Addr **tls;
4271    Elf_Addr *dtv;
4272    Elf_Addr addr;
4273    int i;
4274
4275    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4276	return (oldtcb);
4277
4278    assert(tcbsize >= TLS_TCB_SIZE);
4279    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4280    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4281
4282    if (oldtcb != NULL) {
4283	memcpy(tls, oldtcb, tls_static_space);
4284	free(oldtcb);
4285
4286	/* Adjust the DTV. */
4287	dtv = tls[0];
4288	for (i = 0; i < dtv[1]; i++) {
4289	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4290		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4291		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4292	    }
4293	}
4294    } else {
4295	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4296	tls[0] = dtv;
4297	dtv[0] = tls_dtv_generation;
4298	dtv[1] = tls_max_index;
4299
4300	for (obj = objs; obj; obj = obj->next) {
4301	    if (obj->tlsoffset > 0) {
4302		addr = (Elf_Addr)tls + obj->tlsoffset;
4303		if (obj->tlsinitsize > 0)
4304		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4305		if (obj->tlssize > obj->tlsinitsize)
4306		    memset((void*) (addr + obj->tlsinitsize), 0,
4307			   obj->tlssize - obj->tlsinitsize);
4308		dtv[obj->tlsindex + 1] = addr;
4309	    }
4310	}
4311    }
4312
4313    return (tcb);
4314}
4315
4316void
4317free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4318{
4319    Elf_Addr *dtv;
4320    Elf_Addr tlsstart, tlsend;
4321    int dtvsize, i;
4322
4323    assert(tcbsize >= TLS_TCB_SIZE);
4324
4325    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4326    tlsend = tlsstart + tls_static_space;
4327
4328    dtv = *(Elf_Addr **)tlsstart;
4329    dtvsize = dtv[1];
4330    for (i = 0; i < dtvsize; i++) {
4331	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4332	    free((void*)dtv[i+2]);
4333	}
4334    }
4335    free(dtv);
4336    free(tcb);
4337}
4338
4339#endif
4340
4341#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4342
4343/*
4344 * Allocate Static TLS using the Variant II method.
4345 */
4346void *
4347allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4348{
4349    Obj_Entry *obj;
4350    size_t size, ralign;
4351    char *tls;
4352    Elf_Addr *dtv, *olddtv;
4353    Elf_Addr segbase, oldsegbase, addr;
4354    int i;
4355
4356    ralign = tcbalign;
4357    if (tls_static_max_align > ralign)
4358	    ralign = tls_static_max_align;
4359    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4360
4361    assert(tcbsize >= 2*sizeof(Elf_Addr));
4362    tls = malloc_aligned(size, ralign);
4363    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4364
4365    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4366    ((Elf_Addr*)segbase)[0] = segbase;
4367    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4368
4369    dtv[0] = tls_dtv_generation;
4370    dtv[1] = tls_max_index;
4371
4372    if (oldtls) {
4373	/*
4374	 * Copy the static TLS block over whole.
4375	 */
4376	oldsegbase = (Elf_Addr) oldtls;
4377	memcpy((void *)(segbase - tls_static_space),
4378	       (const void *)(oldsegbase - tls_static_space),
4379	       tls_static_space);
4380
4381	/*
4382	 * If any dynamic TLS blocks have been created tls_get_addr(),
4383	 * move them over.
4384	 */
4385	olddtv = ((Elf_Addr**)oldsegbase)[1];
4386	for (i = 0; i < olddtv[1]; i++) {
4387	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4388		dtv[i+2] = olddtv[i+2];
4389		olddtv[i+2] = 0;
4390	    }
4391	}
4392
4393	/*
4394	 * We assume that this block was the one we created with
4395	 * allocate_initial_tls().
4396	 */
4397	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4398    } else {
4399	for (obj = objs; obj; obj = obj->next) {
4400	    if (obj->tlsoffset) {
4401		addr = segbase - obj->tlsoffset;
4402		memset((void*) (addr + obj->tlsinitsize),
4403		       0, obj->tlssize - obj->tlsinitsize);
4404		if (obj->tlsinit)
4405		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4406		dtv[obj->tlsindex + 1] = addr;
4407	    }
4408	}
4409    }
4410
4411    return (void*) segbase;
4412}
4413
4414void
4415free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4416{
4417    Elf_Addr* dtv;
4418    size_t size, ralign;
4419    int dtvsize, i;
4420    Elf_Addr tlsstart, tlsend;
4421
4422    /*
4423     * Figure out the size of the initial TLS block so that we can
4424     * find stuff which ___tls_get_addr() allocated dynamically.
4425     */
4426    ralign = tcbalign;
4427    if (tls_static_max_align > ralign)
4428	    ralign = tls_static_max_align;
4429    size = round(tls_static_space, ralign);
4430
4431    dtv = ((Elf_Addr**)tls)[1];
4432    dtvsize = dtv[1];
4433    tlsend = (Elf_Addr) tls;
4434    tlsstart = tlsend - size;
4435    for (i = 0; i < dtvsize; i++) {
4436	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4437		free_aligned((void *)dtv[i + 2]);
4438	}
4439    }
4440
4441    free_aligned((void *)tlsstart);
4442    free((void*) dtv);
4443}
4444
4445#endif
4446
4447/*
4448 * Allocate TLS block for module with given index.
4449 */
4450void *
4451allocate_module_tls(int index)
4452{
4453    Obj_Entry* obj;
4454    char* p;
4455
4456    for (obj = obj_list; obj; obj = obj->next) {
4457	if (obj->tlsindex == index)
4458	    break;
4459    }
4460    if (!obj) {
4461	_rtld_error("Can't find module with TLS index %d", index);
4462	die();
4463    }
4464
4465    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4466    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4467    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4468
4469    return p;
4470}
4471
4472bool
4473allocate_tls_offset(Obj_Entry *obj)
4474{
4475    size_t off;
4476
4477    if (obj->tls_done)
4478	return true;
4479
4480    if (obj->tlssize == 0) {
4481	obj->tls_done = true;
4482	return true;
4483    }
4484
4485    if (obj->tlsindex == 1)
4486	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4487    else
4488	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4489				   obj->tlssize, obj->tlsalign);
4490
4491    /*
4492     * If we have already fixed the size of the static TLS block, we
4493     * must stay within that size. When allocating the static TLS, we
4494     * leave a small amount of space spare to be used for dynamically
4495     * loading modules which use static TLS.
4496     */
4497    if (tls_static_space != 0) {
4498	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4499	    return false;
4500    } else if (obj->tlsalign > tls_static_max_align) {
4501	    tls_static_max_align = obj->tlsalign;
4502    }
4503
4504    tls_last_offset = obj->tlsoffset = off;
4505    tls_last_size = obj->tlssize;
4506    obj->tls_done = true;
4507
4508    return true;
4509}
4510
4511void
4512free_tls_offset(Obj_Entry *obj)
4513{
4514
4515    /*
4516     * If we were the last thing to allocate out of the static TLS
4517     * block, we give our space back to the 'allocator'. This is a
4518     * simplistic workaround to allow libGL.so.1 to be loaded and
4519     * unloaded multiple times.
4520     */
4521    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4522	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4523	tls_last_offset -= obj->tlssize;
4524	tls_last_size = 0;
4525    }
4526}
4527
4528void *
4529_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4530{
4531    void *ret;
4532    RtldLockState lockstate;
4533
4534    wlock_acquire(rtld_bind_lock, &lockstate);
4535    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4536    lock_release(rtld_bind_lock, &lockstate);
4537    return (ret);
4538}
4539
4540void
4541_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4542{
4543    RtldLockState lockstate;
4544
4545    wlock_acquire(rtld_bind_lock, &lockstate);
4546    free_tls(tcb, tcbsize, tcbalign);
4547    lock_release(rtld_bind_lock, &lockstate);
4548}
4549
4550static void
4551object_add_name(Obj_Entry *obj, const char *name)
4552{
4553    Name_Entry *entry;
4554    size_t len;
4555
4556    len = strlen(name);
4557    entry = malloc(sizeof(Name_Entry) + len);
4558
4559    if (entry != NULL) {
4560	strcpy(entry->name, name);
4561	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4562    }
4563}
4564
4565static int
4566object_match_name(const Obj_Entry *obj, const char *name)
4567{
4568    Name_Entry *entry;
4569
4570    STAILQ_FOREACH(entry, &obj->names, link) {
4571	if (strcmp(name, entry->name) == 0)
4572	    return (1);
4573    }
4574    return (0);
4575}
4576
4577static Obj_Entry *
4578locate_dependency(const Obj_Entry *obj, const char *name)
4579{
4580    const Objlist_Entry *entry;
4581    const Needed_Entry *needed;
4582
4583    STAILQ_FOREACH(entry, &list_main, link) {
4584	if (object_match_name(entry->obj, name))
4585	    return entry->obj;
4586    }
4587
4588    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4589	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4590	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4591	    /*
4592	     * If there is DT_NEEDED for the name we are looking for,
4593	     * we are all set.  Note that object might not be found if
4594	     * dependency was not loaded yet, so the function can
4595	     * return NULL here.  This is expected and handled
4596	     * properly by the caller.
4597	     */
4598	    return (needed->obj);
4599	}
4600    }
4601    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4602	obj->path, name);
4603    die();
4604}
4605
4606static int
4607check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4608    const Elf_Vernaux *vna)
4609{
4610    const Elf_Verdef *vd;
4611    const char *vername;
4612
4613    vername = refobj->strtab + vna->vna_name;
4614    vd = depobj->verdef;
4615    if (vd == NULL) {
4616	_rtld_error("%s: version %s required by %s not defined",
4617	    depobj->path, vername, refobj->path);
4618	return (-1);
4619    }
4620    for (;;) {
4621	if (vd->vd_version != VER_DEF_CURRENT) {
4622	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4623		depobj->path, vd->vd_version);
4624	    return (-1);
4625	}
4626	if (vna->vna_hash == vd->vd_hash) {
4627	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4628		((char *)vd + vd->vd_aux);
4629	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4630		return (0);
4631	}
4632	if (vd->vd_next == 0)
4633	    break;
4634	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4635    }
4636    if (vna->vna_flags & VER_FLG_WEAK)
4637	return (0);
4638    _rtld_error("%s: version %s required by %s not found",
4639	depobj->path, vername, refobj->path);
4640    return (-1);
4641}
4642
4643static int
4644rtld_verify_object_versions(Obj_Entry *obj)
4645{
4646    const Elf_Verneed *vn;
4647    const Elf_Verdef  *vd;
4648    const Elf_Verdaux *vda;
4649    const Elf_Vernaux *vna;
4650    const Obj_Entry *depobj;
4651    int maxvernum, vernum;
4652
4653    if (obj->ver_checked)
4654	return (0);
4655    obj->ver_checked = true;
4656
4657    maxvernum = 0;
4658    /*
4659     * Walk over defined and required version records and figure out
4660     * max index used by any of them. Do very basic sanity checking
4661     * while there.
4662     */
4663    vn = obj->verneed;
4664    while (vn != NULL) {
4665	if (vn->vn_version != VER_NEED_CURRENT) {
4666	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4667		obj->path, vn->vn_version);
4668	    return (-1);
4669	}
4670	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4671	for (;;) {
4672	    vernum = VER_NEED_IDX(vna->vna_other);
4673	    if (vernum > maxvernum)
4674		maxvernum = vernum;
4675	    if (vna->vna_next == 0)
4676		 break;
4677	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4678	}
4679	if (vn->vn_next == 0)
4680	    break;
4681	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4682    }
4683
4684    vd = obj->verdef;
4685    while (vd != NULL) {
4686	if (vd->vd_version != VER_DEF_CURRENT) {
4687	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4688		obj->path, vd->vd_version);
4689	    return (-1);
4690	}
4691	vernum = VER_DEF_IDX(vd->vd_ndx);
4692	if (vernum > maxvernum)
4693		maxvernum = vernum;
4694	if (vd->vd_next == 0)
4695	    break;
4696	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4697    }
4698
4699    if (maxvernum == 0)
4700	return (0);
4701
4702    /*
4703     * Store version information in array indexable by version index.
4704     * Verify that object version requirements are satisfied along the
4705     * way.
4706     */
4707    obj->vernum = maxvernum + 1;
4708    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4709
4710    vd = obj->verdef;
4711    while (vd != NULL) {
4712	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4713	    vernum = VER_DEF_IDX(vd->vd_ndx);
4714	    assert(vernum <= maxvernum);
4715	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4716	    obj->vertab[vernum].hash = vd->vd_hash;
4717	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4718	    obj->vertab[vernum].file = NULL;
4719	    obj->vertab[vernum].flags = 0;
4720	}
4721	if (vd->vd_next == 0)
4722	    break;
4723	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4724    }
4725
4726    vn = obj->verneed;
4727    while (vn != NULL) {
4728	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4729	if (depobj == NULL)
4730	    return (-1);
4731	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4732	for (;;) {
4733	    if (check_object_provided_version(obj, depobj, vna))
4734		return (-1);
4735	    vernum = VER_NEED_IDX(vna->vna_other);
4736	    assert(vernum <= maxvernum);
4737	    obj->vertab[vernum].hash = vna->vna_hash;
4738	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4739	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4740	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4741		VER_INFO_HIDDEN : 0;
4742	    if (vna->vna_next == 0)
4743		 break;
4744	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4745	}
4746	if (vn->vn_next == 0)
4747	    break;
4748	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4749    }
4750    return 0;
4751}
4752
4753static int
4754rtld_verify_versions(const Objlist *objlist)
4755{
4756    Objlist_Entry *entry;
4757    int rc;
4758
4759    rc = 0;
4760    STAILQ_FOREACH(entry, objlist, link) {
4761	/*
4762	 * Skip dummy objects or objects that have their version requirements
4763	 * already checked.
4764	 */
4765	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4766	    continue;
4767	if (rtld_verify_object_versions(entry->obj) == -1) {
4768	    rc = -1;
4769	    if (ld_tracing == NULL)
4770		break;
4771	}
4772    }
4773    if (rc == 0 || ld_tracing != NULL)
4774    	rc = rtld_verify_object_versions(&obj_rtld);
4775    return rc;
4776}
4777
4778const Ver_Entry *
4779fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4780{
4781    Elf_Versym vernum;
4782
4783    if (obj->vertab) {
4784	vernum = VER_NDX(obj->versyms[symnum]);
4785	if (vernum >= obj->vernum) {
4786	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4787		obj->path, obj->strtab + symnum, vernum);
4788	} else if (obj->vertab[vernum].hash != 0) {
4789	    return &obj->vertab[vernum];
4790	}
4791    }
4792    return NULL;
4793}
4794
4795int
4796_rtld_get_stack_prot(void)
4797{
4798
4799	return (stack_prot);
4800}
4801
4802int
4803_rtld_is_dlopened(void *arg)
4804{
4805	Obj_Entry *obj;
4806	RtldLockState lockstate;
4807	int res;
4808
4809	rlock_acquire(rtld_bind_lock, &lockstate);
4810	obj = dlcheck(arg);
4811	if (obj == NULL)
4812		obj = obj_from_addr(arg);
4813	if (obj == NULL) {
4814		_rtld_error("No shared object contains address");
4815		lock_release(rtld_bind_lock, &lockstate);
4816		return (-1);
4817	}
4818	res = obj->dlopened ? 1 : 0;
4819	lock_release(rtld_bind_lock, &lockstate);
4820	return (res);
4821}
4822
4823static void
4824map_stacks_exec(RtldLockState *lockstate)
4825{
4826	void (*thr_map_stacks_exec)(void);
4827
4828	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4829		return;
4830	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4831	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4832	if (thr_map_stacks_exec != NULL) {
4833		stack_prot |= PROT_EXEC;
4834		thr_map_stacks_exec();
4835	}
4836}
4837
4838void
4839symlook_init(SymLook *dst, const char *name)
4840{
4841
4842	bzero(dst, sizeof(*dst));
4843	dst->name = name;
4844	dst->hash = elf_hash(name);
4845	dst->hash_gnu = gnu_hash(name);
4846}
4847
4848static void
4849symlook_init_from_req(SymLook *dst, const SymLook *src)
4850{
4851
4852	dst->name = src->name;
4853	dst->hash = src->hash;
4854	dst->hash_gnu = src->hash_gnu;
4855	dst->ventry = src->ventry;
4856	dst->flags = src->flags;
4857	dst->defobj_out = NULL;
4858	dst->sym_out = NULL;
4859	dst->lockstate = src->lockstate;
4860}
4861
4862/*
4863 * Overrides for libc_pic-provided functions.
4864 */
4865
4866int
4867__getosreldate(void)
4868{
4869	size_t len;
4870	int oid[2];
4871	int error, osrel;
4872
4873	if (osreldate != 0)
4874		return (osreldate);
4875
4876	oid[0] = CTL_KERN;
4877	oid[1] = KERN_OSRELDATE;
4878	osrel = 0;
4879	len = sizeof(osrel);
4880	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4881	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4882		osreldate = osrel;
4883	return (osreldate);
4884}
4885
4886void
4887exit(int status)
4888{
4889
4890	_exit(status);
4891}
4892
4893void (*__cleanup)(void);
4894int __isthreaded = 0;
4895int _thread_autoinit_dummy_decl = 1;
4896
4897/*
4898 * No unresolved symbols for rtld.
4899 */
4900void
4901__pthread_cxa_finalize(struct dl_phdr_info *a)
4902{
4903}
4904
4905void
4906__stack_chk_fail(void)
4907{
4908
4909	_rtld_error("stack overflow detected; terminated");
4910	die();
4911}
4912__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4913
4914void
4915__chk_fail(void)
4916{
4917
4918	_rtld_error("buffer overflow detected; terminated");
4919	die();
4920}
4921
4922const char *
4923rtld_strerror(int errnum)
4924{
4925
4926	if (errnum < 0 || errnum >= sys_nerr)
4927		return ("Unknown error");
4928	return (sys_errlist[errnum]);
4929}
4930