rtld.c revision 278309
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 278309 2015-02-06 08:58:06Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(char *, const char *, const char *, bool);
150static char *origin_subst(char *, const char *);
151static void preinit_main(void);
152static int  rtld_verify_versions(const Objlist *);
153static int  rtld_verify_object_versions(Obj_Entry *);
154static void object_add_name(Obj_Entry *, const char *);
155static int  object_match_name(const Obj_Entry *, const char *);
156static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158    struct dl_phdr_info *phdr_info);
159static uint32_t gnu_hash(const char *);
160static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161    const unsigned long);
162
163void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164void _r_debug_postinit(struct link_map *) __noinline;
165
166/*
167 * Data declarations.
168 */
169static char *error_message;	/* Message for dlerror(), or NULL */
170struct r_debug r_debug;		/* for GDB; */
171static bool libmap_disable;	/* Disable libmap */
172static bool ld_loadfltr;	/* Immediate filters processing */
173static char *libmap_override;	/* Maps to use in addition to libmap.conf */
174static bool trust;		/* False for setuid and setgid programs */
175static bool dangerous_ld_env;	/* True if environment variables have been
176				   used to affect the libraries loaded */
177static char *ld_bind_now;	/* Environment variable for immediate binding */
178static char *ld_debug;		/* Environment variable for debugging */
179static char *ld_library_path;	/* Environment variable for search path */
180static char *ld_preload;	/* Environment variable for libraries to
181				   load first */
182static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
183static char *ld_tracing;	/* Called from ldd to print libs */
184static char *ld_utrace;		/* Use utrace() to log events. */
185static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
186static Obj_Entry **obj_tail;	/* Link field of last object in list */
187static Obj_Entry *obj_main;	/* The main program shared object */
188static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
189static unsigned int obj_count;	/* Number of objects in obj_list */
190static unsigned int obj_loads;	/* Number of objects in obj_list */
191
192static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
193  STAILQ_HEAD_INITIALIZER(list_global);
194static Objlist list_main =	/* Objects loaded at program startup */
195  STAILQ_HEAD_INITIALIZER(list_main);
196static Objlist list_fini =	/* Objects needing fini() calls */
197  STAILQ_HEAD_INITIALIZER(list_fini);
198
199Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
200
201#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
202
203extern Elf_Dyn _DYNAMIC;
204#pragma weak _DYNAMIC
205#ifndef RTLD_IS_DYNAMIC
206#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
207#endif
208
209int osreldate, pagesize;
210
211long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
212
213static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
214static int max_stack_flags;
215
216/*
217 * Global declarations normally provided by crt1.  The dynamic linker is
218 * not built with crt1, so we have to provide them ourselves.
219 */
220char *__progname;
221char **environ;
222
223/*
224 * Used to pass argc, argv to init functions.
225 */
226int main_argc;
227char **main_argv;
228
229/*
230 * Globals to control TLS allocation.
231 */
232size_t tls_last_offset;		/* Static TLS offset of last module */
233size_t tls_last_size;		/* Static TLS size of last module */
234size_t tls_static_space;	/* Static TLS space allocated */
235size_t tls_static_max_align;
236int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
237int tls_max_index = 1;		/* Largest module index allocated */
238
239bool ld_library_path_rpath = false;
240
241/*
242 * Fill in a DoneList with an allocation large enough to hold all of
243 * the currently-loaded objects.  Keep this as a macro since it calls
244 * alloca and we want that to occur within the scope of the caller.
245 */
246#define donelist_init(dlp)					\
247    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
248    assert((dlp)->objs != NULL),				\
249    (dlp)->num_alloc = obj_count,				\
250    (dlp)->num_used = 0)
251
252#define	UTRACE_DLOPEN_START		1
253#define	UTRACE_DLOPEN_STOP		2
254#define	UTRACE_DLCLOSE_START		3
255#define	UTRACE_DLCLOSE_STOP		4
256#define	UTRACE_LOAD_OBJECT		5
257#define	UTRACE_UNLOAD_OBJECT		6
258#define	UTRACE_ADD_RUNDEP		7
259#define	UTRACE_PRELOAD_FINISHED		8
260#define	UTRACE_INIT_CALL		9
261#define	UTRACE_FINI_CALL		10
262
263struct utrace_rtld {
264	char sig[4];			/* 'RTLD' */
265	int event;
266	void *handle;
267	void *mapbase;			/* Used for 'parent' and 'init/fini' */
268	size_t mapsize;
269	int refcnt;			/* Used for 'mode' */
270	char name[MAXPATHLEN];
271};
272
273#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
274	if (ld_utrace != NULL)					\
275		ld_utrace_log(e, h, mb, ms, r, n);		\
276} while (0)
277
278static void
279ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
280    int refcnt, const char *name)
281{
282	struct utrace_rtld ut;
283
284	ut.sig[0] = 'R';
285	ut.sig[1] = 'T';
286	ut.sig[2] = 'L';
287	ut.sig[3] = 'D';
288	ut.event = event;
289	ut.handle = handle;
290	ut.mapbase = mapbase;
291	ut.mapsize = mapsize;
292	ut.refcnt = refcnt;
293	bzero(ut.name, sizeof(ut.name));
294	if (name)
295		strlcpy(ut.name, name, sizeof(ut.name));
296	utrace(&ut, sizeof(ut));
297}
298
299/*
300 * Main entry point for dynamic linking.  The first argument is the
301 * stack pointer.  The stack is expected to be laid out as described
302 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
303 * Specifically, the stack pointer points to a word containing
304 * ARGC.  Following that in the stack is a null-terminated sequence
305 * of pointers to argument strings.  Then comes a null-terminated
306 * sequence of pointers to environment strings.  Finally, there is a
307 * sequence of "auxiliary vector" entries.
308 *
309 * The second argument points to a place to store the dynamic linker's
310 * exit procedure pointer and the third to a place to store the main
311 * program's object.
312 *
313 * The return value is the main program's entry point.
314 */
315func_ptr_type
316_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
317{
318    Elf_Auxinfo *aux_info[AT_COUNT];
319    int i;
320    int argc;
321    char **argv;
322    char **env;
323    Elf_Auxinfo *aux;
324    Elf_Auxinfo *auxp;
325    const char *argv0;
326    Objlist_Entry *entry;
327    Obj_Entry *obj;
328    Obj_Entry **preload_tail;
329    Obj_Entry *last_interposer;
330    Objlist initlist;
331    RtldLockState lockstate;
332    char *library_path_rpath;
333    int mib[2];
334    size_t len;
335
336    /*
337     * On entry, the dynamic linker itself has not been relocated yet.
338     * Be very careful not to reference any global data until after
339     * init_rtld has returned.  It is OK to reference file-scope statics
340     * and string constants, and to call static and global functions.
341     */
342
343    /* Find the auxiliary vector on the stack. */
344    argc = *sp++;
345    argv = (char **) sp;
346    sp += argc + 1;	/* Skip over arguments and NULL terminator */
347    env = (char **) sp;
348    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
349	;
350    aux = (Elf_Auxinfo *) sp;
351
352    /* Digest the auxiliary vector. */
353    for (i = 0;  i < AT_COUNT;  i++)
354	aux_info[i] = NULL;
355    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
356	if (auxp->a_type < AT_COUNT)
357	    aux_info[auxp->a_type] = auxp;
358    }
359
360    /* Initialize and relocate ourselves. */
361    assert(aux_info[AT_BASE] != NULL);
362    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
363
364    __progname = obj_rtld.path;
365    argv0 = argv[0] != NULL ? argv[0] : "(null)";
366    environ = env;
367    main_argc = argc;
368    main_argv = argv;
369
370    if (aux_info[AT_CANARY] != NULL &&
371	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
372	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
373	    if (i > sizeof(__stack_chk_guard))
374		    i = sizeof(__stack_chk_guard);
375	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
376    } else {
377	mib[0] = CTL_KERN;
378	mib[1] = KERN_ARND;
379
380	len = sizeof(__stack_chk_guard);
381	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
382	    len != sizeof(__stack_chk_guard)) {
383		/* If sysctl was unsuccessful, use the "terminator canary". */
384		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
385		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
386		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
387		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
388	}
389    }
390
391    trust = !issetugid();
392
393    ld_bind_now = getenv(LD_ "BIND_NOW");
394    /*
395     * If the process is tainted, then we un-set the dangerous environment
396     * variables.  The process will be marked as tainted until setuid(2)
397     * is called.  If any child process calls setuid(2) we do not want any
398     * future processes to honor the potentially un-safe variables.
399     */
400    if (!trust) {
401        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
402	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
403	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
404	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
405		_rtld_error("environment corrupt; aborting");
406		die();
407	}
408    }
409    ld_debug = getenv(LD_ "DEBUG");
410    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
411    libmap_override = getenv(LD_ "LIBMAP");
412    ld_library_path = getenv(LD_ "LIBRARY_PATH");
413    ld_preload = getenv(LD_ "PRELOAD");
414    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
415    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
416    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
417    if (library_path_rpath != NULL) {
418	    if (library_path_rpath[0] == 'y' ||
419		library_path_rpath[0] == 'Y' ||
420		library_path_rpath[0] == '1')
421		    ld_library_path_rpath = true;
422	    else
423		    ld_library_path_rpath = false;
424    }
425    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
426	(ld_library_path != NULL) || (ld_preload != NULL) ||
427	(ld_elf_hints_path != NULL) || ld_loadfltr;
428    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
429    ld_utrace = getenv(LD_ "UTRACE");
430
431    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
432	ld_elf_hints_path = _PATH_ELF_HINTS;
433
434    if (ld_debug != NULL && *ld_debug != '\0')
435	debug = 1;
436    dbg("%s is initialized, base address = %p", __progname,
437	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
438    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
439    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
440
441    dbg("initializing thread locks");
442    lockdflt_init();
443
444    /*
445     * Load the main program, or process its program header if it is
446     * already loaded.
447     */
448    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
449	int fd = aux_info[AT_EXECFD]->a_un.a_val;
450	dbg("loading main program");
451	obj_main = map_object(fd, argv0, NULL);
452	close(fd);
453	if (obj_main == NULL)
454	    die();
455	max_stack_flags = obj->stack_flags;
456    } else {				/* Main program already loaded. */
457	const Elf_Phdr *phdr;
458	int phnum;
459	caddr_t entry;
460
461	dbg("processing main program's program header");
462	assert(aux_info[AT_PHDR] != NULL);
463	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
464	assert(aux_info[AT_PHNUM] != NULL);
465	phnum = aux_info[AT_PHNUM]->a_un.a_val;
466	assert(aux_info[AT_PHENT] != NULL);
467	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
468	assert(aux_info[AT_ENTRY] != NULL);
469	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
470	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
471	    die();
472    }
473
474    if (aux_info[AT_EXECPATH] != 0) {
475	    char *kexecpath;
476	    char buf[MAXPATHLEN];
477
478	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
479	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
480	    if (kexecpath[0] == '/')
481		    obj_main->path = kexecpath;
482	    else if (getcwd(buf, sizeof(buf)) == NULL ||
483		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
484		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
485		    obj_main->path = xstrdup(argv0);
486	    else
487		    obj_main->path = xstrdup(buf);
488    } else {
489	    dbg("No AT_EXECPATH");
490	    obj_main->path = xstrdup(argv0);
491    }
492    dbg("obj_main path %s", obj_main->path);
493    obj_main->mainprog = true;
494
495    if (aux_info[AT_STACKPROT] != NULL &&
496      aux_info[AT_STACKPROT]->a_un.a_val != 0)
497	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
498
499    /*
500     * Get the actual dynamic linker pathname from the executable if
501     * possible.  (It should always be possible.)  That ensures that
502     * gdb will find the right dynamic linker even if a non-standard
503     * one is being used.
504     */
505    if (obj_main->interp != NULL &&
506      strcmp(obj_main->interp, obj_rtld.path) != 0) {
507	free(obj_rtld.path);
508	obj_rtld.path = xstrdup(obj_main->interp);
509        __progname = obj_rtld.path;
510    }
511
512    digest_dynamic(obj_main, 0);
513    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
514	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
515	obj_main->dynsymcount);
516
517    linkmap_add(obj_main);
518    linkmap_add(&obj_rtld);
519
520    /* Link the main program into the list of objects. */
521    *obj_tail = obj_main;
522    obj_tail = &obj_main->next;
523    obj_count++;
524    obj_loads++;
525
526    /* Initialize a fake symbol for resolving undefined weak references. */
527    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
528    sym_zero.st_shndx = SHN_UNDEF;
529    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
530
531    if (!libmap_disable)
532        libmap_disable = (bool)lm_init(libmap_override);
533
534    dbg("loading LD_PRELOAD libraries");
535    if (load_preload_objects() == -1)
536	die();
537    preload_tail = obj_tail;
538
539    dbg("loading needed objects");
540    if (load_needed_objects(obj_main, 0) == -1)
541	die();
542
543    /* Make a list of all objects loaded at startup. */
544    last_interposer = obj_main;
545    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
546	if (obj->z_interpose && obj != obj_main) {
547	    objlist_put_after(&list_main, last_interposer, obj);
548	    last_interposer = obj;
549	} else {
550	    objlist_push_tail(&list_main, obj);
551	}
552    	obj->refcount++;
553    }
554
555    dbg("checking for required versions");
556    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
557	die();
558
559    if (ld_tracing) {		/* We're done */
560	trace_loaded_objects(obj_main);
561	exit(0);
562    }
563
564    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
565       dump_relocations(obj_main);
566       exit (0);
567    }
568
569    /*
570     * Processing tls relocations requires having the tls offsets
571     * initialized.  Prepare offsets before starting initial
572     * relocation processing.
573     */
574    dbg("initializing initial thread local storage offsets");
575    STAILQ_FOREACH(entry, &list_main, link) {
576	/*
577	 * Allocate all the initial objects out of the static TLS
578	 * block even if they didn't ask for it.
579	 */
580	allocate_tls_offset(entry->obj);
581    }
582
583    if (relocate_objects(obj_main,
584      ld_bind_now != NULL && *ld_bind_now != '\0',
585      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
586	die();
587
588    dbg("doing copy relocations");
589    if (do_copy_relocations(obj_main) == -1)
590	die();
591
592    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
593       dump_relocations(obj_main);
594       exit (0);
595    }
596
597    /*
598     * Setup TLS for main thread.  This must be done after the
599     * relocations are processed, since tls initialization section
600     * might be the subject for relocations.
601     */
602    dbg("initializing initial thread local storage");
603    allocate_initial_tls(obj_list);
604
605    dbg("initializing key program variables");
606    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
607    set_program_var("environ", env);
608    set_program_var("__elf_aux_vector", aux);
609
610    /* Make a list of init functions to call. */
611    objlist_init(&initlist);
612    initlist_add_objects(obj_list, preload_tail, &initlist);
613
614    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
615
616    map_stacks_exec(NULL);
617
618    dbg("resolving ifuncs");
619    if (resolve_objects_ifunc(obj_main,
620      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
621      NULL) == -1)
622	die();
623
624    if (!obj_main->crt_no_init) {
625	/*
626	 * Make sure we don't call the main program's init and fini
627	 * functions for binaries linked with old crt1 which calls
628	 * _init itself.
629	 */
630	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
631	obj_main->preinit_array = obj_main->init_array =
632	    obj_main->fini_array = (Elf_Addr)NULL;
633    }
634
635    wlock_acquire(rtld_bind_lock, &lockstate);
636    if (obj_main->crt_no_init)
637	preinit_main();
638    objlist_call_init(&initlist, &lockstate);
639    _r_debug_postinit(&obj_main->linkmap);
640    objlist_clear(&initlist);
641    dbg("loading filtees");
642    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
643	if (ld_loadfltr || obj->z_loadfltr)
644	    load_filtees(obj, 0, &lockstate);
645    }
646    lock_release(rtld_bind_lock, &lockstate);
647
648    dbg("transferring control to program entry point = %p", obj_main->entry);
649
650    /* Return the exit procedure and the program entry point. */
651    *exit_proc = rtld_exit;
652    *objp = obj_main;
653    return (func_ptr_type) obj_main->entry;
654}
655
656void *
657rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
658{
659	void *ptr;
660	Elf_Addr target;
661
662	ptr = (void *)make_function_pointer(def, obj);
663	target = ((Elf_Addr (*)(void))ptr)();
664	return ((void *)target);
665}
666
667Elf_Addr
668_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
669{
670    const Elf_Rel *rel;
671    const Elf_Sym *def;
672    const Obj_Entry *defobj;
673    Elf_Addr *where;
674    Elf_Addr target;
675    RtldLockState lockstate;
676
677    rlock_acquire(rtld_bind_lock, &lockstate);
678    if (sigsetjmp(lockstate.env, 0) != 0)
679	    lock_upgrade(rtld_bind_lock, &lockstate);
680    if (obj->pltrel)
681	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
682    else
683	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
684
685    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
686    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
687	&lockstate);
688    if (def == NULL)
689	die();
690    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
691	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
692    else
693	target = (Elf_Addr)(defobj->relocbase + def->st_value);
694
695    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
696      defobj->strtab + def->st_name, basename(obj->path),
697      (void *)target, basename(defobj->path));
698
699    /*
700     * Write the new contents for the jmpslot. Note that depending on
701     * architecture, the value which we need to return back to the
702     * lazy binding trampoline may or may not be the target
703     * address. The value returned from reloc_jmpslot() is the value
704     * that the trampoline needs.
705     */
706    target = reloc_jmpslot(where, target, defobj, obj, rel);
707    lock_release(rtld_bind_lock, &lockstate);
708    return target;
709}
710
711/*
712 * Error reporting function.  Use it like printf.  If formats the message
713 * into a buffer, and sets things up so that the next call to dlerror()
714 * will return the message.
715 */
716void
717_rtld_error(const char *fmt, ...)
718{
719    static char buf[512];
720    va_list ap;
721
722    va_start(ap, fmt);
723    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
724    error_message = buf;
725    va_end(ap);
726}
727
728/*
729 * Return a dynamically-allocated copy of the current error message, if any.
730 */
731static char *
732errmsg_save(void)
733{
734    return error_message == NULL ? NULL : xstrdup(error_message);
735}
736
737/*
738 * Restore the current error message from a copy which was previously saved
739 * by errmsg_save().  The copy is freed.
740 */
741static void
742errmsg_restore(char *saved_msg)
743{
744    if (saved_msg == NULL)
745	error_message = NULL;
746    else {
747	_rtld_error("%s", saved_msg);
748	free(saved_msg);
749    }
750}
751
752static const char *
753basename(const char *name)
754{
755    const char *p = strrchr(name, '/');
756    return p != NULL ? p + 1 : name;
757}
758
759static struct utsname uts;
760
761static char *
762origin_subst_one(char *real, const char *kw, const char *subst,
763    bool may_free)
764{
765	char *p, *p1, *res, *resp;
766	int subst_len, kw_len, subst_count, old_len, new_len;
767
768	kw_len = strlen(kw);
769
770	/*
771	 * First, count the number of the keyword occurences, to
772	 * preallocate the final string.
773	 */
774	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
775		p1 = strstr(p, kw);
776		if (p1 == NULL)
777			break;
778	}
779
780	/*
781	 * If the keyword is not found, just return.
782	 */
783	if (subst_count == 0)
784		return (may_free ? real : xstrdup(real));
785
786	/*
787	 * There is indeed something to substitute.  Calculate the
788	 * length of the resulting string, and allocate it.
789	 */
790	subst_len = strlen(subst);
791	old_len = strlen(real);
792	new_len = old_len + (subst_len - kw_len) * subst_count;
793	res = xmalloc(new_len + 1);
794
795	/*
796	 * Now, execute the substitution loop.
797	 */
798	for (p = real, resp = res, *resp = '\0';;) {
799		p1 = strstr(p, kw);
800		if (p1 != NULL) {
801			/* Copy the prefix before keyword. */
802			memcpy(resp, p, p1 - p);
803			resp += p1 - p;
804			/* Keyword replacement. */
805			memcpy(resp, subst, subst_len);
806			resp += subst_len;
807			*resp = '\0';
808			p = p1 + kw_len;
809		} else
810			break;
811	}
812
813	/* Copy to the end of string and finish. */
814	strcat(resp, p);
815	if (may_free)
816		free(real);
817	return (res);
818}
819
820static char *
821origin_subst(char *real, const char *origin_path)
822{
823	char *res1, *res2, *res3, *res4;
824
825	if (uts.sysname[0] == '\0') {
826		if (uname(&uts) != 0) {
827			_rtld_error("utsname failed: %d", errno);
828			return (NULL);
829		}
830	}
831	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
832	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
833	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
834	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
835	return (res4);
836}
837
838static void
839die(void)
840{
841    const char *msg = dlerror();
842
843    if (msg == NULL)
844	msg = "Fatal error";
845    rtld_fdputstr(STDERR_FILENO, msg);
846    rtld_fdputchar(STDERR_FILENO, '\n');
847    _exit(1);
848}
849
850/*
851 * Process a shared object's DYNAMIC section, and save the important
852 * information in its Obj_Entry structure.
853 */
854static void
855digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
856    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
857{
858    const Elf_Dyn *dynp;
859    Needed_Entry **needed_tail = &obj->needed;
860    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
861    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
862    const Elf_Hashelt *hashtab;
863    const Elf32_Word *hashval;
864    Elf32_Word bkt, nmaskwords;
865    int bloom_size32;
866    int plttype = DT_REL;
867
868    *dyn_rpath = NULL;
869    *dyn_soname = NULL;
870    *dyn_runpath = NULL;
871
872    obj->bind_now = false;
873    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
874	switch (dynp->d_tag) {
875
876	case DT_REL:
877	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
878	    break;
879
880	case DT_RELSZ:
881	    obj->relsize = dynp->d_un.d_val;
882	    break;
883
884	case DT_RELENT:
885	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
886	    break;
887
888	case DT_JMPREL:
889	    obj->pltrel = (const Elf_Rel *)
890	      (obj->relocbase + dynp->d_un.d_ptr);
891	    break;
892
893	case DT_PLTRELSZ:
894	    obj->pltrelsize = dynp->d_un.d_val;
895	    break;
896
897	case DT_RELA:
898	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
899	    break;
900
901	case DT_RELASZ:
902	    obj->relasize = dynp->d_un.d_val;
903	    break;
904
905	case DT_RELAENT:
906	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
907	    break;
908
909	case DT_PLTREL:
910	    plttype = dynp->d_un.d_val;
911	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
912	    break;
913
914	case DT_SYMTAB:
915	    obj->symtab = (const Elf_Sym *)
916	      (obj->relocbase + dynp->d_un.d_ptr);
917	    break;
918
919	case DT_SYMENT:
920	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
921	    break;
922
923	case DT_STRTAB:
924	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
925	    break;
926
927	case DT_STRSZ:
928	    obj->strsize = dynp->d_un.d_val;
929	    break;
930
931	case DT_VERNEED:
932	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
933		dynp->d_un.d_val);
934	    break;
935
936	case DT_VERNEEDNUM:
937	    obj->verneednum = dynp->d_un.d_val;
938	    break;
939
940	case DT_VERDEF:
941	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
942		dynp->d_un.d_val);
943	    break;
944
945	case DT_VERDEFNUM:
946	    obj->verdefnum = dynp->d_un.d_val;
947	    break;
948
949	case DT_VERSYM:
950	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
951		dynp->d_un.d_val);
952	    break;
953
954	case DT_HASH:
955	    {
956		hashtab = (const Elf_Hashelt *)(obj->relocbase +
957		    dynp->d_un.d_ptr);
958		obj->nbuckets = hashtab[0];
959		obj->nchains = hashtab[1];
960		obj->buckets = hashtab + 2;
961		obj->chains = obj->buckets + obj->nbuckets;
962		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
963		  obj->buckets != NULL;
964	    }
965	    break;
966
967	case DT_GNU_HASH:
968	    {
969		hashtab = (const Elf_Hashelt *)(obj->relocbase +
970		    dynp->d_un.d_ptr);
971		obj->nbuckets_gnu = hashtab[0];
972		obj->symndx_gnu = hashtab[1];
973		nmaskwords = hashtab[2];
974		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
975		obj->maskwords_bm_gnu = nmaskwords - 1;
976		obj->shift2_gnu = hashtab[3];
977		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
978		obj->buckets_gnu = hashtab + 4 + bloom_size32;
979		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
980		  obj->symndx_gnu;
981		/* Number of bitmask words is required to be power of 2 */
982		obj->valid_hash_gnu = powerof2(nmaskwords) &&
983		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
984	    }
985	    break;
986
987	case DT_NEEDED:
988	    if (!obj->rtld) {
989		Needed_Entry *nep = NEW(Needed_Entry);
990		nep->name = dynp->d_un.d_val;
991		nep->obj = NULL;
992		nep->next = NULL;
993
994		*needed_tail = nep;
995		needed_tail = &nep->next;
996	    }
997	    break;
998
999	case DT_FILTER:
1000	    if (!obj->rtld) {
1001		Needed_Entry *nep = NEW(Needed_Entry);
1002		nep->name = dynp->d_un.d_val;
1003		nep->obj = NULL;
1004		nep->next = NULL;
1005
1006		*needed_filtees_tail = nep;
1007		needed_filtees_tail = &nep->next;
1008	    }
1009	    break;
1010
1011	case DT_AUXILIARY:
1012	    if (!obj->rtld) {
1013		Needed_Entry *nep = NEW(Needed_Entry);
1014		nep->name = dynp->d_un.d_val;
1015		nep->obj = NULL;
1016		nep->next = NULL;
1017
1018		*needed_aux_filtees_tail = nep;
1019		needed_aux_filtees_tail = &nep->next;
1020	    }
1021	    break;
1022
1023	case DT_PLTGOT:
1024	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1025	    break;
1026
1027	case DT_TEXTREL:
1028	    obj->textrel = true;
1029	    break;
1030
1031	case DT_SYMBOLIC:
1032	    obj->symbolic = true;
1033	    break;
1034
1035	case DT_RPATH:
1036	    /*
1037	     * We have to wait until later to process this, because we
1038	     * might not have gotten the address of the string table yet.
1039	     */
1040	    *dyn_rpath = dynp;
1041	    break;
1042
1043	case DT_SONAME:
1044	    *dyn_soname = dynp;
1045	    break;
1046
1047	case DT_RUNPATH:
1048	    *dyn_runpath = dynp;
1049	    break;
1050
1051	case DT_INIT:
1052	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1053	    break;
1054
1055	case DT_PREINIT_ARRAY:
1056	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1057	    break;
1058
1059	case DT_PREINIT_ARRAYSZ:
1060	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1061	    break;
1062
1063	case DT_INIT_ARRAY:
1064	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1065	    break;
1066
1067	case DT_INIT_ARRAYSZ:
1068	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1069	    break;
1070
1071	case DT_FINI:
1072	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1073	    break;
1074
1075	case DT_FINI_ARRAY:
1076	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1077	    break;
1078
1079	case DT_FINI_ARRAYSZ:
1080	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1081	    break;
1082
1083	/*
1084	 * Don't process DT_DEBUG on MIPS as the dynamic section
1085	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1086	 */
1087
1088#ifndef __mips__
1089	case DT_DEBUG:
1090	    /* XXX - not implemented yet */
1091	    if (!early)
1092		dbg("Filling in DT_DEBUG entry");
1093	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1094	    break;
1095#endif
1096
1097	case DT_FLAGS:
1098		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1099		    obj->z_origin = true;
1100		if (dynp->d_un.d_val & DF_SYMBOLIC)
1101		    obj->symbolic = true;
1102		if (dynp->d_un.d_val & DF_TEXTREL)
1103		    obj->textrel = true;
1104		if (dynp->d_un.d_val & DF_BIND_NOW)
1105		    obj->bind_now = true;
1106		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1107		    ;*/
1108	    break;
1109#ifdef __mips__
1110	case DT_MIPS_LOCAL_GOTNO:
1111		obj->local_gotno = dynp->d_un.d_val;
1112	    break;
1113
1114	case DT_MIPS_SYMTABNO:
1115		obj->symtabno = dynp->d_un.d_val;
1116		break;
1117
1118	case DT_MIPS_GOTSYM:
1119		obj->gotsym = dynp->d_un.d_val;
1120		break;
1121
1122	case DT_MIPS_RLD_MAP:
1123		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1124		break;
1125#endif
1126
1127	case DT_FLAGS_1:
1128		if (dynp->d_un.d_val & DF_1_NOOPEN)
1129		    obj->z_noopen = true;
1130		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1131		    obj->z_origin = true;
1132		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1133		    XXX ;*/
1134		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1135		    obj->bind_now = true;
1136		if (dynp->d_un.d_val & DF_1_NODELETE)
1137		    obj->z_nodelete = true;
1138		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1139		    obj->z_loadfltr = true;
1140		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1141		    obj->z_interpose = true;
1142		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1143		    obj->z_nodeflib = true;
1144	    break;
1145
1146	default:
1147	    if (!early) {
1148		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1149		    (long)dynp->d_tag);
1150	    }
1151	    break;
1152	}
1153    }
1154
1155    obj->traced = false;
1156
1157    if (plttype == DT_RELA) {
1158	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1159	obj->pltrel = NULL;
1160	obj->pltrelasize = obj->pltrelsize;
1161	obj->pltrelsize = 0;
1162    }
1163
1164    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1165    if (obj->valid_hash_sysv)
1166	obj->dynsymcount = obj->nchains;
1167    else if (obj->valid_hash_gnu) {
1168	obj->dynsymcount = 0;
1169	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1170	    if (obj->buckets_gnu[bkt] == 0)
1171		continue;
1172	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1173	    do
1174		obj->dynsymcount++;
1175	    while ((*hashval++ & 1u) == 0);
1176	}
1177	obj->dynsymcount += obj->symndx_gnu;
1178    }
1179}
1180
1181static void
1182digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1183    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1184{
1185
1186    if (obj->z_origin && obj->origin_path == NULL) {
1187	obj->origin_path = xmalloc(PATH_MAX);
1188	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1189	    die();
1190    }
1191
1192    if (dyn_runpath != NULL) {
1193	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1194	if (obj->z_origin)
1195	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1196    }
1197    else if (dyn_rpath != NULL) {
1198	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1199	if (obj->z_origin)
1200	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1201    }
1202
1203    if (dyn_soname != NULL)
1204	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1205}
1206
1207static void
1208digest_dynamic(Obj_Entry *obj, int early)
1209{
1210	const Elf_Dyn *dyn_rpath;
1211	const Elf_Dyn *dyn_soname;
1212	const Elf_Dyn *dyn_runpath;
1213
1214	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1215	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1216}
1217
1218/*
1219 * Process a shared object's program header.  This is used only for the
1220 * main program, when the kernel has already loaded the main program
1221 * into memory before calling the dynamic linker.  It creates and
1222 * returns an Obj_Entry structure.
1223 */
1224static Obj_Entry *
1225digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1226{
1227    Obj_Entry *obj;
1228    const Elf_Phdr *phlimit = phdr + phnum;
1229    const Elf_Phdr *ph;
1230    Elf_Addr note_start, note_end;
1231    int nsegs = 0;
1232
1233    obj = obj_new();
1234    for (ph = phdr;  ph < phlimit;  ph++) {
1235	if (ph->p_type != PT_PHDR)
1236	    continue;
1237
1238	obj->phdr = phdr;
1239	obj->phsize = ph->p_memsz;
1240	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1241	break;
1242    }
1243
1244    obj->stack_flags = PF_X | PF_R | PF_W;
1245
1246    for (ph = phdr;  ph < phlimit;  ph++) {
1247	switch (ph->p_type) {
1248
1249	case PT_INTERP:
1250	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1251	    break;
1252
1253	case PT_LOAD:
1254	    if (nsegs == 0) {	/* First load segment */
1255		obj->vaddrbase = trunc_page(ph->p_vaddr);
1256		obj->mapbase = obj->vaddrbase + obj->relocbase;
1257		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1258		  obj->vaddrbase;
1259	    } else {		/* Last load segment */
1260		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1261		  obj->vaddrbase;
1262	    }
1263	    nsegs++;
1264	    break;
1265
1266	case PT_DYNAMIC:
1267	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1268	    break;
1269
1270	case PT_TLS:
1271	    obj->tlsindex = 1;
1272	    obj->tlssize = ph->p_memsz;
1273	    obj->tlsalign = ph->p_align;
1274	    obj->tlsinitsize = ph->p_filesz;
1275	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1276	    break;
1277
1278	case PT_GNU_STACK:
1279	    obj->stack_flags = ph->p_flags;
1280	    break;
1281
1282	case PT_GNU_RELRO:
1283	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1284	    obj->relro_size = round_page(ph->p_memsz);
1285	    break;
1286
1287	case PT_NOTE:
1288	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1289	    note_end = note_start + ph->p_filesz;
1290	    digest_notes(obj, note_start, note_end);
1291	    break;
1292	}
1293    }
1294    if (nsegs < 1) {
1295	_rtld_error("%s: too few PT_LOAD segments", path);
1296	return NULL;
1297    }
1298
1299    obj->entry = entry;
1300    return obj;
1301}
1302
1303void
1304digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1305{
1306	const Elf_Note *note;
1307	const char *note_name;
1308	uintptr_t p;
1309
1310	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1311	    note = (const Elf_Note *)((const char *)(note + 1) +
1312	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1313	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1314		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1315		    note->n_descsz != sizeof(int32_t))
1316			continue;
1317		if (note->n_type != ABI_NOTETYPE &&
1318		    note->n_type != CRT_NOINIT_NOTETYPE)
1319			continue;
1320		note_name = (const char *)(note + 1);
1321		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1322		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1323			continue;
1324		switch (note->n_type) {
1325		case ABI_NOTETYPE:
1326			/* FreeBSD osrel note */
1327			p = (uintptr_t)(note + 1);
1328			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1329			obj->osrel = *(const int32_t *)(p);
1330			dbg("note osrel %d", obj->osrel);
1331			break;
1332		case CRT_NOINIT_NOTETYPE:
1333			/* FreeBSD 'crt does not call init' note */
1334			obj->crt_no_init = true;
1335			dbg("note crt_no_init");
1336			break;
1337		}
1338	}
1339}
1340
1341static Obj_Entry *
1342dlcheck(void *handle)
1343{
1344    Obj_Entry *obj;
1345
1346    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1347	if (obj == (Obj_Entry *) handle)
1348	    break;
1349
1350    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1351	_rtld_error("Invalid shared object handle %p", handle);
1352	return NULL;
1353    }
1354    return obj;
1355}
1356
1357/*
1358 * If the given object is already in the donelist, return true.  Otherwise
1359 * add the object to the list and return false.
1360 */
1361static bool
1362donelist_check(DoneList *dlp, const Obj_Entry *obj)
1363{
1364    unsigned int i;
1365
1366    for (i = 0;  i < dlp->num_used;  i++)
1367	if (dlp->objs[i] == obj)
1368	    return true;
1369    /*
1370     * Our donelist allocation should always be sufficient.  But if
1371     * our threads locking isn't working properly, more shared objects
1372     * could have been loaded since we allocated the list.  That should
1373     * never happen, but we'll handle it properly just in case it does.
1374     */
1375    if (dlp->num_used < dlp->num_alloc)
1376	dlp->objs[dlp->num_used++] = obj;
1377    return false;
1378}
1379
1380/*
1381 * Hash function for symbol table lookup.  Don't even think about changing
1382 * this.  It is specified by the System V ABI.
1383 */
1384unsigned long
1385elf_hash(const char *name)
1386{
1387    const unsigned char *p = (const unsigned char *) name;
1388    unsigned long h = 0;
1389    unsigned long g;
1390
1391    while (*p != '\0') {
1392	h = (h << 4) + *p++;
1393	if ((g = h & 0xf0000000) != 0)
1394	    h ^= g >> 24;
1395	h &= ~g;
1396    }
1397    return h;
1398}
1399
1400/*
1401 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1402 * unsigned in case it's implemented with a wider type.
1403 */
1404static uint32_t
1405gnu_hash(const char *s)
1406{
1407	uint32_t h;
1408	unsigned char c;
1409
1410	h = 5381;
1411	for (c = *s; c != '\0'; c = *++s)
1412		h = h * 33 + c;
1413	return (h & 0xffffffff);
1414}
1415
1416/*
1417 * Find the library with the given name, and return its full pathname.
1418 * The returned string is dynamically allocated.  Generates an error
1419 * message and returns NULL if the library cannot be found.
1420 *
1421 * If the second argument is non-NULL, then it refers to an already-
1422 * loaded shared object, whose library search path will be searched.
1423 *
1424 * The search order is:
1425 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1426 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1427 *   LD_LIBRARY_PATH
1428 *   DT_RUNPATH in the referencing file
1429 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1430 *	 from list)
1431 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1432 *
1433 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1434 */
1435static char *
1436find_library(const char *xname, const Obj_Entry *refobj)
1437{
1438    char *pathname;
1439    char *name;
1440    bool nodeflib, objgiven;
1441
1442    objgiven = refobj != NULL;
1443    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1444	if (xname[0] != '/' && !trust) {
1445	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1446	      xname);
1447	    return NULL;
1448	}
1449	if (objgiven && refobj->z_origin) {
1450		return (origin_subst(__DECONST(char *, xname),
1451		    refobj->origin_path));
1452	} else {
1453		return (xstrdup(xname));
1454	}
1455    }
1456
1457    if (libmap_disable || !objgiven ||
1458	(name = lm_find(refobj->path, xname)) == NULL)
1459	name = (char *)xname;
1460
1461    dbg(" Searching for \"%s\"", name);
1462
1463    /*
1464     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1465     * back to pre-conforming behaviour if user requested so with
1466     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1467     * nodeflib.
1468     */
1469    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1470	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1471	  (refobj != NULL &&
1472	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1473          (pathname = search_library_path(name, gethints(false))) != NULL ||
1474	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1475	    return (pathname);
1476    } else {
1477	nodeflib = objgiven ? refobj->z_nodeflib : false;
1478	if ((objgiven &&
1479	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1480	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1481	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1482	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1483	  (objgiven &&
1484	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1485	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1486	  (objgiven && !nodeflib &&
1487	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1488	    return (pathname);
1489    }
1490
1491    if (objgiven && refobj->path != NULL) {
1492	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1493	  name, basename(refobj->path));
1494    } else {
1495	_rtld_error("Shared object \"%s\" not found", name);
1496    }
1497    return NULL;
1498}
1499
1500/*
1501 * Given a symbol number in a referencing object, find the corresponding
1502 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1503 * no definition was found.  Returns a pointer to the Obj_Entry of the
1504 * defining object via the reference parameter DEFOBJ_OUT.
1505 */
1506const Elf_Sym *
1507find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1508    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1509    RtldLockState *lockstate)
1510{
1511    const Elf_Sym *ref;
1512    const Elf_Sym *def;
1513    const Obj_Entry *defobj;
1514    SymLook req;
1515    const char *name;
1516    int res;
1517
1518    /*
1519     * If we have already found this symbol, get the information from
1520     * the cache.
1521     */
1522    if (symnum >= refobj->dynsymcount)
1523	return NULL;	/* Bad object */
1524    if (cache != NULL && cache[symnum].sym != NULL) {
1525	*defobj_out = cache[symnum].obj;
1526	return cache[symnum].sym;
1527    }
1528
1529    ref = refobj->symtab + symnum;
1530    name = refobj->strtab + ref->st_name;
1531    def = NULL;
1532    defobj = NULL;
1533
1534    /*
1535     * We don't have to do a full scale lookup if the symbol is local.
1536     * We know it will bind to the instance in this load module; to
1537     * which we already have a pointer (ie ref). By not doing a lookup,
1538     * we not only improve performance, but it also avoids unresolvable
1539     * symbols when local symbols are not in the hash table. This has
1540     * been seen with the ia64 toolchain.
1541     */
1542    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1543	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1544	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1545		symnum);
1546	}
1547	symlook_init(&req, name);
1548	req.flags = flags;
1549	req.ventry = fetch_ventry(refobj, symnum);
1550	req.lockstate = lockstate;
1551	res = symlook_default(&req, refobj);
1552	if (res == 0) {
1553	    def = req.sym_out;
1554	    defobj = req.defobj_out;
1555	}
1556    } else {
1557	def = ref;
1558	defobj = refobj;
1559    }
1560
1561    /*
1562     * If we found no definition and the reference is weak, treat the
1563     * symbol as having the value zero.
1564     */
1565    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1566	def = &sym_zero;
1567	defobj = obj_main;
1568    }
1569
1570    if (def != NULL) {
1571	*defobj_out = defobj;
1572	/* Record the information in the cache to avoid subsequent lookups. */
1573	if (cache != NULL) {
1574	    cache[symnum].sym = def;
1575	    cache[symnum].obj = defobj;
1576	}
1577    } else {
1578	if (refobj != &obj_rtld)
1579	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1580    }
1581    return def;
1582}
1583
1584/*
1585 * Return the search path from the ldconfig hints file, reading it if
1586 * necessary.  If nostdlib is true, then the default search paths are
1587 * not added to result.
1588 *
1589 * Returns NULL if there are problems with the hints file,
1590 * or if the search path there is empty.
1591 */
1592static const char *
1593gethints(bool nostdlib)
1594{
1595	static char *hints, *filtered_path;
1596	struct elfhints_hdr hdr;
1597	struct fill_search_info_args sargs, hargs;
1598	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1599	struct dl_serpath *SLPpath, *hintpath;
1600	char *p;
1601	unsigned int SLPndx, hintndx, fndx, fcount;
1602	int fd;
1603	size_t flen;
1604	bool skip;
1605
1606	/* First call, read the hints file */
1607	if (hints == NULL) {
1608		/* Keep from trying again in case the hints file is bad. */
1609		hints = "";
1610
1611		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1612			return (NULL);
1613		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1614		    hdr.magic != ELFHINTS_MAGIC ||
1615		    hdr.version != 1) {
1616			close(fd);
1617			return (NULL);
1618		}
1619		p = xmalloc(hdr.dirlistlen + 1);
1620		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1621		    read(fd, p, hdr.dirlistlen + 1) !=
1622		    (ssize_t)hdr.dirlistlen + 1) {
1623			free(p);
1624			close(fd);
1625			return (NULL);
1626		}
1627		hints = p;
1628		close(fd);
1629	}
1630
1631	/*
1632	 * If caller agreed to receive list which includes the default
1633	 * paths, we are done. Otherwise, if we still did not
1634	 * calculated filtered result, do it now.
1635	 */
1636	if (!nostdlib)
1637		return (hints[0] != '\0' ? hints : NULL);
1638	if (filtered_path != NULL)
1639		goto filt_ret;
1640
1641	/*
1642	 * Obtain the list of all configured search paths, and the
1643	 * list of the default paths.
1644	 *
1645	 * First estimate the size of the results.
1646	 */
1647	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1648	smeta.dls_cnt = 0;
1649	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1650	hmeta.dls_cnt = 0;
1651
1652	sargs.request = RTLD_DI_SERINFOSIZE;
1653	sargs.serinfo = &smeta;
1654	hargs.request = RTLD_DI_SERINFOSIZE;
1655	hargs.serinfo = &hmeta;
1656
1657	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1658	path_enumerate(p, fill_search_info, &hargs);
1659
1660	SLPinfo = xmalloc(smeta.dls_size);
1661	hintinfo = xmalloc(hmeta.dls_size);
1662
1663	/*
1664	 * Next fetch both sets of paths.
1665	 */
1666	sargs.request = RTLD_DI_SERINFO;
1667	sargs.serinfo = SLPinfo;
1668	sargs.serpath = &SLPinfo->dls_serpath[0];
1669	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1670
1671	hargs.request = RTLD_DI_SERINFO;
1672	hargs.serinfo = hintinfo;
1673	hargs.serpath = &hintinfo->dls_serpath[0];
1674	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1675
1676	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1677	path_enumerate(p, fill_search_info, &hargs);
1678
1679	/*
1680	 * Now calculate the difference between two sets, by excluding
1681	 * standard paths from the full set.
1682	 */
1683	fndx = 0;
1684	fcount = 0;
1685	filtered_path = xmalloc(hdr.dirlistlen + 1);
1686	hintpath = &hintinfo->dls_serpath[0];
1687	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1688		skip = false;
1689		SLPpath = &SLPinfo->dls_serpath[0];
1690		/*
1691		 * Check each standard path against current.
1692		 */
1693		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1694			/* matched, skip the path */
1695			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1696				skip = true;
1697				break;
1698			}
1699		}
1700		if (skip)
1701			continue;
1702		/*
1703		 * Not matched against any standard path, add the path
1704		 * to result. Separate consequtive paths with ':'.
1705		 */
1706		if (fcount > 0) {
1707			filtered_path[fndx] = ':';
1708			fndx++;
1709		}
1710		fcount++;
1711		flen = strlen(hintpath->dls_name);
1712		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1713		fndx += flen;
1714	}
1715	filtered_path[fndx] = '\0';
1716
1717	free(SLPinfo);
1718	free(hintinfo);
1719
1720filt_ret:
1721	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1722}
1723
1724static void
1725init_dag(Obj_Entry *root)
1726{
1727    const Needed_Entry *needed;
1728    const Objlist_Entry *elm;
1729    DoneList donelist;
1730
1731    if (root->dag_inited)
1732	return;
1733    donelist_init(&donelist);
1734
1735    /* Root object belongs to own DAG. */
1736    objlist_push_tail(&root->dldags, root);
1737    objlist_push_tail(&root->dagmembers, root);
1738    donelist_check(&donelist, root);
1739
1740    /*
1741     * Add dependencies of root object to DAG in breadth order
1742     * by exploiting the fact that each new object get added
1743     * to the tail of the dagmembers list.
1744     */
1745    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1746	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1747	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1748		continue;
1749	    objlist_push_tail(&needed->obj->dldags, root);
1750	    objlist_push_tail(&root->dagmembers, needed->obj);
1751	}
1752    }
1753    root->dag_inited = true;
1754}
1755
1756static void
1757process_nodelete(Obj_Entry *root)
1758{
1759	const Objlist_Entry *elm;
1760
1761	/*
1762	 * Walk over object DAG and process every dependent object that
1763	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1764	 * which then should have its reference upped separately.
1765	 */
1766	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1767		if (elm->obj != NULL && elm->obj->z_nodelete &&
1768		    !elm->obj->ref_nodel) {
1769			dbg("obj %s nodelete", elm->obj->path);
1770			init_dag(elm->obj);
1771			ref_dag(elm->obj);
1772			elm->obj->ref_nodel = true;
1773		}
1774	}
1775}
1776/*
1777 * Initialize the dynamic linker.  The argument is the address at which
1778 * the dynamic linker has been mapped into memory.  The primary task of
1779 * this function is to relocate the dynamic linker.
1780 */
1781static void
1782init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1783{
1784    Obj_Entry objtmp;	/* Temporary rtld object */
1785    const Elf_Dyn *dyn_rpath;
1786    const Elf_Dyn *dyn_soname;
1787    const Elf_Dyn *dyn_runpath;
1788
1789    /*
1790     * Conjure up an Obj_Entry structure for the dynamic linker.
1791     *
1792     * The "path" member can't be initialized yet because string constants
1793     * cannot yet be accessed. Below we will set it correctly.
1794     */
1795    memset(&objtmp, 0, sizeof(objtmp));
1796    objtmp.path = NULL;
1797    objtmp.rtld = true;
1798    objtmp.mapbase = mapbase;
1799#ifdef PIC
1800    objtmp.relocbase = mapbase;
1801#endif
1802    if (RTLD_IS_DYNAMIC()) {
1803	objtmp.dynamic = rtld_dynamic(&objtmp);
1804	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1805	assert(objtmp.needed == NULL);
1806#if !defined(__mips__)
1807	/* MIPS has a bogus DT_TEXTREL. */
1808	assert(!objtmp.textrel);
1809#endif
1810
1811	/*
1812	 * Temporarily put the dynamic linker entry into the object list, so
1813	 * that symbols can be found.
1814	 */
1815
1816	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1817    }
1818
1819    /* Initialize the object list. */
1820    obj_tail = &obj_list;
1821
1822    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1823    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1824
1825    if (aux_info[AT_PAGESZ] != NULL)
1826	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1827    if (aux_info[AT_OSRELDATE] != NULL)
1828	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1829
1830    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1831
1832    /* Replace the path with a dynamically allocated copy. */
1833    obj_rtld.path = xstrdup(PATH_RTLD);
1834
1835    r_debug.r_brk = r_debug_state;
1836    r_debug.r_state = RT_CONSISTENT;
1837}
1838
1839/*
1840 * Add the init functions from a needed object list (and its recursive
1841 * needed objects) to "list".  This is not used directly; it is a helper
1842 * function for initlist_add_objects().  The write lock must be held
1843 * when this function is called.
1844 */
1845static void
1846initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1847{
1848    /* Recursively process the successor needed objects. */
1849    if (needed->next != NULL)
1850	initlist_add_neededs(needed->next, list);
1851
1852    /* Process the current needed object. */
1853    if (needed->obj != NULL)
1854	initlist_add_objects(needed->obj, &needed->obj->next, list);
1855}
1856
1857/*
1858 * Scan all of the DAGs rooted in the range of objects from "obj" to
1859 * "tail" and add their init functions to "list".  This recurses over
1860 * the DAGs and ensure the proper init ordering such that each object's
1861 * needed libraries are initialized before the object itself.  At the
1862 * same time, this function adds the objects to the global finalization
1863 * list "list_fini" in the opposite order.  The write lock must be
1864 * held when this function is called.
1865 */
1866static void
1867initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1868{
1869
1870    if (obj->init_scanned || obj->init_done)
1871	return;
1872    obj->init_scanned = true;
1873
1874    /* Recursively process the successor objects. */
1875    if (&obj->next != tail)
1876	initlist_add_objects(obj->next, tail, list);
1877
1878    /* Recursively process the needed objects. */
1879    if (obj->needed != NULL)
1880	initlist_add_neededs(obj->needed, list);
1881    if (obj->needed_filtees != NULL)
1882	initlist_add_neededs(obj->needed_filtees, list);
1883    if (obj->needed_aux_filtees != NULL)
1884	initlist_add_neededs(obj->needed_aux_filtees, list);
1885
1886    /* Add the object to the init list. */
1887    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1888      obj->init_array != (Elf_Addr)NULL)
1889	objlist_push_tail(list, obj);
1890
1891    /* Add the object to the global fini list in the reverse order. */
1892    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1893      && !obj->on_fini_list) {
1894	objlist_push_head(&list_fini, obj);
1895	obj->on_fini_list = true;
1896    }
1897}
1898
1899#ifndef FPTR_TARGET
1900#define FPTR_TARGET(f)	((Elf_Addr) (f))
1901#endif
1902
1903static void
1904free_needed_filtees(Needed_Entry *n)
1905{
1906    Needed_Entry *needed, *needed1;
1907
1908    for (needed = n; needed != NULL; needed = needed->next) {
1909	if (needed->obj != NULL) {
1910	    dlclose(needed->obj);
1911	    needed->obj = NULL;
1912	}
1913    }
1914    for (needed = n; needed != NULL; needed = needed1) {
1915	needed1 = needed->next;
1916	free(needed);
1917    }
1918}
1919
1920static void
1921unload_filtees(Obj_Entry *obj)
1922{
1923
1924    free_needed_filtees(obj->needed_filtees);
1925    obj->needed_filtees = NULL;
1926    free_needed_filtees(obj->needed_aux_filtees);
1927    obj->needed_aux_filtees = NULL;
1928    obj->filtees_loaded = false;
1929}
1930
1931static void
1932load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1933    RtldLockState *lockstate)
1934{
1935
1936    for (; needed != NULL; needed = needed->next) {
1937	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1938	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1939	  RTLD_LOCAL, lockstate);
1940    }
1941}
1942
1943static void
1944load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1945{
1946
1947    lock_restart_for_upgrade(lockstate);
1948    if (!obj->filtees_loaded) {
1949	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1950	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1951	obj->filtees_loaded = true;
1952    }
1953}
1954
1955static int
1956process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1957{
1958    Obj_Entry *obj1;
1959
1960    for (; needed != NULL; needed = needed->next) {
1961	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1962	  flags & ~RTLD_LO_NOLOAD);
1963	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1964	    return (-1);
1965    }
1966    return (0);
1967}
1968
1969/*
1970 * Given a shared object, traverse its list of needed objects, and load
1971 * each of them.  Returns 0 on success.  Generates an error message and
1972 * returns -1 on failure.
1973 */
1974static int
1975load_needed_objects(Obj_Entry *first, int flags)
1976{
1977    Obj_Entry *obj;
1978
1979    for (obj = first;  obj != NULL;  obj = obj->next) {
1980	if (process_needed(obj, obj->needed, flags) == -1)
1981	    return (-1);
1982    }
1983    return (0);
1984}
1985
1986static int
1987load_preload_objects(void)
1988{
1989    char *p = ld_preload;
1990    Obj_Entry *obj;
1991    static const char delim[] = " \t:;";
1992
1993    if (p == NULL)
1994	return 0;
1995
1996    p += strspn(p, delim);
1997    while (*p != '\0') {
1998	size_t len = strcspn(p, delim);
1999	char savech;
2000
2001	savech = p[len];
2002	p[len] = '\0';
2003	obj = load_object(p, -1, NULL, 0);
2004	if (obj == NULL)
2005	    return -1;	/* XXX - cleanup */
2006	obj->z_interpose = true;
2007	p[len] = savech;
2008	p += len;
2009	p += strspn(p, delim);
2010    }
2011    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2012    return 0;
2013}
2014
2015static const char *
2016printable_path(const char *path)
2017{
2018
2019	return (path == NULL ? "<unknown>" : path);
2020}
2021
2022/*
2023 * Load a shared object into memory, if it is not already loaded.  The
2024 * object may be specified by name or by user-supplied file descriptor
2025 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2026 * duplicate is.
2027 *
2028 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2029 * on failure.
2030 */
2031static Obj_Entry *
2032load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2033{
2034    Obj_Entry *obj;
2035    int fd;
2036    struct stat sb;
2037    char *path;
2038
2039    if (name != NULL) {
2040	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2041	    if (object_match_name(obj, name))
2042		return (obj);
2043	}
2044
2045	path = find_library(name, refobj);
2046	if (path == NULL)
2047	    return (NULL);
2048    } else
2049	path = NULL;
2050
2051    /*
2052     * If we didn't find a match by pathname, or the name is not
2053     * supplied, open the file and check again by device and inode.
2054     * This avoids false mismatches caused by multiple links or ".."
2055     * in pathnames.
2056     *
2057     * To avoid a race, we open the file and use fstat() rather than
2058     * using stat().
2059     */
2060    fd = -1;
2061    if (fd_u == -1) {
2062	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2063	    _rtld_error("Cannot open \"%s\"", path);
2064	    free(path);
2065	    return (NULL);
2066	}
2067    } else {
2068	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2069	if (fd == -1) {
2070	    _rtld_error("Cannot dup fd");
2071	    free(path);
2072	    return (NULL);
2073	}
2074    }
2075    if (fstat(fd, &sb) == -1) {
2076	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2077	close(fd);
2078	free(path);
2079	return NULL;
2080    }
2081    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2082	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2083	    break;
2084    if (obj != NULL && name != NULL) {
2085	object_add_name(obj, name);
2086	free(path);
2087	close(fd);
2088	return obj;
2089    }
2090    if (flags & RTLD_LO_NOLOAD) {
2091	free(path);
2092	close(fd);
2093	return (NULL);
2094    }
2095
2096    /* First use of this object, so we must map it in */
2097    obj = do_load_object(fd, name, path, &sb, flags);
2098    if (obj == NULL)
2099	free(path);
2100    close(fd);
2101
2102    return obj;
2103}
2104
2105static Obj_Entry *
2106do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2107  int flags)
2108{
2109    Obj_Entry *obj;
2110    struct statfs fs;
2111
2112    /*
2113     * but first, make sure that environment variables haven't been
2114     * used to circumvent the noexec flag on a filesystem.
2115     */
2116    if (dangerous_ld_env) {
2117	if (fstatfs(fd, &fs) != 0) {
2118	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2119	    return NULL;
2120	}
2121	if (fs.f_flags & MNT_NOEXEC) {
2122	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2123	    return NULL;
2124	}
2125    }
2126    dbg("loading \"%s\"", printable_path(path));
2127    obj = map_object(fd, printable_path(path), sbp);
2128    if (obj == NULL)
2129        return NULL;
2130
2131    /*
2132     * If DT_SONAME is present in the object, digest_dynamic2 already
2133     * added it to the object names.
2134     */
2135    if (name != NULL)
2136	object_add_name(obj, name);
2137    obj->path = path;
2138    digest_dynamic(obj, 0);
2139    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2140	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2141    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2142      RTLD_LO_DLOPEN) {
2143	dbg("refusing to load non-loadable \"%s\"", obj->path);
2144	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2145	munmap(obj->mapbase, obj->mapsize);
2146	obj_free(obj);
2147	return (NULL);
2148    }
2149
2150    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2151    *obj_tail = obj;
2152    obj_tail = &obj->next;
2153    obj_count++;
2154    obj_loads++;
2155    linkmap_add(obj);	/* for GDB & dlinfo() */
2156    max_stack_flags |= obj->stack_flags;
2157
2158    dbg("  %p .. %p: %s", obj->mapbase,
2159         obj->mapbase + obj->mapsize - 1, obj->path);
2160    if (obj->textrel)
2161	dbg("  WARNING: %s has impure text", obj->path);
2162    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2163	obj->path);
2164
2165    return obj;
2166}
2167
2168static Obj_Entry *
2169obj_from_addr(const void *addr)
2170{
2171    Obj_Entry *obj;
2172
2173    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2174	if (addr < (void *) obj->mapbase)
2175	    continue;
2176	if (addr < (void *) (obj->mapbase + obj->mapsize))
2177	    return obj;
2178    }
2179    return NULL;
2180}
2181
2182static void
2183preinit_main(void)
2184{
2185    Elf_Addr *preinit_addr;
2186    int index;
2187
2188    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2189    if (preinit_addr == NULL)
2190	return;
2191
2192    for (index = 0; index < obj_main->preinit_array_num; index++) {
2193	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2194	    dbg("calling preinit function for %s at %p", obj_main->path,
2195	      (void *)preinit_addr[index]);
2196	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2197	      0, 0, obj_main->path);
2198	    call_init_pointer(obj_main, preinit_addr[index]);
2199	}
2200    }
2201}
2202
2203/*
2204 * Call the finalization functions for each of the objects in "list"
2205 * belonging to the DAG of "root" and referenced once. If NULL "root"
2206 * is specified, every finalization function will be called regardless
2207 * of the reference count and the list elements won't be freed. All of
2208 * the objects are expected to have non-NULL fini functions.
2209 */
2210static void
2211objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2212{
2213    Objlist_Entry *elm;
2214    char *saved_msg;
2215    Elf_Addr *fini_addr;
2216    int index;
2217
2218    assert(root == NULL || root->refcount == 1);
2219
2220    /*
2221     * Preserve the current error message since a fini function might
2222     * call into the dynamic linker and overwrite it.
2223     */
2224    saved_msg = errmsg_save();
2225    do {
2226	STAILQ_FOREACH(elm, list, link) {
2227	    if (root != NULL && (elm->obj->refcount != 1 ||
2228	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2229		continue;
2230	    /* Remove object from fini list to prevent recursive invocation. */
2231	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2232	    /*
2233	     * XXX: If a dlopen() call references an object while the
2234	     * fini function is in progress, we might end up trying to
2235	     * unload the referenced object in dlclose() or the object
2236	     * won't be unloaded although its fini function has been
2237	     * called.
2238	     */
2239	    lock_release(rtld_bind_lock, lockstate);
2240
2241	    /*
2242	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2243	     * When this happens, DT_FINI_ARRAY is processed first.
2244	     */
2245	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2246	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2247		for (index = elm->obj->fini_array_num - 1; index >= 0;
2248		  index--) {
2249		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2250			dbg("calling fini function for %s at %p",
2251			    elm->obj->path, (void *)fini_addr[index]);
2252			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2253			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2254			call_initfini_pointer(elm->obj, fini_addr[index]);
2255		    }
2256		}
2257	    }
2258	    if (elm->obj->fini != (Elf_Addr)NULL) {
2259		dbg("calling fini function for %s at %p", elm->obj->path,
2260		    (void *)elm->obj->fini);
2261		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2262		    0, 0, elm->obj->path);
2263		call_initfini_pointer(elm->obj, elm->obj->fini);
2264	    }
2265	    wlock_acquire(rtld_bind_lock, lockstate);
2266	    /* No need to free anything if process is going down. */
2267	    if (root != NULL)
2268	    	free(elm);
2269	    /*
2270	     * We must restart the list traversal after every fini call
2271	     * because a dlclose() call from the fini function or from
2272	     * another thread might have modified the reference counts.
2273	     */
2274	    break;
2275	}
2276    } while (elm != NULL);
2277    errmsg_restore(saved_msg);
2278}
2279
2280/*
2281 * Call the initialization functions for each of the objects in
2282 * "list".  All of the objects are expected to have non-NULL init
2283 * functions.
2284 */
2285static void
2286objlist_call_init(Objlist *list, RtldLockState *lockstate)
2287{
2288    Objlist_Entry *elm;
2289    Obj_Entry *obj;
2290    char *saved_msg;
2291    Elf_Addr *init_addr;
2292    int index;
2293
2294    /*
2295     * Clean init_scanned flag so that objects can be rechecked and
2296     * possibly initialized earlier if any of vectors called below
2297     * cause the change by using dlopen.
2298     */
2299    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2300	obj->init_scanned = false;
2301
2302    /*
2303     * Preserve the current error message since an init function might
2304     * call into the dynamic linker and overwrite it.
2305     */
2306    saved_msg = errmsg_save();
2307    STAILQ_FOREACH(elm, list, link) {
2308	if (elm->obj->init_done) /* Initialized early. */
2309	    continue;
2310	/*
2311	 * Race: other thread might try to use this object before current
2312	 * one completes the initilization. Not much can be done here
2313	 * without better locking.
2314	 */
2315	elm->obj->init_done = true;
2316	lock_release(rtld_bind_lock, lockstate);
2317
2318        /*
2319         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2320         * When this happens, DT_INIT is processed first.
2321         */
2322	if (elm->obj->init != (Elf_Addr)NULL) {
2323	    dbg("calling init function for %s at %p", elm->obj->path,
2324	        (void *)elm->obj->init);
2325	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2326	        0, 0, elm->obj->path);
2327	    call_initfini_pointer(elm->obj, elm->obj->init);
2328	}
2329	init_addr = (Elf_Addr *)elm->obj->init_array;
2330	if (init_addr != NULL) {
2331	    for (index = 0; index < elm->obj->init_array_num; index++) {
2332		if (init_addr[index] != 0 && init_addr[index] != 1) {
2333		    dbg("calling init function for %s at %p", elm->obj->path,
2334			(void *)init_addr[index]);
2335		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2336			(void *)init_addr[index], 0, 0, elm->obj->path);
2337		    call_init_pointer(elm->obj, init_addr[index]);
2338		}
2339	    }
2340	}
2341	wlock_acquire(rtld_bind_lock, lockstate);
2342    }
2343    errmsg_restore(saved_msg);
2344}
2345
2346static void
2347objlist_clear(Objlist *list)
2348{
2349    Objlist_Entry *elm;
2350
2351    while (!STAILQ_EMPTY(list)) {
2352	elm = STAILQ_FIRST(list);
2353	STAILQ_REMOVE_HEAD(list, link);
2354	free(elm);
2355    }
2356}
2357
2358static Objlist_Entry *
2359objlist_find(Objlist *list, const Obj_Entry *obj)
2360{
2361    Objlist_Entry *elm;
2362
2363    STAILQ_FOREACH(elm, list, link)
2364	if (elm->obj == obj)
2365	    return elm;
2366    return NULL;
2367}
2368
2369static void
2370objlist_init(Objlist *list)
2371{
2372    STAILQ_INIT(list);
2373}
2374
2375static void
2376objlist_push_head(Objlist *list, Obj_Entry *obj)
2377{
2378    Objlist_Entry *elm;
2379
2380    elm = NEW(Objlist_Entry);
2381    elm->obj = obj;
2382    STAILQ_INSERT_HEAD(list, elm, link);
2383}
2384
2385static void
2386objlist_push_tail(Objlist *list, Obj_Entry *obj)
2387{
2388    Objlist_Entry *elm;
2389
2390    elm = NEW(Objlist_Entry);
2391    elm->obj = obj;
2392    STAILQ_INSERT_TAIL(list, elm, link);
2393}
2394
2395static void
2396objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2397{
2398	Objlist_Entry *elm, *listelm;
2399
2400	STAILQ_FOREACH(listelm, list, link) {
2401		if (listelm->obj == listobj)
2402			break;
2403	}
2404	elm = NEW(Objlist_Entry);
2405	elm->obj = obj;
2406	if (listelm != NULL)
2407		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2408	else
2409		STAILQ_INSERT_TAIL(list, elm, link);
2410}
2411
2412static void
2413objlist_remove(Objlist *list, Obj_Entry *obj)
2414{
2415    Objlist_Entry *elm;
2416
2417    if ((elm = objlist_find(list, obj)) != NULL) {
2418	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2419	free(elm);
2420    }
2421}
2422
2423/*
2424 * Relocate dag rooted in the specified object.
2425 * Returns 0 on success, or -1 on failure.
2426 */
2427
2428static int
2429relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2430    int flags, RtldLockState *lockstate)
2431{
2432	Objlist_Entry *elm;
2433	int error;
2434
2435	error = 0;
2436	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2437		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2438		    lockstate);
2439		if (error == -1)
2440			break;
2441	}
2442	return (error);
2443}
2444
2445/*
2446 * Relocate single object.
2447 * Returns 0 on success, or -1 on failure.
2448 */
2449static int
2450relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2451    int flags, RtldLockState *lockstate)
2452{
2453
2454	if (obj->relocated)
2455		return (0);
2456	obj->relocated = true;
2457	if (obj != rtldobj)
2458		dbg("relocating \"%s\"", obj->path);
2459
2460	if (obj->symtab == NULL || obj->strtab == NULL ||
2461	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2462		_rtld_error("%s: Shared object has no run-time symbol table",
2463			    obj->path);
2464		return (-1);
2465	}
2466
2467	if (obj->textrel) {
2468		/* There are relocations to the write-protected text segment. */
2469		if (mprotect(obj->mapbase, obj->textsize,
2470		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2471			_rtld_error("%s: Cannot write-enable text segment: %s",
2472			    obj->path, rtld_strerror(errno));
2473			return (-1);
2474		}
2475	}
2476
2477	/* Process the non-PLT non-IFUNC relocations. */
2478	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2479		return (-1);
2480
2481	if (obj->textrel) {	/* Re-protected the text segment. */
2482		if (mprotect(obj->mapbase, obj->textsize,
2483		    PROT_READ|PROT_EXEC) == -1) {
2484			_rtld_error("%s: Cannot write-protect text segment: %s",
2485			    obj->path, rtld_strerror(errno));
2486			return (-1);
2487		}
2488	}
2489
2490	/* Set the special PLT or GOT entries. */
2491	init_pltgot(obj);
2492
2493	/* Process the PLT relocations. */
2494	if (reloc_plt(obj) == -1)
2495		return (-1);
2496	/* Relocate the jump slots if we are doing immediate binding. */
2497	if (obj->bind_now || bind_now)
2498		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2499			return (-1);
2500
2501	/*
2502	 * Process the non-PLT IFUNC relocations.  The relocations are
2503	 * processed in two phases, because IFUNC resolvers may
2504	 * reference other symbols, which must be readily processed
2505	 * before resolvers are called.
2506	 */
2507	if (obj->non_plt_gnu_ifunc &&
2508	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2509		return (-1);
2510
2511	if (obj->relro_size > 0) {
2512		if (mprotect(obj->relro_page, obj->relro_size,
2513		    PROT_READ) == -1) {
2514			_rtld_error("%s: Cannot enforce relro protection: %s",
2515			    obj->path, rtld_strerror(errno));
2516			return (-1);
2517		}
2518	}
2519
2520	/*
2521	 * Set up the magic number and version in the Obj_Entry.  These
2522	 * were checked in the crt1.o from the original ElfKit, so we
2523	 * set them for backward compatibility.
2524	 */
2525	obj->magic = RTLD_MAGIC;
2526	obj->version = RTLD_VERSION;
2527
2528	return (0);
2529}
2530
2531/*
2532 * Relocate newly-loaded shared objects.  The argument is a pointer to
2533 * the Obj_Entry for the first such object.  All objects from the first
2534 * to the end of the list of objects are relocated.  Returns 0 on success,
2535 * or -1 on failure.
2536 */
2537static int
2538relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2539    int flags, RtldLockState *lockstate)
2540{
2541	Obj_Entry *obj;
2542	int error;
2543
2544	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2545		error = relocate_object(obj, bind_now, rtldobj, flags,
2546		    lockstate);
2547		if (error == -1)
2548			break;
2549	}
2550	return (error);
2551}
2552
2553/*
2554 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2555 * referencing STT_GNU_IFUNC symbols is postponed till the other
2556 * relocations are done.  The indirect functions specified as
2557 * ifunc are allowed to call other symbols, so we need to have
2558 * objects relocated before asking for resolution from indirects.
2559 *
2560 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2561 * instead of the usual lazy handling of PLT slots.  It is
2562 * consistent with how GNU does it.
2563 */
2564static int
2565resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2566    RtldLockState *lockstate)
2567{
2568	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2569		return (-1);
2570	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2571	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2572		return (-1);
2573	return (0);
2574}
2575
2576static int
2577resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2578    RtldLockState *lockstate)
2579{
2580	Obj_Entry *obj;
2581
2582	for (obj = first;  obj != NULL;  obj = obj->next) {
2583		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2584			return (-1);
2585	}
2586	return (0);
2587}
2588
2589static int
2590initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2591    RtldLockState *lockstate)
2592{
2593	Objlist_Entry *elm;
2594
2595	STAILQ_FOREACH(elm, list, link) {
2596		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2597		    lockstate) == -1)
2598			return (-1);
2599	}
2600	return (0);
2601}
2602
2603/*
2604 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2605 * before the process exits.
2606 */
2607static void
2608rtld_exit(void)
2609{
2610    RtldLockState lockstate;
2611
2612    wlock_acquire(rtld_bind_lock, &lockstate);
2613    dbg("rtld_exit()");
2614    objlist_call_fini(&list_fini, NULL, &lockstate);
2615    /* No need to remove the items from the list, since we are exiting. */
2616    if (!libmap_disable)
2617        lm_fini();
2618    lock_release(rtld_bind_lock, &lockstate);
2619}
2620
2621/*
2622 * Iterate over a search path, translate each element, and invoke the
2623 * callback on the result.
2624 */
2625static void *
2626path_enumerate(const char *path, path_enum_proc callback, void *arg)
2627{
2628    const char *trans;
2629    if (path == NULL)
2630	return (NULL);
2631
2632    path += strspn(path, ":;");
2633    while (*path != '\0') {
2634	size_t len;
2635	char  *res;
2636
2637	len = strcspn(path, ":;");
2638	trans = lm_findn(NULL, path, len);
2639	if (trans)
2640	    res = callback(trans, strlen(trans), arg);
2641	else
2642	    res = callback(path, len, arg);
2643
2644	if (res != NULL)
2645	    return (res);
2646
2647	path += len;
2648	path += strspn(path, ":;");
2649    }
2650
2651    return (NULL);
2652}
2653
2654struct try_library_args {
2655    const char	*name;
2656    size_t	 namelen;
2657    char	*buffer;
2658    size_t	 buflen;
2659};
2660
2661static void *
2662try_library_path(const char *dir, size_t dirlen, void *param)
2663{
2664    struct try_library_args *arg;
2665
2666    arg = param;
2667    if (*dir == '/' || trust) {
2668	char *pathname;
2669
2670	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2671		return (NULL);
2672
2673	pathname = arg->buffer;
2674	strncpy(pathname, dir, dirlen);
2675	pathname[dirlen] = '/';
2676	strcpy(pathname + dirlen + 1, arg->name);
2677
2678	dbg("  Trying \"%s\"", pathname);
2679	if (access(pathname, F_OK) == 0) {		/* We found it */
2680	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2681	    strcpy(pathname, arg->buffer);
2682	    return (pathname);
2683	}
2684    }
2685    return (NULL);
2686}
2687
2688static char *
2689search_library_path(const char *name, const char *path)
2690{
2691    char *p;
2692    struct try_library_args arg;
2693
2694    if (path == NULL)
2695	return NULL;
2696
2697    arg.name = name;
2698    arg.namelen = strlen(name);
2699    arg.buffer = xmalloc(PATH_MAX);
2700    arg.buflen = PATH_MAX;
2701
2702    p = path_enumerate(path, try_library_path, &arg);
2703
2704    free(arg.buffer);
2705
2706    return (p);
2707}
2708
2709int
2710dlclose(void *handle)
2711{
2712    Obj_Entry *root;
2713    RtldLockState lockstate;
2714
2715    wlock_acquire(rtld_bind_lock, &lockstate);
2716    root = dlcheck(handle);
2717    if (root == NULL) {
2718	lock_release(rtld_bind_lock, &lockstate);
2719	return -1;
2720    }
2721    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2722	root->path);
2723
2724    /* Unreference the object and its dependencies. */
2725    root->dl_refcount--;
2726
2727    if (root->refcount == 1) {
2728	/*
2729	 * The object will be no longer referenced, so we must unload it.
2730	 * First, call the fini functions.
2731	 */
2732	objlist_call_fini(&list_fini, root, &lockstate);
2733
2734	unref_dag(root);
2735
2736	/* Finish cleaning up the newly-unreferenced objects. */
2737	GDB_STATE(RT_DELETE,&root->linkmap);
2738	unload_object(root);
2739	GDB_STATE(RT_CONSISTENT,NULL);
2740    } else
2741	unref_dag(root);
2742
2743    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2744    lock_release(rtld_bind_lock, &lockstate);
2745    return 0;
2746}
2747
2748char *
2749dlerror(void)
2750{
2751    char *msg = error_message;
2752    error_message = NULL;
2753    return msg;
2754}
2755
2756/*
2757 * This function is deprecated and has no effect.
2758 */
2759void
2760dllockinit(void *context,
2761	   void *(*lock_create)(void *context),
2762           void (*rlock_acquire)(void *lock),
2763           void (*wlock_acquire)(void *lock),
2764           void (*lock_release)(void *lock),
2765           void (*lock_destroy)(void *lock),
2766	   void (*context_destroy)(void *context))
2767{
2768    static void *cur_context;
2769    static void (*cur_context_destroy)(void *);
2770
2771    /* Just destroy the context from the previous call, if necessary. */
2772    if (cur_context_destroy != NULL)
2773	cur_context_destroy(cur_context);
2774    cur_context = context;
2775    cur_context_destroy = context_destroy;
2776}
2777
2778void *
2779dlopen(const char *name, int mode)
2780{
2781
2782	return (rtld_dlopen(name, -1, mode));
2783}
2784
2785void *
2786fdlopen(int fd, int mode)
2787{
2788
2789	return (rtld_dlopen(NULL, fd, mode));
2790}
2791
2792static void *
2793rtld_dlopen(const char *name, int fd, int mode)
2794{
2795    RtldLockState lockstate;
2796    int lo_flags;
2797
2798    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2799    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2800    if (ld_tracing != NULL) {
2801	rlock_acquire(rtld_bind_lock, &lockstate);
2802	if (sigsetjmp(lockstate.env, 0) != 0)
2803	    lock_upgrade(rtld_bind_lock, &lockstate);
2804	environ = (char **)*get_program_var_addr("environ", &lockstate);
2805	lock_release(rtld_bind_lock, &lockstate);
2806    }
2807    lo_flags = RTLD_LO_DLOPEN;
2808    if (mode & RTLD_NODELETE)
2809	    lo_flags |= RTLD_LO_NODELETE;
2810    if (mode & RTLD_NOLOAD)
2811	    lo_flags |= RTLD_LO_NOLOAD;
2812    if (ld_tracing != NULL)
2813	    lo_flags |= RTLD_LO_TRACE;
2814
2815    return (dlopen_object(name, fd, obj_main, lo_flags,
2816      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2817}
2818
2819static void
2820dlopen_cleanup(Obj_Entry *obj)
2821{
2822
2823	obj->dl_refcount--;
2824	unref_dag(obj);
2825	if (obj->refcount == 0)
2826		unload_object(obj);
2827}
2828
2829static Obj_Entry *
2830dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2831    int mode, RtldLockState *lockstate)
2832{
2833    Obj_Entry **old_obj_tail;
2834    Obj_Entry *obj;
2835    Objlist initlist;
2836    RtldLockState mlockstate;
2837    int result;
2838
2839    objlist_init(&initlist);
2840
2841    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2842	wlock_acquire(rtld_bind_lock, &mlockstate);
2843	lockstate = &mlockstate;
2844    }
2845    GDB_STATE(RT_ADD,NULL);
2846
2847    old_obj_tail = obj_tail;
2848    obj = NULL;
2849    if (name == NULL && fd == -1) {
2850	obj = obj_main;
2851	obj->refcount++;
2852    } else {
2853	obj = load_object(name, fd, refobj, lo_flags);
2854    }
2855
2856    if (obj) {
2857	obj->dl_refcount++;
2858	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2859	    objlist_push_tail(&list_global, obj);
2860	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2861	    assert(*old_obj_tail == obj);
2862	    result = load_needed_objects(obj,
2863		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2864	    init_dag(obj);
2865	    ref_dag(obj);
2866	    if (result != -1)
2867		result = rtld_verify_versions(&obj->dagmembers);
2868	    if (result != -1 && ld_tracing)
2869		goto trace;
2870	    if (result == -1 || relocate_object_dag(obj,
2871	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2872	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2873	      lockstate) == -1) {
2874		dlopen_cleanup(obj);
2875		obj = NULL;
2876	    } else if (lo_flags & RTLD_LO_EARLY) {
2877		/*
2878		 * Do not call the init functions for early loaded
2879		 * filtees.  The image is still not initialized enough
2880		 * for them to work.
2881		 *
2882		 * Our object is found by the global object list and
2883		 * will be ordered among all init calls done right
2884		 * before transferring control to main.
2885		 */
2886	    } else {
2887		/* Make list of init functions to call. */
2888		initlist_add_objects(obj, &obj->next, &initlist);
2889	    }
2890	    /*
2891	     * Process all no_delete objects here, given them own
2892	     * DAGs to prevent their dependencies from being unloaded.
2893	     * This has to be done after we have loaded all of the
2894	     * dependencies, so that we do not miss any.
2895	     */
2896	    if (obj != NULL)
2897		process_nodelete(obj);
2898	} else {
2899	    /*
2900	     * Bump the reference counts for objects on this DAG.  If
2901	     * this is the first dlopen() call for the object that was
2902	     * already loaded as a dependency, initialize the dag
2903	     * starting at it.
2904	     */
2905	    init_dag(obj);
2906	    ref_dag(obj);
2907
2908	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2909		goto trace;
2910	}
2911	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2912	  obj->z_nodelete) && !obj->ref_nodel) {
2913	    dbg("obj %s nodelete", obj->path);
2914	    ref_dag(obj);
2915	    obj->z_nodelete = obj->ref_nodel = true;
2916	}
2917    }
2918
2919    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2920	name);
2921    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2922
2923    if (!(lo_flags & RTLD_LO_EARLY)) {
2924	map_stacks_exec(lockstate);
2925    }
2926
2927    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2928      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2929      lockstate) == -1) {
2930	objlist_clear(&initlist);
2931	dlopen_cleanup(obj);
2932	if (lockstate == &mlockstate)
2933	    lock_release(rtld_bind_lock, lockstate);
2934	return (NULL);
2935    }
2936
2937    if (!(lo_flags & RTLD_LO_EARLY)) {
2938	/* Call the init functions. */
2939	objlist_call_init(&initlist, lockstate);
2940    }
2941    objlist_clear(&initlist);
2942    if (lockstate == &mlockstate)
2943	lock_release(rtld_bind_lock, lockstate);
2944    return obj;
2945trace:
2946    trace_loaded_objects(obj);
2947    if (lockstate == &mlockstate)
2948	lock_release(rtld_bind_lock, lockstate);
2949    exit(0);
2950}
2951
2952static void *
2953do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2954    int flags)
2955{
2956    DoneList donelist;
2957    const Obj_Entry *obj, *defobj;
2958    const Elf_Sym *def;
2959    SymLook req;
2960    RtldLockState lockstate;
2961#ifndef __ia64__
2962    tls_index ti;
2963#endif
2964    int res;
2965
2966    def = NULL;
2967    defobj = NULL;
2968    symlook_init(&req, name);
2969    req.ventry = ve;
2970    req.flags = flags | SYMLOOK_IN_PLT;
2971    req.lockstate = &lockstate;
2972
2973    rlock_acquire(rtld_bind_lock, &lockstate);
2974    if (sigsetjmp(lockstate.env, 0) != 0)
2975	    lock_upgrade(rtld_bind_lock, &lockstate);
2976    if (handle == NULL || handle == RTLD_NEXT ||
2977	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2978
2979	if ((obj = obj_from_addr(retaddr)) == NULL) {
2980	    _rtld_error("Cannot determine caller's shared object");
2981	    lock_release(rtld_bind_lock, &lockstate);
2982	    return NULL;
2983	}
2984	if (handle == NULL) {	/* Just the caller's shared object. */
2985	    res = symlook_obj(&req, obj);
2986	    if (res == 0) {
2987		def = req.sym_out;
2988		defobj = req.defobj_out;
2989	    }
2990	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2991		   handle == RTLD_SELF) { /* ... caller included */
2992	    if (handle == RTLD_NEXT)
2993		obj = obj->next;
2994	    for (; obj != NULL; obj = obj->next) {
2995		res = symlook_obj(&req, obj);
2996		if (res == 0) {
2997		    if (def == NULL ||
2998		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2999			def = req.sym_out;
3000			defobj = req.defobj_out;
3001			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3002			    break;
3003		    }
3004		}
3005	    }
3006	    /*
3007	     * Search the dynamic linker itself, and possibly resolve the
3008	     * symbol from there.  This is how the application links to
3009	     * dynamic linker services such as dlopen.
3010	     */
3011	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3012		res = symlook_obj(&req, &obj_rtld);
3013		if (res == 0) {
3014		    def = req.sym_out;
3015		    defobj = req.defobj_out;
3016		}
3017	    }
3018	} else {
3019	    assert(handle == RTLD_DEFAULT);
3020	    res = symlook_default(&req, obj);
3021	    if (res == 0) {
3022		defobj = req.defobj_out;
3023		def = req.sym_out;
3024	    }
3025	}
3026    } else {
3027	if ((obj = dlcheck(handle)) == NULL) {
3028	    lock_release(rtld_bind_lock, &lockstate);
3029	    return NULL;
3030	}
3031
3032	donelist_init(&donelist);
3033	if (obj->mainprog) {
3034            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3035	    res = symlook_global(&req, &donelist);
3036	    if (res == 0) {
3037		def = req.sym_out;
3038		defobj = req.defobj_out;
3039	    }
3040	    /*
3041	     * Search the dynamic linker itself, and possibly resolve the
3042	     * symbol from there.  This is how the application links to
3043	     * dynamic linker services such as dlopen.
3044	     */
3045	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3046		res = symlook_obj(&req, &obj_rtld);
3047		if (res == 0) {
3048		    def = req.sym_out;
3049		    defobj = req.defobj_out;
3050		}
3051	    }
3052	}
3053	else {
3054	    /* Search the whole DAG rooted at the given object. */
3055	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3056	    if (res == 0) {
3057		def = req.sym_out;
3058		defobj = req.defobj_out;
3059	    }
3060	}
3061    }
3062
3063    if (def != NULL) {
3064	lock_release(rtld_bind_lock, &lockstate);
3065
3066	/*
3067	 * The value required by the caller is derived from the value
3068	 * of the symbol. For the ia64 architecture, we need to
3069	 * construct a function descriptor which the caller can use to
3070	 * call the function with the right 'gp' value. For other
3071	 * architectures and for non-functions, the value is simply
3072	 * the relocated value of the symbol.
3073	 */
3074	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3075	    return (make_function_pointer(def, defobj));
3076	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3077	    return (rtld_resolve_ifunc(defobj, def));
3078	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3079#ifdef __ia64__
3080	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3081#else
3082	    ti.ti_module = defobj->tlsindex;
3083	    ti.ti_offset = def->st_value;
3084	    return (__tls_get_addr(&ti));
3085#endif
3086	} else
3087	    return (defobj->relocbase + def->st_value);
3088    }
3089
3090    _rtld_error("Undefined symbol \"%s\"", name);
3091    lock_release(rtld_bind_lock, &lockstate);
3092    return NULL;
3093}
3094
3095void *
3096dlsym(void *handle, const char *name)
3097{
3098	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3099	    SYMLOOK_DLSYM);
3100}
3101
3102dlfunc_t
3103dlfunc(void *handle, const char *name)
3104{
3105	union {
3106		void *d;
3107		dlfunc_t f;
3108	} rv;
3109
3110	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3111	    SYMLOOK_DLSYM);
3112	return (rv.f);
3113}
3114
3115void *
3116dlvsym(void *handle, const char *name, const char *version)
3117{
3118	Ver_Entry ventry;
3119
3120	ventry.name = version;
3121	ventry.file = NULL;
3122	ventry.hash = elf_hash(version);
3123	ventry.flags= 0;
3124	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3125	    SYMLOOK_DLSYM);
3126}
3127
3128int
3129_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3130{
3131    const Obj_Entry *obj;
3132    RtldLockState lockstate;
3133
3134    rlock_acquire(rtld_bind_lock, &lockstate);
3135    obj = obj_from_addr(addr);
3136    if (obj == NULL) {
3137        _rtld_error("No shared object contains address");
3138	lock_release(rtld_bind_lock, &lockstate);
3139        return (0);
3140    }
3141    rtld_fill_dl_phdr_info(obj, phdr_info);
3142    lock_release(rtld_bind_lock, &lockstate);
3143    return (1);
3144}
3145
3146int
3147dladdr(const void *addr, Dl_info *info)
3148{
3149    const Obj_Entry *obj;
3150    const Elf_Sym *def;
3151    void *symbol_addr;
3152    unsigned long symoffset;
3153    RtldLockState lockstate;
3154
3155    rlock_acquire(rtld_bind_lock, &lockstate);
3156    obj = obj_from_addr(addr);
3157    if (obj == NULL) {
3158        _rtld_error("No shared object contains address");
3159	lock_release(rtld_bind_lock, &lockstate);
3160        return 0;
3161    }
3162    info->dli_fname = obj->path;
3163    info->dli_fbase = obj->mapbase;
3164    info->dli_saddr = (void *)0;
3165    info->dli_sname = NULL;
3166
3167    /*
3168     * Walk the symbol list looking for the symbol whose address is
3169     * closest to the address sent in.
3170     */
3171    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3172        def = obj->symtab + symoffset;
3173
3174        /*
3175         * For skip the symbol if st_shndx is either SHN_UNDEF or
3176         * SHN_COMMON.
3177         */
3178        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3179            continue;
3180
3181        /*
3182         * If the symbol is greater than the specified address, or if it
3183         * is further away from addr than the current nearest symbol,
3184         * then reject it.
3185         */
3186        symbol_addr = obj->relocbase + def->st_value;
3187        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3188            continue;
3189
3190        /* Update our idea of the nearest symbol. */
3191        info->dli_sname = obj->strtab + def->st_name;
3192        info->dli_saddr = symbol_addr;
3193
3194        /* Exact match? */
3195        if (info->dli_saddr == addr)
3196            break;
3197    }
3198    lock_release(rtld_bind_lock, &lockstate);
3199    return 1;
3200}
3201
3202int
3203dlinfo(void *handle, int request, void *p)
3204{
3205    const Obj_Entry *obj;
3206    RtldLockState lockstate;
3207    int error;
3208
3209    rlock_acquire(rtld_bind_lock, &lockstate);
3210
3211    if (handle == NULL || handle == RTLD_SELF) {
3212	void *retaddr;
3213
3214	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3215	if ((obj = obj_from_addr(retaddr)) == NULL)
3216	    _rtld_error("Cannot determine caller's shared object");
3217    } else
3218	obj = dlcheck(handle);
3219
3220    if (obj == NULL) {
3221	lock_release(rtld_bind_lock, &lockstate);
3222	return (-1);
3223    }
3224
3225    error = 0;
3226    switch (request) {
3227    case RTLD_DI_LINKMAP:
3228	*((struct link_map const **)p) = &obj->linkmap;
3229	break;
3230    case RTLD_DI_ORIGIN:
3231	error = rtld_dirname(obj->path, p);
3232	break;
3233
3234    case RTLD_DI_SERINFOSIZE:
3235    case RTLD_DI_SERINFO:
3236	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3237	break;
3238
3239    default:
3240	_rtld_error("Invalid request %d passed to dlinfo()", request);
3241	error = -1;
3242    }
3243
3244    lock_release(rtld_bind_lock, &lockstate);
3245
3246    return (error);
3247}
3248
3249static void
3250rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3251{
3252
3253	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3254	phdr_info->dlpi_name = obj->path;
3255	phdr_info->dlpi_phdr = obj->phdr;
3256	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3257	phdr_info->dlpi_tls_modid = obj->tlsindex;
3258	phdr_info->dlpi_tls_data = obj->tlsinit;
3259	phdr_info->dlpi_adds = obj_loads;
3260	phdr_info->dlpi_subs = obj_loads - obj_count;
3261}
3262
3263int
3264dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3265{
3266    struct dl_phdr_info phdr_info;
3267    const Obj_Entry *obj;
3268    RtldLockState bind_lockstate, phdr_lockstate;
3269    int error;
3270
3271    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3272    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3273
3274    error = 0;
3275
3276    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3277	rtld_fill_dl_phdr_info(obj, &phdr_info);
3278	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3279		break;
3280
3281    }
3282    lock_release(rtld_bind_lock, &bind_lockstate);
3283    lock_release(rtld_phdr_lock, &phdr_lockstate);
3284
3285    return (error);
3286}
3287
3288static void *
3289fill_search_info(const char *dir, size_t dirlen, void *param)
3290{
3291    struct fill_search_info_args *arg;
3292
3293    arg = param;
3294
3295    if (arg->request == RTLD_DI_SERINFOSIZE) {
3296	arg->serinfo->dls_cnt ++;
3297	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3298    } else {
3299	struct dl_serpath *s_entry;
3300
3301	s_entry = arg->serpath;
3302	s_entry->dls_name  = arg->strspace;
3303	s_entry->dls_flags = arg->flags;
3304
3305	strncpy(arg->strspace, dir, dirlen);
3306	arg->strspace[dirlen] = '\0';
3307
3308	arg->strspace += dirlen + 1;
3309	arg->serpath++;
3310    }
3311
3312    return (NULL);
3313}
3314
3315static int
3316do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3317{
3318    struct dl_serinfo _info;
3319    struct fill_search_info_args args;
3320
3321    args.request = RTLD_DI_SERINFOSIZE;
3322    args.serinfo = &_info;
3323
3324    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3325    _info.dls_cnt  = 0;
3326
3327    path_enumerate(obj->rpath, fill_search_info, &args);
3328    path_enumerate(ld_library_path, fill_search_info, &args);
3329    path_enumerate(obj->runpath, fill_search_info, &args);
3330    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3331    if (!obj->z_nodeflib)
3332      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3333
3334
3335    if (request == RTLD_DI_SERINFOSIZE) {
3336	info->dls_size = _info.dls_size;
3337	info->dls_cnt = _info.dls_cnt;
3338	return (0);
3339    }
3340
3341    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3342	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3343	return (-1);
3344    }
3345
3346    args.request  = RTLD_DI_SERINFO;
3347    args.serinfo  = info;
3348    args.serpath  = &info->dls_serpath[0];
3349    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3350
3351    args.flags = LA_SER_RUNPATH;
3352    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3353	return (-1);
3354
3355    args.flags = LA_SER_LIBPATH;
3356    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3357	return (-1);
3358
3359    args.flags = LA_SER_RUNPATH;
3360    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3361	return (-1);
3362
3363    args.flags = LA_SER_CONFIG;
3364    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3365      != NULL)
3366	return (-1);
3367
3368    args.flags = LA_SER_DEFAULT;
3369    if (!obj->z_nodeflib &&
3370      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3371	return (-1);
3372    return (0);
3373}
3374
3375static int
3376rtld_dirname(const char *path, char *bname)
3377{
3378    const char *endp;
3379
3380    /* Empty or NULL string gets treated as "." */
3381    if (path == NULL || *path == '\0') {
3382	bname[0] = '.';
3383	bname[1] = '\0';
3384	return (0);
3385    }
3386
3387    /* Strip trailing slashes */
3388    endp = path + strlen(path) - 1;
3389    while (endp > path && *endp == '/')
3390	endp--;
3391
3392    /* Find the start of the dir */
3393    while (endp > path && *endp != '/')
3394	endp--;
3395
3396    /* Either the dir is "/" or there are no slashes */
3397    if (endp == path) {
3398	bname[0] = *endp == '/' ? '/' : '.';
3399	bname[1] = '\0';
3400	return (0);
3401    } else {
3402	do {
3403	    endp--;
3404	} while (endp > path && *endp == '/');
3405    }
3406
3407    if (endp - path + 2 > PATH_MAX)
3408    {
3409	_rtld_error("Filename is too long: %s", path);
3410	return(-1);
3411    }
3412
3413    strncpy(bname, path, endp - path + 1);
3414    bname[endp - path + 1] = '\0';
3415    return (0);
3416}
3417
3418static int
3419rtld_dirname_abs(const char *path, char *base)
3420{
3421	char base_rel[PATH_MAX];
3422
3423	if (rtld_dirname(path, base) == -1)
3424		return (-1);
3425	if (base[0] == '/')
3426		return (0);
3427	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3428	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3429	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3430		return (-1);
3431	strcpy(base, base_rel);
3432	return (0);
3433}
3434
3435static void
3436linkmap_add(Obj_Entry *obj)
3437{
3438    struct link_map *l = &obj->linkmap;
3439    struct link_map *prev;
3440
3441    obj->linkmap.l_name = obj->path;
3442    obj->linkmap.l_addr = obj->mapbase;
3443    obj->linkmap.l_ld = obj->dynamic;
3444#ifdef __mips__
3445    /* GDB needs load offset on MIPS to use the symbols */
3446    obj->linkmap.l_offs = obj->relocbase;
3447#endif
3448
3449    if (r_debug.r_map == NULL) {
3450	r_debug.r_map = l;
3451	return;
3452    }
3453
3454    /*
3455     * Scan to the end of the list, but not past the entry for the
3456     * dynamic linker, which we want to keep at the very end.
3457     */
3458    for (prev = r_debug.r_map;
3459      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3460      prev = prev->l_next)
3461	;
3462
3463    /* Link in the new entry. */
3464    l->l_prev = prev;
3465    l->l_next = prev->l_next;
3466    if (l->l_next != NULL)
3467	l->l_next->l_prev = l;
3468    prev->l_next = l;
3469}
3470
3471static void
3472linkmap_delete(Obj_Entry *obj)
3473{
3474    struct link_map *l = &obj->linkmap;
3475
3476    if (l->l_prev == NULL) {
3477	if ((r_debug.r_map = l->l_next) != NULL)
3478	    l->l_next->l_prev = NULL;
3479	return;
3480    }
3481
3482    if ((l->l_prev->l_next = l->l_next) != NULL)
3483	l->l_next->l_prev = l->l_prev;
3484}
3485
3486/*
3487 * Function for the debugger to set a breakpoint on to gain control.
3488 *
3489 * The two parameters allow the debugger to easily find and determine
3490 * what the runtime loader is doing and to whom it is doing it.
3491 *
3492 * When the loadhook trap is hit (r_debug_state, set at program
3493 * initialization), the arguments can be found on the stack:
3494 *
3495 *  +8   struct link_map *m
3496 *  +4   struct r_debug  *rd
3497 *  +0   RetAddr
3498 */
3499void
3500r_debug_state(struct r_debug* rd, struct link_map *m)
3501{
3502    /*
3503     * The following is a hack to force the compiler to emit calls to
3504     * this function, even when optimizing.  If the function is empty,
3505     * the compiler is not obliged to emit any code for calls to it,
3506     * even when marked __noinline.  However, gdb depends on those
3507     * calls being made.
3508     */
3509    __compiler_membar();
3510}
3511
3512/*
3513 * A function called after init routines have completed. This can be used to
3514 * break before a program's entry routine is called, and can be used when
3515 * main is not available in the symbol table.
3516 */
3517void
3518_r_debug_postinit(struct link_map *m)
3519{
3520
3521	/* See r_debug_state(). */
3522	__compiler_membar();
3523}
3524
3525/*
3526 * Get address of the pointer variable in the main program.
3527 * Prefer non-weak symbol over the weak one.
3528 */
3529static const void **
3530get_program_var_addr(const char *name, RtldLockState *lockstate)
3531{
3532    SymLook req;
3533    DoneList donelist;
3534
3535    symlook_init(&req, name);
3536    req.lockstate = lockstate;
3537    donelist_init(&donelist);
3538    if (symlook_global(&req, &donelist) != 0)
3539	return (NULL);
3540    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3541	return ((const void **)make_function_pointer(req.sym_out,
3542	  req.defobj_out));
3543    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3544	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3545    else
3546	return ((const void **)(req.defobj_out->relocbase +
3547	  req.sym_out->st_value));
3548}
3549
3550/*
3551 * Set a pointer variable in the main program to the given value.  This
3552 * is used to set key variables such as "environ" before any of the
3553 * init functions are called.
3554 */
3555static void
3556set_program_var(const char *name, const void *value)
3557{
3558    const void **addr;
3559
3560    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3561	dbg("\"%s\": *%p <-- %p", name, addr, value);
3562	*addr = value;
3563    }
3564}
3565
3566/*
3567 * Search the global objects, including dependencies and main object,
3568 * for the given symbol.
3569 */
3570static int
3571symlook_global(SymLook *req, DoneList *donelist)
3572{
3573    SymLook req1;
3574    const Objlist_Entry *elm;
3575    int res;
3576
3577    symlook_init_from_req(&req1, req);
3578
3579    /* Search all objects loaded at program start up. */
3580    if (req->defobj_out == NULL ||
3581      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3582	res = symlook_list(&req1, &list_main, donelist);
3583	if (res == 0 && (req->defobj_out == NULL ||
3584	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3585	    req->sym_out = req1.sym_out;
3586	    req->defobj_out = req1.defobj_out;
3587	    assert(req->defobj_out != NULL);
3588	}
3589    }
3590
3591    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3592    STAILQ_FOREACH(elm, &list_global, link) {
3593	if (req->defobj_out != NULL &&
3594	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3595	    break;
3596	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3597	if (res == 0 && (req->defobj_out == NULL ||
3598	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3599	    req->sym_out = req1.sym_out;
3600	    req->defobj_out = req1.defobj_out;
3601	    assert(req->defobj_out != NULL);
3602	}
3603    }
3604
3605    return (req->sym_out != NULL ? 0 : ESRCH);
3606}
3607
3608/*
3609 * Given a symbol name in a referencing object, find the corresponding
3610 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3611 * no definition was found.  Returns a pointer to the Obj_Entry of the
3612 * defining object via the reference parameter DEFOBJ_OUT.
3613 */
3614static int
3615symlook_default(SymLook *req, const Obj_Entry *refobj)
3616{
3617    DoneList donelist;
3618    const Objlist_Entry *elm;
3619    SymLook req1;
3620    int res;
3621
3622    donelist_init(&donelist);
3623    symlook_init_from_req(&req1, req);
3624
3625    /* Look first in the referencing object if linked symbolically. */
3626    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3627	res = symlook_obj(&req1, refobj);
3628	if (res == 0) {
3629	    req->sym_out = req1.sym_out;
3630	    req->defobj_out = req1.defobj_out;
3631	    assert(req->defobj_out != NULL);
3632	}
3633    }
3634
3635    symlook_global(req, &donelist);
3636
3637    /* Search all dlopened DAGs containing the referencing object. */
3638    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3639	if (req->sym_out != NULL &&
3640	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3641	    break;
3642	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3643	if (res == 0 && (req->sym_out == NULL ||
3644	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3645	    req->sym_out = req1.sym_out;
3646	    req->defobj_out = req1.defobj_out;
3647	    assert(req->defobj_out != NULL);
3648	}
3649    }
3650
3651    /*
3652     * Search the dynamic linker itself, and possibly resolve the
3653     * symbol from there.  This is how the application links to
3654     * dynamic linker services such as dlopen.
3655     */
3656    if (req->sym_out == NULL ||
3657      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3658	res = symlook_obj(&req1, &obj_rtld);
3659	if (res == 0) {
3660	    req->sym_out = req1.sym_out;
3661	    req->defobj_out = req1.defobj_out;
3662	    assert(req->defobj_out != NULL);
3663	}
3664    }
3665
3666    return (req->sym_out != NULL ? 0 : ESRCH);
3667}
3668
3669static int
3670symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3671{
3672    const Elf_Sym *def;
3673    const Obj_Entry *defobj;
3674    const Objlist_Entry *elm;
3675    SymLook req1;
3676    int res;
3677
3678    def = NULL;
3679    defobj = NULL;
3680    STAILQ_FOREACH(elm, objlist, link) {
3681	if (donelist_check(dlp, elm->obj))
3682	    continue;
3683	symlook_init_from_req(&req1, req);
3684	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3685	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3686		def = req1.sym_out;
3687		defobj = req1.defobj_out;
3688		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3689		    break;
3690	    }
3691	}
3692    }
3693    if (def != NULL) {
3694	req->sym_out = def;
3695	req->defobj_out = defobj;
3696	return (0);
3697    }
3698    return (ESRCH);
3699}
3700
3701/*
3702 * Search the chain of DAGS cointed to by the given Needed_Entry
3703 * for a symbol of the given name.  Each DAG is scanned completely
3704 * before advancing to the next one.  Returns a pointer to the symbol,
3705 * or NULL if no definition was found.
3706 */
3707static int
3708symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3709{
3710    const Elf_Sym *def;
3711    const Needed_Entry *n;
3712    const Obj_Entry *defobj;
3713    SymLook req1;
3714    int res;
3715
3716    def = NULL;
3717    defobj = NULL;
3718    symlook_init_from_req(&req1, req);
3719    for (n = needed; n != NULL; n = n->next) {
3720	if (n->obj == NULL ||
3721	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3722	    continue;
3723	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3724	    def = req1.sym_out;
3725	    defobj = req1.defobj_out;
3726	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3727		break;
3728	}
3729    }
3730    if (def != NULL) {
3731	req->sym_out = def;
3732	req->defobj_out = defobj;
3733	return (0);
3734    }
3735    return (ESRCH);
3736}
3737
3738/*
3739 * Search the symbol table of a single shared object for a symbol of
3740 * the given name and version, if requested.  Returns a pointer to the
3741 * symbol, or NULL if no definition was found.  If the object is
3742 * filter, return filtered symbol from filtee.
3743 *
3744 * The symbol's hash value is passed in for efficiency reasons; that
3745 * eliminates many recomputations of the hash value.
3746 */
3747int
3748symlook_obj(SymLook *req, const Obj_Entry *obj)
3749{
3750    DoneList donelist;
3751    SymLook req1;
3752    int flags, res, mres;
3753
3754    /*
3755     * If there is at least one valid hash at this point, we prefer to
3756     * use the faster GNU version if available.
3757     */
3758    if (obj->valid_hash_gnu)
3759	mres = symlook_obj1_gnu(req, obj);
3760    else if (obj->valid_hash_sysv)
3761	mres = symlook_obj1_sysv(req, obj);
3762    else
3763	return (EINVAL);
3764
3765    if (mres == 0) {
3766	if (obj->needed_filtees != NULL) {
3767	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3768	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3769	    donelist_init(&donelist);
3770	    symlook_init_from_req(&req1, req);
3771	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3772	    if (res == 0) {
3773		req->sym_out = req1.sym_out;
3774		req->defobj_out = req1.defobj_out;
3775	    }
3776	    return (res);
3777	}
3778	if (obj->needed_aux_filtees != NULL) {
3779	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3780	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3781	    donelist_init(&donelist);
3782	    symlook_init_from_req(&req1, req);
3783	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3784	    if (res == 0) {
3785		req->sym_out = req1.sym_out;
3786		req->defobj_out = req1.defobj_out;
3787		return (res);
3788	    }
3789	}
3790    }
3791    return (mres);
3792}
3793
3794/* Symbol match routine common to both hash functions */
3795static bool
3796matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3797    const unsigned long symnum)
3798{
3799	Elf_Versym verndx;
3800	const Elf_Sym *symp;
3801	const char *strp;
3802
3803	symp = obj->symtab + symnum;
3804	strp = obj->strtab + symp->st_name;
3805
3806	switch (ELF_ST_TYPE(symp->st_info)) {
3807	case STT_FUNC:
3808	case STT_NOTYPE:
3809	case STT_OBJECT:
3810	case STT_COMMON:
3811	case STT_GNU_IFUNC:
3812		if (symp->st_value == 0)
3813			return (false);
3814		/* fallthrough */
3815	case STT_TLS:
3816		if (symp->st_shndx != SHN_UNDEF)
3817			break;
3818#ifndef __mips__
3819		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3820		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3821			break;
3822		/* fallthrough */
3823#endif
3824	default:
3825		return (false);
3826	}
3827	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3828		return (false);
3829
3830	if (req->ventry == NULL) {
3831		if (obj->versyms != NULL) {
3832			verndx = VER_NDX(obj->versyms[symnum]);
3833			if (verndx > obj->vernum) {
3834				_rtld_error(
3835				    "%s: symbol %s references wrong version %d",
3836				    obj->path, obj->strtab + symnum, verndx);
3837				return (false);
3838			}
3839			/*
3840			 * If we are not called from dlsym (i.e. this
3841			 * is a normal relocation from unversioned
3842			 * binary), accept the symbol immediately if
3843			 * it happens to have first version after this
3844			 * shared object became versioned.  Otherwise,
3845			 * if symbol is versioned and not hidden,
3846			 * remember it. If it is the only symbol with
3847			 * this name exported by the shared object, it
3848			 * will be returned as a match by the calling
3849			 * function. If symbol is global (verndx < 2)
3850			 * accept it unconditionally.
3851			 */
3852			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3853			    verndx == VER_NDX_GIVEN) {
3854				result->sym_out = symp;
3855				return (true);
3856			}
3857			else if (verndx >= VER_NDX_GIVEN) {
3858				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3859				    == 0) {
3860					if (result->vsymp == NULL)
3861						result->vsymp = symp;
3862					result->vcount++;
3863				}
3864				return (false);
3865			}
3866		}
3867		result->sym_out = symp;
3868		return (true);
3869	}
3870	if (obj->versyms == NULL) {
3871		if (object_match_name(obj, req->ventry->name)) {
3872			_rtld_error("%s: object %s should provide version %s "
3873			    "for symbol %s", obj_rtld.path, obj->path,
3874			    req->ventry->name, obj->strtab + symnum);
3875			return (false);
3876		}
3877	} else {
3878		verndx = VER_NDX(obj->versyms[symnum]);
3879		if (verndx > obj->vernum) {
3880			_rtld_error("%s: symbol %s references wrong version %d",
3881			    obj->path, obj->strtab + symnum, verndx);
3882			return (false);
3883		}
3884		if (obj->vertab[verndx].hash != req->ventry->hash ||
3885		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3886			/*
3887			 * Version does not match. Look if this is a
3888			 * global symbol and if it is not hidden. If
3889			 * global symbol (verndx < 2) is available,
3890			 * use it. Do not return symbol if we are
3891			 * called by dlvsym, because dlvsym looks for
3892			 * a specific version and default one is not
3893			 * what dlvsym wants.
3894			 */
3895			if ((req->flags & SYMLOOK_DLSYM) ||
3896			    (verndx >= VER_NDX_GIVEN) ||
3897			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3898				return (false);
3899		}
3900	}
3901	result->sym_out = symp;
3902	return (true);
3903}
3904
3905/*
3906 * Search for symbol using SysV hash function.
3907 * obj->buckets is known not to be NULL at this point; the test for this was
3908 * performed with the obj->valid_hash_sysv assignment.
3909 */
3910static int
3911symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3912{
3913	unsigned long symnum;
3914	Sym_Match_Result matchres;
3915
3916	matchres.sym_out = NULL;
3917	matchres.vsymp = NULL;
3918	matchres.vcount = 0;
3919
3920	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3921	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3922		if (symnum >= obj->nchains)
3923			return (ESRCH);	/* Bad object */
3924
3925		if (matched_symbol(req, obj, &matchres, symnum)) {
3926			req->sym_out = matchres.sym_out;
3927			req->defobj_out = obj;
3928			return (0);
3929		}
3930	}
3931	if (matchres.vcount == 1) {
3932		req->sym_out = matchres.vsymp;
3933		req->defobj_out = obj;
3934		return (0);
3935	}
3936	return (ESRCH);
3937}
3938
3939/* Search for symbol using GNU hash function */
3940static int
3941symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3942{
3943	Elf_Addr bloom_word;
3944	const Elf32_Word *hashval;
3945	Elf32_Word bucket;
3946	Sym_Match_Result matchres;
3947	unsigned int h1, h2;
3948	unsigned long symnum;
3949
3950	matchres.sym_out = NULL;
3951	matchres.vsymp = NULL;
3952	matchres.vcount = 0;
3953
3954	/* Pick right bitmask word from Bloom filter array */
3955	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3956	    obj->maskwords_bm_gnu];
3957
3958	/* Calculate modulus word size of gnu hash and its derivative */
3959	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3960	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3961
3962	/* Filter out the "definitely not in set" queries */
3963	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3964		return (ESRCH);
3965
3966	/* Locate hash chain and corresponding value element*/
3967	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3968	if (bucket == 0)
3969		return (ESRCH);
3970	hashval = &obj->chain_zero_gnu[bucket];
3971	do {
3972		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3973			symnum = hashval - obj->chain_zero_gnu;
3974			if (matched_symbol(req, obj, &matchres, symnum)) {
3975				req->sym_out = matchres.sym_out;
3976				req->defobj_out = obj;
3977				return (0);
3978			}
3979		}
3980	} while ((*hashval++ & 1) == 0);
3981	if (matchres.vcount == 1) {
3982		req->sym_out = matchres.vsymp;
3983		req->defobj_out = obj;
3984		return (0);
3985	}
3986	return (ESRCH);
3987}
3988
3989static void
3990trace_loaded_objects(Obj_Entry *obj)
3991{
3992    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3993    int		c;
3994
3995    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3996	main_local = "";
3997
3998    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3999	fmt1 = "\t%o => %p (%x)\n";
4000
4001    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4002	fmt2 = "\t%o (%x)\n";
4003
4004    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4005
4006    for (; obj; obj = obj->next) {
4007	Needed_Entry		*needed;
4008	char			*name, *path;
4009	bool			is_lib;
4010
4011	if (list_containers && obj->needed != NULL)
4012	    rtld_printf("%s:\n", obj->path);
4013	for (needed = obj->needed; needed; needed = needed->next) {
4014	    if (needed->obj != NULL) {
4015		if (needed->obj->traced && !list_containers)
4016		    continue;
4017		needed->obj->traced = true;
4018		path = needed->obj->path;
4019	    } else
4020		path = "not found";
4021
4022	    name = (char *)obj->strtab + needed->name;
4023	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4024
4025	    fmt = is_lib ? fmt1 : fmt2;
4026	    while ((c = *fmt++) != '\0') {
4027		switch (c) {
4028		default:
4029		    rtld_putchar(c);
4030		    continue;
4031		case '\\':
4032		    switch (c = *fmt) {
4033		    case '\0':
4034			continue;
4035		    case 'n':
4036			rtld_putchar('\n');
4037			break;
4038		    case 't':
4039			rtld_putchar('\t');
4040			break;
4041		    }
4042		    break;
4043		case '%':
4044		    switch (c = *fmt) {
4045		    case '\0':
4046			continue;
4047		    case '%':
4048		    default:
4049			rtld_putchar(c);
4050			break;
4051		    case 'A':
4052			rtld_putstr(main_local);
4053			break;
4054		    case 'a':
4055			rtld_putstr(obj_main->path);
4056			break;
4057		    case 'o':
4058			rtld_putstr(name);
4059			break;
4060#if 0
4061		    case 'm':
4062			rtld_printf("%d", sodp->sod_major);
4063			break;
4064		    case 'n':
4065			rtld_printf("%d", sodp->sod_minor);
4066			break;
4067#endif
4068		    case 'p':
4069			rtld_putstr(path);
4070			break;
4071		    case 'x':
4072			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4073			  0);
4074			break;
4075		    }
4076		    break;
4077		}
4078		++fmt;
4079	    }
4080	}
4081    }
4082}
4083
4084/*
4085 * Unload a dlopened object and its dependencies from memory and from
4086 * our data structures.  It is assumed that the DAG rooted in the
4087 * object has already been unreferenced, and that the object has a
4088 * reference count of 0.
4089 */
4090static void
4091unload_object(Obj_Entry *root)
4092{
4093    Obj_Entry *obj;
4094    Obj_Entry **linkp;
4095
4096    assert(root->refcount == 0);
4097
4098    /*
4099     * Pass over the DAG removing unreferenced objects from
4100     * appropriate lists.
4101     */
4102    unlink_object(root);
4103
4104    /* Unmap all objects that are no longer referenced. */
4105    linkp = &obj_list->next;
4106    while ((obj = *linkp) != NULL) {
4107	if (obj->refcount == 0) {
4108	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4109		obj->path);
4110	    dbg("unloading \"%s\"", obj->path);
4111	    unload_filtees(root);
4112	    munmap(obj->mapbase, obj->mapsize);
4113	    linkmap_delete(obj);
4114	    *linkp = obj->next;
4115	    obj_count--;
4116	    obj_free(obj);
4117	} else
4118	    linkp = &obj->next;
4119    }
4120    obj_tail = linkp;
4121}
4122
4123static void
4124unlink_object(Obj_Entry *root)
4125{
4126    Objlist_Entry *elm;
4127
4128    if (root->refcount == 0) {
4129	/* Remove the object from the RTLD_GLOBAL list. */
4130	objlist_remove(&list_global, root);
4131
4132    	/* Remove the object from all objects' DAG lists. */
4133    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4134	    objlist_remove(&elm->obj->dldags, root);
4135	    if (elm->obj != root)
4136		unlink_object(elm->obj);
4137	}
4138    }
4139}
4140
4141static void
4142ref_dag(Obj_Entry *root)
4143{
4144    Objlist_Entry *elm;
4145
4146    assert(root->dag_inited);
4147    STAILQ_FOREACH(elm, &root->dagmembers, link)
4148	elm->obj->refcount++;
4149}
4150
4151static void
4152unref_dag(Obj_Entry *root)
4153{
4154    Objlist_Entry *elm;
4155
4156    assert(root->dag_inited);
4157    STAILQ_FOREACH(elm, &root->dagmembers, link)
4158	elm->obj->refcount--;
4159}
4160
4161/*
4162 * Common code for MD __tls_get_addr().
4163 */
4164static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4165static void *
4166tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4167{
4168    Elf_Addr *newdtv, *dtv;
4169    RtldLockState lockstate;
4170    int to_copy;
4171
4172    dtv = *dtvp;
4173    /* Check dtv generation in case new modules have arrived */
4174    if (dtv[0] != tls_dtv_generation) {
4175	wlock_acquire(rtld_bind_lock, &lockstate);
4176	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4177	to_copy = dtv[1];
4178	if (to_copy > tls_max_index)
4179	    to_copy = tls_max_index;
4180	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4181	newdtv[0] = tls_dtv_generation;
4182	newdtv[1] = tls_max_index;
4183	free(dtv);
4184	lock_release(rtld_bind_lock, &lockstate);
4185	dtv = *dtvp = newdtv;
4186    }
4187
4188    /* Dynamically allocate module TLS if necessary */
4189    if (dtv[index + 1] == 0) {
4190	/* Signal safe, wlock will block out signals. */
4191	wlock_acquire(rtld_bind_lock, &lockstate);
4192	if (!dtv[index + 1])
4193	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4194	lock_release(rtld_bind_lock, &lockstate);
4195    }
4196    return ((void *)(dtv[index + 1] + offset));
4197}
4198
4199void *
4200tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4201{
4202	Elf_Addr *dtv;
4203
4204	dtv = *dtvp;
4205	/* Check dtv generation in case new modules have arrived */
4206	if (__predict_true(dtv[0] == tls_dtv_generation &&
4207	    dtv[index + 1] != 0))
4208		return ((void *)(dtv[index + 1] + offset));
4209	return (tls_get_addr_slow(dtvp, index, offset));
4210}
4211
4212#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4213
4214/*
4215 * Allocate Static TLS using the Variant I method.
4216 */
4217void *
4218allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4219{
4220    Obj_Entry *obj;
4221    char *tcb;
4222    Elf_Addr **tls;
4223    Elf_Addr *dtv;
4224    Elf_Addr addr;
4225    int i;
4226
4227    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4228	return (oldtcb);
4229
4230    assert(tcbsize >= TLS_TCB_SIZE);
4231    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4232    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4233
4234    if (oldtcb != NULL) {
4235	memcpy(tls, oldtcb, tls_static_space);
4236	free(oldtcb);
4237
4238	/* Adjust the DTV. */
4239	dtv = tls[0];
4240	for (i = 0; i < dtv[1]; i++) {
4241	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4242		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4243		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4244	    }
4245	}
4246    } else {
4247	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4248	tls[0] = dtv;
4249	dtv[0] = tls_dtv_generation;
4250	dtv[1] = tls_max_index;
4251
4252	for (obj = objs; obj; obj = obj->next) {
4253	    if (obj->tlsoffset > 0) {
4254		addr = (Elf_Addr)tls + obj->tlsoffset;
4255		if (obj->tlsinitsize > 0)
4256		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4257		if (obj->tlssize > obj->tlsinitsize)
4258		    memset((void*) (addr + obj->tlsinitsize), 0,
4259			   obj->tlssize - obj->tlsinitsize);
4260		dtv[obj->tlsindex + 1] = addr;
4261	    }
4262	}
4263    }
4264
4265    return (tcb);
4266}
4267
4268void
4269free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4270{
4271    Elf_Addr *dtv;
4272    Elf_Addr tlsstart, tlsend;
4273    int dtvsize, i;
4274
4275    assert(tcbsize >= TLS_TCB_SIZE);
4276
4277    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4278    tlsend = tlsstart + tls_static_space;
4279
4280    dtv = *(Elf_Addr **)tlsstart;
4281    dtvsize = dtv[1];
4282    for (i = 0; i < dtvsize; i++) {
4283	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4284	    free((void*)dtv[i+2]);
4285	}
4286    }
4287    free(dtv);
4288    free(tcb);
4289}
4290
4291#endif
4292
4293#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4294
4295/*
4296 * Allocate Static TLS using the Variant II method.
4297 */
4298void *
4299allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4300{
4301    Obj_Entry *obj;
4302    size_t size, ralign;
4303    char *tls;
4304    Elf_Addr *dtv, *olddtv;
4305    Elf_Addr segbase, oldsegbase, addr;
4306    int i;
4307
4308    ralign = tcbalign;
4309    if (tls_static_max_align > ralign)
4310	    ralign = tls_static_max_align;
4311    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4312
4313    assert(tcbsize >= 2*sizeof(Elf_Addr));
4314    tls = malloc_aligned(size, ralign);
4315    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4316
4317    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4318    ((Elf_Addr*)segbase)[0] = segbase;
4319    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4320
4321    dtv[0] = tls_dtv_generation;
4322    dtv[1] = tls_max_index;
4323
4324    if (oldtls) {
4325	/*
4326	 * Copy the static TLS block over whole.
4327	 */
4328	oldsegbase = (Elf_Addr) oldtls;
4329	memcpy((void *)(segbase - tls_static_space),
4330	       (const void *)(oldsegbase - tls_static_space),
4331	       tls_static_space);
4332
4333	/*
4334	 * If any dynamic TLS blocks have been created tls_get_addr(),
4335	 * move them over.
4336	 */
4337	olddtv = ((Elf_Addr**)oldsegbase)[1];
4338	for (i = 0; i < olddtv[1]; i++) {
4339	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4340		dtv[i+2] = olddtv[i+2];
4341		olddtv[i+2] = 0;
4342	    }
4343	}
4344
4345	/*
4346	 * We assume that this block was the one we created with
4347	 * allocate_initial_tls().
4348	 */
4349	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4350    } else {
4351	for (obj = objs; obj; obj = obj->next) {
4352	    if (obj->tlsoffset) {
4353		addr = segbase - obj->tlsoffset;
4354		memset((void*) (addr + obj->tlsinitsize),
4355		       0, obj->tlssize - obj->tlsinitsize);
4356		if (obj->tlsinit)
4357		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4358		dtv[obj->tlsindex + 1] = addr;
4359	    }
4360	}
4361    }
4362
4363    return (void*) segbase;
4364}
4365
4366void
4367free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4368{
4369    Elf_Addr* dtv;
4370    size_t size, ralign;
4371    int dtvsize, i;
4372    Elf_Addr tlsstart, tlsend;
4373
4374    /*
4375     * Figure out the size of the initial TLS block so that we can
4376     * find stuff which ___tls_get_addr() allocated dynamically.
4377     */
4378    ralign = tcbalign;
4379    if (tls_static_max_align > ralign)
4380	    ralign = tls_static_max_align;
4381    size = round(tls_static_space, ralign);
4382
4383    dtv = ((Elf_Addr**)tls)[1];
4384    dtvsize = dtv[1];
4385    tlsend = (Elf_Addr) tls;
4386    tlsstart = tlsend - size;
4387    for (i = 0; i < dtvsize; i++) {
4388	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4389		free_aligned((void *)dtv[i + 2]);
4390	}
4391    }
4392
4393    free_aligned((void *)tlsstart);
4394    free((void*) dtv);
4395}
4396
4397#endif
4398
4399/*
4400 * Allocate TLS block for module with given index.
4401 */
4402void *
4403allocate_module_tls(int index)
4404{
4405    Obj_Entry* obj;
4406    char* p;
4407
4408    for (obj = obj_list; obj; obj = obj->next) {
4409	if (obj->tlsindex == index)
4410	    break;
4411    }
4412    if (!obj) {
4413	_rtld_error("Can't find module with TLS index %d", index);
4414	die();
4415    }
4416
4417    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4418    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4419    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4420
4421    return p;
4422}
4423
4424bool
4425allocate_tls_offset(Obj_Entry *obj)
4426{
4427    size_t off;
4428
4429    if (obj->tls_done)
4430	return true;
4431
4432    if (obj->tlssize == 0) {
4433	obj->tls_done = true;
4434	return true;
4435    }
4436
4437    if (obj->tlsindex == 1)
4438	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4439    else
4440	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4441				   obj->tlssize, obj->tlsalign);
4442
4443    /*
4444     * If we have already fixed the size of the static TLS block, we
4445     * must stay within that size. When allocating the static TLS, we
4446     * leave a small amount of space spare to be used for dynamically
4447     * loading modules which use static TLS.
4448     */
4449    if (tls_static_space != 0) {
4450	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4451	    return false;
4452    } else if (obj->tlsalign > tls_static_max_align) {
4453	    tls_static_max_align = obj->tlsalign;
4454    }
4455
4456    tls_last_offset = obj->tlsoffset = off;
4457    tls_last_size = obj->tlssize;
4458    obj->tls_done = true;
4459
4460    return true;
4461}
4462
4463void
4464free_tls_offset(Obj_Entry *obj)
4465{
4466
4467    /*
4468     * If we were the last thing to allocate out of the static TLS
4469     * block, we give our space back to the 'allocator'. This is a
4470     * simplistic workaround to allow libGL.so.1 to be loaded and
4471     * unloaded multiple times.
4472     */
4473    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4474	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4475	tls_last_offset -= obj->tlssize;
4476	tls_last_size = 0;
4477    }
4478}
4479
4480void *
4481_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4482{
4483    void *ret;
4484    RtldLockState lockstate;
4485
4486    wlock_acquire(rtld_bind_lock, &lockstate);
4487    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4488    lock_release(rtld_bind_lock, &lockstate);
4489    return (ret);
4490}
4491
4492void
4493_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4494{
4495    RtldLockState lockstate;
4496
4497    wlock_acquire(rtld_bind_lock, &lockstate);
4498    free_tls(tcb, tcbsize, tcbalign);
4499    lock_release(rtld_bind_lock, &lockstate);
4500}
4501
4502static void
4503object_add_name(Obj_Entry *obj, const char *name)
4504{
4505    Name_Entry *entry;
4506    size_t len;
4507
4508    len = strlen(name);
4509    entry = malloc(sizeof(Name_Entry) + len);
4510
4511    if (entry != NULL) {
4512	strcpy(entry->name, name);
4513	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4514    }
4515}
4516
4517static int
4518object_match_name(const Obj_Entry *obj, const char *name)
4519{
4520    Name_Entry *entry;
4521
4522    STAILQ_FOREACH(entry, &obj->names, link) {
4523	if (strcmp(name, entry->name) == 0)
4524	    return (1);
4525    }
4526    return (0);
4527}
4528
4529static Obj_Entry *
4530locate_dependency(const Obj_Entry *obj, const char *name)
4531{
4532    const Objlist_Entry *entry;
4533    const Needed_Entry *needed;
4534
4535    STAILQ_FOREACH(entry, &list_main, link) {
4536	if (object_match_name(entry->obj, name))
4537	    return entry->obj;
4538    }
4539
4540    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4541	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4542	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4543	    /*
4544	     * If there is DT_NEEDED for the name we are looking for,
4545	     * we are all set.  Note that object might not be found if
4546	     * dependency was not loaded yet, so the function can
4547	     * return NULL here.  This is expected and handled
4548	     * properly by the caller.
4549	     */
4550	    return (needed->obj);
4551	}
4552    }
4553    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4554	obj->path, name);
4555    die();
4556}
4557
4558static int
4559check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4560    const Elf_Vernaux *vna)
4561{
4562    const Elf_Verdef *vd;
4563    const char *vername;
4564
4565    vername = refobj->strtab + vna->vna_name;
4566    vd = depobj->verdef;
4567    if (vd == NULL) {
4568	_rtld_error("%s: version %s required by %s not defined",
4569	    depobj->path, vername, refobj->path);
4570	return (-1);
4571    }
4572    for (;;) {
4573	if (vd->vd_version != VER_DEF_CURRENT) {
4574	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4575		depobj->path, vd->vd_version);
4576	    return (-1);
4577	}
4578	if (vna->vna_hash == vd->vd_hash) {
4579	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4580		((char *)vd + vd->vd_aux);
4581	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4582		return (0);
4583	}
4584	if (vd->vd_next == 0)
4585	    break;
4586	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4587    }
4588    if (vna->vna_flags & VER_FLG_WEAK)
4589	return (0);
4590    _rtld_error("%s: version %s required by %s not found",
4591	depobj->path, vername, refobj->path);
4592    return (-1);
4593}
4594
4595static int
4596rtld_verify_object_versions(Obj_Entry *obj)
4597{
4598    const Elf_Verneed *vn;
4599    const Elf_Verdef  *vd;
4600    const Elf_Verdaux *vda;
4601    const Elf_Vernaux *vna;
4602    const Obj_Entry *depobj;
4603    int maxvernum, vernum;
4604
4605    if (obj->ver_checked)
4606	return (0);
4607    obj->ver_checked = true;
4608
4609    maxvernum = 0;
4610    /*
4611     * Walk over defined and required version records and figure out
4612     * max index used by any of them. Do very basic sanity checking
4613     * while there.
4614     */
4615    vn = obj->verneed;
4616    while (vn != NULL) {
4617	if (vn->vn_version != VER_NEED_CURRENT) {
4618	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4619		obj->path, vn->vn_version);
4620	    return (-1);
4621	}
4622	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4623	for (;;) {
4624	    vernum = VER_NEED_IDX(vna->vna_other);
4625	    if (vernum > maxvernum)
4626		maxvernum = vernum;
4627	    if (vna->vna_next == 0)
4628		 break;
4629	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4630	}
4631	if (vn->vn_next == 0)
4632	    break;
4633	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4634    }
4635
4636    vd = obj->verdef;
4637    while (vd != NULL) {
4638	if (vd->vd_version != VER_DEF_CURRENT) {
4639	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4640		obj->path, vd->vd_version);
4641	    return (-1);
4642	}
4643	vernum = VER_DEF_IDX(vd->vd_ndx);
4644	if (vernum > maxvernum)
4645		maxvernum = vernum;
4646	if (vd->vd_next == 0)
4647	    break;
4648	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4649    }
4650
4651    if (maxvernum == 0)
4652	return (0);
4653
4654    /*
4655     * Store version information in array indexable by version index.
4656     * Verify that object version requirements are satisfied along the
4657     * way.
4658     */
4659    obj->vernum = maxvernum + 1;
4660    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4661
4662    vd = obj->verdef;
4663    while (vd != NULL) {
4664	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4665	    vernum = VER_DEF_IDX(vd->vd_ndx);
4666	    assert(vernum <= maxvernum);
4667	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4668	    obj->vertab[vernum].hash = vd->vd_hash;
4669	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4670	    obj->vertab[vernum].file = NULL;
4671	    obj->vertab[vernum].flags = 0;
4672	}
4673	if (vd->vd_next == 0)
4674	    break;
4675	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4676    }
4677
4678    vn = obj->verneed;
4679    while (vn != NULL) {
4680	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4681	if (depobj == NULL)
4682	    return (-1);
4683	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4684	for (;;) {
4685	    if (check_object_provided_version(obj, depobj, vna))
4686		return (-1);
4687	    vernum = VER_NEED_IDX(vna->vna_other);
4688	    assert(vernum <= maxvernum);
4689	    obj->vertab[vernum].hash = vna->vna_hash;
4690	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4691	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4692	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4693		VER_INFO_HIDDEN : 0;
4694	    if (vna->vna_next == 0)
4695		 break;
4696	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4697	}
4698	if (vn->vn_next == 0)
4699	    break;
4700	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4701    }
4702    return 0;
4703}
4704
4705static int
4706rtld_verify_versions(const Objlist *objlist)
4707{
4708    Objlist_Entry *entry;
4709    int rc;
4710
4711    rc = 0;
4712    STAILQ_FOREACH(entry, objlist, link) {
4713	/*
4714	 * Skip dummy objects or objects that have their version requirements
4715	 * already checked.
4716	 */
4717	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4718	    continue;
4719	if (rtld_verify_object_versions(entry->obj) == -1) {
4720	    rc = -1;
4721	    if (ld_tracing == NULL)
4722		break;
4723	}
4724    }
4725    if (rc == 0 || ld_tracing != NULL)
4726    	rc = rtld_verify_object_versions(&obj_rtld);
4727    return rc;
4728}
4729
4730const Ver_Entry *
4731fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4732{
4733    Elf_Versym vernum;
4734
4735    if (obj->vertab) {
4736	vernum = VER_NDX(obj->versyms[symnum]);
4737	if (vernum >= obj->vernum) {
4738	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4739		obj->path, obj->strtab + symnum, vernum);
4740	} else if (obj->vertab[vernum].hash != 0) {
4741	    return &obj->vertab[vernum];
4742	}
4743    }
4744    return NULL;
4745}
4746
4747int
4748_rtld_get_stack_prot(void)
4749{
4750
4751	return (stack_prot);
4752}
4753
4754int
4755_rtld_is_dlopened(void *arg)
4756{
4757	Obj_Entry *obj;
4758	RtldLockState lockstate;
4759	int res;
4760
4761	rlock_acquire(rtld_bind_lock, &lockstate);
4762	obj = dlcheck(arg);
4763	if (obj == NULL)
4764		obj = obj_from_addr(arg);
4765	if (obj == NULL) {
4766		_rtld_error("No shared object contains address");
4767		lock_release(rtld_bind_lock, &lockstate);
4768		return (-1);
4769	}
4770	res = obj->dlopened ? 1 : 0;
4771	lock_release(rtld_bind_lock, &lockstate);
4772	return (res);
4773}
4774
4775static void
4776map_stacks_exec(RtldLockState *lockstate)
4777{
4778	void (*thr_map_stacks_exec)(void);
4779
4780	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4781		return;
4782	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4783	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4784	if (thr_map_stacks_exec != NULL) {
4785		stack_prot |= PROT_EXEC;
4786		thr_map_stacks_exec();
4787	}
4788}
4789
4790void
4791symlook_init(SymLook *dst, const char *name)
4792{
4793
4794	bzero(dst, sizeof(*dst));
4795	dst->name = name;
4796	dst->hash = elf_hash(name);
4797	dst->hash_gnu = gnu_hash(name);
4798}
4799
4800static void
4801symlook_init_from_req(SymLook *dst, const SymLook *src)
4802{
4803
4804	dst->name = src->name;
4805	dst->hash = src->hash;
4806	dst->hash_gnu = src->hash_gnu;
4807	dst->ventry = src->ventry;
4808	dst->flags = src->flags;
4809	dst->defobj_out = NULL;
4810	dst->sym_out = NULL;
4811	dst->lockstate = src->lockstate;
4812}
4813
4814/*
4815 * Overrides for libc_pic-provided functions.
4816 */
4817
4818int
4819__getosreldate(void)
4820{
4821	size_t len;
4822	int oid[2];
4823	int error, osrel;
4824
4825	if (osreldate != 0)
4826		return (osreldate);
4827
4828	oid[0] = CTL_KERN;
4829	oid[1] = KERN_OSRELDATE;
4830	osrel = 0;
4831	len = sizeof(osrel);
4832	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4833	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4834		osreldate = osrel;
4835	return (osreldate);
4836}
4837
4838void
4839exit(int status)
4840{
4841
4842	_exit(status);
4843}
4844
4845void (*__cleanup)(void);
4846int __isthreaded = 0;
4847int _thread_autoinit_dummy_decl = 1;
4848
4849/*
4850 * No unresolved symbols for rtld.
4851 */
4852void
4853__pthread_cxa_finalize(struct dl_phdr_info *a)
4854{
4855}
4856
4857void
4858__stack_chk_fail(void)
4859{
4860
4861	_rtld_error("stack overflow detected; terminated");
4862	die();
4863}
4864__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4865
4866void
4867__chk_fail(void)
4868{
4869
4870	_rtld_error("buffer overflow detected; terminated");
4871	die();
4872}
4873
4874const char *
4875rtld_strerror(int errnum)
4876{
4877
4878	if (errnum < 0 || errnum >= sys_nerr)
4879		return ("Unknown error");
4880	return (sys_errlist[errnum]);
4881}
4882