rtld.c revision 269680
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 269680 2014-08-07 18:36:47Z markj $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(char *, const char *, const char *, bool);
150static char *origin_subst(char *, const char *);
151static void preinit_main(void);
152static int  rtld_verify_versions(const Objlist *);
153static int  rtld_verify_object_versions(Obj_Entry *);
154static void object_add_name(Obj_Entry *, const char *);
155static int  object_match_name(const Obj_Entry *, const char *);
156static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158    struct dl_phdr_info *phdr_info);
159static uint32_t gnu_hash(const char *);
160static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161    const unsigned long);
162
163void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164void _r_debug_postinit(struct link_map *) __noinline;
165
166/*
167 * Data declarations.
168 */
169static char *error_message;	/* Message for dlerror(), or NULL */
170struct r_debug r_debug;		/* for GDB; */
171static bool libmap_disable;	/* Disable libmap */
172static bool ld_loadfltr;	/* Immediate filters processing */
173static char *libmap_override;	/* Maps to use in addition to libmap.conf */
174static bool trust;		/* False for setuid and setgid programs */
175static bool dangerous_ld_env;	/* True if environment variables have been
176				   used to affect the libraries loaded */
177static char *ld_bind_now;	/* Environment variable for immediate binding */
178static char *ld_debug;		/* Environment variable for debugging */
179static char *ld_library_path;	/* Environment variable for search path */
180static char *ld_preload;	/* Environment variable for libraries to
181				   load first */
182static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
183static char *ld_tracing;	/* Called from ldd to print libs */
184static char *ld_utrace;		/* Use utrace() to log events. */
185static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
186static Obj_Entry **obj_tail;	/* Link field of last object in list */
187static Obj_Entry *obj_main;	/* The main program shared object */
188static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
189static unsigned int obj_count;	/* Number of objects in obj_list */
190static unsigned int obj_loads;	/* Number of objects in obj_list */
191
192static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
193  STAILQ_HEAD_INITIALIZER(list_global);
194static Objlist list_main =	/* Objects loaded at program startup */
195  STAILQ_HEAD_INITIALIZER(list_main);
196static Objlist list_fini =	/* Objects needing fini() calls */
197  STAILQ_HEAD_INITIALIZER(list_fini);
198
199Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
200
201#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
202
203extern Elf_Dyn _DYNAMIC;
204#pragma weak _DYNAMIC
205#ifndef RTLD_IS_DYNAMIC
206#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
207#endif
208
209int osreldate, pagesize;
210
211long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
212
213static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
214static int max_stack_flags;
215
216/*
217 * Global declarations normally provided by crt1.  The dynamic linker is
218 * not built with crt1, so we have to provide them ourselves.
219 */
220char *__progname;
221char **environ;
222
223/*
224 * Used to pass argc, argv to init functions.
225 */
226int main_argc;
227char **main_argv;
228
229/*
230 * Globals to control TLS allocation.
231 */
232size_t tls_last_offset;		/* Static TLS offset of last module */
233size_t tls_last_size;		/* Static TLS size of last module */
234size_t tls_static_space;	/* Static TLS space allocated */
235size_t tls_static_max_align;
236int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
237int tls_max_index = 1;		/* Largest module index allocated */
238
239bool ld_library_path_rpath = false;
240
241/*
242 * Fill in a DoneList with an allocation large enough to hold all of
243 * the currently-loaded objects.  Keep this as a macro since it calls
244 * alloca and we want that to occur within the scope of the caller.
245 */
246#define donelist_init(dlp)					\
247    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
248    assert((dlp)->objs != NULL),				\
249    (dlp)->num_alloc = obj_count,				\
250    (dlp)->num_used = 0)
251
252#define	UTRACE_DLOPEN_START		1
253#define	UTRACE_DLOPEN_STOP		2
254#define	UTRACE_DLCLOSE_START		3
255#define	UTRACE_DLCLOSE_STOP		4
256#define	UTRACE_LOAD_OBJECT		5
257#define	UTRACE_UNLOAD_OBJECT		6
258#define	UTRACE_ADD_RUNDEP		7
259#define	UTRACE_PRELOAD_FINISHED		8
260#define	UTRACE_INIT_CALL		9
261#define	UTRACE_FINI_CALL		10
262
263struct utrace_rtld {
264	char sig[4];			/* 'RTLD' */
265	int event;
266	void *handle;
267	void *mapbase;			/* Used for 'parent' and 'init/fini' */
268	size_t mapsize;
269	int refcnt;			/* Used for 'mode' */
270	char name[MAXPATHLEN];
271};
272
273#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
274	if (ld_utrace != NULL)					\
275		ld_utrace_log(e, h, mb, ms, r, n);		\
276} while (0)
277
278static void
279ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
280    int refcnt, const char *name)
281{
282	struct utrace_rtld ut;
283
284	ut.sig[0] = 'R';
285	ut.sig[1] = 'T';
286	ut.sig[2] = 'L';
287	ut.sig[3] = 'D';
288	ut.event = event;
289	ut.handle = handle;
290	ut.mapbase = mapbase;
291	ut.mapsize = mapsize;
292	ut.refcnt = refcnt;
293	bzero(ut.name, sizeof(ut.name));
294	if (name)
295		strlcpy(ut.name, name, sizeof(ut.name));
296	utrace(&ut, sizeof(ut));
297}
298
299/*
300 * Main entry point for dynamic linking.  The first argument is the
301 * stack pointer.  The stack is expected to be laid out as described
302 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
303 * Specifically, the stack pointer points to a word containing
304 * ARGC.  Following that in the stack is a null-terminated sequence
305 * of pointers to argument strings.  Then comes a null-terminated
306 * sequence of pointers to environment strings.  Finally, there is a
307 * sequence of "auxiliary vector" entries.
308 *
309 * The second argument points to a place to store the dynamic linker's
310 * exit procedure pointer and the third to a place to store the main
311 * program's object.
312 *
313 * The return value is the main program's entry point.
314 */
315func_ptr_type
316_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
317{
318    Elf_Auxinfo *aux_info[AT_COUNT];
319    int i;
320    int argc;
321    char **argv;
322    char **env;
323    Elf_Auxinfo *aux;
324    Elf_Auxinfo *auxp;
325    const char *argv0;
326    Objlist_Entry *entry;
327    Obj_Entry *obj;
328    Obj_Entry **preload_tail;
329    Obj_Entry *last_interposer;
330    Objlist initlist;
331    RtldLockState lockstate;
332    char *library_path_rpath;
333    int mib[2];
334    size_t len;
335
336    /*
337     * On entry, the dynamic linker itself has not been relocated yet.
338     * Be very careful not to reference any global data until after
339     * init_rtld has returned.  It is OK to reference file-scope statics
340     * and string constants, and to call static and global functions.
341     */
342
343    /* Find the auxiliary vector on the stack. */
344    argc = *sp++;
345    argv = (char **) sp;
346    sp += argc + 1;	/* Skip over arguments and NULL terminator */
347    env = (char **) sp;
348    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
349	;
350    aux = (Elf_Auxinfo *) sp;
351
352    /* Digest the auxiliary vector. */
353    for (i = 0;  i < AT_COUNT;  i++)
354	aux_info[i] = NULL;
355    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
356	if (auxp->a_type < AT_COUNT)
357	    aux_info[auxp->a_type] = auxp;
358    }
359
360    /* Initialize and relocate ourselves. */
361    assert(aux_info[AT_BASE] != NULL);
362    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
363
364    __progname = obj_rtld.path;
365    argv0 = argv[0] != NULL ? argv[0] : "(null)";
366    environ = env;
367    main_argc = argc;
368    main_argv = argv;
369
370    if (aux_info[AT_CANARY] != NULL &&
371	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
372	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
373	    if (i > sizeof(__stack_chk_guard))
374		    i = sizeof(__stack_chk_guard);
375	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
376    } else {
377	mib[0] = CTL_KERN;
378	mib[1] = KERN_ARND;
379
380	len = sizeof(__stack_chk_guard);
381	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
382	    len != sizeof(__stack_chk_guard)) {
383		/* If sysctl was unsuccessful, use the "terminator canary". */
384		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
385		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
386		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
387		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
388	}
389    }
390
391    trust = !issetugid();
392
393    ld_bind_now = getenv(LD_ "BIND_NOW");
394    /*
395     * If the process is tainted, then we un-set the dangerous environment
396     * variables.  The process will be marked as tainted until setuid(2)
397     * is called.  If any child process calls setuid(2) we do not want any
398     * future processes to honor the potentially un-safe variables.
399     */
400    if (!trust) {
401        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
402	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
403	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
404	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
405		_rtld_error("environment corrupt; aborting");
406		die();
407	}
408    }
409    ld_debug = getenv(LD_ "DEBUG");
410    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
411    libmap_override = getenv(LD_ "LIBMAP");
412    ld_library_path = getenv(LD_ "LIBRARY_PATH");
413    ld_preload = getenv(LD_ "PRELOAD");
414    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
415    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
416    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
417    if (library_path_rpath != NULL) {
418	    if (library_path_rpath[0] == 'y' ||
419		library_path_rpath[0] == 'Y' ||
420		library_path_rpath[0] == '1')
421		    ld_library_path_rpath = true;
422	    else
423		    ld_library_path_rpath = false;
424    }
425    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
426	(ld_library_path != NULL) || (ld_preload != NULL) ||
427	(ld_elf_hints_path != NULL) || ld_loadfltr;
428    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
429    ld_utrace = getenv(LD_ "UTRACE");
430
431    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
432	ld_elf_hints_path = _PATH_ELF_HINTS;
433
434    if (ld_debug != NULL && *ld_debug != '\0')
435	debug = 1;
436    dbg("%s is initialized, base address = %p", __progname,
437	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
438    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
439    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
440
441    dbg("initializing thread locks");
442    lockdflt_init();
443
444    /*
445     * Load the main program, or process its program header if it is
446     * already loaded.
447     */
448    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
449	int fd = aux_info[AT_EXECFD]->a_un.a_val;
450	dbg("loading main program");
451	obj_main = map_object(fd, argv0, NULL);
452	close(fd);
453	if (obj_main == NULL)
454	    die();
455	max_stack_flags = obj->stack_flags;
456    } else {				/* Main program already loaded. */
457	const Elf_Phdr *phdr;
458	int phnum;
459	caddr_t entry;
460
461	dbg("processing main program's program header");
462	assert(aux_info[AT_PHDR] != NULL);
463	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
464	assert(aux_info[AT_PHNUM] != NULL);
465	phnum = aux_info[AT_PHNUM]->a_un.a_val;
466	assert(aux_info[AT_PHENT] != NULL);
467	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
468	assert(aux_info[AT_ENTRY] != NULL);
469	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
470	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
471	    die();
472    }
473
474    if (aux_info[AT_EXECPATH] != 0) {
475	    char *kexecpath;
476	    char buf[MAXPATHLEN];
477
478	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
479	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
480	    if (kexecpath[0] == '/')
481		    obj_main->path = kexecpath;
482	    else if (getcwd(buf, sizeof(buf)) == NULL ||
483		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
484		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
485		    obj_main->path = xstrdup(argv0);
486	    else
487		    obj_main->path = xstrdup(buf);
488    } else {
489	    dbg("No AT_EXECPATH");
490	    obj_main->path = xstrdup(argv0);
491    }
492    dbg("obj_main path %s", obj_main->path);
493    obj_main->mainprog = true;
494
495    if (aux_info[AT_STACKPROT] != NULL &&
496      aux_info[AT_STACKPROT]->a_un.a_val != 0)
497	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
498
499    /*
500     * Get the actual dynamic linker pathname from the executable if
501     * possible.  (It should always be possible.)  That ensures that
502     * gdb will find the right dynamic linker even if a non-standard
503     * one is being used.
504     */
505    if (obj_main->interp != NULL &&
506      strcmp(obj_main->interp, obj_rtld.path) != 0) {
507	free(obj_rtld.path);
508	obj_rtld.path = xstrdup(obj_main->interp);
509        __progname = obj_rtld.path;
510    }
511
512    digest_dynamic(obj_main, 0);
513    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
514	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
515	obj_main->dynsymcount);
516
517    linkmap_add(obj_main);
518    linkmap_add(&obj_rtld);
519
520    /* Link the main program into the list of objects. */
521    *obj_tail = obj_main;
522    obj_tail = &obj_main->next;
523    obj_count++;
524    obj_loads++;
525
526    /* Initialize a fake symbol for resolving undefined weak references. */
527    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
528    sym_zero.st_shndx = SHN_UNDEF;
529    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
530
531    if (!libmap_disable)
532        libmap_disable = (bool)lm_init(libmap_override);
533
534    dbg("loading LD_PRELOAD libraries");
535    if (load_preload_objects() == -1)
536	die();
537    preload_tail = obj_tail;
538
539    dbg("loading needed objects");
540    if (load_needed_objects(obj_main, 0) == -1)
541	die();
542
543    /* Make a list of all objects loaded at startup. */
544    last_interposer = obj_main;
545    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
546	if (obj->z_interpose && obj != obj_main) {
547	    objlist_put_after(&list_main, last_interposer, obj);
548	    last_interposer = obj;
549	} else {
550	    objlist_push_tail(&list_main, obj);
551	}
552    	obj->refcount++;
553    }
554
555    dbg("checking for required versions");
556    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
557	die();
558
559    if (ld_tracing) {		/* We're done */
560	trace_loaded_objects(obj_main);
561	exit(0);
562    }
563
564    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
565       dump_relocations(obj_main);
566       exit (0);
567    }
568
569    /*
570     * Processing tls relocations requires having the tls offsets
571     * initialized.  Prepare offsets before starting initial
572     * relocation processing.
573     */
574    dbg("initializing initial thread local storage offsets");
575    STAILQ_FOREACH(entry, &list_main, link) {
576	/*
577	 * Allocate all the initial objects out of the static TLS
578	 * block even if they didn't ask for it.
579	 */
580	allocate_tls_offset(entry->obj);
581    }
582
583    if (relocate_objects(obj_main,
584      ld_bind_now != NULL && *ld_bind_now != '\0',
585      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
586	die();
587
588    dbg("doing copy relocations");
589    if (do_copy_relocations(obj_main) == -1)
590	die();
591
592    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
593       dump_relocations(obj_main);
594       exit (0);
595    }
596
597    /*
598     * Setup TLS for main thread.  This must be done after the
599     * relocations are processed, since tls initialization section
600     * might be the subject for relocations.
601     */
602    dbg("initializing initial thread local storage");
603    allocate_initial_tls(obj_list);
604
605    dbg("initializing key program variables");
606    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
607    set_program_var("environ", env);
608    set_program_var("__elf_aux_vector", aux);
609
610    /* Make a list of init functions to call. */
611    objlist_init(&initlist);
612    initlist_add_objects(obj_list, preload_tail, &initlist);
613
614    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
615
616    map_stacks_exec(NULL);
617
618    dbg("resolving ifuncs");
619    if (resolve_objects_ifunc(obj_main,
620      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
621      NULL) == -1)
622	die();
623
624    if (!obj_main->crt_no_init) {
625	/*
626	 * Make sure we don't call the main program's init and fini
627	 * functions for binaries linked with old crt1 which calls
628	 * _init itself.
629	 */
630	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
631	obj_main->preinit_array = obj_main->init_array =
632	    obj_main->fini_array = (Elf_Addr)NULL;
633    }
634
635    wlock_acquire(rtld_bind_lock, &lockstate);
636    if (obj_main->crt_no_init)
637	preinit_main();
638    objlist_call_init(&initlist, &lockstate);
639    _r_debug_postinit(&obj_main->linkmap);
640    objlist_clear(&initlist);
641    dbg("loading filtees");
642    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
643	if (ld_loadfltr || obj->z_loadfltr)
644	    load_filtees(obj, 0, &lockstate);
645    }
646    lock_release(rtld_bind_lock, &lockstate);
647
648    dbg("transferring control to program entry point = %p", obj_main->entry);
649
650    /* Return the exit procedure and the program entry point. */
651    *exit_proc = rtld_exit;
652    *objp = obj_main;
653    return (func_ptr_type) obj_main->entry;
654}
655
656void *
657rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
658{
659	void *ptr;
660	Elf_Addr target;
661
662	ptr = (void *)make_function_pointer(def, obj);
663	target = ((Elf_Addr (*)(void))ptr)();
664	return ((void *)target);
665}
666
667Elf_Addr
668_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
669{
670    const Elf_Rel *rel;
671    const Elf_Sym *def;
672    const Obj_Entry *defobj;
673    Elf_Addr *where;
674    Elf_Addr target;
675    RtldLockState lockstate;
676
677    rlock_acquire(rtld_bind_lock, &lockstate);
678    if (sigsetjmp(lockstate.env, 0) != 0)
679	    lock_upgrade(rtld_bind_lock, &lockstate);
680    if (obj->pltrel)
681	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
682    else
683	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
684
685    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
686    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
687	&lockstate);
688    if (def == NULL)
689	die();
690    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
691	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
692    else
693	target = (Elf_Addr)(defobj->relocbase + def->st_value);
694
695    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
696      defobj->strtab + def->st_name, basename(obj->path),
697      (void *)target, basename(defobj->path));
698
699    /*
700     * Write the new contents for the jmpslot. Note that depending on
701     * architecture, the value which we need to return back to the
702     * lazy binding trampoline may or may not be the target
703     * address. The value returned from reloc_jmpslot() is the value
704     * that the trampoline needs.
705     */
706    target = reloc_jmpslot(where, target, defobj, obj, rel);
707    lock_release(rtld_bind_lock, &lockstate);
708    return target;
709}
710
711/*
712 * Error reporting function.  Use it like printf.  If formats the message
713 * into a buffer, and sets things up so that the next call to dlerror()
714 * will return the message.
715 */
716void
717_rtld_error(const char *fmt, ...)
718{
719    static char buf[512];
720    va_list ap;
721
722    va_start(ap, fmt);
723    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
724    error_message = buf;
725    va_end(ap);
726}
727
728/*
729 * Return a dynamically-allocated copy of the current error message, if any.
730 */
731static char *
732errmsg_save(void)
733{
734    return error_message == NULL ? NULL : xstrdup(error_message);
735}
736
737/*
738 * Restore the current error message from a copy which was previously saved
739 * by errmsg_save().  The copy is freed.
740 */
741static void
742errmsg_restore(char *saved_msg)
743{
744    if (saved_msg == NULL)
745	error_message = NULL;
746    else {
747	_rtld_error("%s", saved_msg);
748	free(saved_msg);
749    }
750}
751
752static const char *
753basename(const char *name)
754{
755    const char *p = strrchr(name, '/');
756    return p != NULL ? p + 1 : name;
757}
758
759static struct utsname uts;
760
761static char *
762origin_subst_one(char *real, const char *kw, const char *subst,
763    bool may_free)
764{
765	char *p, *p1, *res, *resp;
766	int subst_len, kw_len, subst_count, old_len, new_len;
767
768	kw_len = strlen(kw);
769
770	/*
771	 * First, count the number of the keyword occurences, to
772	 * preallocate the final string.
773	 */
774	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
775		p1 = strstr(p, kw);
776		if (p1 == NULL)
777			break;
778	}
779
780	/*
781	 * If the keyword is not found, just return.
782	 */
783	if (subst_count == 0)
784		return (may_free ? real : xstrdup(real));
785
786	/*
787	 * There is indeed something to substitute.  Calculate the
788	 * length of the resulting string, and allocate it.
789	 */
790	subst_len = strlen(subst);
791	old_len = strlen(real);
792	new_len = old_len + (subst_len - kw_len) * subst_count;
793	res = xmalloc(new_len + 1);
794
795	/*
796	 * Now, execute the substitution loop.
797	 */
798	for (p = real, resp = res, *resp = '\0';;) {
799		p1 = strstr(p, kw);
800		if (p1 != NULL) {
801			/* Copy the prefix before keyword. */
802			memcpy(resp, p, p1 - p);
803			resp += p1 - p;
804			/* Keyword replacement. */
805			memcpy(resp, subst, subst_len);
806			resp += subst_len;
807			*resp = '\0';
808			p = p1 + kw_len;
809		} else
810			break;
811	}
812
813	/* Copy to the end of string and finish. */
814	strcat(resp, p);
815	if (may_free)
816		free(real);
817	return (res);
818}
819
820static char *
821origin_subst(char *real, const char *origin_path)
822{
823	char *res1, *res2, *res3, *res4;
824
825	if (uts.sysname[0] == '\0') {
826		if (uname(&uts) != 0) {
827			_rtld_error("utsname failed: %d", errno);
828			return (NULL);
829		}
830	}
831	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
832	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
833	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
834	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
835	return (res4);
836}
837
838static void
839die(void)
840{
841    const char *msg = dlerror();
842
843    if (msg == NULL)
844	msg = "Fatal error";
845    rtld_fdputstr(STDERR_FILENO, msg);
846    rtld_fdputchar(STDERR_FILENO, '\n');
847    _exit(1);
848}
849
850/*
851 * Process a shared object's DYNAMIC section, and save the important
852 * information in its Obj_Entry structure.
853 */
854static void
855digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
856    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
857{
858    const Elf_Dyn *dynp;
859    Needed_Entry **needed_tail = &obj->needed;
860    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
861    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
862    const Elf_Hashelt *hashtab;
863    const Elf32_Word *hashval;
864    Elf32_Word bkt, nmaskwords;
865    int bloom_size32;
866    bool nmw_power2;
867    int plttype = DT_REL;
868
869    *dyn_rpath = NULL;
870    *dyn_soname = NULL;
871    *dyn_runpath = NULL;
872
873    obj->bind_now = false;
874    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
875	switch (dynp->d_tag) {
876
877	case DT_REL:
878	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
879	    break;
880
881	case DT_RELSZ:
882	    obj->relsize = dynp->d_un.d_val;
883	    break;
884
885	case DT_RELENT:
886	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
887	    break;
888
889	case DT_JMPREL:
890	    obj->pltrel = (const Elf_Rel *)
891	      (obj->relocbase + dynp->d_un.d_ptr);
892	    break;
893
894	case DT_PLTRELSZ:
895	    obj->pltrelsize = dynp->d_un.d_val;
896	    break;
897
898	case DT_RELA:
899	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
900	    break;
901
902	case DT_RELASZ:
903	    obj->relasize = dynp->d_un.d_val;
904	    break;
905
906	case DT_RELAENT:
907	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
908	    break;
909
910	case DT_PLTREL:
911	    plttype = dynp->d_un.d_val;
912	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
913	    break;
914
915	case DT_SYMTAB:
916	    obj->symtab = (const Elf_Sym *)
917	      (obj->relocbase + dynp->d_un.d_ptr);
918	    break;
919
920	case DT_SYMENT:
921	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
922	    break;
923
924	case DT_STRTAB:
925	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
926	    break;
927
928	case DT_STRSZ:
929	    obj->strsize = dynp->d_un.d_val;
930	    break;
931
932	case DT_VERNEED:
933	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
934		dynp->d_un.d_val);
935	    break;
936
937	case DT_VERNEEDNUM:
938	    obj->verneednum = dynp->d_un.d_val;
939	    break;
940
941	case DT_VERDEF:
942	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
943		dynp->d_un.d_val);
944	    break;
945
946	case DT_VERDEFNUM:
947	    obj->verdefnum = dynp->d_un.d_val;
948	    break;
949
950	case DT_VERSYM:
951	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
952		dynp->d_un.d_val);
953	    break;
954
955	case DT_HASH:
956	    {
957		hashtab = (const Elf_Hashelt *)(obj->relocbase +
958		    dynp->d_un.d_ptr);
959		obj->nbuckets = hashtab[0];
960		obj->nchains = hashtab[1];
961		obj->buckets = hashtab + 2;
962		obj->chains = obj->buckets + obj->nbuckets;
963		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
964		  obj->buckets != NULL;
965	    }
966	    break;
967
968	case DT_GNU_HASH:
969	    {
970		hashtab = (const Elf_Hashelt *)(obj->relocbase +
971		    dynp->d_un.d_ptr);
972		obj->nbuckets_gnu = hashtab[0];
973		obj->symndx_gnu = hashtab[1];
974		nmaskwords = hashtab[2];
975		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
976		/* Number of bitmask words is required to be power of 2 */
977		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
978		obj->maskwords_bm_gnu = nmaskwords - 1;
979		obj->shift2_gnu = hashtab[3];
980		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
981		obj->buckets_gnu = hashtab + 4 + bloom_size32;
982		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
983		  obj->symndx_gnu;
984		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
985		  obj->buckets_gnu != NULL;
986	    }
987	    break;
988
989	case DT_NEEDED:
990	    if (!obj->rtld) {
991		Needed_Entry *nep = NEW(Needed_Entry);
992		nep->name = dynp->d_un.d_val;
993		nep->obj = NULL;
994		nep->next = NULL;
995
996		*needed_tail = nep;
997		needed_tail = &nep->next;
998	    }
999	    break;
1000
1001	case DT_FILTER:
1002	    if (!obj->rtld) {
1003		Needed_Entry *nep = NEW(Needed_Entry);
1004		nep->name = dynp->d_un.d_val;
1005		nep->obj = NULL;
1006		nep->next = NULL;
1007
1008		*needed_filtees_tail = nep;
1009		needed_filtees_tail = &nep->next;
1010	    }
1011	    break;
1012
1013	case DT_AUXILIARY:
1014	    if (!obj->rtld) {
1015		Needed_Entry *nep = NEW(Needed_Entry);
1016		nep->name = dynp->d_un.d_val;
1017		nep->obj = NULL;
1018		nep->next = NULL;
1019
1020		*needed_aux_filtees_tail = nep;
1021		needed_aux_filtees_tail = &nep->next;
1022	    }
1023	    break;
1024
1025	case DT_PLTGOT:
1026	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1027	    break;
1028
1029	case DT_TEXTREL:
1030	    obj->textrel = true;
1031	    break;
1032
1033	case DT_SYMBOLIC:
1034	    obj->symbolic = true;
1035	    break;
1036
1037	case DT_RPATH:
1038	    /*
1039	     * We have to wait until later to process this, because we
1040	     * might not have gotten the address of the string table yet.
1041	     */
1042	    *dyn_rpath = dynp;
1043	    break;
1044
1045	case DT_SONAME:
1046	    *dyn_soname = dynp;
1047	    break;
1048
1049	case DT_RUNPATH:
1050	    *dyn_runpath = dynp;
1051	    break;
1052
1053	case DT_INIT:
1054	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1055	    break;
1056
1057	case DT_PREINIT_ARRAY:
1058	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1059	    break;
1060
1061	case DT_PREINIT_ARRAYSZ:
1062	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1063	    break;
1064
1065	case DT_INIT_ARRAY:
1066	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1067	    break;
1068
1069	case DT_INIT_ARRAYSZ:
1070	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1071	    break;
1072
1073	case DT_FINI:
1074	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1075	    break;
1076
1077	case DT_FINI_ARRAY:
1078	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1079	    break;
1080
1081	case DT_FINI_ARRAYSZ:
1082	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1083	    break;
1084
1085	/*
1086	 * Don't process DT_DEBUG on MIPS as the dynamic section
1087	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1088	 */
1089
1090#ifndef __mips__
1091	case DT_DEBUG:
1092	    /* XXX - not implemented yet */
1093	    if (!early)
1094		dbg("Filling in DT_DEBUG entry");
1095	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1096	    break;
1097#endif
1098
1099	case DT_FLAGS:
1100		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1101		    obj->z_origin = true;
1102		if (dynp->d_un.d_val & DF_SYMBOLIC)
1103		    obj->symbolic = true;
1104		if (dynp->d_un.d_val & DF_TEXTREL)
1105		    obj->textrel = true;
1106		if (dynp->d_un.d_val & DF_BIND_NOW)
1107		    obj->bind_now = true;
1108		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1109		    ;*/
1110	    break;
1111#ifdef __mips__
1112	case DT_MIPS_LOCAL_GOTNO:
1113		obj->local_gotno = dynp->d_un.d_val;
1114	    break;
1115
1116	case DT_MIPS_SYMTABNO:
1117		obj->symtabno = dynp->d_un.d_val;
1118		break;
1119
1120	case DT_MIPS_GOTSYM:
1121		obj->gotsym = dynp->d_un.d_val;
1122		break;
1123
1124	case DT_MIPS_RLD_MAP:
1125		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1126		break;
1127#endif
1128
1129	case DT_FLAGS_1:
1130		if (dynp->d_un.d_val & DF_1_NOOPEN)
1131		    obj->z_noopen = true;
1132		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1133		    obj->z_origin = true;
1134		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1135		    XXX ;*/
1136		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1137		    obj->bind_now = true;
1138		if (dynp->d_un.d_val & DF_1_NODELETE)
1139		    obj->z_nodelete = true;
1140		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1141		    obj->z_loadfltr = true;
1142		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1143		    obj->z_interpose = true;
1144		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1145		    obj->z_nodeflib = true;
1146	    break;
1147
1148	default:
1149	    if (!early) {
1150		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1151		    (long)dynp->d_tag);
1152	    }
1153	    break;
1154	}
1155    }
1156
1157    obj->traced = false;
1158
1159    if (plttype == DT_RELA) {
1160	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1161	obj->pltrel = NULL;
1162	obj->pltrelasize = obj->pltrelsize;
1163	obj->pltrelsize = 0;
1164    }
1165
1166    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1167    if (obj->valid_hash_sysv)
1168	obj->dynsymcount = obj->nchains;
1169    else if (obj->valid_hash_gnu) {
1170	obj->dynsymcount = 0;
1171	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1172	    if (obj->buckets_gnu[bkt] == 0)
1173		continue;
1174	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1175	    do
1176		obj->dynsymcount++;
1177	    while ((*hashval++ & 1u) == 0);
1178	}
1179	obj->dynsymcount += obj->symndx_gnu;
1180    }
1181}
1182
1183static void
1184digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1185    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1186{
1187
1188    if (obj->z_origin && obj->origin_path == NULL) {
1189	obj->origin_path = xmalloc(PATH_MAX);
1190	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1191	    die();
1192    }
1193
1194    if (dyn_runpath != NULL) {
1195	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1196	if (obj->z_origin)
1197	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1198    }
1199    else if (dyn_rpath != NULL) {
1200	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1201	if (obj->z_origin)
1202	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1203    }
1204
1205    if (dyn_soname != NULL)
1206	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1207}
1208
1209static void
1210digest_dynamic(Obj_Entry *obj, int early)
1211{
1212	const Elf_Dyn *dyn_rpath;
1213	const Elf_Dyn *dyn_soname;
1214	const Elf_Dyn *dyn_runpath;
1215
1216	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1217	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1218}
1219
1220/*
1221 * Process a shared object's program header.  This is used only for the
1222 * main program, when the kernel has already loaded the main program
1223 * into memory before calling the dynamic linker.  It creates and
1224 * returns an Obj_Entry structure.
1225 */
1226static Obj_Entry *
1227digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1228{
1229    Obj_Entry *obj;
1230    const Elf_Phdr *phlimit = phdr + phnum;
1231    const Elf_Phdr *ph;
1232    Elf_Addr note_start, note_end;
1233    int nsegs = 0;
1234
1235    obj = obj_new();
1236    for (ph = phdr;  ph < phlimit;  ph++) {
1237	if (ph->p_type != PT_PHDR)
1238	    continue;
1239
1240	obj->phdr = phdr;
1241	obj->phsize = ph->p_memsz;
1242	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1243	break;
1244    }
1245
1246    obj->stack_flags = PF_X | PF_R | PF_W;
1247
1248    for (ph = phdr;  ph < phlimit;  ph++) {
1249	switch (ph->p_type) {
1250
1251	case PT_INTERP:
1252	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1253	    break;
1254
1255	case PT_LOAD:
1256	    if (nsegs == 0) {	/* First load segment */
1257		obj->vaddrbase = trunc_page(ph->p_vaddr);
1258		obj->mapbase = obj->vaddrbase + obj->relocbase;
1259		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1260		  obj->vaddrbase;
1261	    } else {		/* Last load segment */
1262		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1263		  obj->vaddrbase;
1264	    }
1265	    nsegs++;
1266	    break;
1267
1268	case PT_DYNAMIC:
1269	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1270	    break;
1271
1272	case PT_TLS:
1273	    obj->tlsindex = 1;
1274	    obj->tlssize = ph->p_memsz;
1275	    obj->tlsalign = ph->p_align;
1276	    obj->tlsinitsize = ph->p_filesz;
1277	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1278	    break;
1279
1280	case PT_GNU_STACK:
1281	    obj->stack_flags = ph->p_flags;
1282	    break;
1283
1284	case PT_GNU_RELRO:
1285	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1286	    obj->relro_size = round_page(ph->p_memsz);
1287	    break;
1288
1289	case PT_NOTE:
1290	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1291	    note_end = note_start + ph->p_filesz;
1292	    digest_notes(obj, note_start, note_end);
1293	    break;
1294	}
1295    }
1296    if (nsegs < 1) {
1297	_rtld_error("%s: too few PT_LOAD segments", path);
1298	return NULL;
1299    }
1300
1301    obj->entry = entry;
1302    return obj;
1303}
1304
1305void
1306digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1307{
1308	const Elf_Note *note;
1309	const char *note_name;
1310	uintptr_t p;
1311
1312	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1313	    note = (const Elf_Note *)((const char *)(note + 1) +
1314	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1315	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1316		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1317		    note->n_descsz != sizeof(int32_t))
1318			continue;
1319		if (note->n_type != ABI_NOTETYPE &&
1320		    note->n_type != CRT_NOINIT_NOTETYPE)
1321			continue;
1322		note_name = (const char *)(note + 1);
1323		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1324		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1325			continue;
1326		switch (note->n_type) {
1327		case ABI_NOTETYPE:
1328			/* FreeBSD osrel note */
1329			p = (uintptr_t)(note + 1);
1330			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1331			obj->osrel = *(const int32_t *)(p);
1332			dbg("note osrel %d", obj->osrel);
1333			break;
1334		case CRT_NOINIT_NOTETYPE:
1335			/* FreeBSD 'crt does not call init' note */
1336			obj->crt_no_init = true;
1337			dbg("note crt_no_init");
1338			break;
1339		}
1340	}
1341}
1342
1343static Obj_Entry *
1344dlcheck(void *handle)
1345{
1346    Obj_Entry *obj;
1347
1348    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1349	if (obj == (Obj_Entry *) handle)
1350	    break;
1351
1352    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1353	_rtld_error("Invalid shared object handle %p", handle);
1354	return NULL;
1355    }
1356    return obj;
1357}
1358
1359/*
1360 * If the given object is already in the donelist, return true.  Otherwise
1361 * add the object to the list and return false.
1362 */
1363static bool
1364donelist_check(DoneList *dlp, const Obj_Entry *obj)
1365{
1366    unsigned int i;
1367
1368    for (i = 0;  i < dlp->num_used;  i++)
1369	if (dlp->objs[i] == obj)
1370	    return true;
1371    /*
1372     * Our donelist allocation should always be sufficient.  But if
1373     * our threads locking isn't working properly, more shared objects
1374     * could have been loaded since we allocated the list.  That should
1375     * never happen, but we'll handle it properly just in case it does.
1376     */
1377    if (dlp->num_used < dlp->num_alloc)
1378	dlp->objs[dlp->num_used++] = obj;
1379    return false;
1380}
1381
1382/*
1383 * Hash function for symbol table lookup.  Don't even think about changing
1384 * this.  It is specified by the System V ABI.
1385 */
1386unsigned long
1387elf_hash(const char *name)
1388{
1389    const unsigned char *p = (const unsigned char *) name;
1390    unsigned long h = 0;
1391    unsigned long g;
1392
1393    while (*p != '\0') {
1394	h = (h << 4) + *p++;
1395	if ((g = h & 0xf0000000) != 0)
1396	    h ^= g >> 24;
1397	h &= ~g;
1398    }
1399    return h;
1400}
1401
1402/*
1403 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1404 * unsigned in case it's implemented with a wider type.
1405 */
1406static uint32_t
1407gnu_hash(const char *s)
1408{
1409	uint32_t h;
1410	unsigned char c;
1411
1412	h = 5381;
1413	for (c = *s; c != '\0'; c = *++s)
1414		h = h * 33 + c;
1415	return (h & 0xffffffff);
1416}
1417
1418/*
1419 * Find the library with the given name, and return its full pathname.
1420 * The returned string is dynamically allocated.  Generates an error
1421 * message and returns NULL if the library cannot be found.
1422 *
1423 * If the second argument is non-NULL, then it refers to an already-
1424 * loaded shared object, whose library search path will be searched.
1425 *
1426 * The search order is:
1427 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1428 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1429 *   LD_LIBRARY_PATH
1430 *   DT_RUNPATH in the referencing file
1431 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1432 *	 from list)
1433 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1434 *
1435 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1436 */
1437static char *
1438find_library(const char *xname, const Obj_Entry *refobj)
1439{
1440    char *pathname;
1441    char *name;
1442    bool nodeflib, objgiven;
1443
1444    objgiven = refobj != NULL;
1445    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1446	if (xname[0] != '/' && !trust) {
1447	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1448	      xname);
1449	    return NULL;
1450	}
1451	if (objgiven && refobj->z_origin) {
1452		return (origin_subst(__DECONST(char *, xname),
1453		    refobj->origin_path));
1454	} else {
1455		return (xstrdup(xname));
1456	}
1457    }
1458
1459    if (libmap_disable || !objgiven ||
1460	(name = lm_find(refobj->path, xname)) == NULL)
1461	name = (char *)xname;
1462
1463    dbg(" Searching for \"%s\"", name);
1464
1465    /*
1466     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1467     * back to pre-conforming behaviour if user requested so with
1468     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1469     * nodeflib.
1470     */
1471    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1472	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1473	  (refobj != NULL &&
1474	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1475          (pathname = search_library_path(name, gethints(false))) != NULL ||
1476	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1477	    return (pathname);
1478    } else {
1479	nodeflib = objgiven ? refobj->z_nodeflib : false;
1480	if ((objgiven &&
1481	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1482	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1483	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1484	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1485	  (objgiven &&
1486	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1487	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1488	  (objgiven && !nodeflib &&
1489	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1490	    return (pathname);
1491    }
1492
1493    if (objgiven && refobj->path != NULL) {
1494	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1495	  name, basename(refobj->path));
1496    } else {
1497	_rtld_error("Shared object \"%s\" not found", name);
1498    }
1499    return NULL;
1500}
1501
1502/*
1503 * Given a symbol number in a referencing object, find the corresponding
1504 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1505 * no definition was found.  Returns a pointer to the Obj_Entry of the
1506 * defining object via the reference parameter DEFOBJ_OUT.
1507 */
1508const Elf_Sym *
1509find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1510    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1511    RtldLockState *lockstate)
1512{
1513    const Elf_Sym *ref;
1514    const Elf_Sym *def;
1515    const Obj_Entry *defobj;
1516    SymLook req;
1517    const char *name;
1518    int res;
1519
1520    /*
1521     * If we have already found this symbol, get the information from
1522     * the cache.
1523     */
1524    if (symnum >= refobj->dynsymcount)
1525	return NULL;	/* Bad object */
1526    if (cache != NULL && cache[symnum].sym != NULL) {
1527	*defobj_out = cache[symnum].obj;
1528	return cache[symnum].sym;
1529    }
1530
1531    ref = refobj->symtab + symnum;
1532    name = refobj->strtab + ref->st_name;
1533    def = NULL;
1534    defobj = NULL;
1535
1536    /*
1537     * We don't have to do a full scale lookup if the symbol is local.
1538     * We know it will bind to the instance in this load module; to
1539     * which we already have a pointer (ie ref). By not doing a lookup,
1540     * we not only improve performance, but it also avoids unresolvable
1541     * symbols when local symbols are not in the hash table. This has
1542     * been seen with the ia64 toolchain.
1543     */
1544    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1545	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1546	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1547		symnum);
1548	}
1549	symlook_init(&req, name);
1550	req.flags = flags;
1551	req.ventry = fetch_ventry(refobj, symnum);
1552	req.lockstate = lockstate;
1553	res = symlook_default(&req, refobj);
1554	if (res == 0) {
1555	    def = req.sym_out;
1556	    defobj = req.defobj_out;
1557	}
1558    } else {
1559	def = ref;
1560	defobj = refobj;
1561    }
1562
1563    /*
1564     * If we found no definition and the reference is weak, treat the
1565     * symbol as having the value zero.
1566     */
1567    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1568	def = &sym_zero;
1569	defobj = obj_main;
1570    }
1571
1572    if (def != NULL) {
1573	*defobj_out = defobj;
1574	/* Record the information in the cache to avoid subsequent lookups. */
1575	if (cache != NULL) {
1576	    cache[symnum].sym = def;
1577	    cache[symnum].obj = defobj;
1578	}
1579    } else {
1580	if (refobj != &obj_rtld)
1581	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1582    }
1583    return def;
1584}
1585
1586/*
1587 * Return the search path from the ldconfig hints file, reading it if
1588 * necessary.  If nostdlib is true, then the default search paths are
1589 * not added to result.
1590 *
1591 * Returns NULL if there are problems with the hints file,
1592 * or if the search path there is empty.
1593 */
1594static const char *
1595gethints(bool nostdlib)
1596{
1597	static char *hints, *filtered_path;
1598	struct elfhints_hdr hdr;
1599	struct fill_search_info_args sargs, hargs;
1600	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1601	struct dl_serpath *SLPpath, *hintpath;
1602	char *p;
1603	unsigned int SLPndx, hintndx, fndx, fcount;
1604	int fd;
1605	size_t flen;
1606	bool skip;
1607
1608	/* First call, read the hints file */
1609	if (hints == NULL) {
1610		/* Keep from trying again in case the hints file is bad. */
1611		hints = "";
1612
1613		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1614			return (NULL);
1615		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1616		    hdr.magic != ELFHINTS_MAGIC ||
1617		    hdr.version != 1) {
1618			close(fd);
1619			return (NULL);
1620		}
1621		p = xmalloc(hdr.dirlistlen + 1);
1622		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1623		    read(fd, p, hdr.dirlistlen + 1) !=
1624		    (ssize_t)hdr.dirlistlen + 1) {
1625			free(p);
1626			close(fd);
1627			return (NULL);
1628		}
1629		hints = p;
1630		close(fd);
1631	}
1632
1633	/*
1634	 * If caller agreed to receive list which includes the default
1635	 * paths, we are done. Otherwise, if we still did not
1636	 * calculated filtered result, do it now.
1637	 */
1638	if (!nostdlib)
1639		return (hints[0] != '\0' ? hints : NULL);
1640	if (filtered_path != NULL)
1641		goto filt_ret;
1642
1643	/*
1644	 * Obtain the list of all configured search paths, and the
1645	 * list of the default paths.
1646	 *
1647	 * First estimate the size of the results.
1648	 */
1649	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1650	smeta.dls_cnt = 0;
1651	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1652	hmeta.dls_cnt = 0;
1653
1654	sargs.request = RTLD_DI_SERINFOSIZE;
1655	sargs.serinfo = &smeta;
1656	hargs.request = RTLD_DI_SERINFOSIZE;
1657	hargs.serinfo = &hmeta;
1658
1659	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1660	path_enumerate(p, fill_search_info, &hargs);
1661
1662	SLPinfo = xmalloc(smeta.dls_size);
1663	hintinfo = xmalloc(hmeta.dls_size);
1664
1665	/*
1666	 * Next fetch both sets of paths.
1667	 */
1668	sargs.request = RTLD_DI_SERINFO;
1669	sargs.serinfo = SLPinfo;
1670	sargs.serpath = &SLPinfo->dls_serpath[0];
1671	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1672
1673	hargs.request = RTLD_DI_SERINFO;
1674	hargs.serinfo = hintinfo;
1675	hargs.serpath = &hintinfo->dls_serpath[0];
1676	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1677
1678	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1679	path_enumerate(p, fill_search_info, &hargs);
1680
1681	/*
1682	 * Now calculate the difference between two sets, by excluding
1683	 * standard paths from the full set.
1684	 */
1685	fndx = 0;
1686	fcount = 0;
1687	filtered_path = xmalloc(hdr.dirlistlen + 1);
1688	hintpath = &hintinfo->dls_serpath[0];
1689	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1690		skip = false;
1691		SLPpath = &SLPinfo->dls_serpath[0];
1692		/*
1693		 * Check each standard path against current.
1694		 */
1695		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1696			/* matched, skip the path */
1697			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1698				skip = true;
1699				break;
1700			}
1701		}
1702		if (skip)
1703			continue;
1704		/*
1705		 * Not matched against any standard path, add the path
1706		 * to result. Separate consequtive paths with ':'.
1707		 */
1708		if (fcount > 0) {
1709			filtered_path[fndx] = ':';
1710			fndx++;
1711		}
1712		fcount++;
1713		flen = strlen(hintpath->dls_name);
1714		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1715		fndx += flen;
1716	}
1717	filtered_path[fndx] = '\0';
1718
1719	free(SLPinfo);
1720	free(hintinfo);
1721
1722filt_ret:
1723	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1724}
1725
1726static void
1727init_dag(Obj_Entry *root)
1728{
1729    const Needed_Entry *needed;
1730    const Objlist_Entry *elm;
1731    DoneList donelist;
1732
1733    if (root->dag_inited)
1734	return;
1735    donelist_init(&donelist);
1736
1737    /* Root object belongs to own DAG. */
1738    objlist_push_tail(&root->dldags, root);
1739    objlist_push_tail(&root->dagmembers, root);
1740    donelist_check(&donelist, root);
1741
1742    /*
1743     * Add dependencies of root object to DAG in breadth order
1744     * by exploiting the fact that each new object get added
1745     * to the tail of the dagmembers list.
1746     */
1747    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1748	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1749	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1750		continue;
1751	    objlist_push_tail(&needed->obj->dldags, root);
1752	    objlist_push_tail(&root->dagmembers, needed->obj);
1753	}
1754    }
1755    root->dag_inited = true;
1756}
1757
1758static void
1759process_nodelete(Obj_Entry *root)
1760{
1761	const Objlist_Entry *elm;
1762
1763	/*
1764	 * Walk over object DAG and process every dependent object that
1765	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1766	 * which then should have its reference upped separately.
1767	 */
1768	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1769		if (elm->obj != NULL && elm->obj->z_nodelete &&
1770		    !elm->obj->ref_nodel) {
1771			dbg("obj %s nodelete", elm->obj->path);
1772			init_dag(elm->obj);
1773			ref_dag(elm->obj);
1774			elm->obj->ref_nodel = true;
1775		}
1776	}
1777}
1778/*
1779 * Initialize the dynamic linker.  The argument is the address at which
1780 * the dynamic linker has been mapped into memory.  The primary task of
1781 * this function is to relocate the dynamic linker.
1782 */
1783static void
1784init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1785{
1786    Obj_Entry objtmp;	/* Temporary rtld object */
1787    const Elf_Dyn *dyn_rpath;
1788    const Elf_Dyn *dyn_soname;
1789    const Elf_Dyn *dyn_runpath;
1790
1791    /*
1792     * Conjure up an Obj_Entry structure for the dynamic linker.
1793     *
1794     * The "path" member can't be initialized yet because string constants
1795     * cannot yet be accessed. Below we will set it correctly.
1796     */
1797    memset(&objtmp, 0, sizeof(objtmp));
1798    objtmp.path = NULL;
1799    objtmp.rtld = true;
1800    objtmp.mapbase = mapbase;
1801#ifdef PIC
1802    objtmp.relocbase = mapbase;
1803#endif
1804    if (RTLD_IS_DYNAMIC()) {
1805	objtmp.dynamic = rtld_dynamic(&objtmp);
1806	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1807	assert(objtmp.needed == NULL);
1808#if !defined(__mips__)
1809	/* MIPS has a bogus DT_TEXTREL. */
1810	assert(!objtmp.textrel);
1811#endif
1812
1813	/*
1814	 * Temporarily put the dynamic linker entry into the object list, so
1815	 * that symbols can be found.
1816	 */
1817
1818	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1819    }
1820
1821    /* Initialize the object list. */
1822    obj_tail = &obj_list;
1823
1824    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1825    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1826
1827    if (aux_info[AT_PAGESZ] != NULL)
1828	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1829    if (aux_info[AT_OSRELDATE] != NULL)
1830	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1831
1832    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1833
1834    /* Replace the path with a dynamically allocated copy. */
1835    obj_rtld.path = xstrdup(PATH_RTLD);
1836
1837    r_debug.r_brk = r_debug_state;
1838    r_debug.r_state = RT_CONSISTENT;
1839}
1840
1841/*
1842 * Add the init functions from a needed object list (and its recursive
1843 * needed objects) to "list".  This is not used directly; it is a helper
1844 * function for initlist_add_objects().  The write lock must be held
1845 * when this function is called.
1846 */
1847static void
1848initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1849{
1850    /* Recursively process the successor needed objects. */
1851    if (needed->next != NULL)
1852	initlist_add_neededs(needed->next, list);
1853
1854    /* Process the current needed object. */
1855    if (needed->obj != NULL)
1856	initlist_add_objects(needed->obj, &needed->obj->next, list);
1857}
1858
1859/*
1860 * Scan all of the DAGs rooted in the range of objects from "obj" to
1861 * "tail" and add their init functions to "list".  This recurses over
1862 * the DAGs and ensure the proper init ordering such that each object's
1863 * needed libraries are initialized before the object itself.  At the
1864 * same time, this function adds the objects to the global finalization
1865 * list "list_fini" in the opposite order.  The write lock must be
1866 * held when this function is called.
1867 */
1868static void
1869initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1870{
1871
1872    if (obj->init_scanned || obj->init_done)
1873	return;
1874    obj->init_scanned = true;
1875
1876    /* Recursively process the successor objects. */
1877    if (&obj->next != tail)
1878	initlist_add_objects(obj->next, tail, list);
1879
1880    /* Recursively process the needed objects. */
1881    if (obj->needed != NULL)
1882	initlist_add_neededs(obj->needed, list);
1883    if (obj->needed_filtees != NULL)
1884	initlist_add_neededs(obj->needed_filtees, list);
1885    if (obj->needed_aux_filtees != NULL)
1886	initlist_add_neededs(obj->needed_aux_filtees, list);
1887
1888    /* Add the object to the init list. */
1889    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1890      obj->init_array != (Elf_Addr)NULL)
1891	objlist_push_tail(list, obj);
1892
1893    /* Add the object to the global fini list in the reverse order. */
1894    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1895      && !obj->on_fini_list) {
1896	objlist_push_head(&list_fini, obj);
1897	obj->on_fini_list = true;
1898    }
1899}
1900
1901#ifndef FPTR_TARGET
1902#define FPTR_TARGET(f)	((Elf_Addr) (f))
1903#endif
1904
1905static void
1906free_needed_filtees(Needed_Entry *n)
1907{
1908    Needed_Entry *needed, *needed1;
1909
1910    for (needed = n; needed != NULL; needed = needed->next) {
1911	if (needed->obj != NULL) {
1912	    dlclose(needed->obj);
1913	    needed->obj = NULL;
1914	}
1915    }
1916    for (needed = n; needed != NULL; needed = needed1) {
1917	needed1 = needed->next;
1918	free(needed);
1919    }
1920}
1921
1922static void
1923unload_filtees(Obj_Entry *obj)
1924{
1925
1926    free_needed_filtees(obj->needed_filtees);
1927    obj->needed_filtees = NULL;
1928    free_needed_filtees(obj->needed_aux_filtees);
1929    obj->needed_aux_filtees = NULL;
1930    obj->filtees_loaded = false;
1931}
1932
1933static void
1934load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1935    RtldLockState *lockstate)
1936{
1937
1938    for (; needed != NULL; needed = needed->next) {
1939	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1940	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1941	  RTLD_LOCAL, lockstate);
1942    }
1943}
1944
1945static void
1946load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1947{
1948
1949    lock_restart_for_upgrade(lockstate);
1950    if (!obj->filtees_loaded) {
1951	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1952	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1953	obj->filtees_loaded = true;
1954    }
1955}
1956
1957static int
1958process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1959{
1960    Obj_Entry *obj1;
1961
1962    for (; needed != NULL; needed = needed->next) {
1963	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1964	  flags & ~RTLD_LO_NOLOAD);
1965	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1966	    return (-1);
1967    }
1968    return (0);
1969}
1970
1971/*
1972 * Given a shared object, traverse its list of needed objects, and load
1973 * each of them.  Returns 0 on success.  Generates an error message and
1974 * returns -1 on failure.
1975 */
1976static int
1977load_needed_objects(Obj_Entry *first, int flags)
1978{
1979    Obj_Entry *obj;
1980
1981    for (obj = first;  obj != NULL;  obj = obj->next) {
1982	if (process_needed(obj, obj->needed, flags) == -1)
1983	    return (-1);
1984    }
1985    return (0);
1986}
1987
1988static int
1989load_preload_objects(void)
1990{
1991    char *p = ld_preload;
1992    Obj_Entry *obj;
1993    static const char delim[] = " \t:;";
1994
1995    if (p == NULL)
1996	return 0;
1997
1998    p += strspn(p, delim);
1999    while (*p != '\0') {
2000	size_t len = strcspn(p, delim);
2001	char savech;
2002
2003	savech = p[len];
2004	p[len] = '\0';
2005	obj = load_object(p, -1, NULL, 0);
2006	if (obj == NULL)
2007	    return -1;	/* XXX - cleanup */
2008	obj->z_interpose = true;
2009	p[len] = savech;
2010	p += len;
2011	p += strspn(p, delim);
2012    }
2013    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2014    return 0;
2015}
2016
2017static const char *
2018printable_path(const char *path)
2019{
2020
2021	return (path == NULL ? "<unknown>" : path);
2022}
2023
2024/*
2025 * Load a shared object into memory, if it is not already loaded.  The
2026 * object may be specified by name or by user-supplied file descriptor
2027 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2028 * duplicate is.
2029 *
2030 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2031 * on failure.
2032 */
2033static Obj_Entry *
2034load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2035{
2036    Obj_Entry *obj;
2037    int fd;
2038    struct stat sb;
2039    char *path;
2040
2041    if (name != NULL) {
2042	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2043	    if (object_match_name(obj, name))
2044		return (obj);
2045	}
2046
2047	path = find_library(name, refobj);
2048	if (path == NULL)
2049	    return (NULL);
2050    } else
2051	path = NULL;
2052
2053    /*
2054     * If we didn't find a match by pathname, or the name is not
2055     * supplied, open the file and check again by device and inode.
2056     * This avoids false mismatches caused by multiple links or ".."
2057     * in pathnames.
2058     *
2059     * To avoid a race, we open the file and use fstat() rather than
2060     * using stat().
2061     */
2062    fd = -1;
2063    if (fd_u == -1) {
2064	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2065	    _rtld_error("Cannot open \"%s\"", path);
2066	    free(path);
2067	    return (NULL);
2068	}
2069    } else {
2070	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2071	if (fd == -1) {
2072	    _rtld_error("Cannot dup fd");
2073	    free(path);
2074	    return (NULL);
2075	}
2076    }
2077    if (fstat(fd, &sb) == -1) {
2078	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2079	close(fd);
2080	free(path);
2081	return NULL;
2082    }
2083    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2084	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2085	    break;
2086    if (obj != NULL && name != NULL) {
2087	object_add_name(obj, name);
2088	free(path);
2089	close(fd);
2090	return obj;
2091    }
2092    if (flags & RTLD_LO_NOLOAD) {
2093	free(path);
2094	close(fd);
2095	return (NULL);
2096    }
2097
2098    /* First use of this object, so we must map it in */
2099    obj = do_load_object(fd, name, path, &sb, flags);
2100    if (obj == NULL)
2101	free(path);
2102    close(fd);
2103
2104    return obj;
2105}
2106
2107static Obj_Entry *
2108do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2109  int flags)
2110{
2111    Obj_Entry *obj;
2112    struct statfs fs;
2113
2114    /*
2115     * but first, make sure that environment variables haven't been
2116     * used to circumvent the noexec flag on a filesystem.
2117     */
2118    if (dangerous_ld_env) {
2119	if (fstatfs(fd, &fs) != 0) {
2120	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2121	    return NULL;
2122	}
2123	if (fs.f_flags & MNT_NOEXEC) {
2124	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2125	    return NULL;
2126	}
2127    }
2128    dbg("loading \"%s\"", printable_path(path));
2129    obj = map_object(fd, printable_path(path), sbp);
2130    if (obj == NULL)
2131        return NULL;
2132
2133    /*
2134     * If DT_SONAME is present in the object, digest_dynamic2 already
2135     * added it to the object names.
2136     */
2137    if (name != NULL)
2138	object_add_name(obj, name);
2139    obj->path = path;
2140    digest_dynamic(obj, 0);
2141    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2142	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2143    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2144      RTLD_LO_DLOPEN) {
2145	dbg("refusing to load non-loadable \"%s\"", obj->path);
2146	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2147	munmap(obj->mapbase, obj->mapsize);
2148	obj_free(obj);
2149	return (NULL);
2150    }
2151
2152    *obj_tail = obj;
2153    obj_tail = &obj->next;
2154    obj_count++;
2155    obj_loads++;
2156    linkmap_add(obj);	/* for GDB & dlinfo() */
2157    max_stack_flags |= obj->stack_flags;
2158
2159    dbg("  %p .. %p: %s", obj->mapbase,
2160         obj->mapbase + obj->mapsize - 1, obj->path);
2161    if (obj->textrel)
2162	dbg("  WARNING: %s has impure text", obj->path);
2163    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2164	obj->path);
2165
2166    return obj;
2167}
2168
2169static Obj_Entry *
2170obj_from_addr(const void *addr)
2171{
2172    Obj_Entry *obj;
2173
2174    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2175	if (addr < (void *) obj->mapbase)
2176	    continue;
2177	if (addr < (void *) (obj->mapbase + obj->mapsize))
2178	    return obj;
2179    }
2180    return NULL;
2181}
2182
2183static void
2184preinit_main(void)
2185{
2186    Elf_Addr *preinit_addr;
2187    int index;
2188
2189    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2190    if (preinit_addr == NULL)
2191	return;
2192
2193    for (index = 0; index < obj_main->preinit_array_num; index++) {
2194	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2195	    dbg("calling preinit function for %s at %p", obj_main->path,
2196	      (void *)preinit_addr[index]);
2197	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2198	      0, 0, obj_main->path);
2199	    call_init_pointer(obj_main, preinit_addr[index]);
2200	}
2201    }
2202}
2203
2204/*
2205 * Call the finalization functions for each of the objects in "list"
2206 * belonging to the DAG of "root" and referenced once. If NULL "root"
2207 * is specified, every finalization function will be called regardless
2208 * of the reference count and the list elements won't be freed. All of
2209 * the objects are expected to have non-NULL fini functions.
2210 */
2211static void
2212objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2213{
2214    Objlist_Entry *elm;
2215    char *saved_msg;
2216    Elf_Addr *fini_addr;
2217    int index;
2218
2219    assert(root == NULL || root->refcount == 1);
2220
2221    /*
2222     * Preserve the current error message since a fini function might
2223     * call into the dynamic linker and overwrite it.
2224     */
2225    saved_msg = errmsg_save();
2226    do {
2227	STAILQ_FOREACH(elm, list, link) {
2228	    if (root != NULL && (elm->obj->refcount != 1 ||
2229	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2230		continue;
2231	    /* Remove object from fini list to prevent recursive invocation. */
2232	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2233	    /*
2234	     * XXX: If a dlopen() call references an object while the
2235	     * fini function is in progress, we might end up trying to
2236	     * unload the referenced object in dlclose() or the object
2237	     * won't be unloaded although its fini function has been
2238	     * called.
2239	     */
2240	    lock_release(rtld_bind_lock, lockstate);
2241
2242	    /*
2243	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2244	     * When this happens, DT_FINI_ARRAY is processed first.
2245	     */
2246	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2247	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2248		for (index = elm->obj->fini_array_num - 1; index >= 0;
2249		  index--) {
2250		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2251			dbg("calling fini function for %s at %p",
2252			    elm->obj->path, (void *)fini_addr[index]);
2253			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2254			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2255			call_initfini_pointer(elm->obj, fini_addr[index]);
2256		    }
2257		}
2258	    }
2259	    if (elm->obj->fini != (Elf_Addr)NULL) {
2260		dbg("calling fini function for %s at %p", elm->obj->path,
2261		    (void *)elm->obj->fini);
2262		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2263		    0, 0, elm->obj->path);
2264		call_initfini_pointer(elm->obj, elm->obj->fini);
2265	    }
2266	    wlock_acquire(rtld_bind_lock, lockstate);
2267	    /* No need to free anything if process is going down. */
2268	    if (root != NULL)
2269	    	free(elm);
2270	    /*
2271	     * We must restart the list traversal after every fini call
2272	     * because a dlclose() call from the fini function or from
2273	     * another thread might have modified the reference counts.
2274	     */
2275	    break;
2276	}
2277    } while (elm != NULL);
2278    errmsg_restore(saved_msg);
2279}
2280
2281/*
2282 * Call the initialization functions for each of the objects in
2283 * "list".  All of the objects are expected to have non-NULL init
2284 * functions.
2285 */
2286static void
2287objlist_call_init(Objlist *list, RtldLockState *lockstate)
2288{
2289    Objlist_Entry *elm;
2290    Obj_Entry *obj;
2291    char *saved_msg;
2292    Elf_Addr *init_addr;
2293    int index;
2294
2295    /*
2296     * Clean init_scanned flag so that objects can be rechecked and
2297     * possibly initialized earlier if any of vectors called below
2298     * cause the change by using dlopen.
2299     */
2300    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2301	obj->init_scanned = false;
2302
2303    /*
2304     * Preserve the current error message since an init function might
2305     * call into the dynamic linker and overwrite it.
2306     */
2307    saved_msg = errmsg_save();
2308    STAILQ_FOREACH(elm, list, link) {
2309	if (elm->obj->init_done) /* Initialized early. */
2310	    continue;
2311	/*
2312	 * Race: other thread might try to use this object before current
2313	 * one completes the initilization. Not much can be done here
2314	 * without better locking.
2315	 */
2316	elm->obj->init_done = true;
2317	lock_release(rtld_bind_lock, lockstate);
2318
2319        /*
2320         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2321         * When this happens, DT_INIT is processed first.
2322         */
2323	if (elm->obj->init != (Elf_Addr)NULL) {
2324	    dbg("calling init function for %s at %p", elm->obj->path,
2325	        (void *)elm->obj->init);
2326	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2327	        0, 0, elm->obj->path);
2328	    call_initfini_pointer(elm->obj, elm->obj->init);
2329	}
2330	init_addr = (Elf_Addr *)elm->obj->init_array;
2331	if (init_addr != NULL) {
2332	    for (index = 0; index < elm->obj->init_array_num; index++) {
2333		if (init_addr[index] != 0 && init_addr[index] != 1) {
2334		    dbg("calling init function for %s at %p", elm->obj->path,
2335			(void *)init_addr[index]);
2336		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2337			(void *)init_addr[index], 0, 0, elm->obj->path);
2338		    call_init_pointer(elm->obj, init_addr[index]);
2339		}
2340	    }
2341	}
2342	wlock_acquire(rtld_bind_lock, lockstate);
2343    }
2344    errmsg_restore(saved_msg);
2345}
2346
2347static void
2348objlist_clear(Objlist *list)
2349{
2350    Objlist_Entry *elm;
2351
2352    while (!STAILQ_EMPTY(list)) {
2353	elm = STAILQ_FIRST(list);
2354	STAILQ_REMOVE_HEAD(list, link);
2355	free(elm);
2356    }
2357}
2358
2359static Objlist_Entry *
2360objlist_find(Objlist *list, const Obj_Entry *obj)
2361{
2362    Objlist_Entry *elm;
2363
2364    STAILQ_FOREACH(elm, list, link)
2365	if (elm->obj == obj)
2366	    return elm;
2367    return NULL;
2368}
2369
2370static void
2371objlist_init(Objlist *list)
2372{
2373    STAILQ_INIT(list);
2374}
2375
2376static void
2377objlist_push_head(Objlist *list, Obj_Entry *obj)
2378{
2379    Objlist_Entry *elm;
2380
2381    elm = NEW(Objlist_Entry);
2382    elm->obj = obj;
2383    STAILQ_INSERT_HEAD(list, elm, link);
2384}
2385
2386static void
2387objlist_push_tail(Objlist *list, Obj_Entry *obj)
2388{
2389    Objlist_Entry *elm;
2390
2391    elm = NEW(Objlist_Entry);
2392    elm->obj = obj;
2393    STAILQ_INSERT_TAIL(list, elm, link);
2394}
2395
2396static void
2397objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2398{
2399	Objlist_Entry *elm, *listelm;
2400
2401	STAILQ_FOREACH(listelm, list, link) {
2402		if (listelm->obj == listobj)
2403			break;
2404	}
2405	elm = NEW(Objlist_Entry);
2406	elm->obj = obj;
2407	if (listelm != NULL)
2408		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2409	else
2410		STAILQ_INSERT_TAIL(list, elm, link);
2411}
2412
2413static void
2414objlist_remove(Objlist *list, Obj_Entry *obj)
2415{
2416    Objlist_Entry *elm;
2417
2418    if ((elm = objlist_find(list, obj)) != NULL) {
2419	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2420	free(elm);
2421    }
2422}
2423
2424/*
2425 * Relocate dag rooted in the specified object.
2426 * Returns 0 on success, or -1 on failure.
2427 */
2428
2429static int
2430relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2431    int flags, RtldLockState *lockstate)
2432{
2433	Objlist_Entry *elm;
2434	int error;
2435
2436	error = 0;
2437	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2438		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2439		    lockstate);
2440		if (error == -1)
2441			break;
2442	}
2443	return (error);
2444}
2445
2446/*
2447 * Relocate single object.
2448 * Returns 0 on success, or -1 on failure.
2449 */
2450static int
2451relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2452    int flags, RtldLockState *lockstate)
2453{
2454
2455	if (obj->relocated)
2456		return (0);
2457	obj->relocated = true;
2458	if (obj != rtldobj)
2459		dbg("relocating \"%s\"", obj->path);
2460
2461	if (obj->symtab == NULL || obj->strtab == NULL ||
2462	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2463		_rtld_error("%s: Shared object has no run-time symbol table",
2464			    obj->path);
2465		return (-1);
2466	}
2467
2468	if (obj->textrel) {
2469		/* There are relocations to the write-protected text segment. */
2470		if (mprotect(obj->mapbase, obj->textsize,
2471		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2472			_rtld_error("%s: Cannot write-enable text segment: %s",
2473			    obj->path, rtld_strerror(errno));
2474			return (-1);
2475		}
2476	}
2477
2478	/* Process the non-PLT relocations. */
2479	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2480		return (-1);
2481
2482	if (obj->textrel) {	/* Re-protected the text segment. */
2483		if (mprotect(obj->mapbase, obj->textsize,
2484		    PROT_READ|PROT_EXEC) == -1) {
2485			_rtld_error("%s: Cannot write-protect text segment: %s",
2486			    obj->path, rtld_strerror(errno));
2487			return (-1);
2488		}
2489	}
2490
2491
2492	/* Set the special PLT or GOT entries. */
2493	init_pltgot(obj);
2494
2495	/* Process the PLT relocations. */
2496	if (reloc_plt(obj) == -1)
2497		return (-1);
2498	/* Relocate the jump slots if we are doing immediate binding. */
2499	if (obj->bind_now || bind_now)
2500		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2501			return (-1);
2502
2503	if (obj->relro_size > 0) {
2504		if (mprotect(obj->relro_page, obj->relro_size,
2505		    PROT_READ) == -1) {
2506			_rtld_error("%s: Cannot enforce relro protection: %s",
2507			    obj->path, rtld_strerror(errno));
2508			return (-1);
2509		}
2510	}
2511
2512	/*
2513	 * Set up the magic number and version in the Obj_Entry.  These
2514	 * were checked in the crt1.o from the original ElfKit, so we
2515	 * set them for backward compatibility.
2516	 */
2517	obj->magic = RTLD_MAGIC;
2518	obj->version = RTLD_VERSION;
2519
2520	return (0);
2521}
2522
2523/*
2524 * Relocate newly-loaded shared objects.  The argument is a pointer to
2525 * the Obj_Entry for the first such object.  All objects from the first
2526 * to the end of the list of objects are relocated.  Returns 0 on success,
2527 * or -1 on failure.
2528 */
2529static int
2530relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2531    int flags, RtldLockState *lockstate)
2532{
2533	Obj_Entry *obj;
2534	int error;
2535
2536	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2537		error = relocate_object(obj, bind_now, rtldobj, flags,
2538		    lockstate);
2539		if (error == -1)
2540			break;
2541	}
2542	return (error);
2543}
2544
2545/*
2546 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2547 * referencing STT_GNU_IFUNC symbols is postponed till the other
2548 * relocations are done.  The indirect functions specified as
2549 * ifunc are allowed to call other symbols, so we need to have
2550 * objects relocated before asking for resolution from indirects.
2551 *
2552 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2553 * instead of the usual lazy handling of PLT slots.  It is
2554 * consistent with how GNU does it.
2555 */
2556static int
2557resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2558    RtldLockState *lockstate)
2559{
2560	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2561		return (-1);
2562	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2563	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2564		return (-1);
2565	return (0);
2566}
2567
2568static int
2569resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2570    RtldLockState *lockstate)
2571{
2572	Obj_Entry *obj;
2573
2574	for (obj = first;  obj != NULL;  obj = obj->next) {
2575		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2576			return (-1);
2577	}
2578	return (0);
2579}
2580
2581static int
2582initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2583    RtldLockState *lockstate)
2584{
2585	Objlist_Entry *elm;
2586
2587	STAILQ_FOREACH(elm, list, link) {
2588		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2589		    lockstate) == -1)
2590			return (-1);
2591	}
2592	return (0);
2593}
2594
2595/*
2596 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2597 * before the process exits.
2598 */
2599static void
2600rtld_exit(void)
2601{
2602    RtldLockState lockstate;
2603
2604    wlock_acquire(rtld_bind_lock, &lockstate);
2605    dbg("rtld_exit()");
2606    objlist_call_fini(&list_fini, NULL, &lockstate);
2607    /* No need to remove the items from the list, since we are exiting. */
2608    if (!libmap_disable)
2609        lm_fini();
2610    lock_release(rtld_bind_lock, &lockstate);
2611}
2612
2613/*
2614 * Iterate over a search path, translate each element, and invoke the
2615 * callback on the result.
2616 */
2617static void *
2618path_enumerate(const char *path, path_enum_proc callback, void *arg)
2619{
2620    const char *trans;
2621    if (path == NULL)
2622	return (NULL);
2623
2624    path += strspn(path, ":;");
2625    while (*path != '\0') {
2626	size_t len;
2627	char  *res;
2628
2629	len = strcspn(path, ":;");
2630	trans = lm_findn(NULL, path, len);
2631	if (trans)
2632	    res = callback(trans, strlen(trans), arg);
2633	else
2634	    res = callback(path, len, arg);
2635
2636	if (res != NULL)
2637	    return (res);
2638
2639	path += len;
2640	path += strspn(path, ":;");
2641    }
2642
2643    return (NULL);
2644}
2645
2646struct try_library_args {
2647    const char	*name;
2648    size_t	 namelen;
2649    char	*buffer;
2650    size_t	 buflen;
2651};
2652
2653static void *
2654try_library_path(const char *dir, size_t dirlen, void *param)
2655{
2656    struct try_library_args *arg;
2657
2658    arg = param;
2659    if (*dir == '/' || trust) {
2660	char *pathname;
2661
2662	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2663		return (NULL);
2664
2665	pathname = arg->buffer;
2666	strncpy(pathname, dir, dirlen);
2667	pathname[dirlen] = '/';
2668	strcpy(pathname + dirlen + 1, arg->name);
2669
2670	dbg("  Trying \"%s\"", pathname);
2671	if (access(pathname, F_OK) == 0) {		/* We found it */
2672	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2673	    strcpy(pathname, arg->buffer);
2674	    return (pathname);
2675	}
2676    }
2677    return (NULL);
2678}
2679
2680static char *
2681search_library_path(const char *name, const char *path)
2682{
2683    char *p;
2684    struct try_library_args arg;
2685
2686    if (path == NULL)
2687	return NULL;
2688
2689    arg.name = name;
2690    arg.namelen = strlen(name);
2691    arg.buffer = xmalloc(PATH_MAX);
2692    arg.buflen = PATH_MAX;
2693
2694    p = path_enumerate(path, try_library_path, &arg);
2695
2696    free(arg.buffer);
2697
2698    return (p);
2699}
2700
2701int
2702dlclose(void *handle)
2703{
2704    Obj_Entry *root;
2705    RtldLockState lockstate;
2706
2707    wlock_acquire(rtld_bind_lock, &lockstate);
2708    root = dlcheck(handle);
2709    if (root == NULL) {
2710	lock_release(rtld_bind_lock, &lockstate);
2711	return -1;
2712    }
2713    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2714	root->path);
2715
2716    /* Unreference the object and its dependencies. */
2717    root->dl_refcount--;
2718
2719    if (root->refcount == 1) {
2720	/*
2721	 * The object will be no longer referenced, so we must unload it.
2722	 * First, call the fini functions.
2723	 */
2724	objlist_call_fini(&list_fini, root, &lockstate);
2725
2726	unref_dag(root);
2727
2728	/* Finish cleaning up the newly-unreferenced objects. */
2729	GDB_STATE(RT_DELETE,&root->linkmap);
2730	unload_object(root);
2731	GDB_STATE(RT_CONSISTENT,NULL);
2732    } else
2733	unref_dag(root);
2734
2735    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2736    lock_release(rtld_bind_lock, &lockstate);
2737    return 0;
2738}
2739
2740char *
2741dlerror(void)
2742{
2743    char *msg = error_message;
2744    error_message = NULL;
2745    return msg;
2746}
2747
2748/*
2749 * This function is deprecated and has no effect.
2750 */
2751void
2752dllockinit(void *context,
2753	   void *(*lock_create)(void *context),
2754           void (*rlock_acquire)(void *lock),
2755           void (*wlock_acquire)(void *lock),
2756           void (*lock_release)(void *lock),
2757           void (*lock_destroy)(void *lock),
2758	   void (*context_destroy)(void *context))
2759{
2760    static void *cur_context;
2761    static void (*cur_context_destroy)(void *);
2762
2763    /* Just destroy the context from the previous call, if necessary. */
2764    if (cur_context_destroy != NULL)
2765	cur_context_destroy(cur_context);
2766    cur_context = context;
2767    cur_context_destroy = context_destroy;
2768}
2769
2770void *
2771dlopen(const char *name, int mode)
2772{
2773
2774	return (rtld_dlopen(name, -1, mode));
2775}
2776
2777void *
2778fdlopen(int fd, int mode)
2779{
2780
2781	return (rtld_dlopen(NULL, fd, mode));
2782}
2783
2784static void *
2785rtld_dlopen(const char *name, int fd, int mode)
2786{
2787    RtldLockState lockstate;
2788    int lo_flags;
2789
2790    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2791    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2792    if (ld_tracing != NULL) {
2793	rlock_acquire(rtld_bind_lock, &lockstate);
2794	if (sigsetjmp(lockstate.env, 0) != 0)
2795	    lock_upgrade(rtld_bind_lock, &lockstate);
2796	environ = (char **)*get_program_var_addr("environ", &lockstate);
2797	lock_release(rtld_bind_lock, &lockstate);
2798    }
2799    lo_flags = RTLD_LO_DLOPEN;
2800    if (mode & RTLD_NODELETE)
2801	    lo_flags |= RTLD_LO_NODELETE;
2802    if (mode & RTLD_NOLOAD)
2803	    lo_flags |= RTLD_LO_NOLOAD;
2804    if (ld_tracing != NULL)
2805	    lo_flags |= RTLD_LO_TRACE;
2806
2807    return (dlopen_object(name, fd, obj_main, lo_flags,
2808      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2809}
2810
2811static void
2812dlopen_cleanup(Obj_Entry *obj)
2813{
2814
2815	obj->dl_refcount--;
2816	unref_dag(obj);
2817	if (obj->refcount == 0)
2818		unload_object(obj);
2819}
2820
2821static Obj_Entry *
2822dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2823    int mode, RtldLockState *lockstate)
2824{
2825    Obj_Entry **old_obj_tail;
2826    Obj_Entry *obj;
2827    Objlist initlist;
2828    RtldLockState mlockstate;
2829    int result;
2830
2831    objlist_init(&initlist);
2832
2833    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2834	wlock_acquire(rtld_bind_lock, &mlockstate);
2835	lockstate = &mlockstate;
2836    }
2837    GDB_STATE(RT_ADD,NULL);
2838
2839    old_obj_tail = obj_tail;
2840    obj = NULL;
2841    if (name == NULL && fd == -1) {
2842	obj = obj_main;
2843	obj->refcount++;
2844    } else {
2845	obj = load_object(name, fd, refobj, lo_flags);
2846    }
2847
2848    if (obj) {
2849	obj->dl_refcount++;
2850	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2851	    objlist_push_tail(&list_global, obj);
2852	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2853	    assert(*old_obj_tail == obj);
2854	    result = load_needed_objects(obj,
2855		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2856	    init_dag(obj);
2857	    ref_dag(obj);
2858	    if (result != -1)
2859		result = rtld_verify_versions(&obj->dagmembers);
2860	    if (result != -1 && ld_tracing)
2861		goto trace;
2862	    if (result == -1 || relocate_object_dag(obj,
2863	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2864	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2865	      lockstate) == -1) {
2866		dlopen_cleanup(obj);
2867		obj = NULL;
2868	    } else if (lo_flags & RTLD_LO_EARLY) {
2869		/*
2870		 * Do not call the init functions for early loaded
2871		 * filtees.  The image is still not initialized enough
2872		 * for them to work.
2873		 *
2874		 * Our object is found by the global object list and
2875		 * will be ordered among all init calls done right
2876		 * before transferring control to main.
2877		 */
2878	    } else {
2879		/* Make list of init functions to call. */
2880		initlist_add_objects(obj, &obj->next, &initlist);
2881	    }
2882	    /*
2883	     * Process all no_delete objects here, given them own
2884	     * DAGs to prevent their dependencies from being unloaded.
2885	     * This has to be done after we have loaded all of the
2886	     * dependencies, so that we do not miss any.
2887	     */
2888	    if (obj != NULL)
2889		process_nodelete(obj);
2890	} else {
2891	    /*
2892	     * Bump the reference counts for objects on this DAG.  If
2893	     * this is the first dlopen() call for the object that was
2894	     * already loaded as a dependency, initialize the dag
2895	     * starting at it.
2896	     */
2897	    init_dag(obj);
2898	    ref_dag(obj);
2899
2900	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2901		goto trace;
2902	}
2903	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2904	  obj->z_nodelete) && !obj->ref_nodel) {
2905	    dbg("obj %s nodelete", obj->path);
2906	    ref_dag(obj);
2907	    obj->z_nodelete = obj->ref_nodel = true;
2908	}
2909    }
2910
2911    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2912	name);
2913    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2914
2915    if (!(lo_flags & RTLD_LO_EARLY)) {
2916	map_stacks_exec(lockstate);
2917    }
2918
2919    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2920      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2921      lockstate) == -1) {
2922	objlist_clear(&initlist);
2923	dlopen_cleanup(obj);
2924	if (lockstate == &mlockstate)
2925	    lock_release(rtld_bind_lock, lockstate);
2926	return (NULL);
2927    }
2928
2929    if (!(lo_flags & RTLD_LO_EARLY)) {
2930	/* Call the init functions. */
2931	objlist_call_init(&initlist, lockstate);
2932    }
2933    objlist_clear(&initlist);
2934    if (lockstate == &mlockstate)
2935	lock_release(rtld_bind_lock, lockstate);
2936    return obj;
2937trace:
2938    trace_loaded_objects(obj);
2939    if (lockstate == &mlockstate)
2940	lock_release(rtld_bind_lock, lockstate);
2941    exit(0);
2942}
2943
2944static void *
2945do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2946    int flags)
2947{
2948    DoneList donelist;
2949    const Obj_Entry *obj, *defobj;
2950    const Elf_Sym *def;
2951    SymLook req;
2952    RtldLockState lockstate;
2953#ifndef __ia64__
2954    tls_index ti;
2955#endif
2956    int res;
2957
2958    def = NULL;
2959    defobj = NULL;
2960    symlook_init(&req, name);
2961    req.ventry = ve;
2962    req.flags = flags | SYMLOOK_IN_PLT;
2963    req.lockstate = &lockstate;
2964
2965    rlock_acquire(rtld_bind_lock, &lockstate);
2966    if (sigsetjmp(lockstate.env, 0) != 0)
2967	    lock_upgrade(rtld_bind_lock, &lockstate);
2968    if (handle == NULL || handle == RTLD_NEXT ||
2969	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2970
2971	if ((obj = obj_from_addr(retaddr)) == NULL) {
2972	    _rtld_error("Cannot determine caller's shared object");
2973	    lock_release(rtld_bind_lock, &lockstate);
2974	    return NULL;
2975	}
2976	if (handle == NULL) {	/* Just the caller's shared object. */
2977	    res = symlook_obj(&req, obj);
2978	    if (res == 0) {
2979		def = req.sym_out;
2980		defobj = req.defobj_out;
2981	    }
2982	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2983		   handle == RTLD_SELF) { /* ... caller included */
2984	    if (handle == RTLD_NEXT)
2985		obj = obj->next;
2986	    for (; obj != NULL; obj = obj->next) {
2987		res = symlook_obj(&req, obj);
2988		if (res == 0) {
2989		    if (def == NULL ||
2990		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2991			def = req.sym_out;
2992			defobj = req.defobj_out;
2993			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2994			    break;
2995		    }
2996		}
2997	    }
2998	    /*
2999	     * Search the dynamic linker itself, and possibly resolve the
3000	     * symbol from there.  This is how the application links to
3001	     * dynamic linker services such as dlopen.
3002	     */
3003	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3004		res = symlook_obj(&req, &obj_rtld);
3005		if (res == 0) {
3006		    def = req.sym_out;
3007		    defobj = req.defobj_out;
3008		}
3009	    }
3010	} else {
3011	    assert(handle == RTLD_DEFAULT);
3012	    res = symlook_default(&req, obj);
3013	    if (res == 0) {
3014		defobj = req.defobj_out;
3015		def = req.sym_out;
3016	    }
3017	}
3018    } else {
3019	if ((obj = dlcheck(handle)) == NULL) {
3020	    lock_release(rtld_bind_lock, &lockstate);
3021	    return NULL;
3022	}
3023
3024	donelist_init(&donelist);
3025	if (obj->mainprog) {
3026            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3027	    res = symlook_global(&req, &donelist);
3028	    if (res == 0) {
3029		def = req.sym_out;
3030		defobj = req.defobj_out;
3031	    }
3032	    /*
3033	     * Search the dynamic linker itself, and possibly resolve the
3034	     * symbol from there.  This is how the application links to
3035	     * dynamic linker services such as dlopen.
3036	     */
3037	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3038		res = symlook_obj(&req, &obj_rtld);
3039		if (res == 0) {
3040		    def = req.sym_out;
3041		    defobj = req.defobj_out;
3042		}
3043	    }
3044	}
3045	else {
3046	    /* Search the whole DAG rooted at the given object. */
3047	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3048	    if (res == 0) {
3049		def = req.sym_out;
3050		defobj = req.defobj_out;
3051	    }
3052	}
3053    }
3054
3055    if (def != NULL) {
3056	lock_release(rtld_bind_lock, &lockstate);
3057
3058	/*
3059	 * The value required by the caller is derived from the value
3060	 * of the symbol. For the ia64 architecture, we need to
3061	 * construct a function descriptor which the caller can use to
3062	 * call the function with the right 'gp' value. For other
3063	 * architectures and for non-functions, the value is simply
3064	 * the relocated value of the symbol.
3065	 */
3066	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3067	    return (make_function_pointer(def, defobj));
3068	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3069	    return (rtld_resolve_ifunc(defobj, def));
3070	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3071#ifdef __ia64__
3072	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3073#else
3074	    ti.ti_module = defobj->tlsindex;
3075	    ti.ti_offset = def->st_value;
3076	    return (__tls_get_addr(&ti));
3077#endif
3078	} else
3079	    return (defobj->relocbase + def->st_value);
3080    }
3081
3082    _rtld_error("Undefined symbol \"%s\"", name);
3083    lock_release(rtld_bind_lock, &lockstate);
3084    return NULL;
3085}
3086
3087void *
3088dlsym(void *handle, const char *name)
3089{
3090	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3091	    SYMLOOK_DLSYM);
3092}
3093
3094dlfunc_t
3095dlfunc(void *handle, const char *name)
3096{
3097	union {
3098		void *d;
3099		dlfunc_t f;
3100	} rv;
3101
3102	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3103	    SYMLOOK_DLSYM);
3104	return (rv.f);
3105}
3106
3107void *
3108dlvsym(void *handle, const char *name, const char *version)
3109{
3110	Ver_Entry ventry;
3111
3112	ventry.name = version;
3113	ventry.file = NULL;
3114	ventry.hash = elf_hash(version);
3115	ventry.flags= 0;
3116	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3117	    SYMLOOK_DLSYM);
3118}
3119
3120int
3121_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3122{
3123    const Obj_Entry *obj;
3124    RtldLockState lockstate;
3125
3126    rlock_acquire(rtld_bind_lock, &lockstate);
3127    obj = obj_from_addr(addr);
3128    if (obj == NULL) {
3129        _rtld_error("No shared object contains address");
3130	lock_release(rtld_bind_lock, &lockstate);
3131        return (0);
3132    }
3133    rtld_fill_dl_phdr_info(obj, phdr_info);
3134    lock_release(rtld_bind_lock, &lockstate);
3135    return (1);
3136}
3137
3138int
3139dladdr(const void *addr, Dl_info *info)
3140{
3141    const Obj_Entry *obj;
3142    const Elf_Sym *def;
3143    void *symbol_addr;
3144    unsigned long symoffset;
3145    RtldLockState lockstate;
3146
3147    rlock_acquire(rtld_bind_lock, &lockstate);
3148    obj = obj_from_addr(addr);
3149    if (obj == NULL) {
3150        _rtld_error("No shared object contains address");
3151	lock_release(rtld_bind_lock, &lockstate);
3152        return 0;
3153    }
3154    info->dli_fname = obj->path;
3155    info->dli_fbase = obj->mapbase;
3156    info->dli_saddr = (void *)0;
3157    info->dli_sname = NULL;
3158
3159    /*
3160     * Walk the symbol list looking for the symbol whose address is
3161     * closest to the address sent in.
3162     */
3163    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3164        def = obj->symtab + symoffset;
3165
3166        /*
3167         * For skip the symbol if st_shndx is either SHN_UNDEF or
3168         * SHN_COMMON.
3169         */
3170        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3171            continue;
3172
3173        /*
3174         * If the symbol is greater than the specified address, or if it
3175         * is further away from addr than the current nearest symbol,
3176         * then reject it.
3177         */
3178        symbol_addr = obj->relocbase + def->st_value;
3179        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3180            continue;
3181
3182        /* Update our idea of the nearest symbol. */
3183        info->dli_sname = obj->strtab + def->st_name;
3184        info->dli_saddr = symbol_addr;
3185
3186        /* Exact match? */
3187        if (info->dli_saddr == addr)
3188            break;
3189    }
3190    lock_release(rtld_bind_lock, &lockstate);
3191    return 1;
3192}
3193
3194int
3195dlinfo(void *handle, int request, void *p)
3196{
3197    const Obj_Entry *obj;
3198    RtldLockState lockstate;
3199    int error;
3200
3201    rlock_acquire(rtld_bind_lock, &lockstate);
3202
3203    if (handle == NULL || handle == RTLD_SELF) {
3204	void *retaddr;
3205
3206	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3207	if ((obj = obj_from_addr(retaddr)) == NULL)
3208	    _rtld_error("Cannot determine caller's shared object");
3209    } else
3210	obj = dlcheck(handle);
3211
3212    if (obj == NULL) {
3213	lock_release(rtld_bind_lock, &lockstate);
3214	return (-1);
3215    }
3216
3217    error = 0;
3218    switch (request) {
3219    case RTLD_DI_LINKMAP:
3220	*((struct link_map const **)p) = &obj->linkmap;
3221	break;
3222    case RTLD_DI_ORIGIN:
3223	error = rtld_dirname(obj->path, p);
3224	break;
3225
3226    case RTLD_DI_SERINFOSIZE:
3227    case RTLD_DI_SERINFO:
3228	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3229	break;
3230
3231    default:
3232	_rtld_error("Invalid request %d passed to dlinfo()", request);
3233	error = -1;
3234    }
3235
3236    lock_release(rtld_bind_lock, &lockstate);
3237
3238    return (error);
3239}
3240
3241static void
3242rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3243{
3244
3245	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3246	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3247	    STAILQ_FIRST(&obj->names)->name : obj->path;
3248	phdr_info->dlpi_phdr = obj->phdr;
3249	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3250	phdr_info->dlpi_tls_modid = obj->tlsindex;
3251	phdr_info->dlpi_tls_data = obj->tlsinit;
3252	phdr_info->dlpi_adds = obj_loads;
3253	phdr_info->dlpi_subs = obj_loads - obj_count;
3254}
3255
3256int
3257dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3258{
3259    struct dl_phdr_info phdr_info;
3260    const Obj_Entry *obj;
3261    RtldLockState bind_lockstate, phdr_lockstate;
3262    int error;
3263
3264    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3265    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3266
3267    error = 0;
3268
3269    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3270	rtld_fill_dl_phdr_info(obj, &phdr_info);
3271	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3272		break;
3273
3274    }
3275    lock_release(rtld_bind_lock, &bind_lockstate);
3276    lock_release(rtld_phdr_lock, &phdr_lockstate);
3277
3278    return (error);
3279}
3280
3281static void *
3282fill_search_info(const char *dir, size_t dirlen, void *param)
3283{
3284    struct fill_search_info_args *arg;
3285
3286    arg = param;
3287
3288    if (arg->request == RTLD_DI_SERINFOSIZE) {
3289	arg->serinfo->dls_cnt ++;
3290	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3291    } else {
3292	struct dl_serpath *s_entry;
3293
3294	s_entry = arg->serpath;
3295	s_entry->dls_name  = arg->strspace;
3296	s_entry->dls_flags = arg->flags;
3297
3298	strncpy(arg->strspace, dir, dirlen);
3299	arg->strspace[dirlen] = '\0';
3300
3301	arg->strspace += dirlen + 1;
3302	arg->serpath++;
3303    }
3304
3305    return (NULL);
3306}
3307
3308static int
3309do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3310{
3311    struct dl_serinfo _info;
3312    struct fill_search_info_args args;
3313
3314    args.request = RTLD_DI_SERINFOSIZE;
3315    args.serinfo = &_info;
3316
3317    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3318    _info.dls_cnt  = 0;
3319
3320    path_enumerate(obj->rpath, fill_search_info, &args);
3321    path_enumerate(ld_library_path, fill_search_info, &args);
3322    path_enumerate(obj->runpath, fill_search_info, &args);
3323    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3324    if (!obj->z_nodeflib)
3325      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3326
3327
3328    if (request == RTLD_DI_SERINFOSIZE) {
3329	info->dls_size = _info.dls_size;
3330	info->dls_cnt = _info.dls_cnt;
3331	return (0);
3332    }
3333
3334    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3335	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3336	return (-1);
3337    }
3338
3339    args.request  = RTLD_DI_SERINFO;
3340    args.serinfo  = info;
3341    args.serpath  = &info->dls_serpath[0];
3342    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3343
3344    args.flags = LA_SER_RUNPATH;
3345    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3346	return (-1);
3347
3348    args.flags = LA_SER_LIBPATH;
3349    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3350	return (-1);
3351
3352    args.flags = LA_SER_RUNPATH;
3353    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3354	return (-1);
3355
3356    args.flags = LA_SER_CONFIG;
3357    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3358      != NULL)
3359	return (-1);
3360
3361    args.flags = LA_SER_DEFAULT;
3362    if (!obj->z_nodeflib &&
3363      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3364	return (-1);
3365    return (0);
3366}
3367
3368static int
3369rtld_dirname(const char *path, char *bname)
3370{
3371    const char *endp;
3372
3373    /* Empty or NULL string gets treated as "." */
3374    if (path == NULL || *path == '\0') {
3375	bname[0] = '.';
3376	bname[1] = '\0';
3377	return (0);
3378    }
3379
3380    /* Strip trailing slashes */
3381    endp = path + strlen(path) - 1;
3382    while (endp > path && *endp == '/')
3383	endp--;
3384
3385    /* Find the start of the dir */
3386    while (endp > path && *endp != '/')
3387	endp--;
3388
3389    /* Either the dir is "/" or there are no slashes */
3390    if (endp == path) {
3391	bname[0] = *endp == '/' ? '/' : '.';
3392	bname[1] = '\0';
3393	return (0);
3394    } else {
3395	do {
3396	    endp--;
3397	} while (endp > path && *endp == '/');
3398    }
3399
3400    if (endp - path + 2 > PATH_MAX)
3401    {
3402	_rtld_error("Filename is too long: %s", path);
3403	return(-1);
3404    }
3405
3406    strncpy(bname, path, endp - path + 1);
3407    bname[endp - path + 1] = '\0';
3408    return (0);
3409}
3410
3411static int
3412rtld_dirname_abs(const char *path, char *base)
3413{
3414	char base_rel[PATH_MAX];
3415
3416	if (rtld_dirname(path, base) == -1)
3417		return (-1);
3418	if (base[0] == '/')
3419		return (0);
3420	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3421	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3422	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3423		return (-1);
3424	strcpy(base, base_rel);
3425	return (0);
3426}
3427
3428static void
3429linkmap_add(Obj_Entry *obj)
3430{
3431    struct link_map *l = &obj->linkmap;
3432    struct link_map *prev;
3433
3434    obj->linkmap.l_name = obj->path;
3435    obj->linkmap.l_addr = obj->mapbase;
3436    obj->linkmap.l_ld = obj->dynamic;
3437#ifdef __mips__
3438    /* GDB needs load offset on MIPS to use the symbols */
3439    obj->linkmap.l_offs = obj->relocbase;
3440#endif
3441
3442    if (r_debug.r_map == NULL) {
3443	r_debug.r_map = l;
3444	return;
3445    }
3446
3447    /*
3448     * Scan to the end of the list, but not past the entry for the
3449     * dynamic linker, which we want to keep at the very end.
3450     */
3451    for (prev = r_debug.r_map;
3452      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3453      prev = prev->l_next)
3454	;
3455
3456    /* Link in the new entry. */
3457    l->l_prev = prev;
3458    l->l_next = prev->l_next;
3459    if (l->l_next != NULL)
3460	l->l_next->l_prev = l;
3461    prev->l_next = l;
3462}
3463
3464static void
3465linkmap_delete(Obj_Entry *obj)
3466{
3467    struct link_map *l = &obj->linkmap;
3468
3469    if (l->l_prev == NULL) {
3470	if ((r_debug.r_map = l->l_next) != NULL)
3471	    l->l_next->l_prev = NULL;
3472	return;
3473    }
3474
3475    if ((l->l_prev->l_next = l->l_next) != NULL)
3476	l->l_next->l_prev = l->l_prev;
3477}
3478
3479/*
3480 * Function for the debugger to set a breakpoint on to gain control.
3481 *
3482 * The two parameters allow the debugger to easily find and determine
3483 * what the runtime loader is doing and to whom it is doing it.
3484 *
3485 * When the loadhook trap is hit (r_debug_state, set at program
3486 * initialization), the arguments can be found on the stack:
3487 *
3488 *  +8   struct link_map *m
3489 *  +4   struct r_debug  *rd
3490 *  +0   RetAddr
3491 */
3492void
3493r_debug_state(struct r_debug* rd, struct link_map *m)
3494{
3495    /*
3496     * The following is a hack to force the compiler to emit calls to
3497     * this function, even when optimizing.  If the function is empty,
3498     * the compiler is not obliged to emit any code for calls to it,
3499     * even when marked __noinline.  However, gdb depends on those
3500     * calls being made.
3501     */
3502    __compiler_membar();
3503}
3504
3505/*
3506 * A function called after init routines have completed. This can be used to
3507 * break before a program's entry routine is called, and can be used when
3508 * main is not available in the symbol table.
3509 */
3510void
3511_r_debug_postinit(struct link_map *m)
3512{
3513
3514	/* See r_debug_state(). */
3515	__compiler_membar();
3516}
3517
3518/*
3519 * Get address of the pointer variable in the main program.
3520 * Prefer non-weak symbol over the weak one.
3521 */
3522static const void **
3523get_program_var_addr(const char *name, RtldLockState *lockstate)
3524{
3525    SymLook req;
3526    DoneList donelist;
3527
3528    symlook_init(&req, name);
3529    req.lockstate = lockstate;
3530    donelist_init(&donelist);
3531    if (symlook_global(&req, &donelist) != 0)
3532	return (NULL);
3533    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3534	return ((const void **)make_function_pointer(req.sym_out,
3535	  req.defobj_out));
3536    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3537	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3538    else
3539	return ((const void **)(req.defobj_out->relocbase +
3540	  req.sym_out->st_value));
3541}
3542
3543/*
3544 * Set a pointer variable in the main program to the given value.  This
3545 * is used to set key variables such as "environ" before any of the
3546 * init functions are called.
3547 */
3548static void
3549set_program_var(const char *name, const void *value)
3550{
3551    const void **addr;
3552
3553    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3554	dbg("\"%s\": *%p <-- %p", name, addr, value);
3555	*addr = value;
3556    }
3557}
3558
3559/*
3560 * Search the global objects, including dependencies and main object,
3561 * for the given symbol.
3562 */
3563static int
3564symlook_global(SymLook *req, DoneList *donelist)
3565{
3566    SymLook req1;
3567    const Objlist_Entry *elm;
3568    int res;
3569
3570    symlook_init_from_req(&req1, req);
3571
3572    /* Search all objects loaded at program start up. */
3573    if (req->defobj_out == NULL ||
3574      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3575	res = symlook_list(&req1, &list_main, donelist);
3576	if (res == 0 && (req->defobj_out == NULL ||
3577	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3578	    req->sym_out = req1.sym_out;
3579	    req->defobj_out = req1.defobj_out;
3580	    assert(req->defobj_out != NULL);
3581	}
3582    }
3583
3584    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3585    STAILQ_FOREACH(elm, &list_global, link) {
3586	if (req->defobj_out != NULL &&
3587	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3588	    break;
3589	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3590	if (res == 0 && (req->defobj_out == NULL ||
3591	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3592	    req->sym_out = req1.sym_out;
3593	    req->defobj_out = req1.defobj_out;
3594	    assert(req->defobj_out != NULL);
3595	}
3596    }
3597
3598    return (req->sym_out != NULL ? 0 : ESRCH);
3599}
3600
3601/*
3602 * Given a symbol name in a referencing object, find the corresponding
3603 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3604 * no definition was found.  Returns a pointer to the Obj_Entry of the
3605 * defining object via the reference parameter DEFOBJ_OUT.
3606 */
3607static int
3608symlook_default(SymLook *req, const Obj_Entry *refobj)
3609{
3610    DoneList donelist;
3611    const Objlist_Entry *elm;
3612    SymLook req1;
3613    int res;
3614
3615    donelist_init(&donelist);
3616    symlook_init_from_req(&req1, req);
3617
3618    /* Look first in the referencing object if linked symbolically. */
3619    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3620	res = symlook_obj(&req1, refobj);
3621	if (res == 0) {
3622	    req->sym_out = req1.sym_out;
3623	    req->defobj_out = req1.defobj_out;
3624	    assert(req->defobj_out != NULL);
3625	}
3626    }
3627
3628    symlook_global(req, &donelist);
3629
3630    /* Search all dlopened DAGs containing the referencing object. */
3631    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3632	if (req->sym_out != NULL &&
3633	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3634	    break;
3635	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3636	if (res == 0 && (req->sym_out == NULL ||
3637	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3638	    req->sym_out = req1.sym_out;
3639	    req->defobj_out = req1.defobj_out;
3640	    assert(req->defobj_out != NULL);
3641	}
3642    }
3643
3644    /*
3645     * Search the dynamic linker itself, and possibly resolve the
3646     * symbol from there.  This is how the application links to
3647     * dynamic linker services such as dlopen.
3648     */
3649    if (req->sym_out == NULL ||
3650      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3651	res = symlook_obj(&req1, &obj_rtld);
3652	if (res == 0) {
3653	    req->sym_out = req1.sym_out;
3654	    req->defobj_out = req1.defobj_out;
3655	    assert(req->defobj_out != NULL);
3656	}
3657    }
3658
3659    return (req->sym_out != NULL ? 0 : ESRCH);
3660}
3661
3662static int
3663symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3664{
3665    const Elf_Sym *def;
3666    const Obj_Entry *defobj;
3667    const Objlist_Entry *elm;
3668    SymLook req1;
3669    int res;
3670
3671    def = NULL;
3672    defobj = NULL;
3673    STAILQ_FOREACH(elm, objlist, link) {
3674	if (donelist_check(dlp, elm->obj))
3675	    continue;
3676	symlook_init_from_req(&req1, req);
3677	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3678	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3679		def = req1.sym_out;
3680		defobj = req1.defobj_out;
3681		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3682		    break;
3683	    }
3684	}
3685    }
3686    if (def != NULL) {
3687	req->sym_out = def;
3688	req->defobj_out = defobj;
3689	return (0);
3690    }
3691    return (ESRCH);
3692}
3693
3694/*
3695 * Search the chain of DAGS cointed to by the given Needed_Entry
3696 * for a symbol of the given name.  Each DAG is scanned completely
3697 * before advancing to the next one.  Returns a pointer to the symbol,
3698 * or NULL if no definition was found.
3699 */
3700static int
3701symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3702{
3703    const Elf_Sym *def;
3704    const Needed_Entry *n;
3705    const Obj_Entry *defobj;
3706    SymLook req1;
3707    int res;
3708
3709    def = NULL;
3710    defobj = NULL;
3711    symlook_init_from_req(&req1, req);
3712    for (n = needed; n != NULL; n = n->next) {
3713	if (n->obj == NULL ||
3714	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3715	    continue;
3716	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3717	    def = req1.sym_out;
3718	    defobj = req1.defobj_out;
3719	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3720		break;
3721	}
3722    }
3723    if (def != NULL) {
3724	req->sym_out = def;
3725	req->defobj_out = defobj;
3726	return (0);
3727    }
3728    return (ESRCH);
3729}
3730
3731/*
3732 * Search the symbol table of a single shared object for a symbol of
3733 * the given name and version, if requested.  Returns a pointer to the
3734 * symbol, or NULL if no definition was found.  If the object is
3735 * filter, return filtered symbol from filtee.
3736 *
3737 * The symbol's hash value is passed in for efficiency reasons; that
3738 * eliminates many recomputations of the hash value.
3739 */
3740int
3741symlook_obj(SymLook *req, const Obj_Entry *obj)
3742{
3743    DoneList donelist;
3744    SymLook req1;
3745    int flags, res, mres;
3746
3747    /*
3748     * If there is at least one valid hash at this point, we prefer to
3749     * use the faster GNU version if available.
3750     */
3751    if (obj->valid_hash_gnu)
3752	mres = symlook_obj1_gnu(req, obj);
3753    else if (obj->valid_hash_sysv)
3754	mres = symlook_obj1_sysv(req, obj);
3755    else
3756	return (EINVAL);
3757
3758    if (mres == 0) {
3759	if (obj->needed_filtees != NULL) {
3760	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3761	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3762	    donelist_init(&donelist);
3763	    symlook_init_from_req(&req1, req);
3764	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3765	    if (res == 0) {
3766		req->sym_out = req1.sym_out;
3767		req->defobj_out = req1.defobj_out;
3768	    }
3769	    return (res);
3770	}
3771	if (obj->needed_aux_filtees != NULL) {
3772	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3773	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3774	    donelist_init(&donelist);
3775	    symlook_init_from_req(&req1, req);
3776	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3777	    if (res == 0) {
3778		req->sym_out = req1.sym_out;
3779		req->defobj_out = req1.defobj_out;
3780		return (res);
3781	    }
3782	}
3783    }
3784    return (mres);
3785}
3786
3787/* Symbol match routine common to both hash functions */
3788static bool
3789matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3790    const unsigned long symnum)
3791{
3792	Elf_Versym verndx;
3793	const Elf_Sym *symp;
3794	const char *strp;
3795
3796	symp = obj->symtab + symnum;
3797	strp = obj->strtab + symp->st_name;
3798
3799	switch (ELF_ST_TYPE(symp->st_info)) {
3800	case STT_FUNC:
3801	case STT_NOTYPE:
3802	case STT_OBJECT:
3803	case STT_COMMON:
3804	case STT_GNU_IFUNC:
3805		if (symp->st_value == 0)
3806			return (false);
3807		/* fallthrough */
3808	case STT_TLS:
3809		if (symp->st_shndx != SHN_UNDEF)
3810			break;
3811#ifndef __mips__
3812		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3813		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3814			break;
3815		/* fallthrough */
3816#endif
3817	default:
3818		return (false);
3819	}
3820	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3821		return (false);
3822
3823	if (req->ventry == NULL) {
3824		if (obj->versyms != NULL) {
3825			verndx = VER_NDX(obj->versyms[symnum]);
3826			if (verndx > obj->vernum) {
3827				_rtld_error(
3828				    "%s: symbol %s references wrong version %d",
3829				    obj->path, obj->strtab + symnum, verndx);
3830				return (false);
3831			}
3832			/*
3833			 * If we are not called from dlsym (i.e. this
3834			 * is a normal relocation from unversioned
3835			 * binary), accept the symbol immediately if
3836			 * it happens to have first version after this
3837			 * shared object became versioned.  Otherwise,
3838			 * if symbol is versioned and not hidden,
3839			 * remember it. If it is the only symbol with
3840			 * this name exported by the shared object, it
3841			 * will be returned as a match by the calling
3842			 * function. If symbol is global (verndx < 2)
3843			 * accept it unconditionally.
3844			 */
3845			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3846			    verndx == VER_NDX_GIVEN) {
3847				result->sym_out = symp;
3848				return (true);
3849			}
3850			else if (verndx >= VER_NDX_GIVEN) {
3851				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3852				    == 0) {
3853					if (result->vsymp == NULL)
3854						result->vsymp = symp;
3855					result->vcount++;
3856				}
3857				return (false);
3858			}
3859		}
3860		result->sym_out = symp;
3861		return (true);
3862	}
3863	if (obj->versyms == NULL) {
3864		if (object_match_name(obj, req->ventry->name)) {
3865			_rtld_error("%s: object %s should provide version %s "
3866			    "for symbol %s", obj_rtld.path, obj->path,
3867			    req->ventry->name, obj->strtab + symnum);
3868			return (false);
3869		}
3870	} else {
3871		verndx = VER_NDX(obj->versyms[symnum]);
3872		if (verndx > obj->vernum) {
3873			_rtld_error("%s: symbol %s references wrong version %d",
3874			    obj->path, obj->strtab + symnum, verndx);
3875			return (false);
3876		}
3877		if (obj->vertab[verndx].hash != req->ventry->hash ||
3878		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3879			/*
3880			 * Version does not match. Look if this is a
3881			 * global symbol and if it is not hidden. If
3882			 * global symbol (verndx < 2) is available,
3883			 * use it. Do not return symbol if we are
3884			 * called by dlvsym, because dlvsym looks for
3885			 * a specific version and default one is not
3886			 * what dlvsym wants.
3887			 */
3888			if ((req->flags & SYMLOOK_DLSYM) ||
3889			    (verndx >= VER_NDX_GIVEN) ||
3890			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3891				return (false);
3892		}
3893	}
3894	result->sym_out = symp;
3895	return (true);
3896}
3897
3898/*
3899 * Search for symbol using SysV hash function.
3900 * obj->buckets is known not to be NULL at this point; the test for this was
3901 * performed with the obj->valid_hash_sysv assignment.
3902 */
3903static int
3904symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3905{
3906	unsigned long symnum;
3907	Sym_Match_Result matchres;
3908
3909	matchres.sym_out = NULL;
3910	matchres.vsymp = NULL;
3911	matchres.vcount = 0;
3912
3913	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3914	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3915		if (symnum >= obj->nchains)
3916			return (ESRCH);	/* Bad object */
3917
3918		if (matched_symbol(req, obj, &matchres, symnum)) {
3919			req->sym_out = matchres.sym_out;
3920			req->defobj_out = obj;
3921			return (0);
3922		}
3923	}
3924	if (matchres.vcount == 1) {
3925		req->sym_out = matchres.vsymp;
3926		req->defobj_out = obj;
3927		return (0);
3928	}
3929	return (ESRCH);
3930}
3931
3932/* Search for symbol using GNU hash function */
3933static int
3934symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3935{
3936	Elf_Addr bloom_word;
3937	const Elf32_Word *hashval;
3938	Elf32_Word bucket;
3939	Sym_Match_Result matchres;
3940	unsigned int h1, h2;
3941	unsigned long symnum;
3942
3943	matchres.sym_out = NULL;
3944	matchres.vsymp = NULL;
3945	matchres.vcount = 0;
3946
3947	/* Pick right bitmask word from Bloom filter array */
3948	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3949	    obj->maskwords_bm_gnu];
3950
3951	/* Calculate modulus word size of gnu hash and its derivative */
3952	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3953	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3954
3955	/* Filter out the "definitely not in set" queries */
3956	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3957		return (ESRCH);
3958
3959	/* Locate hash chain and corresponding value element*/
3960	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3961	if (bucket == 0)
3962		return (ESRCH);
3963	hashval = &obj->chain_zero_gnu[bucket];
3964	do {
3965		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3966			symnum = hashval - obj->chain_zero_gnu;
3967			if (matched_symbol(req, obj, &matchres, symnum)) {
3968				req->sym_out = matchres.sym_out;
3969				req->defobj_out = obj;
3970				return (0);
3971			}
3972		}
3973	} while ((*hashval++ & 1) == 0);
3974	if (matchres.vcount == 1) {
3975		req->sym_out = matchres.vsymp;
3976		req->defobj_out = obj;
3977		return (0);
3978	}
3979	return (ESRCH);
3980}
3981
3982static void
3983trace_loaded_objects(Obj_Entry *obj)
3984{
3985    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3986    int		c;
3987
3988    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3989	main_local = "";
3990
3991    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3992	fmt1 = "\t%o => %p (%x)\n";
3993
3994    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3995	fmt2 = "\t%o (%x)\n";
3996
3997    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3998
3999    for (; obj; obj = obj->next) {
4000	Needed_Entry		*needed;
4001	char			*name, *path;
4002	bool			is_lib;
4003
4004	if (list_containers && obj->needed != NULL)
4005	    rtld_printf("%s:\n", obj->path);
4006	for (needed = obj->needed; needed; needed = needed->next) {
4007	    if (needed->obj != NULL) {
4008		if (needed->obj->traced && !list_containers)
4009		    continue;
4010		needed->obj->traced = true;
4011		path = needed->obj->path;
4012	    } else
4013		path = "not found";
4014
4015	    name = (char *)obj->strtab + needed->name;
4016	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4017
4018	    fmt = is_lib ? fmt1 : fmt2;
4019	    while ((c = *fmt++) != '\0') {
4020		switch (c) {
4021		default:
4022		    rtld_putchar(c);
4023		    continue;
4024		case '\\':
4025		    switch (c = *fmt) {
4026		    case '\0':
4027			continue;
4028		    case 'n':
4029			rtld_putchar('\n');
4030			break;
4031		    case 't':
4032			rtld_putchar('\t');
4033			break;
4034		    }
4035		    break;
4036		case '%':
4037		    switch (c = *fmt) {
4038		    case '\0':
4039			continue;
4040		    case '%':
4041		    default:
4042			rtld_putchar(c);
4043			break;
4044		    case 'A':
4045			rtld_putstr(main_local);
4046			break;
4047		    case 'a':
4048			rtld_putstr(obj_main->path);
4049			break;
4050		    case 'o':
4051			rtld_putstr(name);
4052			break;
4053#if 0
4054		    case 'm':
4055			rtld_printf("%d", sodp->sod_major);
4056			break;
4057		    case 'n':
4058			rtld_printf("%d", sodp->sod_minor);
4059			break;
4060#endif
4061		    case 'p':
4062			rtld_putstr(path);
4063			break;
4064		    case 'x':
4065			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4066			  0);
4067			break;
4068		    }
4069		    break;
4070		}
4071		++fmt;
4072	    }
4073	}
4074    }
4075}
4076
4077/*
4078 * Unload a dlopened object and its dependencies from memory and from
4079 * our data structures.  It is assumed that the DAG rooted in the
4080 * object has already been unreferenced, and that the object has a
4081 * reference count of 0.
4082 */
4083static void
4084unload_object(Obj_Entry *root)
4085{
4086    Obj_Entry *obj;
4087    Obj_Entry **linkp;
4088
4089    assert(root->refcount == 0);
4090
4091    /*
4092     * Pass over the DAG removing unreferenced objects from
4093     * appropriate lists.
4094     */
4095    unlink_object(root);
4096
4097    /* Unmap all objects that are no longer referenced. */
4098    linkp = &obj_list->next;
4099    while ((obj = *linkp) != NULL) {
4100	if (obj->refcount == 0) {
4101	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4102		obj->path);
4103	    dbg("unloading \"%s\"", obj->path);
4104	    unload_filtees(root);
4105	    munmap(obj->mapbase, obj->mapsize);
4106	    linkmap_delete(obj);
4107	    *linkp = obj->next;
4108	    obj_count--;
4109	    obj_free(obj);
4110	} else
4111	    linkp = &obj->next;
4112    }
4113    obj_tail = linkp;
4114}
4115
4116static void
4117unlink_object(Obj_Entry *root)
4118{
4119    Objlist_Entry *elm;
4120
4121    if (root->refcount == 0) {
4122	/* Remove the object from the RTLD_GLOBAL list. */
4123	objlist_remove(&list_global, root);
4124
4125    	/* Remove the object from all objects' DAG lists. */
4126    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4127	    objlist_remove(&elm->obj->dldags, root);
4128	    if (elm->obj != root)
4129		unlink_object(elm->obj);
4130	}
4131    }
4132}
4133
4134static void
4135ref_dag(Obj_Entry *root)
4136{
4137    Objlist_Entry *elm;
4138
4139    assert(root->dag_inited);
4140    STAILQ_FOREACH(elm, &root->dagmembers, link)
4141	elm->obj->refcount++;
4142}
4143
4144static void
4145unref_dag(Obj_Entry *root)
4146{
4147    Objlist_Entry *elm;
4148
4149    assert(root->dag_inited);
4150    STAILQ_FOREACH(elm, &root->dagmembers, link)
4151	elm->obj->refcount--;
4152}
4153
4154/*
4155 * Common code for MD __tls_get_addr().
4156 */
4157static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4158static void *
4159tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4160{
4161    Elf_Addr *newdtv, *dtv;
4162    RtldLockState lockstate;
4163    int to_copy;
4164
4165    dtv = *dtvp;
4166    /* Check dtv generation in case new modules have arrived */
4167    if (dtv[0] != tls_dtv_generation) {
4168	wlock_acquire(rtld_bind_lock, &lockstate);
4169	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4170	to_copy = dtv[1];
4171	if (to_copy > tls_max_index)
4172	    to_copy = tls_max_index;
4173	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4174	newdtv[0] = tls_dtv_generation;
4175	newdtv[1] = tls_max_index;
4176	free(dtv);
4177	lock_release(rtld_bind_lock, &lockstate);
4178	dtv = *dtvp = newdtv;
4179    }
4180
4181    /* Dynamically allocate module TLS if necessary */
4182    if (dtv[index + 1] == 0) {
4183	/* Signal safe, wlock will block out signals. */
4184	wlock_acquire(rtld_bind_lock, &lockstate);
4185	if (!dtv[index + 1])
4186	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4187	lock_release(rtld_bind_lock, &lockstate);
4188    }
4189    return ((void *)(dtv[index + 1] + offset));
4190}
4191
4192void *
4193tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4194{
4195	Elf_Addr *dtv;
4196
4197	dtv = *dtvp;
4198	/* Check dtv generation in case new modules have arrived */
4199	if (__predict_true(dtv[0] == tls_dtv_generation &&
4200	    dtv[index + 1] != 0))
4201		return ((void *)(dtv[index + 1] + offset));
4202	return (tls_get_addr_slow(dtvp, index, offset));
4203}
4204
4205#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4206
4207/*
4208 * Allocate Static TLS using the Variant I method.
4209 */
4210void *
4211allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4212{
4213    Obj_Entry *obj;
4214    char *tcb;
4215    Elf_Addr **tls;
4216    Elf_Addr *dtv;
4217    Elf_Addr addr;
4218    int i;
4219
4220    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4221	return (oldtcb);
4222
4223    assert(tcbsize >= TLS_TCB_SIZE);
4224    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4225    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4226
4227    if (oldtcb != NULL) {
4228	memcpy(tls, oldtcb, tls_static_space);
4229	free(oldtcb);
4230
4231	/* Adjust the DTV. */
4232	dtv = tls[0];
4233	for (i = 0; i < dtv[1]; i++) {
4234	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4235		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4236		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4237	    }
4238	}
4239    } else {
4240	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4241	tls[0] = dtv;
4242	dtv[0] = tls_dtv_generation;
4243	dtv[1] = tls_max_index;
4244
4245	for (obj = objs; obj; obj = obj->next) {
4246	    if (obj->tlsoffset > 0) {
4247		addr = (Elf_Addr)tls + obj->tlsoffset;
4248		if (obj->tlsinitsize > 0)
4249		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4250		if (obj->tlssize > obj->tlsinitsize)
4251		    memset((void*) (addr + obj->tlsinitsize), 0,
4252			   obj->tlssize - obj->tlsinitsize);
4253		dtv[obj->tlsindex + 1] = addr;
4254	    }
4255	}
4256    }
4257
4258    return (tcb);
4259}
4260
4261void
4262free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4263{
4264    Elf_Addr *dtv;
4265    Elf_Addr tlsstart, tlsend;
4266    int dtvsize, i;
4267
4268    assert(tcbsize >= TLS_TCB_SIZE);
4269
4270    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4271    tlsend = tlsstart + tls_static_space;
4272
4273    dtv = *(Elf_Addr **)tlsstart;
4274    dtvsize = dtv[1];
4275    for (i = 0; i < dtvsize; i++) {
4276	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4277	    free((void*)dtv[i+2]);
4278	}
4279    }
4280    free(dtv);
4281    free(tcb);
4282}
4283
4284#endif
4285
4286#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4287
4288/*
4289 * Allocate Static TLS using the Variant II method.
4290 */
4291void *
4292allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4293{
4294    Obj_Entry *obj;
4295    size_t size, ralign;
4296    char *tls;
4297    Elf_Addr *dtv, *olddtv;
4298    Elf_Addr segbase, oldsegbase, addr;
4299    int i;
4300
4301    ralign = tcbalign;
4302    if (tls_static_max_align > ralign)
4303	    ralign = tls_static_max_align;
4304    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4305
4306    assert(tcbsize >= 2*sizeof(Elf_Addr));
4307    tls = malloc_aligned(size, ralign);
4308    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4309
4310    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4311    ((Elf_Addr*)segbase)[0] = segbase;
4312    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4313
4314    dtv[0] = tls_dtv_generation;
4315    dtv[1] = tls_max_index;
4316
4317    if (oldtls) {
4318	/*
4319	 * Copy the static TLS block over whole.
4320	 */
4321	oldsegbase = (Elf_Addr) oldtls;
4322	memcpy((void *)(segbase - tls_static_space),
4323	       (const void *)(oldsegbase - tls_static_space),
4324	       tls_static_space);
4325
4326	/*
4327	 * If any dynamic TLS blocks have been created tls_get_addr(),
4328	 * move them over.
4329	 */
4330	olddtv = ((Elf_Addr**)oldsegbase)[1];
4331	for (i = 0; i < olddtv[1]; i++) {
4332	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4333		dtv[i+2] = olddtv[i+2];
4334		olddtv[i+2] = 0;
4335	    }
4336	}
4337
4338	/*
4339	 * We assume that this block was the one we created with
4340	 * allocate_initial_tls().
4341	 */
4342	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4343    } else {
4344	for (obj = objs; obj; obj = obj->next) {
4345	    if (obj->tlsoffset) {
4346		addr = segbase - obj->tlsoffset;
4347		memset((void*) (addr + obj->tlsinitsize),
4348		       0, obj->tlssize - obj->tlsinitsize);
4349		if (obj->tlsinit)
4350		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4351		dtv[obj->tlsindex + 1] = addr;
4352	    }
4353	}
4354    }
4355
4356    return (void*) segbase;
4357}
4358
4359void
4360free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4361{
4362    Elf_Addr* dtv;
4363    size_t size, ralign;
4364    int dtvsize, i;
4365    Elf_Addr tlsstart, tlsend;
4366
4367    /*
4368     * Figure out the size of the initial TLS block so that we can
4369     * find stuff which ___tls_get_addr() allocated dynamically.
4370     */
4371    ralign = tcbalign;
4372    if (tls_static_max_align > ralign)
4373	    ralign = tls_static_max_align;
4374    size = round(tls_static_space, ralign);
4375
4376    dtv = ((Elf_Addr**)tls)[1];
4377    dtvsize = dtv[1];
4378    tlsend = (Elf_Addr) tls;
4379    tlsstart = tlsend - size;
4380    for (i = 0; i < dtvsize; i++) {
4381	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4382		free_aligned((void *)dtv[i + 2]);
4383	}
4384    }
4385
4386    free_aligned((void *)tlsstart);
4387    free((void*) dtv);
4388}
4389
4390#endif
4391
4392/*
4393 * Allocate TLS block for module with given index.
4394 */
4395void *
4396allocate_module_tls(int index)
4397{
4398    Obj_Entry* obj;
4399    char* p;
4400
4401    for (obj = obj_list; obj; obj = obj->next) {
4402	if (obj->tlsindex == index)
4403	    break;
4404    }
4405    if (!obj) {
4406	_rtld_error("Can't find module with TLS index %d", index);
4407	die();
4408    }
4409
4410    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4411    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4412    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4413
4414    return p;
4415}
4416
4417bool
4418allocate_tls_offset(Obj_Entry *obj)
4419{
4420    size_t off;
4421
4422    if (obj->tls_done)
4423	return true;
4424
4425    if (obj->tlssize == 0) {
4426	obj->tls_done = true;
4427	return true;
4428    }
4429
4430    if (obj->tlsindex == 1)
4431	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4432    else
4433	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4434				   obj->tlssize, obj->tlsalign);
4435
4436    /*
4437     * If we have already fixed the size of the static TLS block, we
4438     * must stay within that size. When allocating the static TLS, we
4439     * leave a small amount of space spare to be used for dynamically
4440     * loading modules which use static TLS.
4441     */
4442    if (tls_static_space != 0) {
4443	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4444	    return false;
4445    } else if (obj->tlsalign > tls_static_max_align) {
4446	    tls_static_max_align = obj->tlsalign;
4447    }
4448
4449    tls_last_offset = obj->tlsoffset = off;
4450    tls_last_size = obj->tlssize;
4451    obj->tls_done = true;
4452
4453    return true;
4454}
4455
4456void
4457free_tls_offset(Obj_Entry *obj)
4458{
4459
4460    /*
4461     * If we were the last thing to allocate out of the static TLS
4462     * block, we give our space back to the 'allocator'. This is a
4463     * simplistic workaround to allow libGL.so.1 to be loaded and
4464     * unloaded multiple times.
4465     */
4466    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4467	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4468	tls_last_offset -= obj->tlssize;
4469	tls_last_size = 0;
4470    }
4471}
4472
4473void *
4474_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4475{
4476    void *ret;
4477    RtldLockState lockstate;
4478
4479    wlock_acquire(rtld_bind_lock, &lockstate);
4480    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4481    lock_release(rtld_bind_lock, &lockstate);
4482    return (ret);
4483}
4484
4485void
4486_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4487{
4488    RtldLockState lockstate;
4489
4490    wlock_acquire(rtld_bind_lock, &lockstate);
4491    free_tls(tcb, tcbsize, tcbalign);
4492    lock_release(rtld_bind_lock, &lockstate);
4493}
4494
4495static void
4496object_add_name(Obj_Entry *obj, const char *name)
4497{
4498    Name_Entry *entry;
4499    size_t len;
4500
4501    len = strlen(name);
4502    entry = malloc(sizeof(Name_Entry) + len);
4503
4504    if (entry != NULL) {
4505	strcpy(entry->name, name);
4506	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4507    }
4508}
4509
4510static int
4511object_match_name(const Obj_Entry *obj, const char *name)
4512{
4513    Name_Entry *entry;
4514
4515    STAILQ_FOREACH(entry, &obj->names, link) {
4516	if (strcmp(name, entry->name) == 0)
4517	    return (1);
4518    }
4519    return (0);
4520}
4521
4522static Obj_Entry *
4523locate_dependency(const Obj_Entry *obj, const char *name)
4524{
4525    const Objlist_Entry *entry;
4526    const Needed_Entry *needed;
4527
4528    STAILQ_FOREACH(entry, &list_main, link) {
4529	if (object_match_name(entry->obj, name))
4530	    return entry->obj;
4531    }
4532
4533    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4534	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4535	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4536	    /*
4537	     * If there is DT_NEEDED for the name we are looking for,
4538	     * we are all set.  Note that object might not be found if
4539	     * dependency was not loaded yet, so the function can
4540	     * return NULL here.  This is expected and handled
4541	     * properly by the caller.
4542	     */
4543	    return (needed->obj);
4544	}
4545    }
4546    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4547	obj->path, name);
4548    die();
4549}
4550
4551static int
4552check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4553    const Elf_Vernaux *vna)
4554{
4555    const Elf_Verdef *vd;
4556    const char *vername;
4557
4558    vername = refobj->strtab + vna->vna_name;
4559    vd = depobj->verdef;
4560    if (vd == NULL) {
4561	_rtld_error("%s: version %s required by %s not defined",
4562	    depobj->path, vername, refobj->path);
4563	return (-1);
4564    }
4565    for (;;) {
4566	if (vd->vd_version != VER_DEF_CURRENT) {
4567	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4568		depobj->path, vd->vd_version);
4569	    return (-1);
4570	}
4571	if (vna->vna_hash == vd->vd_hash) {
4572	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4573		((char *)vd + vd->vd_aux);
4574	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4575		return (0);
4576	}
4577	if (vd->vd_next == 0)
4578	    break;
4579	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4580    }
4581    if (vna->vna_flags & VER_FLG_WEAK)
4582	return (0);
4583    _rtld_error("%s: version %s required by %s not found",
4584	depobj->path, vername, refobj->path);
4585    return (-1);
4586}
4587
4588static int
4589rtld_verify_object_versions(Obj_Entry *obj)
4590{
4591    const Elf_Verneed *vn;
4592    const Elf_Verdef  *vd;
4593    const Elf_Verdaux *vda;
4594    const Elf_Vernaux *vna;
4595    const Obj_Entry *depobj;
4596    int maxvernum, vernum;
4597
4598    if (obj->ver_checked)
4599	return (0);
4600    obj->ver_checked = true;
4601
4602    maxvernum = 0;
4603    /*
4604     * Walk over defined and required version records and figure out
4605     * max index used by any of them. Do very basic sanity checking
4606     * while there.
4607     */
4608    vn = obj->verneed;
4609    while (vn != NULL) {
4610	if (vn->vn_version != VER_NEED_CURRENT) {
4611	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4612		obj->path, vn->vn_version);
4613	    return (-1);
4614	}
4615	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4616	for (;;) {
4617	    vernum = VER_NEED_IDX(vna->vna_other);
4618	    if (vernum > maxvernum)
4619		maxvernum = vernum;
4620	    if (vna->vna_next == 0)
4621		 break;
4622	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4623	}
4624	if (vn->vn_next == 0)
4625	    break;
4626	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4627    }
4628
4629    vd = obj->verdef;
4630    while (vd != NULL) {
4631	if (vd->vd_version != VER_DEF_CURRENT) {
4632	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4633		obj->path, vd->vd_version);
4634	    return (-1);
4635	}
4636	vernum = VER_DEF_IDX(vd->vd_ndx);
4637	if (vernum > maxvernum)
4638		maxvernum = vernum;
4639	if (vd->vd_next == 0)
4640	    break;
4641	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4642    }
4643
4644    if (maxvernum == 0)
4645	return (0);
4646
4647    /*
4648     * Store version information in array indexable by version index.
4649     * Verify that object version requirements are satisfied along the
4650     * way.
4651     */
4652    obj->vernum = maxvernum + 1;
4653    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4654
4655    vd = obj->verdef;
4656    while (vd != NULL) {
4657	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4658	    vernum = VER_DEF_IDX(vd->vd_ndx);
4659	    assert(vernum <= maxvernum);
4660	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4661	    obj->vertab[vernum].hash = vd->vd_hash;
4662	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4663	    obj->vertab[vernum].file = NULL;
4664	    obj->vertab[vernum].flags = 0;
4665	}
4666	if (vd->vd_next == 0)
4667	    break;
4668	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4669    }
4670
4671    vn = obj->verneed;
4672    while (vn != NULL) {
4673	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4674	if (depobj == NULL)
4675	    return (-1);
4676	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4677	for (;;) {
4678	    if (check_object_provided_version(obj, depobj, vna))
4679		return (-1);
4680	    vernum = VER_NEED_IDX(vna->vna_other);
4681	    assert(vernum <= maxvernum);
4682	    obj->vertab[vernum].hash = vna->vna_hash;
4683	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4684	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4685	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4686		VER_INFO_HIDDEN : 0;
4687	    if (vna->vna_next == 0)
4688		 break;
4689	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4690	}
4691	if (vn->vn_next == 0)
4692	    break;
4693	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4694    }
4695    return 0;
4696}
4697
4698static int
4699rtld_verify_versions(const Objlist *objlist)
4700{
4701    Objlist_Entry *entry;
4702    int rc;
4703
4704    rc = 0;
4705    STAILQ_FOREACH(entry, objlist, link) {
4706	/*
4707	 * Skip dummy objects or objects that have their version requirements
4708	 * already checked.
4709	 */
4710	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4711	    continue;
4712	if (rtld_verify_object_versions(entry->obj) == -1) {
4713	    rc = -1;
4714	    if (ld_tracing == NULL)
4715		break;
4716	}
4717    }
4718    if (rc == 0 || ld_tracing != NULL)
4719    	rc = rtld_verify_object_versions(&obj_rtld);
4720    return rc;
4721}
4722
4723const Ver_Entry *
4724fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4725{
4726    Elf_Versym vernum;
4727
4728    if (obj->vertab) {
4729	vernum = VER_NDX(obj->versyms[symnum]);
4730	if (vernum >= obj->vernum) {
4731	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4732		obj->path, obj->strtab + symnum, vernum);
4733	} else if (obj->vertab[vernum].hash != 0) {
4734	    return &obj->vertab[vernum];
4735	}
4736    }
4737    return NULL;
4738}
4739
4740int
4741_rtld_get_stack_prot(void)
4742{
4743
4744	return (stack_prot);
4745}
4746
4747static void
4748map_stacks_exec(RtldLockState *lockstate)
4749{
4750	void (*thr_map_stacks_exec)(void);
4751
4752	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4753		return;
4754	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4755	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4756	if (thr_map_stacks_exec != NULL) {
4757		stack_prot |= PROT_EXEC;
4758		thr_map_stacks_exec();
4759	}
4760}
4761
4762void
4763symlook_init(SymLook *dst, const char *name)
4764{
4765
4766	bzero(dst, sizeof(*dst));
4767	dst->name = name;
4768	dst->hash = elf_hash(name);
4769	dst->hash_gnu = gnu_hash(name);
4770}
4771
4772static void
4773symlook_init_from_req(SymLook *dst, const SymLook *src)
4774{
4775
4776	dst->name = src->name;
4777	dst->hash = src->hash;
4778	dst->hash_gnu = src->hash_gnu;
4779	dst->ventry = src->ventry;
4780	dst->flags = src->flags;
4781	dst->defobj_out = NULL;
4782	dst->sym_out = NULL;
4783	dst->lockstate = src->lockstate;
4784}
4785
4786/*
4787 * Overrides for libc_pic-provided functions.
4788 */
4789
4790int
4791__getosreldate(void)
4792{
4793	size_t len;
4794	int oid[2];
4795	int error, osrel;
4796
4797	if (osreldate != 0)
4798		return (osreldate);
4799
4800	oid[0] = CTL_KERN;
4801	oid[1] = KERN_OSRELDATE;
4802	osrel = 0;
4803	len = sizeof(osrel);
4804	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4805	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4806		osreldate = osrel;
4807	return (osreldate);
4808}
4809
4810void
4811exit(int status)
4812{
4813
4814	_exit(status);
4815}
4816
4817void (*__cleanup)(void);
4818int __isthreaded = 0;
4819int _thread_autoinit_dummy_decl = 1;
4820
4821/*
4822 * No unresolved symbols for rtld.
4823 */
4824void
4825__pthread_cxa_finalize(struct dl_phdr_info *a)
4826{
4827}
4828
4829void
4830__stack_chk_fail(void)
4831{
4832
4833	_rtld_error("stack overflow detected; terminated");
4834	die();
4835}
4836__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4837
4838void
4839__chk_fail(void)
4840{
4841
4842	_rtld_error("buffer overflow detected; terminated");
4843	die();
4844}
4845
4846const char *
4847rtld_strerror(int errnum)
4848{
4849
4850	if (errnum < 0 || errnum >= sys_nerr)
4851		return ("Unknown error");
4852	return (sys_errlist[errnum]);
4853}
4854