vmmapi.c revision 295124
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/lib/libvmmapi/vmmapi.c 295124 2016-02-01 14:56:11Z grehan $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/lib/libvmmapi/vmmapi.c 295124 2016-02-01 14:56:11Z grehan $");
31
32#include <sys/param.h>
33#include <sys/sysctl.h>
34#include <sys/ioctl.h>
35#include <sys/mman.h>
36#include <sys/_iovec.h>
37#include <sys/cpuset.h>
38
39#include <x86/segments.h>
40#include <machine/specialreg.h>
41#include <machine/param.h>
42
43#include <errno.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <assert.h>
47#include <string.h>
48#include <fcntl.h>
49#include <unistd.h>
50
51#include <libutil.h>
52
53#include <machine/vmm.h>
54#include <machine/vmm_dev.h>
55
56#include "vmmapi.h"
57
58#define	MB	(1024 * 1024UL)
59#define	GB	(1024 * 1024 * 1024UL)
60
61/*
62 * Size of the guard region before and after the virtual address space
63 * mapping the guest physical memory. This must be a multiple of the
64 * superpage size for performance reasons.
65 */
66#define	VM_MMAP_GUARD_SIZE	(4 * MB)
67
68#define	PROT_RW		(PROT_READ | PROT_WRITE)
69#define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
70
71struct vmctx {
72	int	fd;
73	uint32_t lowmem_limit;
74	int	memflags;
75	size_t	lowmem;
76	size_t	highmem;
77	char	*baseaddr;
78	char	*name;
79};
80
81#define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
82#define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
83
84static int
85vm_device_open(const char *name)
86{
87        int fd, len;
88        char *vmfile;
89
90	len = strlen("/dev/vmm/") + strlen(name) + 1;
91	vmfile = malloc(len);
92	assert(vmfile != NULL);
93	snprintf(vmfile, len, "/dev/vmm/%s", name);
94
95        /* Open the device file */
96        fd = open(vmfile, O_RDWR, 0);
97
98	free(vmfile);
99        return (fd);
100}
101
102int
103vm_create(const char *name)
104{
105
106	return (CREATE((char *)name));
107}
108
109struct vmctx *
110vm_open(const char *name)
111{
112	struct vmctx *vm;
113
114	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
115	assert(vm != NULL);
116
117	vm->fd = -1;
118	vm->memflags = 0;
119	vm->lowmem_limit = 3 * GB;
120	vm->name = (char *)(vm + 1);
121	strcpy(vm->name, name);
122
123	if ((vm->fd = vm_device_open(vm->name)) < 0)
124		goto err;
125
126	return (vm);
127err:
128	vm_destroy(vm);
129	return (NULL);
130}
131
132void
133vm_destroy(struct vmctx *vm)
134{
135	assert(vm != NULL);
136
137	if (vm->fd >= 0)
138		close(vm->fd);
139	DESTROY(vm->name);
140
141	free(vm);
142}
143
144int
145vm_parse_memsize(const char *optarg, size_t *ret_memsize)
146{
147	char *endptr;
148	size_t optval;
149	int error;
150
151	optval = strtoul(optarg, &endptr, 0);
152	if (*optarg != '\0' && *endptr == '\0') {
153		/*
154		 * For the sake of backward compatibility if the memory size
155		 * specified on the command line is less than a megabyte then
156		 * it is interpreted as being in units of MB.
157		 */
158		if (optval < MB)
159			optval *= MB;
160		*ret_memsize = optval;
161		error = 0;
162	} else
163		error = expand_number(optarg, ret_memsize);
164
165	return (error);
166}
167
168uint32_t
169vm_get_lowmem_limit(struct vmctx *ctx)
170{
171
172	return (ctx->lowmem_limit);
173}
174
175void
176vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
177{
178
179	ctx->lowmem_limit = limit;
180}
181
182void
183vm_set_memflags(struct vmctx *ctx, int flags)
184{
185
186	ctx->memflags = flags;
187}
188
189int
190vm_get_memflags(struct vmctx *ctx)
191{
192
193	return (ctx->memflags);
194}
195
196/*
197 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
198 */
199int
200vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
201    size_t len, int prot)
202{
203	struct vm_memmap memmap;
204	int error, flags;
205
206	memmap.gpa = gpa;
207	memmap.segid = segid;
208	memmap.segoff = off;
209	memmap.len = len;
210	memmap.prot = prot;
211	memmap.flags = 0;
212
213	if (ctx->memflags & VM_MEM_F_WIRED)
214		memmap.flags |= VM_MEMMAP_F_WIRED;
215
216	/*
217	 * If this mapping already exists then don't create it again. This
218	 * is the common case for SYSMEM mappings created by bhyveload(8).
219	 */
220	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
221	if (error == 0 && gpa == memmap.gpa) {
222		if (segid != memmap.segid || off != memmap.segoff ||
223		    prot != memmap.prot || flags != memmap.flags) {
224			errno = EEXIST;
225			return (-1);
226		} else {
227			return (0);
228		}
229	}
230
231	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
232	return (error);
233}
234
235int
236vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
237    vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
238{
239	struct vm_memmap memmap;
240	int error;
241
242	bzero(&memmap, sizeof(struct vm_memmap));
243	memmap.gpa = *gpa;
244	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
245	if (error == 0) {
246		*gpa = memmap.gpa;
247		*segid = memmap.segid;
248		*segoff = memmap.segoff;
249		*len = memmap.len;
250		*prot = memmap.prot;
251		*flags = memmap.flags;
252	}
253	return (error);
254}
255
256/*
257 * Return 0 if the segments are identical and non-zero otherwise.
258 *
259 * This is slightly complicated by the fact that only device memory segments
260 * are named.
261 */
262static int
263cmpseg(size_t len, const char *str, size_t len2, const char *str2)
264{
265
266	if (len == len2) {
267		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
268			return (0);
269	}
270	return (-1);
271}
272
273static int
274vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
275{
276	struct vm_memseg memseg;
277	size_t n;
278	int error;
279
280	/*
281	 * If the memory segment has already been created then just return.
282	 * This is the usual case for the SYSMEM segment created by userspace
283	 * loaders like bhyveload(8).
284	 */
285	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
286	    sizeof(memseg.name));
287	if (error)
288		return (error);
289
290	if (memseg.len != 0) {
291		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
292			errno = EINVAL;
293			return (-1);
294		} else {
295			return (0);
296		}
297	}
298
299	bzero(&memseg, sizeof(struct vm_memseg));
300	memseg.segid = segid;
301	memseg.len = len;
302	if (name != NULL) {
303		n = strlcpy(memseg.name, name, sizeof(memseg.name));
304		if (n >= sizeof(memseg.name)) {
305			errno = ENAMETOOLONG;
306			return (-1);
307		}
308	}
309
310	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
311	return (error);
312}
313
314int
315vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
316    size_t bufsize)
317{
318	struct vm_memseg memseg;
319	size_t n;
320	int error;
321
322	memseg.segid = segid;
323	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
324	if (error == 0) {
325		*lenp = memseg.len;
326		n = strlcpy(namebuf, memseg.name, bufsize);
327		if (n >= bufsize) {
328			errno = ENAMETOOLONG;
329			error = -1;
330		}
331	}
332	return (error);
333}
334
335static int
336setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
337{
338	char *ptr;
339	int error, flags;
340
341	/* Map 'len' bytes starting at 'gpa' in the guest address space */
342	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
343	if (error)
344		return (error);
345
346	flags = MAP_SHARED | MAP_FIXED;
347	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
348		flags |= MAP_NOCORE;
349
350	/* mmap into the process address space on the host */
351	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
352	if (ptr == MAP_FAILED)
353		return (-1);
354
355	return (0);
356}
357
358int
359vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
360{
361	size_t objsize, len;
362	vm_paddr_t gpa;
363	char *baseaddr, *ptr;
364	int error, flags;
365
366	assert(vms == VM_MMAP_ALL);
367
368	/*
369	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
370	 * create another 'highmem' segment above 4GB for the remainder.
371	 */
372	if (memsize > ctx->lowmem_limit) {
373		ctx->lowmem = ctx->lowmem_limit;
374		ctx->highmem = memsize - ctx->lowmem_limit;
375		objsize = 4*GB + ctx->highmem;
376	} else {
377		ctx->lowmem = memsize;
378		ctx->highmem = 0;
379		objsize = ctx->lowmem;
380	}
381
382	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
383	if (error)
384		return (error);
385
386	/*
387	 * Stake out a contiguous region covering the guest physical memory
388	 * and the adjoining guard regions.
389	 */
390	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
391	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
392	ptr = mmap(NULL, len, PROT_NONE, flags, -1, 0);
393	if (ptr == MAP_FAILED)
394		return (-1);
395
396	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
397	if (ctx->highmem > 0) {
398		gpa = 4*GB;
399		len = ctx->highmem;
400		error = setup_memory_segment(ctx, gpa, len, baseaddr);
401		if (error)
402			return (error);
403	}
404
405	if (ctx->lowmem > 0) {
406		gpa = 0;
407		len = ctx->lowmem;
408		error = setup_memory_segment(ctx, gpa, len, baseaddr);
409		if (error)
410			return (error);
411	}
412
413	ctx->baseaddr = baseaddr;
414
415	return (0);
416}
417
418/*
419 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
420 * the lowmem or highmem regions.
421 *
422 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
423 * The instruction emulation code depends on this behavior.
424 */
425void *
426vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
427{
428
429	if (ctx->lowmem > 0) {
430		if (gaddr < ctx->lowmem && gaddr + len <= ctx->lowmem)
431			return (ctx->baseaddr + gaddr);
432	}
433
434	if (ctx->highmem > 0) {
435		if (gaddr >= 4*GB && gaddr + len <= 4*GB + ctx->highmem)
436			return (ctx->baseaddr + gaddr);
437	}
438
439	return (NULL);
440}
441
442size_t
443vm_get_lowmem_size(struct vmctx *ctx)
444{
445
446	return (ctx->lowmem);
447}
448
449size_t
450vm_get_highmem_size(struct vmctx *ctx)
451{
452
453	return (ctx->highmem);
454}
455
456void *
457vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
458{
459	char pathname[MAXPATHLEN];
460	size_t len2;
461	char *base, *ptr;
462	int fd, error, flags;
463
464	fd = -1;
465	ptr = MAP_FAILED;
466	if (name == NULL || strlen(name) == 0) {
467		errno = EINVAL;
468		goto done;
469	}
470
471	error = vm_alloc_memseg(ctx, segid, len, name);
472	if (error)
473		goto done;
474
475	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
476	strlcat(pathname, ctx->name, sizeof(pathname));
477	strlcat(pathname, ".", sizeof(pathname));
478	strlcat(pathname, name, sizeof(pathname));
479
480	fd = open(pathname, O_RDWR);
481	if (fd < 0)
482		goto done;
483
484	/*
485	 * Stake out a contiguous region covering the device memory and the
486	 * adjoining guard regions.
487	 */
488	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
489	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
490	base = mmap(NULL, len2, PROT_NONE, flags, -1, 0);
491	if (base == MAP_FAILED)
492		goto done;
493
494	flags = MAP_SHARED | MAP_FIXED;
495	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
496		flags |= MAP_NOCORE;
497
498	/* mmap the devmem region in the host address space */
499	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
500done:
501	if (fd >= 0)
502		close(fd);
503	return (ptr);
504}
505
506int
507vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
508	    uint64_t base, uint32_t limit, uint32_t access)
509{
510	int error;
511	struct vm_seg_desc vmsegdesc;
512
513	bzero(&vmsegdesc, sizeof(vmsegdesc));
514	vmsegdesc.cpuid = vcpu;
515	vmsegdesc.regnum = reg;
516	vmsegdesc.desc.base = base;
517	vmsegdesc.desc.limit = limit;
518	vmsegdesc.desc.access = access;
519
520	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
521	return (error);
522}
523
524int
525vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
526	    uint64_t *base, uint32_t *limit, uint32_t *access)
527{
528	int error;
529	struct vm_seg_desc vmsegdesc;
530
531	bzero(&vmsegdesc, sizeof(vmsegdesc));
532	vmsegdesc.cpuid = vcpu;
533	vmsegdesc.regnum = reg;
534
535	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
536	if (error == 0) {
537		*base = vmsegdesc.desc.base;
538		*limit = vmsegdesc.desc.limit;
539		*access = vmsegdesc.desc.access;
540	}
541	return (error);
542}
543
544int
545vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
546{
547	int error;
548
549	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
550	    &seg_desc->access);
551	return (error);
552}
553
554int
555vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
556{
557	int error;
558	struct vm_register vmreg;
559
560	bzero(&vmreg, sizeof(vmreg));
561	vmreg.cpuid = vcpu;
562	vmreg.regnum = reg;
563	vmreg.regval = val;
564
565	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
566	return (error);
567}
568
569int
570vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
571{
572	int error;
573	struct vm_register vmreg;
574
575	bzero(&vmreg, sizeof(vmreg));
576	vmreg.cpuid = vcpu;
577	vmreg.regnum = reg;
578
579	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
580	*ret_val = vmreg.regval;
581	return (error);
582}
583
584int
585vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
586{
587	int error;
588	struct vm_run vmrun;
589
590	bzero(&vmrun, sizeof(vmrun));
591	vmrun.cpuid = vcpu;
592
593	error = ioctl(ctx->fd, VM_RUN, &vmrun);
594	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
595	return (error);
596}
597
598int
599vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
600{
601	struct vm_suspend vmsuspend;
602
603	bzero(&vmsuspend, sizeof(vmsuspend));
604	vmsuspend.how = how;
605	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
606}
607
608int
609vm_reinit(struct vmctx *ctx)
610{
611
612	return (ioctl(ctx->fd, VM_REINIT, 0));
613}
614
615int
616vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
617    uint32_t errcode, int restart_instruction)
618{
619	struct vm_exception exc;
620
621	exc.cpuid = vcpu;
622	exc.vector = vector;
623	exc.error_code = errcode;
624	exc.error_code_valid = errcode_valid;
625	exc.restart_instruction = restart_instruction;
626
627	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
628}
629
630int
631vm_apicid2vcpu(struct vmctx *ctx, int apicid)
632{
633	/*
634	 * The apic id associated with the 'vcpu' has the same numerical value
635	 * as the 'vcpu' itself.
636	 */
637	return (apicid);
638}
639
640int
641vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
642{
643	struct vm_lapic_irq vmirq;
644
645	bzero(&vmirq, sizeof(vmirq));
646	vmirq.cpuid = vcpu;
647	vmirq.vector = vector;
648
649	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
650}
651
652int
653vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
654{
655	struct vm_lapic_irq vmirq;
656
657	bzero(&vmirq, sizeof(vmirq));
658	vmirq.cpuid = vcpu;
659	vmirq.vector = vector;
660
661	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
662}
663
664int
665vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
666{
667	struct vm_lapic_msi vmmsi;
668
669	bzero(&vmmsi, sizeof(vmmsi));
670	vmmsi.addr = addr;
671	vmmsi.msg = msg;
672
673	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
674}
675
676int
677vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
678{
679	struct vm_ioapic_irq ioapic_irq;
680
681	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
682	ioapic_irq.irq = irq;
683
684	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
685}
686
687int
688vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
689{
690	struct vm_ioapic_irq ioapic_irq;
691
692	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
693	ioapic_irq.irq = irq;
694
695	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
696}
697
698int
699vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
700{
701	struct vm_ioapic_irq ioapic_irq;
702
703	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
704	ioapic_irq.irq = irq;
705
706	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
707}
708
709int
710vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
711{
712
713	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
714}
715
716int
717vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
718{
719	struct vm_isa_irq isa_irq;
720
721	bzero(&isa_irq, sizeof(struct vm_isa_irq));
722	isa_irq.atpic_irq = atpic_irq;
723	isa_irq.ioapic_irq = ioapic_irq;
724
725	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
726}
727
728int
729vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
730{
731	struct vm_isa_irq isa_irq;
732
733	bzero(&isa_irq, sizeof(struct vm_isa_irq));
734	isa_irq.atpic_irq = atpic_irq;
735	isa_irq.ioapic_irq = ioapic_irq;
736
737	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
738}
739
740int
741vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
742{
743	struct vm_isa_irq isa_irq;
744
745	bzero(&isa_irq, sizeof(struct vm_isa_irq));
746	isa_irq.atpic_irq = atpic_irq;
747	isa_irq.ioapic_irq = ioapic_irq;
748
749	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
750}
751
752int
753vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
754    enum vm_intr_trigger trigger)
755{
756	struct vm_isa_irq_trigger isa_irq_trigger;
757
758	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
759	isa_irq_trigger.atpic_irq = atpic_irq;
760	isa_irq_trigger.trigger = trigger;
761
762	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
763}
764
765int
766vm_inject_nmi(struct vmctx *ctx, int vcpu)
767{
768	struct vm_nmi vmnmi;
769
770	bzero(&vmnmi, sizeof(vmnmi));
771	vmnmi.cpuid = vcpu;
772
773	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
774}
775
776static struct {
777	const char	*name;
778	int		type;
779} capstrmap[] = {
780	{ "hlt_exit",		VM_CAP_HALT_EXIT },
781	{ "mtrap_exit",		VM_CAP_MTRAP_EXIT },
782	{ "pause_exit",		VM_CAP_PAUSE_EXIT },
783	{ "unrestricted_guest",	VM_CAP_UNRESTRICTED_GUEST },
784	{ "enable_invpcid",	VM_CAP_ENABLE_INVPCID },
785	{ 0 }
786};
787
788int
789vm_capability_name2type(const char *capname)
790{
791	int i;
792
793	for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
794		if (strcmp(capstrmap[i].name, capname) == 0)
795			return (capstrmap[i].type);
796	}
797
798	return (-1);
799}
800
801const char *
802vm_capability_type2name(int type)
803{
804	int i;
805
806	for (i = 0; capstrmap[i].name != NULL; i++) {
807		if (capstrmap[i].type == type)
808			return (capstrmap[i].name);
809	}
810
811	return (NULL);
812}
813
814int
815vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
816		  int *retval)
817{
818	int error;
819	struct vm_capability vmcap;
820
821	bzero(&vmcap, sizeof(vmcap));
822	vmcap.cpuid = vcpu;
823	vmcap.captype = cap;
824
825	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
826	*retval = vmcap.capval;
827	return (error);
828}
829
830int
831vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
832{
833	struct vm_capability vmcap;
834
835	bzero(&vmcap, sizeof(vmcap));
836	vmcap.cpuid = vcpu;
837	vmcap.captype = cap;
838	vmcap.capval = val;
839
840	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
841}
842
843int
844vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
845{
846	struct vm_pptdev pptdev;
847
848	bzero(&pptdev, sizeof(pptdev));
849	pptdev.bus = bus;
850	pptdev.slot = slot;
851	pptdev.func = func;
852
853	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
854}
855
856int
857vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
858{
859	struct vm_pptdev pptdev;
860
861	bzero(&pptdev, sizeof(pptdev));
862	pptdev.bus = bus;
863	pptdev.slot = slot;
864	pptdev.func = func;
865
866	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
867}
868
869int
870vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
871		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
872{
873	struct vm_pptdev_mmio pptmmio;
874
875	bzero(&pptmmio, sizeof(pptmmio));
876	pptmmio.bus = bus;
877	pptmmio.slot = slot;
878	pptmmio.func = func;
879	pptmmio.gpa = gpa;
880	pptmmio.len = len;
881	pptmmio.hpa = hpa;
882
883	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
884}
885
886int
887vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
888    uint64_t addr, uint64_t msg, int numvec)
889{
890	struct vm_pptdev_msi pptmsi;
891
892	bzero(&pptmsi, sizeof(pptmsi));
893	pptmsi.vcpu = vcpu;
894	pptmsi.bus = bus;
895	pptmsi.slot = slot;
896	pptmsi.func = func;
897	pptmsi.msg = msg;
898	pptmsi.addr = addr;
899	pptmsi.numvec = numvec;
900
901	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
902}
903
904int
905vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
906    int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
907{
908	struct vm_pptdev_msix pptmsix;
909
910	bzero(&pptmsix, sizeof(pptmsix));
911	pptmsix.vcpu = vcpu;
912	pptmsix.bus = bus;
913	pptmsix.slot = slot;
914	pptmsix.func = func;
915	pptmsix.idx = idx;
916	pptmsix.msg = msg;
917	pptmsix.addr = addr;
918	pptmsix.vector_control = vector_control;
919
920	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
921}
922
923uint64_t *
924vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
925	     int *ret_entries)
926{
927	int error;
928
929	static struct vm_stats vmstats;
930
931	vmstats.cpuid = vcpu;
932
933	error = ioctl(ctx->fd, VM_STATS, &vmstats);
934	if (error == 0) {
935		if (ret_entries)
936			*ret_entries = vmstats.num_entries;
937		if (ret_tv)
938			*ret_tv = vmstats.tv;
939		return (vmstats.statbuf);
940	} else
941		return (NULL);
942}
943
944const char *
945vm_get_stat_desc(struct vmctx *ctx, int index)
946{
947	static struct vm_stat_desc statdesc;
948
949	statdesc.index = index;
950	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
951		return (statdesc.desc);
952	else
953		return (NULL);
954}
955
956int
957vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
958{
959	int error;
960	struct vm_x2apic x2apic;
961
962	bzero(&x2apic, sizeof(x2apic));
963	x2apic.cpuid = vcpu;
964
965	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
966	*state = x2apic.state;
967	return (error);
968}
969
970int
971vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
972{
973	int error;
974	struct vm_x2apic x2apic;
975
976	bzero(&x2apic, sizeof(x2apic));
977	x2apic.cpuid = vcpu;
978	x2apic.state = state;
979
980	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
981
982	return (error);
983}
984
985/*
986 * From Intel Vol 3a:
987 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
988 */
989int
990vcpu_reset(struct vmctx *vmctx, int vcpu)
991{
992	int error;
993	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
994	uint32_t desc_access, desc_limit;
995	uint16_t sel;
996
997	zero = 0;
998
999	rflags = 0x2;
1000	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1001	if (error)
1002		goto done;
1003
1004	rip = 0xfff0;
1005	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1006		goto done;
1007
1008	cr0 = CR0_NE;
1009	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1010		goto done;
1011
1012	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1013		goto done;
1014
1015	cr4 = 0;
1016	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1017		goto done;
1018
1019	/*
1020	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1021	 */
1022	desc_base = 0xffff0000;
1023	desc_limit = 0xffff;
1024	desc_access = 0x0093;
1025	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1026			    desc_base, desc_limit, desc_access);
1027	if (error)
1028		goto done;
1029
1030	sel = 0xf000;
1031	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1032		goto done;
1033
1034	/*
1035	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1036	 */
1037	desc_base = 0;
1038	desc_limit = 0xffff;
1039	desc_access = 0x0093;
1040	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1041			    desc_base, desc_limit, desc_access);
1042	if (error)
1043		goto done;
1044
1045	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1046			    desc_base, desc_limit, desc_access);
1047	if (error)
1048		goto done;
1049
1050	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1051			    desc_base, desc_limit, desc_access);
1052	if (error)
1053		goto done;
1054
1055	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1056			    desc_base, desc_limit, desc_access);
1057	if (error)
1058		goto done;
1059
1060	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1061			    desc_base, desc_limit, desc_access);
1062	if (error)
1063		goto done;
1064
1065	sel = 0;
1066	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1067		goto done;
1068	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1069		goto done;
1070	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1071		goto done;
1072	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1073		goto done;
1074	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1075		goto done;
1076
1077	/* General purpose registers */
1078	rdx = 0xf00;
1079	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1080		goto done;
1081	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1082		goto done;
1083	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1084		goto done;
1085	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1086		goto done;
1087	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1088		goto done;
1089	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1090		goto done;
1091	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1092		goto done;
1093	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1094		goto done;
1095
1096	/* GDTR, IDTR */
1097	desc_base = 0;
1098	desc_limit = 0xffff;
1099	desc_access = 0;
1100	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1101			    desc_base, desc_limit, desc_access);
1102	if (error != 0)
1103		goto done;
1104
1105	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1106			    desc_base, desc_limit, desc_access);
1107	if (error != 0)
1108		goto done;
1109
1110	/* TR */
1111	desc_base = 0;
1112	desc_limit = 0xffff;
1113	desc_access = 0x0000008b;
1114	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1115	if (error)
1116		goto done;
1117
1118	sel = 0;
1119	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1120		goto done;
1121
1122	/* LDTR */
1123	desc_base = 0;
1124	desc_limit = 0xffff;
1125	desc_access = 0x00000082;
1126	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1127			    desc_limit, desc_access);
1128	if (error)
1129		goto done;
1130
1131	sel = 0;
1132	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1133		goto done;
1134
1135	/* XXX cr2, debug registers */
1136
1137	error = 0;
1138done:
1139	return (error);
1140}
1141
1142int
1143vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1144{
1145	int error, i;
1146	struct vm_gpa_pte gpapte;
1147
1148	bzero(&gpapte, sizeof(gpapte));
1149	gpapte.gpa = gpa;
1150
1151	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1152
1153	if (error == 0) {
1154		*num = gpapte.ptenum;
1155		for (i = 0; i < gpapte.ptenum; i++)
1156			pte[i] = gpapte.pte[i];
1157	}
1158
1159	return (error);
1160}
1161
1162int
1163vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1164{
1165	int error;
1166	struct vm_hpet_cap cap;
1167
1168	bzero(&cap, sizeof(struct vm_hpet_cap));
1169	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1170	if (capabilities != NULL)
1171		*capabilities = cap.capabilities;
1172	return (error);
1173}
1174
1175int
1176vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1177    uint64_t gla, int prot, uint64_t *gpa, int *fault)
1178{
1179	struct vm_gla2gpa gg;
1180	int error;
1181
1182	bzero(&gg, sizeof(struct vm_gla2gpa));
1183	gg.vcpuid = vcpu;
1184	gg.prot = prot;
1185	gg.gla = gla;
1186	gg.paging = *paging;
1187
1188	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1189	if (error == 0) {
1190		*fault = gg.fault;
1191		*gpa = gg.gpa;
1192	}
1193	return (error);
1194}
1195
1196#ifndef min
1197#define	min(a,b)	(((a) < (b)) ? (a) : (b))
1198#endif
1199
1200int
1201vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1202    uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1203    int *fault)
1204{
1205	void *va;
1206	uint64_t gpa;
1207	int error, i, n, off;
1208
1209	for (i = 0; i < iovcnt; i++) {
1210		iov[i].iov_base = 0;
1211		iov[i].iov_len = 0;
1212	}
1213
1214	while (len) {
1215		assert(iovcnt > 0);
1216		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1217		if (error || *fault)
1218			return (error);
1219
1220		off = gpa & PAGE_MASK;
1221		n = min(len, PAGE_SIZE - off);
1222
1223		va = vm_map_gpa(ctx, gpa, n);
1224		if (va == NULL)
1225			return (EFAULT);
1226
1227		iov->iov_base = va;
1228		iov->iov_len = n;
1229		iov++;
1230		iovcnt--;
1231
1232		gla += n;
1233		len -= n;
1234	}
1235	return (0);
1236}
1237
1238void
1239vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1240{
1241
1242	return;
1243}
1244
1245void
1246vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1247{
1248	const char *src;
1249	char *dst;
1250	size_t n;
1251
1252	dst = vp;
1253	while (len) {
1254		assert(iov->iov_len);
1255		n = min(len, iov->iov_len);
1256		src = iov->iov_base;
1257		bcopy(src, dst, n);
1258
1259		iov++;
1260		dst += n;
1261		len -= n;
1262	}
1263}
1264
1265void
1266vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1267    size_t len)
1268{
1269	const char *src;
1270	char *dst;
1271	size_t n;
1272
1273	src = vp;
1274	while (len) {
1275		assert(iov->iov_len);
1276		n = min(len, iov->iov_len);
1277		dst = iov->iov_base;
1278		bcopy(src, dst, n);
1279
1280		iov++;
1281		src += n;
1282		len -= n;
1283	}
1284}
1285
1286static int
1287vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1288{
1289	struct vm_cpuset vm_cpuset;
1290	int error;
1291
1292	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1293	vm_cpuset.which = which;
1294	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1295	vm_cpuset.cpus = cpus;
1296
1297	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1298	return (error);
1299}
1300
1301int
1302vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1303{
1304
1305	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1306}
1307
1308int
1309vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1310{
1311
1312	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1313}
1314
1315int
1316vm_activate_cpu(struct vmctx *ctx, int vcpu)
1317{
1318	struct vm_activate_cpu ac;
1319	int error;
1320
1321	bzero(&ac, sizeof(struct vm_activate_cpu));
1322	ac.vcpuid = vcpu;
1323	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1324	return (error);
1325}
1326
1327int
1328vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1329{
1330	struct vm_intinfo vmii;
1331	int error;
1332
1333	bzero(&vmii, sizeof(struct vm_intinfo));
1334	vmii.vcpuid = vcpu;
1335	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1336	if (error == 0) {
1337		*info1 = vmii.info1;
1338		*info2 = vmii.info2;
1339	}
1340	return (error);
1341}
1342
1343int
1344vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1345{
1346	struct vm_intinfo vmii;
1347	int error;
1348
1349	bzero(&vmii, sizeof(struct vm_intinfo));
1350	vmii.vcpuid = vcpu;
1351	vmii.info1 = info1;
1352	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1353	return (error);
1354}
1355
1356int
1357vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1358{
1359	struct vm_rtc_data rtcdata;
1360	int error;
1361
1362	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1363	rtcdata.offset = offset;
1364	rtcdata.value = value;
1365	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1366	return (error);
1367}
1368
1369int
1370vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1371{
1372	struct vm_rtc_data rtcdata;
1373	int error;
1374
1375	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1376	rtcdata.offset = offset;
1377	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1378	if (error == 0)
1379		*retval = rtcdata.value;
1380	return (error);
1381}
1382
1383int
1384vm_rtc_settime(struct vmctx *ctx, time_t secs)
1385{
1386	struct vm_rtc_time rtctime;
1387	int error;
1388
1389	bzero(&rtctime, sizeof(struct vm_rtc_time));
1390	rtctime.secs = secs;
1391	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1392	return (error);
1393}
1394
1395int
1396vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1397{
1398	struct vm_rtc_time rtctime;
1399	int error;
1400
1401	bzero(&rtctime, sizeof(struct vm_rtc_time));
1402	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1403	if (error == 0)
1404		*secs = rtctime.secs;
1405	return (error);
1406}
1407
1408int
1409vm_restart_instruction(void *arg, int vcpu)
1410{
1411	struct vmctx *ctx = arg;
1412
1413	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1414}
1415