thr_mutex.c revision 56277
1/*
2 * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by John Birrell.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: head/lib/libkse/thread/thr_mutex.c 56277 2000-01-19 07:04:50Z jasone $
33 */
34#include <stdlib.h>
35#include <errno.h>
36#include <string.h>
37#include <sys/param.h>
38#include <sys/queue.h>
39#ifdef _THREAD_SAFE
40#include <pthread.h>
41#include "pthread_private.h"
42
43#if defined(_PTHREADS_INVARIANTS)
44#define _MUTEX_INIT_LINK(m) 		do {		\
45	(m)->m_qe.tqe_prev = NULL;			\
46	(m)->m_qe.tqe_next = NULL;			\
47} while (0)
48#define _MUTEX_ASSERT_IS_OWNED(m)	do {		\
49	if ((m)->m_qe.tqe_prev == NULL)			\
50		PANIC("mutex is not on list");		\
51} while (0)
52#define _MUTEX_ASSERT_NOT_OWNED(m)	do {		\
53	if (((m)->m_qe.tqe_prev != NULL) ||		\
54	    ((m)->m_qe.tqe_next != NULL))		\
55		PANIC("mutex is on list");		\
56} while (0)
57#else
58#define _MUTEX_INIT_LINK(m)
59#define _MUTEX_ASSERT_IS_OWNED(m)
60#define _MUTEX_ASSERT_NOT_OWNED(m)
61#endif
62
63/*
64 * Prototypes
65 */
66static inline int	mutex_self_trylock(pthread_mutex_t);
67static inline int	mutex_self_lock(pthread_mutex_t);
68static inline int	mutex_unlock_common(pthread_mutex_t *, int);
69static void		mutex_priority_adjust(pthread_mutex_t);
70static void		mutex_rescan_owned (pthread_t, pthread_mutex_t);
71static inline pthread_t	mutex_queue_deq(pthread_mutex_t);
72static inline void	mutex_queue_remove(pthread_mutex_t, pthread_t);
73static inline void	mutex_queue_enq(pthread_mutex_t, pthread_t);
74
75
76static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER;
77
78/* Reinitialize a mutex to defaults. */
79int
80_mutex_reinit(pthread_mutex_t * mutex)
81{
82	int ret = 0;
83
84	if (mutex == NULL)
85		ret = EINVAL;
86	else if (*mutex == NULL)
87		ret = pthread_mutex_init(mutex, NULL);
88	else {
89		/*
90		 * Initialize the mutex structure:
91		 */
92		(*mutex)->m_type = PTHREAD_MUTEX_DEFAULT;
93		(*mutex)->m_protocol = PTHREAD_PRIO_NONE;
94		TAILQ_INIT(&(*mutex)->m_queue);
95		(*mutex)->m_owner = NULL;
96		(*mutex)->m_data.m_count = 0;
97		(*mutex)->m_flags &= MUTEX_FLAGS_PRIVATE;
98		(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
99		(*mutex)->m_refcount = 0;
100		(*mutex)->m_prio = 0;
101		(*mutex)->m_saved_prio = 0;
102		_MUTEX_INIT_LINK(*mutex);
103		memset(&(*mutex)->lock, 0, sizeof((*mutex)->lock));
104	}
105	return (ret);
106}
107
108int
109pthread_mutex_init(pthread_mutex_t * mutex,
110		   const pthread_mutexattr_t * mutex_attr)
111{
112	enum pthread_mutextype	type;
113	int		protocol;
114	int		ceiling;
115	pthread_mutex_t	pmutex;
116	int             ret = 0;
117
118	if (mutex == NULL)
119		ret = EINVAL;
120
121	/* Check if default mutex attributes: */
122	else if (mutex_attr == NULL || *mutex_attr == NULL) {
123		/* Default to a (error checking) POSIX mutex: */
124		type = PTHREAD_MUTEX_ERRORCHECK;
125		protocol = PTHREAD_PRIO_NONE;
126		ceiling = PTHREAD_MAX_PRIORITY;
127	}
128
129	/* Check mutex type: */
130	else if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) ||
131	    ((*mutex_attr)->m_type >= MUTEX_TYPE_MAX))
132		/* Return an invalid argument error: */
133		ret = EINVAL;
134
135	/* Check mutex protocol: */
136	else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) ||
137	    ((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE))
138		/* Return an invalid argument error: */
139		ret = EINVAL;
140
141	else {
142		/* Use the requested mutex type and protocol: */
143		type = (*mutex_attr)->m_type;
144		protocol = (*mutex_attr)->m_protocol;
145		ceiling = (*mutex_attr)->m_ceiling;
146	}
147
148	/* Check no errors so far: */
149	if (ret == 0) {
150		if ((pmutex = (pthread_mutex_t)
151		    malloc(sizeof(struct pthread_mutex))) == NULL)
152			ret = ENOMEM;
153		else {
154			/* Reset the mutex flags: */
155			pmutex->m_flags = 0;
156
157			/* Process according to mutex type: */
158			switch (type) {
159			/* case PTHREAD_MUTEX_DEFAULT: */
160			case PTHREAD_MUTEX_ERRORCHECK:
161			case PTHREAD_MUTEX_NORMAL:
162				/* Nothing to do here. */
163				break;
164
165			/* Single UNIX Spec 2 recursive mutex: */
166			case PTHREAD_MUTEX_RECURSIVE:
167				/* Reset the mutex count: */
168				pmutex->m_data.m_count = 0;
169				break;
170
171			/* Trap invalid mutex types: */
172			default:
173				/* Return an invalid argument error: */
174				ret = EINVAL;
175				break;
176			}
177			if (ret == 0) {
178				/* Initialise the rest of the mutex: */
179				TAILQ_INIT(&pmutex->m_queue);
180				pmutex->m_flags |= MUTEX_FLAGS_INITED;
181				pmutex->m_owner = NULL;
182				pmutex->m_type = type;
183				pmutex->m_protocol = protocol;
184				pmutex->m_refcount = 0;
185				if (protocol == PTHREAD_PRIO_PROTECT)
186					pmutex->m_prio = ceiling;
187				else
188					pmutex->m_prio = 0;
189				pmutex->m_saved_prio = 0;
190				_MUTEX_INIT_LINK(pmutex);
191				memset(&pmutex->lock, 0, sizeof(pmutex->lock));
192				*mutex = pmutex;
193			} else {
194				free(pmutex);
195				*mutex = NULL;
196			}
197		}
198	}
199	/* Return the completion status: */
200	return(ret);
201}
202
203int
204pthread_mutex_destroy(pthread_mutex_t * mutex)
205{
206	int ret = 0;
207
208	if (mutex == NULL || *mutex == NULL)
209		ret = EINVAL;
210	else {
211		/* Lock the mutex structure: */
212		_SPINLOCK(&(*mutex)->lock);
213
214		/*
215		 * Check to see if this mutex is in use:
216		 */
217		if (((*mutex)->m_owner != NULL) ||
218		    (TAILQ_FIRST(&(*mutex)->m_queue) != NULL) ||
219		    ((*mutex)->m_refcount != 0)) {
220			ret = EBUSY;
221
222			/* Unlock the mutex structure: */
223			_SPINUNLOCK(&(*mutex)->lock);
224		}
225		else {
226			/*
227			 * Free the memory allocated for the mutex
228			 * structure:
229			 */
230			_MUTEX_ASSERT_NOT_OWNED(*mutex);
231			free(*mutex);
232
233			/*
234			 * Leave the caller's pointer NULL now that
235			 * the mutex has been destroyed:
236			 */
237			*mutex = NULL;
238		}
239	}
240
241	/* Return the completion status: */
242	return (ret);
243}
244
245static int
246init_static(pthread_mutex_t *mutex)
247{
248	int ret;
249
250	_SPINLOCK(&static_init_lock);
251
252	if (*mutex == NULL)
253		ret = pthread_mutex_init(mutex, NULL);
254	else
255		ret = 0;
256
257	_SPINUNLOCK(&static_init_lock);
258
259	return(ret);
260}
261
262int
263pthread_mutex_trylock(pthread_mutex_t * mutex)
264{
265	int             ret = 0;
266
267	if (mutex == NULL)
268		ret = EINVAL;
269
270	/*
271	 * If the mutex is statically initialized, perform the dynamic
272	 * initialization:
273	 */
274	else if (*mutex != NULL || (ret = init_static(mutex)) == 0) {
275		/*
276		 * Defer signals to protect the scheduling queues from
277		 * access by the signal handler:
278		 */
279		_thread_kern_sig_defer();
280
281		/* Lock the mutex structure: */
282		_SPINLOCK(&(*mutex)->lock);
283
284		/*
285		 * If the mutex was statically allocated, properly
286		 * initialize the tail queue.
287		 */
288		if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
289			TAILQ_INIT(&(*mutex)->m_queue);
290			_MUTEX_INIT_LINK(*mutex);
291			(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
292		}
293
294		/* Process according to mutex type: */
295		switch ((*mutex)->m_protocol) {
296		/* Default POSIX mutex: */
297		case PTHREAD_PRIO_NONE:
298			/* Check if this mutex is not locked: */
299			if ((*mutex)->m_owner == NULL) {
300				/* Lock the mutex for the running thread: */
301				(*mutex)->m_owner = _thread_run;
302
303				/* Add to the list of owned mutexes: */
304				_MUTEX_ASSERT_NOT_OWNED(*mutex);
305				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
306				    (*mutex), m_qe);
307			} else if ((*mutex)->m_owner == _thread_run)
308				ret = mutex_self_trylock(*mutex);
309			else
310				/* Return a busy error: */
311				ret = EBUSY;
312			break;
313
314		/* POSIX priority inheritence mutex: */
315		case PTHREAD_PRIO_INHERIT:
316			/* Check if this mutex is not locked: */
317			if ((*mutex)->m_owner == NULL) {
318				/* Lock the mutex for the running thread: */
319				(*mutex)->m_owner = _thread_run;
320
321				/* Track number of priority mutexes owned: */
322				_thread_run->priority_mutex_count++;
323
324				/*
325				 * The mutex takes on the attributes of the
326				 * running thread when there are no waiters.
327				 */
328				(*mutex)->m_prio = _thread_run->active_priority;
329				(*mutex)->m_saved_prio =
330				    _thread_run->inherited_priority;
331
332				/* Add to the list of owned mutexes: */
333				_MUTEX_ASSERT_NOT_OWNED(*mutex);
334				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
335				    (*mutex), m_qe);
336			} else if ((*mutex)->m_owner == _thread_run)
337				ret = mutex_self_trylock(*mutex);
338			else
339				/* Return a busy error: */
340				ret = EBUSY;
341			break;
342
343		/* POSIX priority protection mutex: */
344		case PTHREAD_PRIO_PROTECT:
345			/* Check for a priority ceiling violation: */
346			if (_thread_run->active_priority > (*mutex)->m_prio)
347				ret = EINVAL;
348
349			/* Check if this mutex is not locked: */
350			else if ((*mutex)->m_owner == NULL) {
351				/* Lock the mutex for the running thread: */
352				(*mutex)->m_owner = _thread_run;
353
354				/* Track number of priority mutexes owned: */
355				_thread_run->priority_mutex_count++;
356
357				/*
358				 * The running thread inherits the ceiling
359				 * priority of the mutex and executes at that
360				 * priority.
361				 */
362				_thread_run->active_priority = (*mutex)->m_prio;
363				(*mutex)->m_saved_prio =
364				    _thread_run->inherited_priority;
365				_thread_run->inherited_priority =
366				    (*mutex)->m_prio;
367
368				/* Add to the list of owned mutexes: */
369				_MUTEX_ASSERT_NOT_OWNED(*mutex);
370				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
371				    (*mutex), m_qe);
372			} else if ((*mutex)->m_owner == _thread_run)
373				ret = mutex_self_trylock(*mutex);
374			else
375				/* Return a busy error: */
376				ret = EBUSY;
377			break;
378
379		/* Trap invalid mutex types: */
380		default:
381			/* Return an invalid argument error: */
382			ret = EINVAL;
383			break;
384		}
385
386		/* Unlock the mutex structure: */
387		_SPINUNLOCK(&(*mutex)->lock);
388
389		/*
390		 * Undefer and handle pending signals, yielding if
391		 * necessary:
392		 */
393		_thread_kern_sig_undefer();
394	}
395
396	/* Return the completion status: */
397	return (ret);
398}
399
400int
401pthread_mutex_lock(pthread_mutex_t * mutex)
402{
403	int             ret = 0;
404
405	if (mutex == NULL)
406		ret = EINVAL;
407
408	/*
409	 * If the mutex is statically initialized, perform the dynamic
410	 * initialization:
411	 */
412	else if (*mutex != NULL || (ret = init_static(mutex)) == 0) {
413		/*
414		 * Defer signals to protect the scheduling queues from
415		 * access by the signal handler:
416		 */
417		_thread_kern_sig_defer();
418
419		/* Lock the mutex structure: */
420		_SPINLOCK(&(*mutex)->lock);
421
422		/*
423		 * If the mutex was statically allocated, properly
424		 * initialize the tail queue.
425		 */
426		if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
427			TAILQ_INIT(&(*mutex)->m_queue);
428			(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
429			_MUTEX_INIT_LINK(*mutex);
430		}
431
432		/* Reset the interrupted flag: */
433		_thread_run->interrupted = 0;
434
435		/* Process according to mutex type: */
436		switch ((*mutex)->m_protocol) {
437		/* Default POSIX mutex: */
438		case PTHREAD_PRIO_NONE:
439			if ((*mutex)->m_owner == NULL) {
440				/* Lock the mutex for this thread: */
441				(*mutex)->m_owner = _thread_run;
442
443				/* Add to the list of owned mutexes: */
444				_MUTEX_ASSERT_NOT_OWNED(*mutex);
445				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
446				    (*mutex), m_qe);
447
448			} else if ((*mutex)->m_owner == _thread_run)
449				ret = mutex_self_lock(*mutex);
450			else {
451				/*
452				 * Join the queue of threads waiting to lock
453				 * the mutex:
454				 */
455				mutex_queue_enq(*mutex, _thread_run);
456
457				/*
458				 * Keep a pointer to the mutex this thread
459				 * is waiting on:
460				 */
461				_thread_run->data.mutex = *mutex;
462
463				/*
464				 * Unlock the mutex structure and schedule the
465				 * next thread:
466				 */
467				_thread_kern_sched_state_unlock(PS_MUTEX_WAIT,
468				    &(*mutex)->lock, __FILE__, __LINE__);
469
470				/* Lock the mutex structure again: */
471				_SPINLOCK(&(*mutex)->lock);
472			}
473			break;
474
475		/* POSIX priority inheritence mutex: */
476		case PTHREAD_PRIO_INHERIT:
477			/* Check if this mutex is not locked: */
478			if ((*mutex)->m_owner == NULL) {
479				/* Lock the mutex for this thread: */
480				(*mutex)->m_owner = _thread_run;
481
482				/* Track number of priority mutexes owned: */
483				_thread_run->priority_mutex_count++;
484
485				/*
486				 * The mutex takes on attributes of the
487				 * running thread when there are no waiters.
488				 */
489				(*mutex)->m_prio = _thread_run->active_priority;
490				(*mutex)->m_saved_prio =
491				    _thread_run->inherited_priority;
492				_thread_run->inherited_priority =
493				    (*mutex)->m_prio;
494
495				/* Add to the list of owned mutexes: */
496				_MUTEX_ASSERT_NOT_OWNED(*mutex);
497				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
498				    (*mutex), m_qe);
499
500			} else if ((*mutex)->m_owner == _thread_run)
501				ret = mutex_self_lock(*mutex);
502			else {
503				/*
504				 * Join the queue of threads waiting to lock
505				 * the mutex:
506				 */
507				mutex_queue_enq(*mutex, _thread_run);
508
509				/*
510				 * Keep a pointer to the mutex this thread
511				 * is waiting on:
512				 */
513				_thread_run->data.mutex = *mutex;
514
515				if (_thread_run->active_priority >
516				    (*mutex)->m_prio)
517					/* Adjust priorities: */
518					mutex_priority_adjust(*mutex);
519
520				/*
521				 * Unlock the mutex structure and schedule the
522				 * next thread:
523				 */
524				_thread_kern_sched_state_unlock(PS_MUTEX_WAIT,
525				    &(*mutex)->lock, __FILE__, __LINE__);
526
527				/* Lock the mutex structure again: */
528				_SPINLOCK(&(*mutex)->lock);
529			}
530			break;
531
532		/* POSIX priority protection mutex: */
533		case PTHREAD_PRIO_PROTECT:
534			/* Check for a priority ceiling violation: */
535			if (_thread_run->active_priority > (*mutex)->m_prio)
536				ret = EINVAL;
537
538			/* Check if this mutex is not locked: */
539			else if ((*mutex)->m_owner == NULL) {
540				/*
541				 * Lock the mutex for the running
542				 * thread:
543				 */
544				(*mutex)->m_owner = _thread_run;
545
546				/* Track number of priority mutexes owned: */
547				_thread_run->priority_mutex_count++;
548
549				/*
550				 * The running thread inherits the ceiling
551				 * priority of the mutex and executes at that
552				 * priority:
553				 */
554				_thread_run->active_priority = (*mutex)->m_prio;
555				(*mutex)->m_saved_prio =
556				    _thread_run->inherited_priority;
557				_thread_run->inherited_priority =
558				    (*mutex)->m_prio;
559
560				/* Add to the list of owned mutexes: */
561				_MUTEX_ASSERT_NOT_OWNED(*mutex);
562				TAILQ_INSERT_TAIL(&_thread_run->mutexq,
563				    (*mutex), m_qe);
564			} else if ((*mutex)->m_owner == _thread_run)
565				ret = mutex_self_lock(*mutex);
566			else {
567				/*
568				 * Join the queue of threads waiting to lock
569				 * the mutex:
570				 */
571				mutex_queue_enq(*mutex, _thread_run);
572
573				/*
574				 * Keep a pointer to the mutex this thread
575				 * is waiting on:
576				 */
577				_thread_run->data.mutex = *mutex;
578
579				/* Clear any previous error: */
580				_thread_run->error = 0;
581
582				/*
583				 * Unlock the mutex structure and schedule the
584				 * next thread:
585				 */
586				_thread_kern_sched_state_unlock(PS_MUTEX_WAIT,
587				    &(*mutex)->lock, __FILE__, __LINE__);
588
589				/* Lock the mutex structure again: */
590				_SPINLOCK(&(*mutex)->lock);
591
592				/*
593				 * The threads priority may have changed while
594				 * waiting for the mutex causing a ceiling
595				 * violation.
596				 */
597				ret = _thread_run->error;
598				_thread_run->error = 0;
599			}
600			break;
601
602		/* Trap invalid mutex types: */
603		default:
604			/* Return an invalid argument error: */
605			ret = EINVAL;
606			break;
607		}
608
609		/*
610		 * Check to see if this thread was interrupted and
611		 * is still in the mutex queue of waiting threads:
612		 */
613		if (_thread_run->interrupted != 0)
614			mutex_queue_remove(*mutex, _thread_run);
615
616		/* Unlock the mutex structure: */
617		_SPINUNLOCK(&(*mutex)->lock);
618
619		/*
620		 * Undefer and handle pending signals, yielding if
621		 * necessary:
622		 */
623		_thread_kern_sig_undefer();
624
625		if (_thread_run->interrupted != 0 &&
626		    _thread_run->continuation != NULL)
627			_thread_run->continuation((void *) _thread_run);
628	}
629
630	/* Return the completion status: */
631	return (ret);
632}
633
634int
635pthread_mutex_unlock(pthread_mutex_t * mutex)
636{
637	return (mutex_unlock_common(mutex, /* add reference */ 0));
638}
639
640int
641_mutex_cv_unlock(pthread_mutex_t * mutex)
642{
643	return (mutex_unlock_common(mutex, /* add reference */ 1));
644}
645
646int
647_mutex_cv_lock(pthread_mutex_t * mutex)
648{
649	int ret;
650	if ((ret = pthread_mutex_lock(mutex)) == 0)
651		(*mutex)->m_refcount--;
652	return (ret);
653}
654
655static inline int
656mutex_self_trylock(pthread_mutex_t mutex)
657{
658	int ret = 0;
659
660	switch (mutex->m_type) {
661
662	/* case PTHREAD_MUTEX_DEFAULT: */
663	case PTHREAD_MUTEX_ERRORCHECK:
664	case PTHREAD_MUTEX_NORMAL:
665		/*
666		 * POSIX specifies that mutexes should return EDEADLK if a
667		 * recursive lock is detected.
668		 */
669		ret = EBUSY;
670		break;
671
672	case PTHREAD_MUTEX_RECURSIVE:
673		/* Increment the lock count: */
674		mutex->m_data.m_count++;
675		break;
676
677	default:
678		/* Trap invalid mutex types; */
679		ret = EINVAL;
680	}
681
682	return(ret);
683}
684
685static inline int
686mutex_self_lock(pthread_mutex_t mutex)
687{
688	int ret = 0;
689
690	switch (mutex->m_type) {
691	/* case PTHREAD_MUTEX_DEFAULT: */
692	case PTHREAD_MUTEX_ERRORCHECK:
693		/*
694		 * POSIX specifies that mutexes should return EDEADLK if a
695		 * recursive lock is detected.
696		 */
697		ret = EDEADLK;
698		break;
699
700	case PTHREAD_MUTEX_NORMAL:
701		/*
702		 * What SS2 define as a 'normal' mutex.  Intentionally
703		 * deadlock on attempts to get a lock you already own.
704		 */
705		_thread_kern_sched_state_unlock(PS_DEADLOCK,
706		    &mutex->lock, __FILE__, __LINE__);
707		break;
708
709	case PTHREAD_MUTEX_RECURSIVE:
710		/* Increment the lock count: */
711		mutex->m_data.m_count++;
712		break;
713
714	default:
715		/* Trap invalid mutex types; */
716		ret = EINVAL;
717	}
718
719	return(ret);
720}
721
722static inline int
723mutex_unlock_common(pthread_mutex_t * mutex, int add_reference)
724{
725	int ret = 0;
726
727	if (mutex == NULL || *mutex == NULL) {
728		ret = EINVAL;
729	} else {
730		/*
731		 * Defer signals to protect the scheduling queues from
732		 * access by the signal handler:
733		 */
734		_thread_kern_sig_defer();
735
736		/* Lock the mutex structure: */
737		_SPINLOCK(&(*mutex)->lock);
738
739		/* Process according to mutex type: */
740		switch ((*mutex)->m_protocol) {
741		/* Default POSIX mutex: */
742		case PTHREAD_PRIO_NONE:
743			/*
744			 * Check if the running thread is not the owner of the
745			 * mutex:
746			 */
747			if ((*mutex)->m_owner != _thread_run) {
748				/*
749				 * Return an invalid argument error for no
750				 * owner and a permission error otherwise:
751				 */
752				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
753			}
754			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
755			    ((*mutex)->m_data.m_count > 1)) {
756				/* Decrement the count: */
757				(*mutex)->m_data.m_count--;
758			} else {
759				/*
760				 * Clear the count in case this is recursive
761				 * mutex.
762				 */
763				(*mutex)->m_data.m_count = 0;
764
765				/* Remove the mutex from the threads queue. */
766				_MUTEX_ASSERT_IS_OWNED(*mutex);
767				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
768				    (*mutex), m_qe);
769				_MUTEX_INIT_LINK(*mutex);
770
771				/*
772				 * Get the next thread from the queue of
773				 * threads waiting on the mutex:
774				 */
775				if (((*mutex)->m_owner =
776			  	    mutex_queue_deq(*mutex)) != NULL) {
777					/*
778					 * Allow the new owner of the mutex to
779					 * run:
780					 */
781					PTHREAD_NEW_STATE((*mutex)->m_owner,
782					    PS_RUNNING);
783
784					/*
785					 * Add the mutex to the threads list of
786					 * owned mutexes:
787					 */
788					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
789					    (*mutex), m_qe);
790
791					/*
792					 * The owner is no longer waiting for
793					 * this mutex:
794					 */
795					(*mutex)->m_owner->data.mutex = NULL;
796				}
797			}
798			break;
799
800		/* POSIX priority inheritence mutex: */
801		case PTHREAD_PRIO_INHERIT:
802			/*
803			 * Check if the running thread is not the owner of the
804			 * mutex:
805			 */
806			if ((*mutex)->m_owner != _thread_run) {
807				/*
808				 * Return an invalid argument error for no
809				 * owner and a permission error otherwise:
810				 */
811				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
812			}
813			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
814			    ((*mutex)->m_data.m_count > 1)) {
815				/* Decrement the count: */
816				(*mutex)->m_data.m_count--;
817			} else {
818				/*
819				 * Clear the count in case this is recursive
820				 * mutex.
821				 */
822				(*mutex)->m_data.m_count = 0;
823
824				/*
825				 * Restore the threads inherited priority and
826				 * recompute the active priority (being careful
827				 * not to override changes in the threads base
828				 * priority subsequent to locking the mutex).
829				 */
830				_thread_run->inherited_priority =
831					(*mutex)->m_saved_prio;
832				_thread_run->active_priority =
833				    MAX(_thread_run->inherited_priority,
834				    _thread_run->base_priority);
835
836				/*
837				 * This thread now owns one less priority mutex.
838				 */
839				_thread_run->priority_mutex_count--;
840
841				/* Remove the mutex from the threads queue. */
842				_MUTEX_ASSERT_IS_OWNED(*mutex);
843				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
844				    (*mutex), m_qe);
845				_MUTEX_INIT_LINK(*mutex);
846
847				/*
848				 * Get the next thread from the queue of threads
849				 * waiting on the mutex:
850				 */
851				if (((*mutex)->m_owner =
852				    mutex_queue_deq(*mutex)) == NULL)
853					/* This mutex has no priority. */
854					(*mutex)->m_prio = 0;
855				else {
856					/*
857					 * Track number of priority mutexes owned:
858					 */
859					(*mutex)->m_owner->priority_mutex_count++;
860
861					/*
862					 * Add the mutex to the threads list
863					 * of owned mutexes:
864					 */
865					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
866					    (*mutex), m_qe);
867
868					/*
869					 * The owner is no longer waiting for
870					 * this mutex:
871					 */
872					(*mutex)->m_owner->data.mutex = NULL;
873
874					/*
875					 * Set the priority of the mutex.  Since
876					 * our waiting threads are in descending
877					 * priority order, the priority of the
878					 * mutex becomes the active priority of
879					 * the thread we just dequeued.
880					 */
881					(*mutex)->m_prio =
882					    (*mutex)->m_owner->active_priority;
883
884					/*
885					 * Save the owning threads inherited
886					 * priority:
887					 */
888					(*mutex)->m_saved_prio =
889						(*mutex)->m_owner->inherited_priority;
890
891					/*
892					 * The owning threads inherited priority
893					 * now becomes his active priority (the
894					 * priority of the mutex).
895					 */
896					(*mutex)->m_owner->inherited_priority =
897						(*mutex)->m_prio;
898
899					/*
900					 * Allow the new owner of the mutex to
901					 * run:
902					 */
903					PTHREAD_NEW_STATE((*mutex)->m_owner,
904					    PS_RUNNING);
905				}
906			}
907			break;
908
909		/* POSIX priority ceiling mutex: */
910		case PTHREAD_PRIO_PROTECT:
911			/*
912			 * Check if the running thread is not the owner of the
913			 * mutex:
914			 */
915			if ((*mutex)->m_owner != _thread_run) {
916				/*
917				 * Return an invalid argument error for no
918				 * owner and a permission error otherwise:
919				 */
920				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
921			}
922			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
923			    ((*mutex)->m_data.m_count > 1)) {
924				/* Decrement the count: */
925				(*mutex)->m_data.m_count--;
926			} else {
927				/*
928				 * Clear the count in case this is recursive
929				 * mutex.
930				 */
931				(*mutex)->m_data.m_count = 0;
932
933				/*
934				 * Restore the threads inherited priority and
935				 * recompute the active priority (being careful
936				 * not to override changes in the threads base
937				 * priority subsequent to locking the mutex).
938				 */
939				_thread_run->inherited_priority =
940					(*mutex)->m_saved_prio;
941				_thread_run->active_priority =
942				    MAX(_thread_run->inherited_priority,
943				    _thread_run->base_priority);
944
945				/*
946				 * This thread now owns one less priority mutex.
947				 */
948				_thread_run->priority_mutex_count--;
949
950				/* Remove the mutex from the threads queue. */
951				_MUTEX_ASSERT_IS_OWNED(*mutex);
952				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
953				    (*mutex), m_qe);
954				_MUTEX_INIT_LINK(*mutex);
955
956				/*
957				 * Enter a loop to find a waiting thread whose
958				 * active priority will not cause a ceiling
959				 * violation:
960				 */
961				while ((((*mutex)->m_owner =
962				    mutex_queue_deq(*mutex)) != NULL) &&
963				    ((*mutex)->m_owner->active_priority >
964				     (*mutex)->m_prio)) {
965					/*
966					 * Either the mutex ceiling priority
967					 * been lowered and/or this threads
968					 * priority has been raised subsequent
969					 * to this thread being queued on the
970					 * waiting list.
971					 */
972					(*mutex)->m_owner->error = EINVAL;
973					PTHREAD_NEW_STATE((*mutex)->m_owner,
974					    PS_RUNNING);
975					/*
976					 * The thread is no longer waiting for
977					 * this mutex:
978					 */
979					(*mutex)->m_owner->data.mutex = NULL;
980				}
981
982				/* Check for a new owner: */
983				if ((*mutex)->m_owner != NULL) {
984					/*
985					 * Track number of priority mutexes owned:
986					 */
987					(*mutex)->m_owner->priority_mutex_count++;
988
989					/*
990					 * Add the mutex to the threads list
991					 * of owned mutexes:
992					 */
993					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
994					    (*mutex), m_qe);
995
996					/*
997					 * The owner is no longer waiting for
998					 * this mutex:
999					 */
1000					(*mutex)->m_owner->data.mutex = NULL;
1001
1002					/*
1003					 * Save the owning threads inherited
1004					 * priority:
1005					 */
1006					(*mutex)->m_saved_prio =
1007						(*mutex)->m_owner->inherited_priority;
1008
1009					/*
1010					 * The owning thread inherits the
1011					 * ceiling priority of the mutex and
1012					 * executes at that priority:
1013					 */
1014					(*mutex)->m_owner->inherited_priority =
1015					    (*mutex)->m_prio;
1016					(*mutex)->m_owner->active_priority =
1017					    (*mutex)->m_prio;
1018
1019					/*
1020					 * Allow the new owner of the mutex to
1021					 * run:
1022					 */
1023					PTHREAD_NEW_STATE((*mutex)->m_owner,
1024					    PS_RUNNING);
1025				}
1026			}
1027			break;
1028
1029		/* Trap invalid mutex types: */
1030		default:
1031			/* Return an invalid argument error: */
1032			ret = EINVAL;
1033			break;
1034		}
1035
1036		if ((ret == 0) && (add_reference != 0)) {
1037			/* Increment the reference count: */
1038			(*mutex)->m_refcount++;
1039		}
1040
1041		/* Unlock the mutex structure: */
1042		_SPINUNLOCK(&(*mutex)->lock);
1043
1044		/*
1045		 * Undefer and handle pending signals, yielding if
1046		 * necessary:
1047		 */
1048		_thread_kern_sig_undefer();
1049	}
1050
1051	/* Return the completion status: */
1052	return (ret);
1053}
1054
1055
1056/*
1057 * This function is called when a change in base priority occurs for
1058 * a thread that is holding or waiting for a priority protection or
1059 * inheritence mutex.  A change in a threads base priority can effect
1060 * changes to active priorities of other threads and to the ordering
1061 * of mutex locking by waiting threads.
1062 *
1063 * This must be called while thread scheduling is deferred.
1064 */
1065void
1066_mutex_notify_priochange(pthread_t pthread)
1067{
1068	/* Adjust the priorites of any owned priority mutexes: */
1069	if (pthread->priority_mutex_count > 0) {
1070		/*
1071		 * Rescan the mutexes owned by this thread and correct
1072		 * their priorities to account for this threads change
1073		 * in priority.  This has the side effect of changing
1074		 * the threads active priority.
1075		 */
1076		mutex_rescan_owned(pthread, /* rescan all owned */ NULL);
1077	}
1078
1079	/*
1080	 * If this thread is waiting on a priority inheritence mutex,
1081	 * check for priority adjustments.  A change in priority can
1082	 * also effect a ceiling violation(*) for a thread waiting on
1083	 * a priority protection mutex; we don't perform the check here
1084	 * as it is done in pthread_mutex_unlock.
1085	 *
1086	 * (*) It should be noted that a priority change to a thread
1087	 *     _after_ taking and owning a priority ceiling mutex
1088	 *     does not affect ownership of that mutex; the ceiling
1089	 *     priority is only checked before mutex ownership occurs.
1090	 */
1091	if (pthread->state == PS_MUTEX_WAIT) {
1092		/* Lock the mutex structure: */
1093		_SPINLOCK(&pthread->data.mutex->lock);
1094
1095		/*
1096		 * Check to make sure this thread is still in the same state
1097		 * (the spinlock above can yield the CPU to another thread):
1098		 */
1099		if (pthread->state == PS_MUTEX_WAIT) {
1100			/*
1101			 * Remove and reinsert this thread into the list of
1102			 * waiting threads to preserve decreasing priority
1103			 * order.
1104			 */
1105			mutex_queue_remove(pthread->data.mutex, pthread);
1106			mutex_queue_enq(pthread->data.mutex, pthread);
1107
1108			if (pthread->data.mutex->m_protocol ==
1109			     PTHREAD_PRIO_INHERIT) {
1110				/* Adjust priorities: */
1111				mutex_priority_adjust(pthread->data.mutex);
1112			}
1113		}
1114
1115		/* Unlock the mutex structure: */
1116		_SPINUNLOCK(&pthread->data.mutex->lock);
1117	}
1118}
1119
1120/*
1121 * Called when a new thread is added to the mutex waiting queue or
1122 * when a threads priority changes that is already in the mutex
1123 * waiting queue.
1124 */
1125static void
1126mutex_priority_adjust(pthread_mutex_t mutex)
1127{
1128	pthread_t	pthread_next, pthread = mutex->m_owner;
1129	int		temp_prio;
1130	pthread_mutex_t	m = mutex;
1131
1132	/*
1133	 * Calculate the mutex priority as the maximum of the highest
1134	 * active priority of any waiting threads and the owning threads
1135	 * active priority(*).
1136	 *
1137	 * (*) Because the owning threads current active priority may
1138	 *     reflect priority inherited from this mutex (and the mutex
1139	 *     priority may have changed) we must recalculate the active
1140	 *     priority based on the threads saved inherited priority
1141	 *     and its base priority.
1142	 */
1143	pthread_next = TAILQ_FIRST(&m->m_queue);  /* should never be NULL */
1144	temp_prio = MAX(pthread_next->active_priority,
1145	    MAX(m->m_saved_prio, pthread->base_priority));
1146
1147	/* See if this mutex really needs adjusting: */
1148	if (temp_prio == m->m_prio)
1149		/* No need to propagate the priority: */
1150		return;
1151
1152	/* Set new priority of the mutex: */
1153	m->m_prio = temp_prio;
1154
1155	while (m != NULL) {
1156		/*
1157		 * Save the threads priority before rescanning the
1158		 * owned mutexes:
1159		 */
1160		temp_prio = pthread->active_priority;
1161
1162		/*
1163		 * Fix the priorities for all the mutexes this thread has
1164		 * locked since taking this mutex.  This also has a
1165		 * potential side-effect of changing the threads priority.
1166		 */
1167		mutex_rescan_owned(pthread, m);
1168
1169		/*
1170		 * If the thread is currently waiting on a mutex, check
1171		 * to see if the threads new priority has affected the
1172		 * priority of the mutex.
1173		 */
1174		if ((temp_prio != pthread->active_priority) &&
1175		    (pthread->state == PS_MUTEX_WAIT) &&
1176		    (pthread->data.mutex->m_protocol == PTHREAD_PRIO_INHERIT)) {
1177			/* Grab the mutex this thread is waiting on: */
1178			m = pthread->data.mutex;
1179
1180			/*
1181			 * The priority for this thread has changed.  Remove
1182			 * and reinsert this thread into the list of waiting
1183			 * threads to preserve decreasing priority order.
1184			 */
1185			mutex_queue_remove(m, pthread);
1186			mutex_queue_enq(m, pthread);
1187
1188			/* Grab the waiting thread with highest priority: */
1189			pthread_next = TAILQ_FIRST(&m->m_queue);
1190
1191			/*
1192			 * Calculate the mutex priority as the maximum of the
1193			 * highest active priority of any waiting threads and
1194			 * the owning threads active priority.
1195			 */
1196			temp_prio = MAX(pthread_next->active_priority,
1197			    MAX(m->m_saved_prio, m->m_owner->base_priority));
1198
1199			if (temp_prio != m->m_prio) {
1200				/*
1201				 * The priority needs to be propagated to the
1202				 * mutex this thread is waiting on and up to
1203				 * the owner of that mutex.
1204				 */
1205				m->m_prio = temp_prio;
1206				pthread = m->m_owner;
1207			}
1208			else
1209				/* We're done: */
1210				m = NULL;
1211
1212		}
1213		else
1214			/* We're done: */
1215			m = NULL;
1216	}
1217}
1218
1219static void
1220mutex_rescan_owned(pthread_t pthread, pthread_mutex_t mutex)
1221{
1222	int		active_prio, inherited_prio;
1223	pthread_mutex_t	m;
1224	pthread_t	pthread_next;
1225
1226	/*
1227	 * Start walking the mutexes the thread has taken since
1228	 * taking this mutex.
1229	 */
1230	if (mutex == NULL) {
1231		/*
1232		 * A null mutex means start at the beginning of the owned
1233		 * mutex list.
1234		 */
1235		m = TAILQ_FIRST(&pthread->mutexq);
1236
1237		/* There is no inherited priority yet. */
1238		inherited_prio = 0;
1239	}
1240	else {
1241		/*
1242		 * The caller wants to start after a specific mutex.  It
1243		 * is assumed that this mutex is a priority inheritence
1244		 * mutex and that its priority has been correctly
1245		 * calculated.
1246		 */
1247		m = TAILQ_NEXT(mutex, m_qe);
1248
1249		/* Start inheriting priority from the specified mutex. */
1250		inherited_prio = mutex->m_prio;
1251	}
1252	active_prio = MAX(inherited_prio, pthread->base_priority);
1253
1254	while (m != NULL) {
1255		/*
1256		 * We only want to deal with priority inheritence
1257		 * mutexes.  This might be optimized by only placing
1258		 * priority inheritence mutexes into the owned mutex
1259		 * list, but it may prove to be useful having all
1260		 * owned mutexes in this list.  Consider a thread
1261		 * exiting while holding mutexes...
1262		 */
1263		if (m->m_protocol == PTHREAD_PRIO_INHERIT) {
1264			/*
1265			 * Fix the owners saved (inherited) priority to
1266			 * reflect the priority of the previous mutex.
1267			 */
1268			m->m_saved_prio = inherited_prio;
1269
1270			if ((pthread_next = TAILQ_FIRST(&m->m_queue)) != NULL)
1271				/* Recalculate the priority of the mutex: */
1272				m->m_prio = MAX(active_prio,
1273				     pthread_next->active_priority);
1274			else
1275				m->m_prio = active_prio;
1276
1277			/* Recalculate new inherited and active priorities: */
1278			inherited_prio = m->m_prio;
1279			active_prio = MAX(m->m_prio, pthread->base_priority);
1280		}
1281
1282		/* Advance to the next mutex owned by this thread: */
1283		m = TAILQ_NEXT(m, m_qe);
1284	}
1285
1286	/*
1287	 * Fix the threads inherited priority and recalculate its
1288	 * active priority.
1289	 */
1290	pthread->inherited_priority = inherited_prio;
1291	active_prio = MAX(inherited_prio, pthread->base_priority);
1292
1293	if (active_prio != pthread->active_priority) {
1294		/*
1295		 * If this thread is in the priority queue, it must be
1296		 * removed and reinserted for its new priority.
1297	 	 */
1298		if (pthread->flags & PTHREAD_FLAGS_IN_PRIOQ) {
1299			/*
1300			 * Remove the thread from the priority queue
1301			 * before changing its priority:
1302			 */
1303			PTHREAD_PRIOQ_REMOVE(pthread);
1304
1305			/*
1306			 * POSIX states that if the priority is being
1307			 * lowered, the thread must be inserted at the
1308			 * head of the queue for its priority if it owns
1309			 * any priority protection or inheritence mutexes.
1310			 */
1311			if ((active_prio < pthread->active_priority) &&
1312			    (pthread->priority_mutex_count > 0)) {
1313				/* Set the new active priority. */
1314				pthread->active_priority = active_prio;
1315
1316				PTHREAD_PRIOQ_INSERT_HEAD(pthread);
1317			}
1318			else {
1319				/* Set the new active priority. */
1320				pthread->active_priority = active_prio;
1321
1322				PTHREAD_PRIOQ_INSERT_TAIL(pthread);
1323			}
1324		}
1325		else {
1326			/* Set the new active priority. */
1327			pthread->active_priority = active_prio;
1328		}
1329	}
1330}
1331
1332void
1333_mutex_unlock_private(pthread_t pthread)
1334{
1335	struct pthread_mutex	*m, *m_next;
1336
1337	for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) {
1338		m_next = TAILQ_NEXT(m, m_qe);
1339		if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
1340			pthread_mutex_unlock(&m);
1341	}
1342}
1343
1344/*
1345 * Dequeue a waiting thread from the head of a mutex queue in descending
1346 * priority order.
1347 */
1348static inline pthread_t
1349mutex_queue_deq(pthread_mutex_t mutex)
1350{
1351	pthread_t pthread;
1352
1353	while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) {
1354		TAILQ_REMOVE(&mutex->m_queue, pthread, qe);
1355		pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
1356
1357		/*
1358		 * Only exit the loop if the thread hasn't been
1359		 * cancelled.
1360		 */
1361		if (pthread->interrupted == 0)
1362			break;
1363	}
1364
1365	return(pthread);
1366}
1367
1368/*
1369 * Remove a waiting thread from a mutex queue in descending priority order.
1370 */
1371static inline void
1372mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread)
1373{
1374	if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
1375		TAILQ_REMOVE(&mutex->m_queue, pthread, qe);
1376		pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
1377	}
1378}
1379
1380/*
1381 * Enqueue a waiting thread to a queue in descending priority order.
1382 */
1383static inline void
1384mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread)
1385{
1386	pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head);
1387
1388	/*
1389	 * For the common case of all threads having equal priority,
1390	 * we perform a quick check against the priority of the thread
1391	 * at the tail of the queue.
1392	 */
1393	if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
1394		TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, qe);
1395	else {
1396		tid = TAILQ_FIRST(&mutex->m_queue);
1397		while (pthread->active_priority <= tid->active_priority)
1398			tid = TAILQ_NEXT(tid, qe);
1399		TAILQ_INSERT_BEFORE(tid, pthread, qe);
1400	}
1401	pthread->flags |= PTHREAD_FLAGS_IN_MUTEXQ;
1402}
1403
1404#endif
1405