md_rand.c revision 280304
1/* crypto/rand/md_rand.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#define OPENSSL_FIPSEVP
113
114#ifdef MD_RAND_DEBUG
115# ifndef NDEBUG
116#  define NDEBUG
117# endif
118#endif
119
120#include <assert.h>
121#include <stdio.h>
122#include <string.h>
123
124#include "e_os.h"
125
126#include <openssl/crypto.h>
127#include <openssl/rand.h>
128#include "rand_lcl.h"
129
130#include <openssl/err.h>
131
132#ifdef BN_DEBUG
133# define PREDICT
134#endif
135
136/* #define PREDICT      1 */
137
138#define STATE_SIZE      1023
139static int state_num = 0, state_index = 0;
140static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
141static unsigned char md[MD_DIGEST_LENGTH];
142static long md_count[2] = { 0, 0 };
143
144static double entropy = 0;
145static int initialized = 0;
146
147static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
148                                           * holds CRYPTO_LOCK_RAND (to
149                                           * prevent double locking) */
150/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
151/* valid iff crypto_lock_rand is set */
152static CRYPTO_THREADID locking_threadid;
153
154#ifdef PREDICT
155int rand_predictable = 0;
156#endif
157
158const char RAND_version[] = "RAND" OPENSSL_VERSION_PTEXT;
159
160static void ssleay_rand_cleanup(void);
161static void ssleay_rand_seed(const void *buf, int num);
162static void ssleay_rand_add(const void *buf, int num, double add_entropy);
163static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165static int ssleay_rand_status(void);
166
167RAND_METHOD rand_ssleay_meth = {
168    ssleay_rand_seed,
169    ssleay_rand_nopseudo_bytes,
170    ssleay_rand_cleanup,
171    ssleay_rand_add,
172    ssleay_rand_pseudo_bytes,
173    ssleay_rand_status
174};
175
176RAND_METHOD *RAND_SSLeay(void)
177{
178    return (&rand_ssleay_meth);
179}
180
181static void ssleay_rand_cleanup(void)
182{
183    OPENSSL_cleanse(state, sizeof(state));
184    state_num = 0;
185    state_index = 0;
186    OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
187    md_count[0] = 0;
188    md_count[1] = 0;
189    entropy = 0;
190    initialized = 0;
191}
192
193static void ssleay_rand_add(const void *buf, int num, double add)
194{
195    int i, j, k, st_idx;
196    long md_c[2];
197    unsigned char local_md[MD_DIGEST_LENGTH];
198    EVP_MD_CTX m;
199    int do_not_lock;
200
201    if (!num)
202        return;
203
204    /*
205     * (Based on the rand(3) manpage)
206     *
207     * The input is chopped up into units of 20 bytes (or less for
208     * the last block).  Each of these blocks is run through the hash
209     * function as follows:  The data passed to the hash function
210     * is the current 'md', the same number of bytes from the 'state'
211     * (the location determined by in incremented looping index) as
212     * the current 'block', the new key data 'block', and 'count'
213     * (which is incremented after each use).
214     * The result of this is kept in 'md' and also xored into the
215     * 'state' at the same locations that were used as input into the
216     * hash function.
217     */
218
219    /* check if we already have the lock */
220    if (crypto_lock_rand) {
221        CRYPTO_THREADID cur;
222        CRYPTO_THREADID_current(&cur);
223        CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
224        do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
225        CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
226    } else
227        do_not_lock = 0;
228
229    if (!do_not_lock)
230        CRYPTO_w_lock(CRYPTO_LOCK_RAND);
231    st_idx = state_index;
232
233    /*
234     * use our own copies of the counters so that even if a concurrent thread
235     * seeds with exactly the same data and uses the same subarray there's
236     * _some_ difference
237     */
238    md_c[0] = md_count[0];
239    md_c[1] = md_count[1];
240
241    memcpy(local_md, md, sizeof md);
242
243    /* state_index <= state_num <= STATE_SIZE */
244    state_index += num;
245    if (state_index >= STATE_SIZE) {
246        state_index %= STATE_SIZE;
247        state_num = STATE_SIZE;
248    } else if (state_num < STATE_SIZE) {
249        if (state_index > state_num)
250            state_num = state_index;
251    }
252    /* state_index <= state_num <= STATE_SIZE */
253
254    /*
255     * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
256     * will use now, but other threads may use them as well
257     */
258
259    md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
260
261    if (!do_not_lock)
262        CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
263
264    EVP_MD_CTX_init(&m);
265    for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
266        j = (num - i);
267        j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;
268
269        MD_Init(&m);
270        MD_Update(&m, local_md, MD_DIGEST_LENGTH);
271        k = (st_idx + j) - STATE_SIZE;
272        if (k > 0) {
273            MD_Update(&m, &(state[st_idx]), j - k);
274            MD_Update(&m, &(state[0]), k);
275        } else
276            MD_Update(&m, &(state[st_idx]), j);
277
278        /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
279        MD_Update(&m, buf, j);
280        /*
281         * We know that line may cause programs such as purify and valgrind
282         * to complain about use of uninitialized data.  The problem is not,
283         * it's with the caller.  Removing that line will make sure you get
284         * really bad randomness and thereby other problems such as very
285         * insecure keys.
286         */
287
288        MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
289        MD_Final(&m, local_md);
290        md_c[1]++;
291
292        buf = (const char *)buf + j;
293
294        for (k = 0; k < j; k++) {
295            /*
296             * Parallel threads may interfere with this, but always each byte
297             * of the new state is the XOR of some previous value of its and
298             * local_md (itermediate values may be lost). Alway using locking
299             * could hurt performance more than necessary given that
300             * conflicts occur only when the total seeding is longer than the
301             * random state.
302             */
303            state[st_idx++] ^= local_md[k];
304            if (st_idx >= STATE_SIZE)
305                st_idx = 0;
306        }
307    }
308    EVP_MD_CTX_cleanup(&m);
309
310    if (!do_not_lock)
311        CRYPTO_w_lock(CRYPTO_LOCK_RAND);
312    /*
313     * Don't just copy back local_md into md -- this could mean that other
314     * thread's seeding remains without effect (except for the incremented
315     * counter).  By XORing it we keep at least as much entropy as fits into
316     * md.
317     */
318    for (k = 0; k < (int)sizeof(md); k++) {
319        md[k] ^= local_md[k];
320    }
321    if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
322        entropy += add;
323    if (!do_not_lock)
324        CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
325
326#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
327    assert(md_c[1] == md_count[1]);
328#endif
329}
330
331static void ssleay_rand_seed(const void *buf, int num)
332{
333    ssleay_rand_add(buf, num, (double)num);
334}
335
336int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
337{
338    static volatile int stirred_pool = 0;
339    int i, j, k, st_num, st_idx;
340    int num_ceil;
341    int ok;
342    long md_c[2];
343    unsigned char local_md[MD_DIGEST_LENGTH];
344    EVP_MD_CTX m;
345#ifndef GETPID_IS_MEANINGLESS
346    pid_t curr_pid = getpid();
347#endif
348    int do_stir_pool = 0;
349
350#ifdef PREDICT
351    if (rand_predictable) {
352        static unsigned char val = 0;
353
354        for (i = 0; i < num; i++)
355            buf[i] = val++;
356        return (1);
357    }
358#endif
359
360    if (num <= 0)
361        return 1;
362
363    EVP_MD_CTX_init(&m);
364    /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
365    num_ceil =
366        (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);
367
368    /*
369     * (Based on the rand(3) manpage:)
370     *
371     * For each group of 10 bytes (or less), we do the following:
372     *
373     * Input into the hash function the local 'md' (which is initialized from
374     * the global 'md' before any bytes are generated), the bytes that are to
375     * be overwritten by the random bytes, and bytes from the 'state'
376     * (incrementing looping index). From this digest output (which is kept
377     * in 'md'), the top (up to) 10 bytes are returned to the caller and the
378     * bottom 10 bytes are xored into the 'state'.
379     *
380     * Finally, after we have finished 'num' random bytes for the
381     * caller, 'count' (which is incremented) and the local and global 'md'
382     * are fed into the hash function and the results are kept in the
383     * global 'md'.
384     */
385    if (lock)
386        CRYPTO_w_lock(CRYPTO_LOCK_RAND);
387
388    /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
389    CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
390    CRYPTO_THREADID_current(&locking_threadid);
391    CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
392    crypto_lock_rand = 1;
393
394    if (!initialized) {
395        RAND_poll();
396        initialized = 1;
397    }
398
399    if (!stirred_pool)
400        do_stir_pool = 1;
401
402    ok = (entropy >= ENTROPY_NEEDED);
403    if (!ok) {
404        /*
405         * If the PRNG state is not yet unpredictable, then seeing the PRNG
406         * output may help attackers to determine the new state; thus we have
407         * to decrease the entropy estimate. Once we've had enough initial
408         * seeding we don't bother to adjust the entropy count, though,
409         * because we're not ambitious to provide *information-theoretic*
410         * randomness. NOTE: This approach fails if the program forks before
411         * we have enough entropy. Entropy should be collected in a separate
412         * input pool and be transferred to the output pool only when the
413         * entropy limit has been reached.
414         */
415        entropy -= num;
416        if (entropy < 0)
417            entropy = 0;
418    }
419
420    if (do_stir_pool) {
421        /*
422         * In the output function only half of 'md' remains secret, so we
423         * better make sure that the required entropy gets 'evenly
424         * distributed' through 'state', our randomness pool. The input
425         * function (ssleay_rand_add) chains all of 'md', which makes it more
426         * suitable for this purpose.
427         */
428
429        int n = STATE_SIZE;     /* so that the complete pool gets accessed */
430        while (n > 0) {
431#if MD_DIGEST_LENGTH > 20
432# error "Please adjust DUMMY_SEED."
433#endif
434#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
435            /*
436             * Note that the seed does not matter, it's just that
437             * ssleay_rand_add expects to have something to hash.
438             */
439            ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
440            n -= MD_DIGEST_LENGTH;
441        }
442        if (ok)
443            stirred_pool = 1;
444    }
445
446    st_idx = state_index;
447    st_num = state_num;
448    md_c[0] = md_count[0];
449    md_c[1] = md_count[1];
450    memcpy(local_md, md, sizeof md);
451
452    state_index += num_ceil;
453    if (state_index > state_num)
454        state_index %= state_num;
455
456    /*
457     * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
458     * ours (but other threads may use them too)
459     */
460
461    md_count[0] += 1;
462
463    /* before unlocking, we must clear 'crypto_lock_rand' */
464    crypto_lock_rand = 0;
465    if (lock)
466        CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
467
468    while (num > 0) {
469        /* num_ceil -= MD_DIGEST_LENGTH/2 */
470        j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
471        num -= j;
472        MD_Init(&m);
473#ifndef GETPID_IS_MEANINGLESS
474        if (curr_pid) {         /* just in the first iteration to save time */
475            MD_Update(&m, (unsigned char *)&curr_pid, sizeof curr_pid);
476            curr_pid = 0;
477        }
478#endif
479        MD_Update(&m, local_md, MD_DIGEST_LENGTH);
480        MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
481
482#ifndef PURIFY                  /* purify complains */
483        /*
484         * The following line uses the supplied buffer as a small source of
485         * entropy: since this buffer is often uninitialised it may cause
486         * programs such as purify or valgrind to complain. So for those
487         * builds it is not used: the removal of such a small source of
488         * entropy has negligible impact on security.
489         */
490        MD_Update(&m, buf, j);
491#endif
492
493        k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
494        if (k > 0) {
495            MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k);
496            MD_Update(&m, &(state[0]), k);
497        } else
498            MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2);
499        MD_Final(&m, local_md);
500
501        for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
502            /* may compete with other threads */
503            state[st_idx++] ^= local_md[i];
504            if (st_idx >= st_num)
505                st_idx = 0;
506            if (i < j)
507                *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
508        }
509    }
510
511    MD_Init(&m);
512    MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
513    MD_Update(&m, local_md, MD_DIGEST_LENGTH);
514    if (lock)
515        CRYPTO_w_lock(CRYPTO_LOCK_RAND);
516    MD_Update(&m, md, MD_DIGEST_LENGTH);
517    MD_Final(&m, md);
518    if (lock)
519        CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
520
521    EVP_MD_CTX_cleanup(&m);
522    if (ok)
523        return (1);
524    else if (pseudo)
525        return 0;
526    else {
527        RANDerr(RAND_F_SSLEAY_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
528        ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
529                           "http://www.openssl.org/support/faq.html");
530        return (0);
531    }
532}
533
534static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
535{
536    return ssleay_rand_bytes(buf, num, 0, 1);
537}
538
539/*
540 * pseudo-random bytes that are guaranteed to be unique but not unpredictable
541 */
542static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
543{
544    return ssleay_rand_bytes(buf, num, 1, 1);
545}
546
547static int ssleay_rand_status(void)
548{
549    CRYPTO_THREADID cur;
550    int ret;
551    int do_not_lock;
552
553    CRYPTO_THREADID_current(&cur);
554    /*
555     * check if we already have the lock (could happen if a RAND_poll()
556     * implementation calls RAND_status())
557     */
558    if (crypto_lock_rand) {
559        CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
560        do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
561        CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
562    } else
563        do_not_lock = 0;
564
565    if (!do_not_lock) {
566        CRYPTO_w_lock(CRYPTO_LOCK_RAND);
567
568        /*
569         * prevent ssleay_rand_bytes() from trying to obtain the lock again
570         */
571        CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
572        CRYPTO_THREADID_cpy(&locking_threadid, &cur);
573        CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
574        crypto_lock_rand = 1;
575    }
576
577    if (!initialized) {
578        RAND_poll();
579        initialized = 1;
580    }
581
582    ret = entropy >= ENTROPY_NEEDED;
583
584    if (!do_not_lock) {
585        /* before unlocking, we must clear 'crypto_lock_rand' */
586        crypto_lock_rand = 0;
587
588        CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
589    }
590
591    return ret;
592}
593