1295367Sdes/* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
2180744Sdes/* -----------------------------------------------------------------------
3180744Sdes *
4180744Sdes * umac.c -- C Implementation UMAC Message Authentication
5180744Sdes *
6180744Sdes * Version 0.93b of rfc4418.txt -- 2006 July 18
7180744Sdes *
8180744Sdes * For a full description of UMAC message authentication see the UMAC
9180744Sdes * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10180744Sdes * Please report bugs and suggestions to the UMAC webpage.
11180744Sdes *
12180744Sdes * Copyright (c) 1999-2006 Ted Krovetz
13180744Sdes *
14180744Sdes * Permission to use, copy, modify, and distribute this software and
15180744Sdes * its documentation for any purpose and with or without fee, is hereby
16180744Sdes * granted provided that the above copyright notice appears in all copies
17180744Sdes * and in supporting documentation, and that the name of the copyright
18180744Sdes * holder not be used in advertising or publicity pertaining to
19180744Sdes * distribution of the software without specific, written prior permission.
20180744Sdes *
21180744Sdes * Comments should be directed to Ted Krovetz (tdk@acm.org)
22180744Sdes *
23180744Sdes * ---------------------------------------------------------------------- */
24180744Sdes
25180744Sdes /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26180744Sdes  *
27180744Sdes  * 1) This version does not work properly on messages larger than 16MB
28180744Sdes  *
29180744Sdes  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30180744Sdes  *    aligned
31180744Sdes  *
32180744Sdes  * 3) When calling the function umac(), it is assumed that msg is in
33180744Sdes  * a writable buffer of length divisible by 32 bytes. The message itself
34180744Sdes  * does not have to fill the entire buffer, but bytes beyond msg may be
35180744Sdes  * zeroed.
36180744Sdes  *
37180744Sdes  * 4) Three free AES implementations are supported by this implementation of
38180744Sdes  * UMAC. Paulo Barreto's version is in the public domain and can be found
39180744Sdes  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40180744Sdes  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41180744Sdes  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42180744Sdes  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43180744Sdes  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44180744Sdes  * the third.
45180744Sdes  *
46180744Sdes  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47180744Sdes  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48180744Sdes  *
49180744Sdes  /////////////////////////////////////////////////////////////////////// */
50180744Sdes
51180744Sdes/* ---------------------------------------------------------------------- */
52180744Sdes/* --- User Switches ---------------------------------------------------- */
53180744Sdes/* ---------------------------------------------------------------------- */
54180744Sdes
55248619Sdes#ifndef UMAC_OUTPUT_LEN
56180744Sdes#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57248619Sdes#endif
58248619Sdes
59248619Sdes#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60248619Sdes    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61248619Sdes# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62248619Sdes#endif
63248619Sdes
64180744Sdes/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
65180744Sdes/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
66180744Sdes/* #define SSE2                0  Is SSE2 is available?                   */
67180744Sdes/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
68180744Sdes/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
69180744Sdes
70180744Sdes/* ---------------------------------------------------------------------- */
71180744Sdes/* -- Global Includes --------------------------------------------------- */
72180744Sdes/* ---------------------------------------------------------------------- */
73180744Sdes
74180744Sdes#include "includes.h"
75180744Sdes#include <sys/types.h>
76180744Sdes#include <string.h>
77295367Sdes#include <stdio.h>
78180744Sdes#include <stdlib.h>
79180744Sdes#include <stddef.h>
80180744Sdes
81295367Sdes#include "xmalloc.h"
82295367Sdes#include "umac.h"
83295367Sdes#include "misc.h"
84295367Sdes
85180744Sdes/* ---------------------------------------------------------------------- */
86180744Sdes/* --- Primitive Data Types ---                                           */
87180744Sdes/* ---------------------------------------------------------------------- */
88180744Sdes
89180744Sdes/* The following assumptions may need change on your system */
90180744Sdestypedef u_int8_t	UINT8;  /* 1 byte   */
91180744Sdestypedef u_int16_t	UINT16; /* 2 byte   */
92180744Sdestypedef u_int32_t	UINT32; /* 4 byte   */
93180744Sdestypedef u_int64_t	UINT64; /* 8 bytes  */
94180744Sdestypedef unsigned int	UWORD;  /* Register */
95180744Sdes
96180744Sdes/* ---------------------------------------------------------------------- */
97180744Sdes/* --- Constants -------------------------------------------------------- */
98180744Sdes/* ---------------------------------------------------------------------- */
99180744Sdes
100180744Sdes#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
101180744Sdes
102180744Sdes/* Message "words" are read from memory in an endian-specific manner.     */
103180744Sdes/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
104180744Sdes/* be set true if the host computer is little-endian.                     */
105180744Sdes
106180744Sdes#if BYTE_ORDER == LITTLE_ENDIAN
107180744Sdes#define __LITTLE_ENDIAN__ 1
108180744Sdes#else
109180744Sdes#define __LITTLE_ENDIAN__ 0
110180744Sdes#endif
111180744Sdes
112180744Sdes/* ---------------------------------------------------------------------- */
113180744Sdes/* ---------------------------------------------------------------------- */
114180744Sdes/* ----- Architecture Specific ------------------------------------------ */
115180744Sdes/* ---------------------------------------------------------------------- */
116180744Sdes/* ---------------------------------------------------------------------- */
117180744Sdes
118180744Sdes
119180744Sdes/* ---------------------------------------------------------------------- */
120180744Sdes/* ---------------------------------------------------------------------- */
121180744Sdes/* ----- Primitive Routines --------------------------------------------- */
122180744Sdes/* ---------------------------------------------------------------------- */
123180744Sdes/* ---------------------------------------------------------------------- */
124180744Sdes
125180744Sdes
126180744Sdes/* ---------------------------------------------------------------------- */
127180744Sdes/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128180744Sdes/* ---------------------------------------------------------------------- */
129180744Sdes
130180744Sdes#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
131180744Sdes
132180744Sdes/* ---------------------------------------------------------------------- */
133180744Sdes/* --- Endian Conversion --- Forcing assembly on some platforms           */
134180744Sdes/* ---------------------------------------------------------------------- */
135180744Sdes
136180744Sdes#if (__LITTLE_ENDIAN__)
137295367Sdes#define LOAD_UINT32_REVERSED(p)		get_u32(p)
138295367Sdes#define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
139180744Sdes#else
140295367Sdes#define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
141295367Sdes#define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
142180744Sdes#endif
143180744Sdes
144295367Sdes#define LOAD_UINT32_LITTLE(p)		(get_u32_le(p))
145295367Sdes#define STORE_UINT32_BIG(p,v)		put_u32(p, v)
146295367Sdes
147180744Sdes/* ---------------------------------------------------------------------- */
148180744Sdes/* ---------------------------------------------------------------------- */
149180744Sdes/* ----- Begin KDF & PDF Section ---------------------------------------- */
150180744Sdes/* ---------------------------------------------------------------------- */
151180744Sdes/* ---------------------------------------------------------------------- */
152180744Sdes
153180744Sdes/* UMAC uses AES with 16 byte block and key lengths */
154180744Sdes#define AES_BLOCK_LEN  16
155180744Sdes
156180744Sdes/* OpenSSL's AES */
157295367Sdes#ifdef WITH_OPENSSL
158180744Sdes#include "openbsd-compat/openssl-compat.h"
159180744Sdes#ifndef USE_BUILTIN_RIJNDAEL
160180744Sdes# include <openssl/aes.h>
161180744Sdes#endif
162180744Sdestypedef AES_KEY aes_int_key[1];
163180744Sdes#define aes_encryption(in,out,int_key)                  \
164180744Sdes  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165180744Sdes#define aes_key_setup(key,int_key)                      \
166255767Sdes  AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167295367Sdes#else
168295367Sdes#include "rijndael.h"
169295367Sdes#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170295367Sdestypedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
171295367Sdes#define aes_encryption(in,out,int_key) \
172295367Sdes  rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173295367Sdes#define aes_key_setup(key,int_key) \
174295367Sdes  rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175295367Sdes  UMAC_KEY_LEN*8)
176295367Sdes#endif
177180744Sdes
178180744Sdes/* The user-supplied UMAC key is stretched using AES in a counter
179180744Sdes * mode to supply all random bits needed by UMAC. The kdf function takes
180180744Sdes * an AES internal key representation 'key' and writes a stream of
181180750Sdes * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182180744Sdes * 'ndx' causes a distinct byte stream.
183180744Sdes */
184180750Sdesstatic void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
185180744Sdes{
186180744Sdes    UINT8 in_buf[AES_BLOCK_LEN] = {0};
187180744Sdes    UINT8 out_buf[AES_BLOCK_LEN];
188180750Sdes    UINT8 *dst_buf = (UINT8 *)bufp;
189180744Sdes    int i;
190180744Sdes
191180744Sdes    /* Setup the initial value */
192180744Sdes    in_buf[AES_BLOCK_LEN-9] = ndx;
193180744Sdes    in_buf[AES_BLOCK_LEN-1] = i = 1;
194180744Sdes
195180744Sdes    while (nbytes >= AES_BLOCK_LEN) {
196180744Sdes        aes_encryption(in_buf, out_buf, key);
197180744Sdes        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198180744Sdes        in_buf[AES_BLOCK_LEN-1] = ++i;
199180744Sdes        nbytes -= AES_BLOCK_LEN;
200180744Sdes        dst_buf += AES_BLOCK_LEN;
201180744Sdes    }
202180744Sdes    if (nbytes) {
203180744Sdes        aes_encryption(in_buf, out_buf, key);
204180744Sdes        memcpy(dst_buf,out_buf,nbytes);
205180744Sdes    }
206180744Sdes}
207180744Sdes
208180744Sdes/* The final UHASH result is XOR'd with the output of a pseudorandom
209180744Sdes * function. Here, we use AES to generate random output and
210180744Sdes * xor the appropriate bytes depending on the last bits of nonce.
211180744Sdes * This scheme is optimized for sequential, increasing big-endian nonces.
212180744Sdes */
213180744Sdes
214180744Sdestypedef struct {
215180744Sdes    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
216180744Sdes    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
217180744Sdes    aes_int_key prf_key;         /* Expanded AES key for PDF          */
218180744Sdes} pdf_ctx;
219180744Sdes
220180744Sdesstatic void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
221180744Sdes{
222180744Sdes    UINT8 buf[UMAC_KEY_LEN];
223180744Sdes
224180744Sdes    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225180744Sdes    aes_key_setup(buf, pc->prf_key);
226180744Sdes
227180744Sdes    /* Initialize pdf and cache */
228180744Sdes    memset(pc->nonce, 0, sizeof(pc->nonce));
229180744Sdes    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
230180744Sdes}
231180744Sdes
232255767Sdesstatic void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
233180744Sdes{
234180744Sdes    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235180744Sdes     * of the AES output. If last time around we returned the ndx-1st
236180744Sdes     * element, then we may have the result in the cache already.
237180744Sdes     */
238180744Sdes
239180744Sdes#if (UMAC_OUTPUT_LEN == 4)
240180744Sdes#define LOW_BIT_MASK 3
241180744Sdes#elif (UMAC_OUTPUT_LEN == 8)
242180744Sdes#define LOW_BIT_MASK 1
243180744Sdes#elif (UMAC_OUTPUT_LEN > 8)
244180744Sdes#define LOW_BIT_MASK 0
245180744Sdes#endif
246255767Sdes    union {
247255767Sdes        UINT8 tmp_nonce_lo[4];
248255767Sdes        UINT32 align;
249255767Sdes    } t;
250180744Sdes#if LOW_BIT_MASK != 0
251180744Sdes    int ndx = nonce[7] & LOW_BIT_MASK;
252180744Sdes#endif
253255767Sdes    *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
254255767Sdes    t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
255180744Sdes
256255767Sdes    if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
257255767Sdes         (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
258180744Sdes    {
259255767Sdes        ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
260255767Sdes        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
261180744Sdes        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
262180744Sdes    }
263180744Sdes
264180744Sdes#if (UMAC_OUTPUT_LEN == 4)
265180744Sdes    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
266180744Sdes#elif (UMAC_OUTPUT_LEN == 8)
267180744Sdes    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
268180744Sdes#elif (UMAC_OUTPUT_LEN == 12)
269180744Sdes    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
270180744Sdes    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
271180744Sdes#elif (UMAC_OUTPUT_LEN == 16)
272180744Sdes    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273180744Sdes    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
274180744Sdes#endif
275180744Sdes}
276180744Sdes
277180744Sdes/* ---------------------------------------------------------------------- */
278180744Sdes/* ---------------------------------------------------------------------- */
279180744Sdes/* ----- Begin NH Hash Section ------------------------------------------ */
280180744Sdes/* ---------------------------------------------------------------------- */
281180744Sdes/* ---------------------------------------------------------------------- */
282180744Sdes
283180744Sdes/* The NH-based hash functions used in UMAC are described in the UMAC paper
284180744Sdes * and specification, both of which can be found at the UMAC website.
285180744Sdes * The interface to this implementation has two
286180744Sdes * versions, one expects the entire message being hashed to be passed
287180744Sdes * in a single buffer and returns the hash result immediately. The second
288180744Sdes * allows the message to be passed in a sequence of buffers. In the
289180744Sdes * muliple-buffer interface, the client calls the routine nh_update() as
290180744Sdes * many times as necessary. When there is no more data to be fed to the
291180744Sdes * hash, the client calls nh_final() which calculates the hash output.
292180744Sdes * Before beginning another hash calculation the nh_reset() routine
293180744Sdes * must be called. The single-buffer routine, nh(), is equivalent to
294180744Sdes * the sequence of calls nh_update() and nh_final(); however it is
295180744Sdes * optimized and should be prefered whenever the multiple-buffer interface
296180744Sdes * is not necessary. When using either interface, it is the client's
297180744Sdes * responsability to pass no more than L1_KEY_LEN bytes per hash result.
298180744Sdes *
299180744Sdes * The routine nh_init() initializes the nh_ctx data structure and
300180744Sdes * must be called once, before any other PDF routine.
301180744Sdes */
302180744Sdes
303180744Sdes /* The "nh_aux" routines do the actual NH hashing work. They
304180744Sdes  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
305180744Sdes  * produce output for all STREAMS NH iterations in one call,
306180744Sdes  * allowing the parallel implementation of the streams.
307180744Sdes  */
308180744Sdes
309180744Sdes#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
310180744Sdes#define L1_KEY_LEN         1024     /* Internal key bytes                 */
311180744Sdes#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
312180744Sdes#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
313180744Sdes#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
314180744Sdes#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
315180744Sdes
316180744Sdestypedef struct {
317180744Sdes    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
318240075Sdes    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
319180744Sdes    int next_data_empty;    /* Bookeeping variable for data buffer.       */
320180744Sdes    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
321180744Sdes    UINT64 state[STREAMS];               /* on-line state     */
322180744Sdes} nh_ctx;
323180744Sdes
324180744Sdes
325180744Sdes#if (UMAC_OUTPUT_LEN == 4)
326180744Sdes
327255767Sdesstatic void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
328180744Sdes/* NH hashing primitive. Previous (partial) hash result is loaded and
329180744Sdes* then stored via hp pointer. The length of the data pointed at by "dp",
330180744Sdes* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
331180744Sdes* is expected to be endian compensated in memory at key setup.
332180744Sdes*/
333180744Sdes{
334180744Sdes    UINT64 h;
335180744Sdes    UWORD c = dlen / 32;
336180744Sdes    UINT32 *k = (UINT32 *)kp;
337255767Sdes    const UINT32 *d = (const UINT32 *)dp;
338180744Sdes    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
339180744Sdes    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
340180744Sdes
341180744Sdes    h = *((UINT64 *)hp);
342180744Sdes    do {
343180744Sdes        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
344180744Sdes        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
345180744Sdes        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
346180744Sdes        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
347180744Sdes        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
348180744Sdes        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
349180744Sdes        h += MUL64((k0 + d0), (k4 + d4));
350180744Sdes        h += MUL64((k1 + d1), (k5 + d5));
351180744Sdes        h += MUL64((k2 + d2), (k6 + d6));
352180744Sdes        h += MUL64((k3 + d3), (k7 + d7));
353180744Sdes
354180744Sdes        d += 8;
355180744Sdes        k += 8;
356180744Sdes    } while (--c);
357180744Sdes  *((UINT64 *)hp) = h;
358180744Sdes}
359180744Sdes
360180744Sdes#elif (UMAC_OUTPUT_LEN == 8)
361180744Sdes
362255767Sdesstatic void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
363180744Sdes/* Same as previous nh_aux, but two streams are handled in one pass,
364180744Sdes * reading and writing 16 bytes of hash-state per call.
365180744Sdes */
366180744Sdes{
367180744Sdes  UINT64 h1,h2;
368180744Sdes  UWORD c = dlen / 32;
369180744Sdes  UINT32 *k = (UINT32 *)kp;
370255767Sdes  const UINT32 *d = (const UINT32 *)dp;
371180744Sdes  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
372180744Sdes  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
373180744Sdes        k8,k9,k10,k11;
374180744Sdes
375180744Sdes  h1 = *((UINT64 *)hp);
376180744Sdes  h2 = *((UINT64 *)hp + 1);
377180744Sdes  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
378180744Sdes  do {
379180744Sdes    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
380180744Sdes    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
381180744Sdes    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
382180744Sdes    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
383180744Sdes    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
384180744Sdes    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
385180744Sdes
386180744Sdes    h1 += MUL64((k0 + d0), (k4 + d4));
387180744Sdes    h2 += MUL64((k4 + d0), (k8 + d4));
388180744Sdes
389180744Sdes    h1 += MUL64((k1 + d1), (k5 + d5));
390180744Sdes    h2 += MUL64((k5 + d1), (k9 + d5));
391180744Sdes
392180744Sdes    h1 += MUL64((k2 + d2), (k6 + d6));
393180744Sdes    h2 += MUL64((k6 + d2), (k10 + d6));
394180744Sdes
395180744Sdes    h1 += MUL64((k3 + d3), (k7 + d7));
396180744Sdes    h2 += MUL64((k7 + d3), (k11 + d7));
397180744Sdes
398180744Sdes    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
399180744Sdes
400180744Sdes    d += 8;
401180744Sdes    k += 8;
402180744Sdes  } while (--c);
403180744Sdes  ((UINT64 *)hp)[0] = h1;
404180744Sdes  ((UINT64 *)hp)[1] = h2;
405180744Sdes}
406180744Sdes
407180744Sdes#elif (UMAC_OUTPUT_LEN == 12)
408180744Sdes
409255767Sdesstatic void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
410180744Sdes/* Same as previous nh_aux, but two streams are handled in one pass,
411180744Sdes * reading and writing 24 bytes of hash-state per call.
412180744Sdes*/
413180744Sdes{
414180744Sdes    UINT64 h1,h2,h3;
415180744Sdes    UWORD c = dlen / 32;
416180744Sdes    UINT32 *k = (UINT32 *)kp;
417255767Sdes    const UINT32 *d = (const UINT32 *)dp;
418180744Sdes    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
419180744Sdes    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
420180744Sdes        k8,k9,k10,k11,k12,k13,k14,k15;
421180744Sdes
422180744Sdes    h1 = *((UINT64 *)hp);
423180744Sdes    h2 = *((UINT64 *)hp + 1);
424180744Sdes    h3 = *((UINT64 *)hp + 2);
425180744Sdes    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
426180744Sdes    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
427180744Sdes    do {
428180744Sdes        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
429180744Sdes        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
430180744Sdes        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
431180744Sdes        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
432180744Sdes        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
433180744Sdes        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
434180744Sdes
435180744Sdes        h1 += MUL64((k0 + d0), (k4 + d4));
436180744Sdes        h2 += MUL64((k4 + d0), (k8 + d4));
437180744Sdes        h3 += MUL64((k8 + d0), (k12 + d4));
438180744Sdes
439180744Sdes        h1 += MUL64((k1 + d1), (k5 + d5));
440180744Sdes        h2 += MUL64((k5 + d1), (k9 + d5));
441180744Sdes        h3 += MUL64((k9 + d1), (k13 + d5));
442180744Sdes
443180744Sdes        h1 += MUL64((k2 + d2), (k6 + d6));
444180744Sdes        h2 += MUL64((k6 + d2), (k10 + d6));
445180744Sdes        h3 += MUL64((k10 + d2), (k14 + d6));
446180744Sdes
447180744Sdes        h1 += MUL64((k3 + d3), (k7 + d7));
448180744Sdes        h2 += MUL64((k7 + d3), (k11 + d7));
449180744Sdes        h3 += MUL64((k11 + d3), (k15 + d7));
450180744Sdes
451180744Sdes        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
452180744Sdes        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
453180744Sdes
454180744Sdes        d += 8;
455180744Sdes        k += 8;
456180744Sdes    } while (--c);
457180744Sdes    ((UINT64 *)hp)[0] = h1;
458180744Sdes    ((UINT64 *)hp)[1] = h2;
459180744Sdes    ((UINT64 *)hp)[2] = h3;
460180744Sdes}
461180744Sdes
462180744Sdes#elif (UMAC_OUTPUT_LEN == 16)
463180744Sdes
464255767Sdesstatic void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
465180744Sdes/* Same as previous nh_aux, but two streams are handled in one pass,
466180744Sdes * reading and writing 24 bytes of hash-state per call.
467180744Sdes*/
468180744Sdes{
469180744Sdes    UINT64 h1,h2,h3,h4;
470180744Sdes    UWORD c = dlen / 32;
471180744Sdes    UINT32 *k = (UINT32 *)kp;
472255767Sdes    const UINT32 *d = (const UINT32 *)dp;
473180744Sdes    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
474180744Sdes    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
475180744Sdes        k8,k9,k10,k11,k12,k13,k14,k15,
476180744Sdes        k16,k17,k18,k19;
477180744Sdes
478180744Sdes    h1 = *((UINT64 *)hp);
479180744Sdes    h2 = *((UINT64 *)hp + 1);
480180744Sdes    h3 = *((UINT64 *)hp + 2);
481180744Sdes    h4 = *((UINT64 *)hp + 3);
482180744Sdes    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
483180744Sdes    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
484180744Sdes    do {
485180744Sdes        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
486180744Sdes        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
487180744Sdes        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
488180744Sdes        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
489180744Sdes        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
490180744Sdes        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
491180744Sdes        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
492180744Sdes
493180744Sdes        h1 += MUL64((k0 + d0), (k4 + d4));
494180744Sdes        h2 += MUL64((k4 + d0), (k8 + d4));
495180744Sdes        h3 += MUL64((k8 + d0), (k12 + d4));
496180744Sdes        h4 += MUL64((k12 + d0), (k16 + d4));
497180744Sdes
498180744Sdes        h1 += MUL64((k1 + d1), (k5 + d5));
499180744Sdes        h2 += MUL64((k5 + d1), (k9 + d5));
500180744Sdes        h3 += MUL64((k9 + d1), (k13 + d5));
501180744Sdes        h4 += MUL64((k13 + d1), (k17 + d5));
502180744Sdes
503180744Sdes        h1 += MUL64((k2 + d2), (k6 + d6));
504180744Sdes        h2 += MUL64((k6 + d2), (k10 + d6));
505180744Sdes        h3 += MUL64((k10 + d2), (k14 + d6));
506180744Sdes        h4 += MUL64((k14 + d2), (k18 + d6));
507180744Sdes
508180744Sdes        h1 += MUL64((k3 + d3), (k7 + d7));
509180744Sdes        h2 += MUL64((k7 + d3), (k11 + d7));
510180744Sdes        h3 += MUL64((k11 + d3), (k15 + d7));
511180744Sdes        h4 += MUL64((k15 + d3), (k19 + d7));
512180744Sdes
513180744Sdes        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
514180744Sdes        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
515180744Sdes        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
516180744Sdes
517180744Sdes        d += 8;
518180744Sdes        k += 8;
519180744Sdes    } while (--c);
520180744Sdes    ((UINT64 *)hp)[0] = h1;
521180744Sdes    ((UINT64 *)hp)[1] = h2;
522180744Sdes    ((UINT64 *)hp)[2] = h3;
523180744Sdes    ((UINT64 *)hp)[3] = h4;
524180744Sdes}
525180744Sdes
526180744Sdes/* ---------------------------------------------------------------------- */
527180744Sdes#endif  /* UMAC_OUTPUT_LENGTH */
528180744Sdes/* ---------------------------------------------------------------------- */
529180744Sdes
530180744Sdes
531180744Sdes/* ---------------------------------------------------------------------- */
532180744Sdes
533255767Sdesstatic void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
534180744Sdes/* This function is a wrapper for the primitive NH hash functions. It takes
535180744Sdes * as argument "hc" the current hash context and a buffer which must be a
536180744Sdes * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
537180744Sdes * appropriately according to how much message has been hashed already.
538180744Sdes */
539180744Sdes{
540180744Sdes    UINT8 *key;
541180744Sdes
542180744Sdes    key = hc->nh_key + hc->bytes_hashed;
543180744Sdes    nh_aux(key, buf, hc->state, nbytes);
544180744Sdes}
545180744Sdes
546180744Sdes/* ---------------------------------------------------------------------- */
547180744Sdes
548180750Sdes#if (__LITTLE_ENDIAN__)
549180744Sdesstatic void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
550180744Sdes/* We endian convert the keys on little-endian computers to               */
551180744Sdes/* compensate for the lack of big-endian memory reads during hashing.     */
552180744Sdes{
553180744Sdes    UWORD iters = num_bytes / bpw;
554180744Sdes    if (bpw == 4) {
555180744Sdes        UINT32 *p = (UINT32 *)buf;
556180744Sdes        do {
557180744Sdes            *p = LOAD_UINT32_REVERSED(p);
558180744Sdes            p++;
559180744Sdes        } while (--iters);
560180744Sdes    } else if (bpw == 8) {
561180744Sdes        UINT32 *p = (UINT32 *)buf;
562180744Sdes        UINT32 t;
563180744Sdes        do {
564180744Sdes            t = LOAD_UINT32_REVERSED(p+1);
565180744Sdes            p[1] = LOAD_UINT32_REVERSED(p);
566180744Sdes            p[0] = t;
567180744Sdes            p += 2;
568180744Sdes        } while (--iters);
569180744Sdes    }
570180744Sdes}
571180744Sdes#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
572180744Sdes#else
573180744Sdes#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
574180744Sdes#endif
575180744Sdes
576180744Sdes/* ---------------------------------------------------------------------- */
577180744Sdes
578180744Sdesstatic void nh_reset(nh_ctx *hc)
579180744Sdes/* Reset nh_ctx to ready for hashing of new data */
580180744Sdes{
581180744Sdes    hc->bytes_hashed = 0;
582180744Sdes    hc->next_data_empty = 0;
583180744Sdes    hc->state[0] = 0;
584180744Sdes#if (UMAC_OUTPUT_LEN >= 8)
585180744Sdes    hc->state[1] = 0;
586180744Sdes#endif
587180744Sdes#if (UMAC_OUTPUT_LEN >= 12)
588180744Sdes    hc->state[2] = 0;
589180744Sdes#endif
590180744Sdes#if (UMAC_OUTPUT_LEN == 16)
591180744Sdes    hc->state[3] = 0;
592180744Sdes#endif
593180744Sdes
594180744Sdes}
595180744Sdes
596180744Sdes/* ---------------------------------------------------------------------- */
597180744Sdes
598180744Sdesstatic void nh_init(nh_ctx *hc, aes_int_key prf_key)
599180744Sdes/* Generate nh_key, endian convert and reset to be ready for hashing.   */
600180744Sdes{
601180744Sdes    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
602180744Sdes    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
603180744Sdes    nh_reset(hc);
604180744Sdes}
605180744Sdes
606180744Sdes/* ---------------------------------------------------------------------- */
607180744Sdes
608255767Sdesstatic void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
609180744Sdes/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
610180744Sdes/* even multiple of HASH_BUF_BYTES.                                       */
611180744Sdes{
612180744Sdes    UINT32 i,j;
613180744Sdes
614180744Sdes    j = hc->next_data_empty;
615180744Sdes    if ((j + nbytes) >= HASH_BUF_BYTES) {
616180744Sdes        if (j) {
617180744Sdes            i = HASH_BUF_BYTES - j;
618180744Sdes            memcpy(hc->data+j, buf, i);
619180744Sdes            nh_transform(hc,hc->data,HASH_BUF_BYTES);
620180744Sdes            nbytes -= i;
621180744Sdes            buf += i;
622180744Sdes            hc->bytes_hashed += HASH_BUF_BYTES;
623180744Sdes        }
624180744Sdes        if (nbytes >= HASH_BUF_BYTES) {
625180744Sdes            i = nbytes & ~(HASH_BUF_BYTES - 1);
626180744Sdes            nh_transform(hc, buf, i);
627180744Sdes            nbytes -= i;
628180744Sdes            buf += i;
629180744Sdes            hc->bytes_hashed += i;
630180744Sdes        }
631180744Sdes        j = 0;
632180744Sdes    }
633180744Sdes    memcpy(hc->data + j, buf, nbytes);
634180744Sdes    hc->next_data_empty = j + nbytes;
635180744Sdes}
636180744Sdes
637180744Sdes/* ---------------------------------------------------------------------- */
638180744Sdes
639180744Sdesstatic void zero_pad(UINT8 *p, int nbytes)
640180744Sdes{
641180744Sdes/* Write "nbytes" of zeroes, beginning at "p" */
642180744Sdes    if (nbytes >= (int)sizeof(UWORD)) {
643180744Sdes        while ((ptrdiff_t)p % sizeof(UWORD)) {
644180744Sdes            *p = 0;
645180744Sdes            nbytes--;
646180744Sdes            p++;
647180744Sdes        }
648180744Sdes        while (nbytes >= (int)sizeof(UWORD)) {
649180744Sdes            *(UWORD *)p = 0;
650180744Sdes            nbytes -= sizeof(UWORD);
651180744Sdes            p += sizeof(UWORD);
652180744Sdes        }
653180744Sdes    }
654180744Sdes    while (nbytes) {
655180744Sdes        *p = 0;
656180744Sdes        nbytes--;
657180744Sdes        p++;
658180744Sdes    }
659180744Sdes}
660180744Sdes
661180744Sdes/* ---------------------------------------------------------------------- */
662180744Sdes
663180744Sdesstatic void nh_final(nh_ctx *hc, UINT8 *result)
664180744Sdes/* After passing some number of data buffers to nh_update() for integration
665180744Sdes * into an NH context, nh_final is called to produce a hash result. If any
666180744Sdes * bytes are in the buffer hc->data, incorporate them into the
667180744Sdes * NH context. Finally, add into the NH accumulation "state" the total number
668180744Sdes * of bits hashed. The resulting numbers are written to the buffer "result".
669180744Sdes * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
670180744Sdes */
671180744Sdes{
672180744Sdes    int nh_len, nbits;
673180744Sdes
674180744Sdes    if (hc->next_data_empty != 0) {
675180744Sdes        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
676180744Sdes                                                ~(L1_PAD_BOUNDARY - 1));
677180744Sdes        zero_pad(hc->data + hc->next_data_empty,
678180744Sdes                                          nh_len - hc->next_data_empty);
679180744Sdes        nh_transform(hc, hc->data, nh_len);
680180744Sdes        hc->bytes_hashed += hc->next_data_empty;
681180744Sdes    } else if (hc->bytes_hashed == 0) {
682180744Sdes    	nh_len = L1_PAD_BOUNDARY;
683180744Sdes        zero_pad(hc->data, L1_PAD_BOUNDARY);
684180744Sdes        nh_transform(hc, hc->data, nh_len);
685180744Sdes    }
686180744Sdes
687180744Sdes    nbits = (hc->bytes_hashed << 3);
688180744Sdes    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
689180744Sdes#if (UMAC_OUTPUT_LEN >= 8)
690180744Sdes    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
691180744Sdes#endif
692180744Sdes#if (UMAC_OUTPUT_LEN >= 12)
693180744Sdes    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
694180744Sdes#endif
695180744Sdes#if (UMAC_OUTPUT_LEN == 16)
696180744Sdes    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
697180744Sdes#endif
698180744Sdes    nh_reset(hc);
699180744Sdes}
700180744Sdes
701180744Sdes/* ---------------------------------------------------------------------- */
702180744Sdes
703255767Sdesstatic void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
704180744Sdes               UINT32 unpadded_len, UINT8 *result)
705180744Sdes/* All-in-one nh_update() and nh_final() equivalent.
706180744Sdes * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
707180744Sdes * well aligned
708180744Sdes */
709180744Sdes{
710180744Sdes    UINT32 nbits;
711180744Sdes
712180744Sdes    /* Initialize the hash state */
713180744Sdes    nbits = (unpadded_len << 3);
714180744Sdes
715180744Sdes    ((UINT64 *)result)[0] = nbits;
716180744Sdes#if (UMAC_OUTPUT_LEN >= 8)
717180744Sdes    ((UINT64 *)result)[1] = nbits;
718180744Sdes#endif
719180744Sdes#if (UMAC_OUTPUT_LEN >= 12)
720180744Sdes    ((UINT64 *)result)[2] = nbits;
721180744Sdes#endif
722180744Sdes#if (UMAC_OUTPUT_LEN == 16)
723180744Sdes    ((UINT64 *)result)[3] = nbits;
724180744Sdes#endif
725180744Sdes
726180744Sdes    nh_aux(hc->nh_key, buf, result, padded_len);
727180744Sdes}
728180744Sdes
729180744Sdes/* ---------------------------------------------------------------------- */
730180744Sdes/* ---------------------------------------------------------------------- */
731180744Sdes/* ----- Begin UHASH Section -------------------------------------------- */
732180744Sdes/* ---------------------------------------------------------------------- */
733180744Sdes/* ---------------------------------------------------------------------- */
734180744Sdes
735180744Sdes/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
736180744Sdes * hashed by NH. The NH output is then hashed by a polynomial-hash layer
737180744Sdes * unless the initial data to be hashed is short. After the polynomial-
738180744Sdes * layer, an inner-product hash is used to produce the final UHASH output.
739180744Sdes *
740180744Sdes * UHASH provides two interfaces, one all-at-once and another where data
741180744Sdes * buffers are presented sequentially. In the sequential interface, the
742180744Sdes * UHASH client calls the routine uhash_update() as many times as necessary.
743180744Sdes * When there is no more data to be fed to UHASH, the client calls
744180744Sdes * uhash_final() which
745180744Sdes * calculates the UHASH output. Before beginning another UHASH calculation
746180744Sdes * the uhash_reset() routine must be called. The all-at-once UHASH routine,
747180744Sdes * uhash(), is equivalent to the sequence of calls uhash_update() and
748180744Sdes * uhash_final(); however it is optimized and should be
749180744Sdes * used whenever the sequential interface is not necessary.
750180744Sdes *
751180744Sdes * The routine uhash_init() initializes the uhash_ctx data structure and
752180744Sdes * must be called once, before any other UHASH routine.
753180744Sdes */
754180744Sdes
755180744Sdes/* ---------------------------------------------------------------------- */
756180744Sdes/* ----- Constants and uhash_ctx ---------------------------------------- */
757180744Sdes/* ---------------------------------------------------------------------- */
758180744Sdes
759180744Sdes/* ---------------------------------------------------------------------- */
760180744Sdes/* ----- Poly hash and Inner-Product hash Constants --------------------- */
761180744Sdes/* ---------------------------------------------------------------------- */
762180744Sdes
763180744Sdes/* Primes and masks */
764180744Sdes#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
765180744Sdes#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
766180744Sdes#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
767180744Sdes
768180744Sdes
769180744Sdes/* ---------------------------------------------------------------------- */
770180744Sdes
771180744Sdestypedef struct uhash_ctx {
772180744Sdes    nh_ctx hash;                          /* Hash context for L1 NH hash  */
773180744Sdes    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
774180744Sdes    UINT64 poly_accum[STREAMS];           /* poly hash result             */
775180744Sdes    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
776180744Sdes    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
777180744Sdes    UINT32 msg_len;                       /* Total length of data passed  */
778180744Sdes                                          /* to uhash */
779180744Sdes} uhash_ctx;
780180744Sdestypedef struct uhash_ctx *uhash_ctx_t;
781180744Sdes
782180744Sdes/* ---------------------------------------------------------------------- */
783180744Sdes
784180744Sdes
785180744Sdes/* The polynomial hashes use Horner's rule to evaluate a polynomial one
786180744Sdes * word at a time. As described in the specification, poly32 and poly64
787180744Sdes * require keys from special domains. The following implementations exploit
788180744Sdes * the special domains to avoid overflow. The results are not guaranteed to
789180744Sdes * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
790180744Sdes * patches any errant values.
791180744Sdes */
792180744Sdes
793180744Sdesstatic UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
794180744Sdes{
795180744Sdes    UINT32 key_hi = (UINT32)(key >> 32),
796180744Sdes           key_lo = (UINT32)key,
797180744Sdes           cur_hi = (UINT32)(cur >> 32),
798180744Sdes           cur_lo = (UINT32)cur,
799180744Sdes           x_lo,
800180744Sdes           x_hi;
801180744Sdes    UINT64 X,T,res;
802180744Sdes
803180744Sdes    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
804180744Sdes    x_lo = (UINT32)X;
805180744Sdes    x_hi = (UINT32)(X >> 32);
806180744Sdes
807180744Sdes    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
808180744Sdes
809180744Sdes    T = ((UINT64)x_lo << 32);
810180744Sdes    res += T;
811180744Sdes    if (res < T)
812180744Sdes        res += 59;
813180744Sdes
814180744Sdes    res += data;
815180744Sdes    if (res < data)
816180744Sdes        res += 59;
817180744Sdes
818180744Sdes    return res;
819180744Sdes}
820180744Sdes
821180744Sdes
822180744Sdes/* Although UMAC is specified to use a ramped polynomial hash scheme, this
823180744Sdes * implementation does not handle all ramp levels. Because we don't handle
824180744Sdes * the ramp up to p128 modulus in this implementation, we are limited to
825180744Sdes * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
826180744Sdes * bytes input to UMAC per tag, ie. 16MB).
827180744Sdes */
828180744Sdesstatic void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
829180744Sdes{
830180744Sdes    int i;
831180744Sdes    UINT64 *data=(UINT64*)data_in;
832180744Sdes
833180744Sdes    for (i = 0; i < STREAMS; i++) {
834180744Sdes        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
835180744Sdes            hc->poly_accum[i] = poly64(hc->poly_accum[i],
836180744Sdes                                       hc->poly_key_8[i], p64 - 1);
837180744Sdes            hc->poly_accum[i] = poly64(hc->poly_accum[i],
838180744Sdes                                       hc->poly_key_8[i], (data[i] - 59));
839180744Sdes        } else {
840180744Sdes            hc->poly_accum[i] = poly64(hc->poly_accum[i],
841180744Sdes                                       hc->poly_key_8[i], data[i]);
842180744Sdes        }
843180744Sdes    }
844180744Sdes}
845180744Sdes
846180744Sdes
847180744Sdes/* ---------------------------------------------------------------------- */
848180744Sdes
849180744Sdes
850180744Sdes/* The final step in UHASH is an inner-product hash. The poly hash
851180744Sdes * produces a result not neccesarily WORD_LEN bytes long. The inner-
852180744Sdes * product hash breaks the polyhash output into 16-bit chunks and
853180744Sdes * multiplies each with a 36 bit key.
854180744Sdes */
855180744Sdes
856180744Sdesstatic UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
857180744Sdes{
858180744Sdes    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
859180744Sdes    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
860180744Sdes    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
861180744Sdes    t = t + ipkp[3] * (UINT64)(UINT16)(data);
862180744Sdes
863180744Sdes    return t;
864180744Sdes}
865180744Sdes
866180744Sdesstatic UINT32 ip_reduce_p36(UINT64 t)
867180744Sdes{
868180744Sdes/* Divisionless modular reduction */
869180744Sdes    UINT64 ret;
870180744Sdes
871180744Sdes    ret = (t & m36) + 5 * (t >> 36);
872180744Sdes    if (ret >= p36)
873180744Sdes        ret -= p36;
874180744Sdes
875180744Sdes    /* return least significant 32 bits */
876180744Sdes    return (UINT32)(ret);
877180744Sdes}
878180744Sdes
879180744Sdes
880180744Sdes/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
881180744Sdes * the polyhash stage is skipped and ip_short is applied directly to the
882180744Sdes * NH output.
883180744Sdes */
884180744Sdesstatic void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
885180744Sdes{
886180744Sdes    UINT64 t;
887180744Sdes    UINT64 *nhp = (UINT64 *)nh_res;
888180744Sdes
889180744Sdes    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
890180744Sdes    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
891180744Sdes#if (UMAC_OUTPUT_LEN >= 8)
892180744Sdes    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
893180744Sdes    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
894180744Sdes#endif
895180744Sdes#if (UMAC_OUTPUT_LEN >= 12)
896180744Sdes    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
897180744Sdes    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
898180744Sdes#endif
899180744Sdes#if (UMAC_OUTPUT_LEN == 16)
900180744Sdes    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
901180744Sdes    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
902180744Sdes#endif
903180744Sdes}
904180744Sdes
905180744Sdes/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
906180744Sdes * the polyhash stage is not skipped and ip_long is applied to the
907180744Sdes * polyhash output.
908180744Sdes */
909180744Sdesstatic void ip_long(uhash_ctx_t ahc, u_char *res)
910180744Sdes{
911180744Sdes    int i;
912180744Sdes    UINT64 t;
913180744Sdes
914180744Sdes    for (i = 0; i < STREAMS; i++) {
915180744Sdes        /* fix polyhash output not in Z_p64 */
916180744Sdes        if (ahc->poly_accum[i] >= p64)
917180744Sdes            ahc->poly_accum[i] -= p64;
918180744Sdes        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
919180744Sdes        STORE_UINT32_BIG((UINT32 *)res+i,
920180744Sdes                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
921180744Sdes    }
922180744Sdes}
923180744Sdes
924180744Sdes
925180744Sdes/* ---------------------------------------------------------------------- */
926180744Sdes
927180744Sdes/* ---------------------------------------------------------------------- */
928180744Sdes
929180744Sdes/* Reset uhash context for next hash session */
930180744Sdesstatic int uhash_reset(uhash_ctx_t pc)
931180744Sdes{
932180744Sdes    nh_reset(&pc->hash);
933180744Sdes    pc->msg_len = 0;
934180744Sdes    pc->poly_accum[0] = 1;
935180744Sdes#if (UMAC_OUTPUT_LEN >= 8)
936180744Sdes    pc->poly_accum[1] = 1;
937180744Sdes#endif
938180744Sdes#if (UMAC_OUTPUT_LEN >= 12)
939180744Sdes    pc->poly_accum[2] = 1;
940180744Sdes#endif
941180744Sdes#if (UMAC_OUTPUT_LEN == 16)
942180744Sdes    pc->poly_accum[3] = 1;
943180744Sdes#endif
944180744Sdes    return 1;
945180744Sdes}
946180744Sdes
947180744Sdes/* ---------------------------------------------------------------------- */
948180744Sdes
949180744Sdes/* Given a pointer to the internal key needed by kdf() and a uhash context,
950180744Sdes * initialize the NH context and generate keys needed for poly and inner-
951180744Sdes * product hashing. All keys are endian adjusted in memory so that native
952180744Sdes * loads cause correct keys to be in registers during calculation.
953180744Sdes */
954180744Sdesstatic void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
955180744Sdes{
956180744Sdes    int i;
957180744Sdes    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
958180744Sdes
959180744Sdes    /* Zero the entire uhash context */
960180744Sdes    memset(ahc, 0, sizeof(uhash_ctx));
961180744Sdes
962180744Sdes    /* Initialize the L1 hash */
963180744Sdes    nh_init(&ahc->hash, prf_key);
964180744Sdes
965180744Sdes    /* Setup L2 hash variables */
966180744Sdes    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
967180744Sdes    for (i = 0; i < STREAMS; i++) {
968180744Sdes        /* Fill keys from the buffer, skipping bytes in the buffer not
969180744Sdes         * used by this implementation. Endian reverse the keys if on a
970180744Sdes         * little-endian computer.
971180744Sdes         */
972180744Sdes        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
973180744Sdes        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
974180744Sdes        /* Mask the 64-bit keys to their special domain */
975180744Sdes        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
976180744Sdes        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
977180744Sdes    }
978180744Sdes
979180744Sdes    /* Setup L3-1 hash variables */
980180744Sdes    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
981180744Sdes    for (i = 0; i < STREAMS; i++)
982180744Sdes          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
983180744Sdes                                                 4*sizeof(UINT64));
984180744Sdes    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
985180744Sdes                                                  sizeof(ahc->ip_keys));
986180744Sdes    for (i = 0; i < STREAMS*4; i++)
987180744Sdes        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
988180744Sdes
989180744Sdes    /* Setup L3-2 hash variables    */
990180744Sdes    /* Fill buffer with index 4 key */
991180744Sdes    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
992180744Sdes    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
993180744Sdes                         STREAMS * sizeof(UINT32));
994180744Sdes}
995180744Sdes
996180744Sdes/* ---------------------------------------------------------------------- */
997180744Sdes
998180744Sdes#if 0
999180744Sdesstatic uhash_ctx_t uhash_alloc(u_char key[])
1000180744Sdes{
1001180744Sdes/* Allocate memory and force to a 16-byte boundary. */
1002180744Sdes    uhash_ctx_t ctx;
1003180744Sdes    u_char bytes_to_add;
1004180744Sdes    aes_int_key prf_key;
1005180744Sdes
1006180744Sdes    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1007180744Sdes    if (ctx) {
1008180744Sdes        if (ALLOC_BOUNDARY) {
1009180744Sdes            bytes_to_add = ALLOC_BOUNDARY -
1010180744Sdes                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1011180744Sdes            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1012180744Sdes            *((u_char *)ctx - 1) = bytes_to_add;
1013180744Sdes        }
1014180744Sdes        aes_key_setup(key,prf_key);
1015180744Sdes        uhash_init(ctx, prf_key);
1016180744Sdes    }
1017180744Sdes    return (ctx);
1018180744Sdes}
1019180744Sdes#endif
1020180744Sdes
1021180744Sdes/* ---------------------------------------------------------------------- */
1022180744Sdes
1023180744Sdes#if 0
1024180744Sdesstatic int uhash_free(uhash_ctx_t ctx)
1025180744Sdes{
1026180744Sdes/* Free memory allocated by uhash_alloc */
1027180744Sdes    u_char bytes_to_sub;
1028180744Sdes
1029180744Sdes    if (ctx) {
1030180744Sdes        if (ALLOC_BOUNDARY) {
1031180744Sdes            bytes_to_sub = *((u_char *)ctx - 1);
1032180744Sdes            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1033180744Sdes        }
1034180744Sdes        free(ctx);
1035180744Sdes    }
1036180744Sdes    return (1);
1037180744Sdes}
1038180744Sdes#endif
1039180744Sdes/* ---------------------------------------------------------------------- */
1040180744Sdes
1041255767Sdesstatic int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1042180744Sdes/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1043180744Sdes * hash each one with NH, calling the polyhash on each NH output.
1044180744Sdes */
1045180744Sdes{
1046180744Sdes    UWORD bytes_hashed, bytes_remaining;
1047180750Sdes    UINT64 result_buf[STREAMS];
1048180750Sdes    UINT8 *nh_result = (UINT8 *)&result_buf;
1049180744Sdes
1050180744Sdes    if (ctx->msg_len + len <= L1_KEY_LEN) {
1051255767Sdes        nh_update(&ctx->hash, (const UINT8 *)input, len);
1052180744Sdes        ctx->msg_len += len;
1053180744Sdes    } else {
1054180744Sdes
1055180744Sdes         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1056180744Sdes         if (ctx->msg_len == L1_KEY_LEN)
1057180744Sdes             bytes_hashed = L1_KEY_LEN;
1058180744Sdes
1059180744Sdes         if (bytes_hashed + len >= L1_KEY_LEN) {
1060180744Sdes
1061180744Sdes             /* If some bytes have been passed to the hash function      */
1062180744Sdes             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1063180744Sdes             /* bytes to complete the current nh_block.                  */
1064180744Sdes             if (bytes_hashed) {
1065180744Sdes                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1066255767Sdes                 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1067180744Sdes                 nh_final(&ctx->hash, nh_result);
1068180744Sdes                 ctx->msg_len += bytes_remaining;
1069180744Sdes                 poly_hash(ctx,(UINT32 *)nh_result);
1070180744Sdes                 len -= bytes_remaining;
1071180744Sdes                 input += bytes_remaining;
1072180744Sdes             }
1073180744Sdes
1074180744Sdes             /* Hash directly from input stream if enough bytes */
1075180744Sdes             while (len >= L1_KEY_LEN) {
1076255767Sdes                 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1077180744Sdes                                   L1_KEY_LEN, nh_result);
1078180744Sdes                 ctx->msg_len += L1_KEY_LEN;
1079180744Sdes                 len -= L1_KEY_LEN;
1080180744Sdes                 input += L1_KEY_LEN;
1081180744Sdes                 poly_hash(ctx,(UINT32 *)nh_result);
1082180744Sdes             }
1083180744Sdes         }
1084180744Sdes
1085180744Sdes         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1086180744Sdes         if (len) {
1087255767Sdes             nh_update(&ctx->hash, (const UINT8 *)input, len);
1088180744Sdes             ctx->msg_len += len;
1089180744Sdes         }
1090180744Sdes     }
1091180744Sdes
1092180744Sdes    return (1);
1093180744Sdes}
1094180744Sdes
1095180744Sdes/* ---------------------------------------------------------------------- */
1096180744Sdes
1097180744Sdesstatic int uhash_final(uhash_ctx_t ctx, u_char *res)
1098180744Sdes/* Incorporate any pending data, pad, and generate tag */
1099180744Sdes{
1100180750Sdes    UINT64 result_buf[STREAMS];
1101180750Sdes    UINT8 *nh_result = (UINT8 *)&result_buf;
1102180744Sdes
1103180744Sdes    if (ctx->msg_len > L1_KEY_LEN) {
1104180744Sdes        if (ctx->msg_len % L1_KEY_LEN) {
1105180744Sdes            nh_final(&ctx->hash, nh_result);
1106180744Sdes            poly_hash(ctx,(UINT32 *)nh_result);
1107180744Sdes        }
1108180744Sdes        ip_long(ctx, res);
1109180744Sdes    } else {
1110180744Sdes        nh_final(&ctx->hash, nh_result);
1111180744Sdes        ip_short(ctx,nh_result, res);
1112180744Sdes    }
1113180744Sdes    uhash_reset(ctx);
1114180744Sdes    return (1);
1115180744Sdes}
1116180744Sdes
1117180744Sdes/* ---------------------------------------------------------------------- */
1118180744Sdes
1119180744Sdes#if 0
1120180744Sdesstatic int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1121180744Sdes/* assumes that msg is in a writable buffer of length divisible by */
1122180744Sdes/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1123180744Sdes{
1124180744Sdes    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1125180744Sdes    UINT32 nh_len;
1126180744Sdes    int extra_zeroes_needed;
1127180744Sdes
1128180744Sdes    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1129180744Sdes     * the polyhash.
1130180744Sdes     */
1131180744Sdes    if (len <= L1_KEY_LEN) {
1132180744Sdes    	if (len == 0)                  /* If zero length messages will not */
1133180744Sdes    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1134180744Sdes    	else
1135180744Sdes        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1136180744Sdes        extra_zeroes_needed = nh_len - len;
1137180744Sdes        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1138180744Sdes        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1139180744Sdes        ip_short(ahc,nh_result, res);
1140180744Sdes    } else {
1141180744Sdes        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1142180744Sdes         * output to poly_hash().
1143180744Sdes         */
1144180744Sdes        do {
1145180744Sdes            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1146180744Sdes            poly_hash(ahc,(UINT32 *)nh_result);
1147180744Sdes            len -= L1_KEY_LEN;
1148180744Sdes            msg += L1_KEY_LEN;
1149180744Sdes        } while (len >= L1_KEY_LEN);
1150180744Sdes        if (len) {
1151180744Sdes            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152180744Sdes            extra_zeroes_needed = nh_len - len;
1153180744Sdes            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154180744Sdes            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155180744Sdes            poly_hash(ahc,(UINT32 *)nh_result);
1156180744Sdes        }
1157180744Sdes
1158180744Sdes        ip_long(ahc, res);
1159180744Sdes    }
1160180744Sdes
1161180744Sdes    uhash_reset(ahc);
1162180744Sdes    return 1;
1163180744Sdes}
1164180744Sdes#endif
1165180744Sdes
1166180744Sdes/* ---------------------------------------------------------------------- */
1167180744Sdes/* ---------------------------------------------------------------------- */
1168180744Sdes/* ----- Begin UMAC Section --------------------------------------------- */
1169180744Sdes/* ---------------------------------------------------------------------- */
1170180744Sdes/* ---------------------------------------------------------------------- */
1171180744Sdes
1172180744Sdes/* The UMAC interface has two interfaces, an all-at-once interface where
1173180744Sdes * the entire message to be authenticated is passed to UMAC in one buffer,
1174180744Sdes * and a sequential interface where the message is presented a little at a
1175180744Sdes * time. The all-at-once is more optimaized than the sequential version and
1176180744Sdes * should be preferred when the sequential interface is not required.
1177180744Sdes */
1178180744Sdesstruct umac_ctx {
1179180744Sdes    uhash_ctx hash;          /* Hash function for message compression    */
1180180744Sdes    pdf_ctx pdf;             /* PDF for hashed output                    */
1181180744Sdes    void *free_ptr;          /* Address to free this struct via          */
1182180744Sdes} umac_ctx;
1183180744Sdes
1184180744Sdes/* ---------------------------------------------------------------------- */
1185180744Sdes
1186180744Sdes#if 0
1187180744Sdesint umac_reset(struct umac_ctx *ctx)
1188180744Sdes/* Reset the hash function to begin a new authentication.        */
1189180744Sdes{
1190180744Sdes    uhash_reset(&ctx->hash);
1191180744Sdes    return (1);
1192180744Sdes}
1193180744Sdes#endif
1194180744Sdes
1195180744Sdes/* ---------------------------------------------------------------------- */
1196180744Sdes
1197180744Sdesint umac_delete(struct umac_ctx *ctx)
1198180744Sdes/* Deallocate the ctx structure */
1199180744Sdes{
1200180744Sdes    if (ctx) {
1201180744Sdes        if (ALLOC_BOUNDARY)
1202180744Sdes            ctx = (struct umac_ctx *)ctx->free_ptr;
1203255767Sdes        free(ctx);
1204180744Sdes    }
1205180744Sdes    return (1);
1206180744Sdes}
1207180744Sdes
1208180744Sdes/* ---------------------------------------------------------------------- */
1209180744Sdes
1210255767Sdesstruct umac_ctx *umac_new(const u_char key[])
1211180744Sdes/* Dynamically allocate a umac_ctx struct, initialize variables,
1212180744Sdes * generate subkeys from key. Align to 16-byte boundary.
1213180744Sdes */
1214180744Sdes{
1215180744Sdes    struct umac_ctx *ctx, *octx;
1216180744Sdes    size_t bytes_to_add;
1217180744Sdes    aes_int_key prf_key;
1218180744Sdes
1219258343Sdes    octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1220180744Sdes    if (ctx) {
1221180744Sdes        if (ALLOC_BOUNDARY) {
1222180744Sdes            bytes_to_add = ALLOC_BOUNDARY -
1223180744Sdes                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1224180744Sdes            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1225180744Sdes        }
1226180744Sdes        ctx->free_ptr = octx;
1227255767Sdes        aes_key_setup(key, prf_key);
1228180744Sdes        pdf_init(&ctx->pdf, prf_key);
1229180744Sdes        uhash_init(&ctx->hash, prf_key);
1230180744Sdes    }
1231180744Sdes
1232180744Sdes    return (ctx);
1233180744Sdes}
1234180744Sdes
1235180744Sdes/* ---------------------------------------------------------------------- */
1236180744Sdes
1237255767Sdesint umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1238180744Sdes/* Incorporate any pending data, pad, and generate tag */
1239180744Sdes{
1240180744Sdes    uhash_final(&ctx->hash, (u_char *)tag);
1241255767Sdes    pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1242180744Sdes
1243180744Sdes    return (1);
1244180744Sdes}
1245180744Sdes
1246180744Sdes/* ---------------------------------------------------------------------- */
1247180744Sdes
1248255767Sdesint umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1249180744Sdes/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1250180744Sdes/* hash each one, calling the PDF on the hashed output whenever the hash- */
1251180744Sdes/* output buffer is full.                                                 */
1252180744Sdes{
1253180744Sdes    uhash_update(&ctx->hash, input, len);
1254180744Sdes    return (1);
1255180744Sdes}
1256180744Sdes
1257180744Sdes/* ---------------------------------------------------------------------- */
1258180744Sdes
1259180744Sdes#if 0
1260180744Sdesint umac(struct umac_ctx *ctx, u_char *input,
1261180744Sdes         long len, u_char tag[],
1262180744Sdes         u_char nonce[8])
1263180744Sdes/* All-in-one version simply calls umac_update() and umac_final().        */
1264180744Sdes{
1265180744Sdes    uhash(&ctx->hash, input, len, (u_char *)tag);
1266180744Sdes    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1267180744Sdes
1268180744Sdes    return (1);
1269180744Sdes}
1270180744Sdes#endif
1271180744Sdes
1272180744Sdes/* ---------------------------------------------------------------------- */
1273180744Sdes/* ---------------------------------------------------------------------- */
1274180744Sdes/* ----- End UMAC Section ----------------------------------------------- */
1275180744Sdes/* ---------------------------------------------------------------------- */
1276180744Sdes/* ---------------------------------------------------------------------- */
1277