key.c revision 264377
1/* $OpenBSD: key.c,v 1.116 2014/02/02 03:44:31 djm Exp $ */
2/*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose.  Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler.  All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "includes.h"
38
39#include <sys/param.h>
40#include <sys/types.h>
41
42#include "crypto_api.h"
43
44#include <openssl/evp.h>
45#include <openbsd-compat/openssl-compat.h>
46
47#include <stdarg.h>
48#include <stdio.h>
49#include <string.h>
50
51#include "xmalloc.h"
52#include "key.h"
53#include "rsa.h"
54#include "uuencode.h"
55#include "buffer.h"
56#include "log.h"
57#include "misc.h"
58#include "ssh2.h"
59#include "digest.h"
60
61static int to_blob(const Key *, u_char **, u_int *, int);
62static Key *key_from_blob2(const u_char *, u_int, int);
63
64static struct KeyCert *
65cert_new(void)
66{
67	struct KeyCert *cert;
68
69	cert = xcalloc(1, sizeof(*cert));
70	buffer_init(&cert->certblob);
71	buffer_init(&cert->critical);
72	buffer_init(&cert->extensions);
73	cert->key_id = NULL;
74	cert->principals = NULL;
75	cert->signature_key = NULL;
76	return cert;
77}
78
79Key *
80key_new(int type)
81{
82	Key *k;
83	RSA *rsa;
84	DSA *dsa;
85	k = xcalloc(1, sizeof(*k));
86	k->type = type;
87	k->ecdsa = NULL;
88	k->ecdsa_nid = -1;
89	k->dsa = NULL;
90	k->rsa = NULL;
91	k->cert = NULL;
92	k->ed25519_sk = NULL;
93	k->ed25519_pk = NULL;
94	switch (k->type) {
95	case KEY_RSA1:
96	case KEY_RSA:
97	case KEY_RSA_CERT_V00:
98	case KEY_RSA_CERT:
99		if ((rsa = RSA_new()) == NULL)
100			fatal("key_new: RSA_new failed");
101		if ((rsa->n = BN_new()) == NULL)
102			fatal("key_new: BN_new failed");
103		if ((rsa->e = BN_new()) == NULL)
104			fatal("key_new: BN_new failed");
105		k->rsa = rsa;
106		break;
107	case KEY_DSA:
108	case KEY_DSA_CERT_V00:
109	case KEY_DSA_CERT:
110		if ((dsa = DSA_new()) == NULL)
111			fatal("key_new: DSA_new failed");
112		if ((dsa->p = BN_new()) == NULL)
113			fatal("key_new: BN_new failed");
114		if ((dsa->q = BN_new()) == NULL)
115			fatal("key_new: BN_new failed");
116		if ((dsa->g = BN_new()) == NULL)
117			fatal("key_new: BN_new failed");
118		if ((dsa->pub_key = BN_new()) == NULL)
119			fatal("key_new: BN_new failed");
120		k->dsa = dsa;
121		break;
122#ifdef OPENSSL_HAS_ECC
123	case KEY_ECDSA:
124	case KEY_ECDSA_CERT:
125		/* Cannot do anything until we know the group */
126		break;
127#endif
128	case KEY_ED25519:
129	case KEY_ED25519_CERT:
130		/* no need to prealloc */
131		break;
132	case KEY_UNSPEC:
133		break;
134	default:
135		fatal("key_new: bad key type %d", k->type);
136		break;
137	}
138
139	if (key_is_cert(k))
140		k->cert = cert_new();
141
142	return k;
143}
144
145void
146key_add_private(Key *k)
147{
148	switch (k->type) {
149	case KEY_RSA1:
150	case KEY_RSA:
151	case KEY_RSA_CERT_V00:
152	case KEY_RSA_CERT:
153		if ((k->rsa->d = BN_new()) == NULL)
154			fatal("key_new_private: BN_new failed");
155		if ((k->rsa->iqmp = BN_new()) == NULL)
156			fatal("key_new_private: BN_new failed");
157		if ((k->rsa->q = BN_new()) == NULL)
158			fatal("key_new_private: BN_new failed");
159		if ((k->rsa->p = BN_new()) == NULL)
160			fatal("key_new_private: BN_new failed");
161		if ((k->rsa->dmq1 = BN_new()) == NULL)
162			fatal("key_new_private: BN_new failed");
163		if ((k->rsa->dmp1 = BN_new()) == NULL)
164			fatal("key_new_private: BN_new failed");
165		break;
166	case KEY_DSA:
167	case KEY_DSA_CERT_V00:
168	case KEY_DSA_CERT:
169		if ((k->dsa->priv_key = BN_new()) == NULL)
170			fatal("key_new_private: BN_new failed");
171		break;
172	case KEY_ECDSA:
173	case KEY_ECDSA_CERT:
174		/* Cannot do anything until we know the group */
175		break;
176	case KEY_ED25519:
177	case KEY_ED25519_CERT:
178		/* no need to prealloc */
179		break;
180	case KEY_UNSPEC:
181		break;
182	default:
183		break;
184	}
185}
186
187Key *
188key_new_private(int type)
189{
190	Key *k = key_new(type);
191
192	key_add_private(k);
193	return k;
194}
195
196static void
197cert_free(struct KeyCert *cert)
198{
199	u_int i;
200
201	buffer_free(&cert->certblob);
202	buffer_free(&cert->critical);
203	buffer_free(&cert->extensions);
204	free(cert->key_id);
205	for (i = 0; i < cert->nprincipals; i++)
206		free(cert->principals[i]);
207	free(cert->principals);
208	if (cert->signature_key != NULL)
209		key_free(cert->signature_key);
210	free(cert);
211}
212
213void
214key_free(Key *k)
215{
216	if (k == NULL)
217		fatal("key_free: key is NULL");
218	switch (k->type) {
219	case KEY_RSA1:
220	case KEY_RSA:
221	case KEY_RSA_CERT_V00:
222	case KEY_RSA_CERT:
223		if (k->rsa != NULL)
224			RSA_free(k->rsa);
225		k->rsa = NULL;
226		break;
227	case KEY_DSA:
228	case KEY_DSA_CERT_V00:
229	case KEY_DSA_CERT:
230		if (k->dsa != NULL)
231			DSA_free(k->dsa);
232		k->dsa = NULL;
233		break;
234#ifdef OPENSSL_HAS_ECC
235	case KEY_ECDSA:
236	case KEY_ECDSA_CERT:
237		if (k->ecdsa != NULL)
238			EC_KEY_free(k->ecdsa);
239		k->ecdsa = NULL;
240		break;
241#endif
242	case KEY_ED25519:
243	case KEY_ED25519_CERT:
244		if (k->ed25519_pk) {
245			explicit_bzero(k->ed25519_pk, ED25519_PK_SZ);
246			free(k->ed25519_pk);
247			k->ed25519_pk = NULL;
248		}
249		if (k->ed25519_sk) {
250			explicit_bzero(k->ed25519_sk, ED25519_SK_SZ);
251			free(k->ed25519_sk);
252			k->ed25519_sk = NULL;
253		}
254		break;
255	case KEY_UNSPEC:
256		break;
257	default:
258		fatal("key_free: bad key type %d", k->type);
259		break;
260	}
261	if (key_is_cert(k)) {
262		if (k->cert != NULL)
263			cert_free(k->cert);
264		k->cert = NULL;
265	}
266
267	free(k);
268}
269
270static int
271cert_compare(struct KeyCert *a, struct KeyCert *b)
272{
273	if (a == NULL && b == NULL)
274		return 1;
275	if (a == NULL || b == NULL)
276		return 0;
277	if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
278		return 0;
279	if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
280	    buffer_len(&a->certblob)) != 0)
281		return 0;
282	return 1;
283}
284
285/*
286 * Compare public portions of key only, allowing comparisons between
287 * certificates and plain keys too.
288 */
289int
290key_equal_public(const Key *a, const Key *b)
291{
292#ifdef OPENSSL_HAS_ECC
293	BN_CTX *bnctx;
294#endif
295
296	if (a == NULL || b == NULL ||
297	    key_type_plain(a->type) != key_type_plain(b->type))
298		return 0;
299
300	switch (a->type) {
301	case KEY_RSA1:
302	case KEY_RSA_CERT_V00:
303	case KEY_RSA_CERT:
304	case KEY_RSA:
305		return a->rsa != NULL && b->rsa != NULL &&
306		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
307		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
308	case KEY_DSA_CERT_V00:
309	case KEY_DSA_CERT:
310	case KEY_DSA:
311		return a->dsa != NULL && b->dsa != NULL &&
312		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
313		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
314		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
315		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
316#ifdef OPENSSL_HAS_ECC
317	case KEY_ECDSA_CERT:
318	case KEY_ECDSA:
319		if (a->ecdsa == NULL || b->ecdsa == NULL ||
320		    EC_KEY_get0_public_key(a->ecdsa) == NULL ||
321		    EC_KEY_get0_public_key(b->ecdsa) == NULL)
322			return 0;
323		if ((bnctx = BN_CTX_new()) == NULL)
324			fatal("%s: BN_CTX_new failed", __func__);
325		if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
326		    EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
327		    EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
328		    EC_KEY_get0_public_key(a->ecdsa),
329		    EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
330			BN_CTX_free(bnctx);
331			return 0;
332		}
333		BN_CTX_free(bnctx);
334		return 1;
335#endif /* OPENSSL_HAS_ECC */
336	case KEY_ED25519:
337	case KEY_ED25519_CERT:
338		return a->ed25519_pk != NULL && b->ed25519_pk != NULL &&
339		    memcmp(a->ed25519_pk, b->ed25519_pk, ED25519_PK_SZ) == 0;
340	default:
341		fatal("key_equal: bad key type %d", a->type);
342	}
343	/* NOTREACHED */
344}
345
346int
347key_equal(const Key *a, const Key *b)
348{
349	if (a == NULL || b == NULL || a->type != b->type)
350		return 0;
351	if (key_is_cert(a)) {
352		if (!cert_compare(a->cert, b->cert))
353			return 0;
354	}
355	return key_equal_public(a, b);
356}
357
358u_char*
359key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
360    u_int *dgst_raw_length)
361{
362	u_char *blob = NULL;
363	u_char *retval = NULL;
364	u_int len = 0;
365	int nlen, elen, hash_alg = -1;
366
367	*dgst_raw_length = 0;
368
369	/* XXX switch to DIGEST_* directly? */
370	switch (dgst_type) {
371	case SSH_FP_MD5:
372		hash_alg = SSH_DIGEST_MD5;
373		break;
374	case SSH_FP_SHA1:
375		hash_alg = SSH_DIGEST_SHA1;
376		break;
377	case SSH_FP_SHA256:
378		hash_alg = SSH_DIGEST_SHA256;
379		break;
380	default:
381		fatal("%s: bad digest type %d", __func__, dgst_type);
382	}
383	switch (k->type) {
384	case KEY_RSA1:
385		nlen = BN_num_bytes(k->rsa->n);
386		elen = BN_num_bytes(k->rsa->e);
387		len = nlen + elen;
388		blob = xmalloc(len);
389		BN_bn2bin(k->rsa->n, blob);
390		BN_bn2bin(k->rsa->e, blob + nlen);
391		break;
392	case KEY_DSA:
393	case KEY_ECDSA:
394	case KEY_RSA:
395	case KEY_ED25519:
396		key_to_blob(k, &blob, &len);
397		break;
398	case KEY_DSA_CERT_V00:
399	case KEY_RSA_CERT_V00:
400	case KEY_DSA_CERT:
401	case KEY_ECDSA_CERT:
402	case KEY_RSA_CERT:
403	case KEY_ED25519_CERT:
404		/* We want a fingerprint of the _key_ not of the cert */
405		to_blob(k, &blob, &len, 1);
406		break;
407	case KEY_UNSPEC:
408		return retval;
409	default:
410		fatal("%s: bad key type %d", __func__, k->type);
411		break;
412	}
413	if (blob != NULL) {
414		retval = xmalloc(SSH_DIGEST_MAX_LENGTH);
415		if ((ssh_digest_memory(hash_alg, blob, len,
416		    retval, SSH_DIGEST_MAX_LENGTH)) != 0)
417			fatal("%s: digest_memory failed", __func__);
418		explicit_bzero(blob, len);
419		free(blob);
420		*dgst_raw_length = ssh_digest_bytes(hash_alg);
421	} else {
422		fatal("%s: blob is null", __func__);
423	}
424	return retval;
425}
426
427static char *
428key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
429{
430	char *retval;
431	u_int i;
432
433	retval = xcalloc(1, dgst_raw_len * 3 + 1);
434	for (i = 0; i < dgst_raw_len; i++) {
435		char hex[4];
436		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
437		strlcat(retval, hex, dgst_raw_len * 3 + 1);
438	}
439
440	/* Remove the trailing ':' character */
441	retval[(dgst_raw_len * 3) - 1] = '\0';
442	return retval;
443}
444
445static char *
446key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
447{
448	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
449	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
450	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
451	u_int i, j = 0, rounds, seed = 1;
452	char *retval;
453
454	rounds = (dgst_raw_len / 2) + 1;
455	retval = xcalloc((rounds * 6), sizeof(char));
456	retval[j++] = 'x';
457	for (i = 0; i < rounds; i++) {
458		u_int idx0, idx1, idx2, idx3, idx4;
459		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
460			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
461			    seed) % 6;
462			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
463			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
464			    (seed / 6)) % 6;
465			retval[j++] = vowels[idx0];
466			retval[j++] = consonants[idx1];
467			retval[j++] = vowels[idx2];
468			if ((i + 1) < rounds) {
469				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
470				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
471				retval[j++] = consonants[idx3];
472				retval[j++] = '-';
473				retval[j++] = consonants[idx4];
474				seed = ((seed * 5) +
475				    ((((u_int)(dgst_raw[2 * i])) * 7) +
476				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
477			}
478		} else {
479			idx0 = seed % 6;
480			idx1 = 16;
481			idx2 = seed / 6;
482			retval[j++] = vowels[idx0];
483			retval[j++] = consonants[idx1];
484			retval[j++] = vowels[idx2];
485		}
486	}
487	retval[j++] = 'x';
488	retval[j++] = '\0';
489	return retval;
490}
491
492/*
493 * Draw an ASCII-Art representing the fingerprint so human brain can
494 * profit from its built-in pattern recognition ability.
495 * This technique is called "random art" and can be found in some
496 * scientific publications like this original paper:
497 *
498 * "Hash Visualization: a New Technique to improve Real-World Security",
499 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
500 * Techniques and E-Commerce (CrypTEC '99)
501 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
502 *
503 * The subject came up in a talk by Dan Kaminsky, too.
504 *
505 * If you see the picture is different, the key is different.
506 * If the picture looks the same, you still know nothing.
507 *
508 * The algorithm used here is a worm crawling over a discrete plane,
509 * leaving a trace (augmenting the field) everywhere it goes.
510 * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
511 * makes the respective movement vector be ignored for this turn.
512 * Graphs are not unambiguous, because circles in graphs can be
513 * walked in either direction.
514 */
515
516/*
517 * Field sizes for the random art.  Have to be odd, so the starting point
518 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
519 * Else pictures would be too dense, and drawing the frame would
520 * fail, too, because the key type would not fit in anymore.
521 */
522#define	FLDBASE		8
523#define	FLDSIZE_Y	(FLDBASE + 1)
524#define	FLDSIZE_X	(FLDBASE * 2 + 1)
525static char *
526key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
527{
528	/*
529	 * Chars to be used after each other every time the worm
530	 * intersects with itself.  Matter of taste.
531	 */
532	char	*augmentation_string = " .o+=*BOX@%&#/^SE";
533	char	*retval, *p;
534	u_char	 field[FLDSIZE_X][FLDSIZE_Y];
535	u_int	 i, b;
536	int	 x, y;
537	size_t	 len = strlen(augmentation_string) - 1;
538
539	retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
540
541	/* initialize field */
542	memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
543	x = FLDSIZE_X / 2;
544	y = FLDSIZE_Y / 2;
545
546	/* process raw key */
547	for (i = 0; i < dgst_raw_len; i++) {
548		int input;
549		/* each byte conveys four 2-bit move commands */
550		input = dgst_raw[i];
551		for (b = 0; b < 4; b++) {
552			/* evaluate 2 bit, rest is shifted later */
553			x += (input & 0x1) ? 1 : -1;
554			y += (input & 0x2) ? 1 : -1;
555
556			/* assure we are still in bounds */
557			x = MAX(x, 0);
558			y = MAX(y, 0);
559			x = MIN(x, FLDSIZE_X - 1);
560			y = MIN(y, FLDSIZE_Y - 1);
561
562			/* augment the field */
563			if (field[x][y] < len - 2)
564				field[x][y]++;
565			input = input >> 2;
566		}
567	}
568
569	/* mark starting point and end point*/
570	field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
571	field[x][y] = len;
572
573	/* fill in retval */
574	snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
575	p = strchr(retval, '\0');
576
577	/* output upper border */
578	for (i = p - retval - 1; i < FLDSIZE_X; i++)
579		*p++ = '-';
580	*p++ = '+';
581	*p++ = '\n';
582
583	/* output content */
584	for (y = 0; y < FLDSIZE_Y; y++) {
585		*p++ = '|';
586		for (x = 0; x < FLDSIZE_X; x++)
587			*p++ = augmentation_string[MIN(field[x][y], len)];
588		*p++ = '|';
589		*p++ = '\n';
590	}
591
592	/* output lower border */
593	*p++ = '+';
594	for (i = 0; i < FLDSIZE_X; i++)
595		*p++ = '-';
596	*p++ = '+';
597
598	return retval;
599}
600
601char *
602key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
603{
604	char *retval = NULL;
605	u_char *dgst_raw;
606	u_int dgst_raw_len;
607
608	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
609	if (!dgst_raw)
610		fatal("key_fingerprint: null from key_fingerprint_raw()");
611	switch (dgst_rep) {
612	case SSH_FP_HEX:
613		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
614		break;
615	case SSH_FP_BUBBLEBABBLE:
616		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
617		break;
618	case SSH_FP_RANDOMART:
619		retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
620		break;
621	default:
622		fatal("key_fingerprint: bad digest representation %d",
623		    dgst_rep);
624		break;
625	}
626	explicit_bzero(dgst_raw, dgst_raw_len);
627	free(dgst_raw);
628	return retval;
629}
630
631/*
632 * Reads a multiple-precision integer in decimal from the buffer, and advances
633 * the pointer.  The integer must already be initialized.  This function is
634 * permitted to modify the buffer.  This leaves *cpp to point just beyond the
635 * last processed (and maybe modified) character.  Note that this may modify
636 * the buffer containing the number.
637 */
638static int
639read_bignum(char **cpp, BIGNUM * value)
640{
641	char *cp = *cpp;
642	int old;
643
644	/* Skip any leading whitespace. */
645	for (; *cp == ' ' || *cp == '\t'; cp++)
646		;
647
648	/* Check that it begins with a decimal digit. */
649	if (*cp < '0' || *cp > '9')
650		return 0;
651
652	/* Save starting position. */
653	*cpp = cp;
654
655	/* Move forward until all decimal digits skipped. */
656	for (; *cp >= '0' && *cp <= '9'; cp++)
657		;
658
659	/* Save the old terminating character, and replace it by \0. */
660	old = *cp;
661	*cp = 0;
662
663	/* Parse the number. */
664	if (BN_dec2bn(&value, *cpp) == 0)
665		return 0;
666
667	/* Restore old terminating character. */
668	*cp = old;
669
670	/* Move beyond the number and return success. */
671	*cpp = cp;
672	return 1;
673}
674
675static int
676write_bignum(FILE *f, BIGNUM *num)
677{
678	char *buf = BN_bn2dec(num);
679	if (buf == NULL) {
680		error("write_bignum: BN_bn2dec() failed");
681		return 0;
682	}
683	fprintf(f, " %s", buf);
684	OPENSSL_free(buf);
685	return 1;
686}
687
688/* returns 1 ok, -1 error */
689int
690key_read(Key *ret, char **cpp)
691{
692	Key *k;
693	int success = -1;
694	char *cp, *space;
695	int len, n, type;
696	u_int bits;
697	u_char *blob;
698#ifdef OPENSSL_HAS_ECC
699	int curve_nid = -1;
700#endif
701
702	cp = *cpp;
703
704	switch (ret->type) {
705	case KEY_RSA1:
706		/* Get number of bits. */
707		if (*cp < '0' || *cp > '9')
708			return -1;	/* Bad bit count... */
709		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
710			bits = 10 * bits + *cp - '0';
711		if (bits == 0)
712			return -1;
713		*cpp = cp;
714		/* Get public exponent, public modulus. */
715		if (!read_bignum(cpp, ret->rsa->e))
716			return -1;
717		if (!read_bignum(cpp, ret->rsa->n))
718			return -1;
719		/* validate the claimed number of bits */
720		if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
721			verbose("key_read: claimed key size %d does not match "
722			   "actual %d", bits, BN_num_bits(ret->rsa->n));
723			return -1;
724		}
725		success = 1;
726		break;
727	case KEY_UNSPEC:
728	case KEY_RSA:
729	case KEY_DSA:
730	case KEY_ECDSA:
731	case KEY_ED25519:
732	case KEY_DSA_CERT_V00:
733	case KEY_RSA_CERT_V00:
734	case KEY_DSA_CERT:
735	case KEY_ECDSA_CERT:
736	case KEY_RSA_CERT:
737	case KEY_ED25519_CERT:
738		space = strchr(cp, ' ');
739		if (space == NULL) {
740			debug3("key_read: missing whitespace");
741			return -1;
742		}
743		*space = '\0';
744		type = key_type_from_name(cp);
745#ifdef OPENSSL_HAS_ECC
746		if (key_type_plain(type) == KEY_ECDSA &&
747		    (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
748			debug("key_read: invalid curve");
749			return -1;
750		}
751#endif
752		*space = ' ';
753		if (type == KEY_UNSPEC) {
754			debug3("key_read: missing keytype");
755			return -1;
756		}
757		cp = space+1;
758		if (*cp == '\0') {
759			debug3("key_read: short string");
760			return -1;
761		}
762		if (ret->type == KEY_UNSPEC) {
763			ret->type = type;
764		} else if (ret->type != type) {
765			/* is a key, but different type */
766			debug3("key_read: type mismatch");
767			return -1;
768		}
769		len = 2*strlen(cp);
770		blob = xmalloc(len);
771		n = uudecode(cp, blob, len);
772		if (n < 0) {
773			error("key_read: uudecode %s failed", cp);
774			free(blob);
775			return -1;
776		}
777		k = key_from_blob(blob, (u_int)n);
778		free(blob);
779		if (k == NULL) {
780			error("key_read: key_from_blob %s failed", cp);
781			return -1;
782		}
783		if (k->type != type) {
784			error("key_read: type mismatch: encoding error");
785			key_free(k);
786			return -1;
787		}
788#ifdef OPENSSL_HAS_ECC
789		if (key_type_plain(type) == KEY_ECDSA &&
790		    curve_nid != k->ecdsa_nid) {
791			error("key_read: type mismatch: EC curve mismatch");
792			key_free(k);
793			return -1;
794		}
795#endif
796/*XXXX*/
797		if (key_is_cert(ret)) {
798			if (!key_is_cert(k)) {
799				error("key_read: loaded key is not a cert");
800				key_free(k);
801				return -1;
802			}
803			if (ret->cert != NULL)
804				cert_free(ret->cert);
805			ret->cert = k->cert;
806			k->cert = NULL;
807		}
808		if (key_type_plain(ret->type) == KEY_RSA) {
809			if (ret->rsa != NULL)
810				RSA_free(ret->rsa);
811			ret->rsa = k->rsa;
812			k->rsa = NULL;
813#ifdef DEBUG_PK
814			RSA_print_fp(stderr, ret->rsa, 8);
815#endif
816		}
817		if (key_type_plain(ret->type) == KEY_DSA) {
818			if (ret->dsa != NULL)
819				DSA_free(ret->dsa);
820			ret->dsa = k->dsa;
821			k->dsa = NULL;
822#ifdef DEBUG_PK
823			DSA_print_fp(stderr, ret->dsa, 8);
824#endif
825		}
826#ifdef OPENSSL_HAS_ECC
827		if (key_type_plain(ret->type) == KEY_ECDSA) {
828			if (ret->ecdsa != NULL)
829				EC_KEY_free(ret->ecdsa);
830			ret->ecdsa = k->ecdsa;
831			ret->ecdsa_nid = k->ecdsa_nid;
832			k->ecdsa = NULL;
833			k->ecdsa_nid = -1;
834#ifdef DEBUG_PK
835			key_dump_ec_key(ret->ecdsa);
836#endif
837		}
838#endif
839		if (key_type_plain(ret->type) == KEY_ED25519) {
840			free(ret->ed25519_pk);
841			ret->ed25519_pk = k->ed25519_pk;
842			k->ed25519_pk = NULL;
843#ifdef DEBUG_PK
844			/* XXX */
845#endif
846		}
847		success = 1;
848/*XXXX*/
849		key_free(k);
850		if (success != 1)
851			break;
852		/* advance cp: skip whitespace and data */
853		while (*cp == ' ' || *cp == '\t')
854			cp++;
855		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
856			cp++;
857		*cpp = cp;
858		break;
859	default:
860		fatal("key_read: bad key type: %d", ret->type);
861		break;
862	}
863	return success;
864}
865
866int
867key_write(const Key *key, FILE *f)
868{
869	int n, success = 0;
870	u_int len, bits = 0;
871	u_char *blob;
872	char *uu;
873
874	if (key_is_cert(key)) {
875		if (key->cert == NULL) {
876			error("%s: no cert data", __func__);
877			return 0;
878		}
879		if (buffer_len(&key->cert->certblob) == 0) {
880			error("%s: no signed certificate blob", __func__);
881			return 0;
882		}
883	}
884
885	switch (key->type) {
886	case KEY_RSA1:
887		if (key->rsa == NULL)
888			return 0;
889		/* size of modulus 'n' */
890		bits = BN_num_bits(key->rsa->n);
891		fprintf(f, "%u", bits);
892		if (write_bignum(f, key->rsa->e) &&
893		    write_bignum(f, key->rsa->n))
894			return 1;
895		error("key_write: failed for RSA key");
896		return 0;
897	case KEY_DSA:
898	case KEY_DSA_CERT_V00:
899	case KEY_DSA_CERT:
900		if (key->dsa == NULL)
901			return 0;
902		break;
903#ifdef OPENSSL_HAS_ECC
904	case KEY_ECDSA:
905	case KEY_ECDSA_CERT:
906		if (key->ecdsa == NULL)
907			return 0;
908		break;
909#endif
910	case KEY_ED25519:
911	case KEY_ED25519_CERT:
912		if (key->ed25519_pk == NULL)
913			return 0;
914		break;
915	case KEY_RSA:
916	case KEY_RSA_CERT_V00:
917	case KEY_RSA_CERT:
918		if (key->rsa == NULL)
919			return 0;
920		break;
921	default:
922		return 0;
923	}
924
925	key_to_blob(key, &blob, &len);
926	uu = xmalloc(2*len);
927	n = uuencode(blob, len, uu, 2*len);
928	if (n > 0) {
929		fprintf(f, "%s %s", key_ssh_name(key), uu);
930		success = 1;
931	}
932	free(blob);
933	free(uu);
934
935	return success;
936}
937
938const char *
939key_cert_type(const Key *k)
940{
941	switch (k->cert->type) {
942	case SSH2_CERT_TYPE_USER:
943		return "user";
944	case SSH2_CERT_TYPE_HOST:
945		return "host";
946	default:
947		return "unknown";
948	}
949}
950
951struct keytype {
952	char *name;
953	char *shortname;
954	int type;
955	int nid;
956	int cert;
957};
958static const struct keytype keytypes[] = {
959	{ NULL, "RSA1", KEY_RSA1, 0, 0 },
960	{ "ssh-rsa", "RSA", KEY_RSA, 0, 0 },
961	{ "ssh-dss", "DSA", KEY_DSA, 0, 0 },
962	{ "ssh-ed25519", "ED25519", KEY_ED25519, 0, 0 },
963#ifdef OPENSSL_HAS_ECC
964	{ "ecdsa-sha2-nistp256", "ECDSA", KEY_ECDSA, NID_X9_62_prime256v1, 0 },
965	{ "ecdsa-sha2-nistp384", "ECDSA", KEY_ECDSA, NID_secp384r1, 0 },
966# ifdef OPENSSL_HAS_NISTP521
967	{ "ecdsa-sha2-nistp521", "ECDSA", KEY_ECDSA, NID_secp521r1, 0 },
968# endif
969#endif /* OPENSSL_HAS_ECC */
970	{ "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", KEY_RSA_CERT, 0, 1 },
971	{ "ssh-dss-cert-v01@openssh.com", "DSA-CERT", KEY_DSA_CERT, 0, 1 },
972#ifdef OPENSSL_HAS_ECC
973	{ "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT",
974	    KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1 },
975	{ "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT",
976	    KEY_ECDSA_CERT, NID_secp384r1, 1 },
977# ifdef OPENSSL_HAS_NISTP521
978	{ "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT",
979	    KEY_ECDSA_CERT, NID_secp521r1, 1 },
980# endif
981#endif /* OPENSSL_HAS_ECC */
982	{ "ssh-rsa-cert-v00@openssh.com", "RSA-CERT-V00",
983	    KEY_RSA_CERT_V00, 0, 1 },
984	{ "ssh-dss-cert-v00@openssh.com", "DSA-CERT-V00",
985	    KEY_DSA_CERT_V00, 0, 1 },
986	{ "ssh-ed25519-cert-v01@openssh.com", "ED25519-CERT",
987	    KEY_ED25519_CERT, 0, 1 },
988	{ NULL, NULL, -1, -1, 0 }
989};
990
991const char *
992key_type(const Key *k)
993{
994	const struct keytype *kt;
995
996	for (kt = keytypes; kt->type != -1; kt++) {
997		if (kt->type == k->type)
998			return kt->shortname;
999	}
1000	return "unknown";
1001}
1002
1003static const char *
1004key_ssh_name_from_type_nid(int type, int nid)
1005{
1006	const struct keytype *kt;
1007
1008	for (kt = keytypes; kt->type != -1; kt++) {
1009		if (kt->type == type && (kt->nid == 0 || kt->nid == nid))
1010			return kt->name;
1011	}
1012	return "ssh-unknown";
1013}
1014
1015const char *
1016key_ssh_name(const Key *k)
1017{
1018	return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
1019}
1020
1021const char *
1022key_ssh_name_plain(const Key *k)
1023{
1024	return key_ssh_name_from_type_nid(key_type_plain(k->type),
1025	    k->ecdsa_nid);
1026}
1027
1028int
1029key_type_from_name(char *name)
1030{
1031	const struct keytype *kt;
1032
1033	for (kt = keytypes; kt->type != -1; kt++) {
1034		/* Only allow shortname matches for plain key types */
1035		if ((kt->name != NULL && strcmp(name, kt->name) == 0) ||
1036		    (!kt->cert && strcasecmp(kt->shortname, name) == 0))
1037			return kt->type;
1038	}
1039	debug2("key_type_from_name: unknown key type '%s'", name);
1040	return KEY_UNSPEC;
1041}
1042
1043int
1044key_ecdsa_nid_from_name(const char *name)
1045{
1046	const struct keytype *kt;
1047
1048	for (kt = keytypes; kt->type != -1; kt++) {
1049		if (kt->type != KEY_ECDSA && kt->type != KEY_ECDSA_CERT)
1050			continue;
1051		if (kt->name != NULL && strcmp(name, kt->name) == 0)
1052			return kt->nid;
1053	}
1054	debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1055	return -1;
1056}
1057
1058char *
1059key_alg_list(int certs_only, int plain_only)
1060{
1061	char *ret = NULL;
1062	size_t nlen, rlen = 0;
1063	const struct keytype *kt;
1064
1065	for (kt = keytypes; kt->type != -1; kt++) {
1066		if (kt->name == NULL)
1067			continue;
1068		if ((certs_only && !kt->cert) || (plain_only && kt->cert))
1069			continue;
1070		if (ret != NULL)
1071			ret[rlen++] = '\n';
1072		nlen = strlen(kt->name);
1073		ret = xrealloc(ret, 1, rlen + nlen + 2);
1074		memcpy(ret + rlen, kt->name, nlen + 1);
1075		rlen += nlen;
1076	}
1077	return ret;
1078}
1079
1080int
1081key_type_is_cert(int type)
1082{
1083	const struct keytype *kt;
1084
1085	for (kt = keytypes; kt->type != -1; kt++) {
1086		if (kt->type == type)
1087			return kt->cert;
1088	}
1089	return 0;
1090}
1091
1092static int
1093key_type_is_valid_ca(int type)
1094{
1095	switch (type) {
1096	case KEY_RSA:
1097	case KEY_DSA:
1098	case KEY_ECDSA:
1099	case KEY_ED25519:
1100		return 1;
1101	default:
1102		return 0;
1103	}
1104}
1105
1106u_int
1107key_size(const Key *k)
1108{
1109	switch (k->type) {
1110	case KEY_RSA1:
1111	case KEY_RSA:
1112	case KEY_RSA_CERT_V00:
1113	case KEY_RSA_CERT:
1114		return BN_num_bits(k->rsa->n);
1115	case KEY_DSA:
1116	case KEY_DSA_CERT_V00:
1117	case KEY_DSA_CERT:
1118		return BN_num_bits(k->dsa->p);
1119	case KEY_ED25519:
1120		return 256;	/* XXX */
1121#ifdef OPENSSL_HAS_ECC
1122	case KEY_ECDSA:
1123	case KEY_ECDSA_CERT:
1124		return key_curve_nid_to_bits(k->ecdsa_nid);
1125#endif
1126	}
1127	return 0;
1128}
1129
1130static RSA *
1131rsa_generate_private_key(u_int bits)
1132{
1133	RSA *private = RSA_new();
1134	BIGNUM *f4 = BN_new();
1135
1136	if (private == NULL)
1137		fatal("%s: RSA_new failed", __func__);
1138	if (f4 == NULL)
1139		fatal("%s: BN_new failed", __func__);
1140	if (!BN_set_word(f4, RSA_F4))
1141		fatal("%s: BN_new failed", __func__);
1142	if (!RSA_generate_key_ex(private, bits, f4, NULL))
1143		fatal("%s: key generation failed.", __func__);
1144	BN_free(f4);
1145	return private;
1146}
1147
1148static DSA*
1149dsa_generate_private_key(u_int bits)
1150{
1151	DSA *private = DSA_new();
1152
1153	if (private == NULL)
1154		fatal("%s: DSA_new failed", __func__);
1155	if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1156	    NULL, NULL))
1157		fatal("%s: DSA_generate_parameters failed", __func__);
1158	if (!DSA_generate_key(private))
1159		fatal("%s: DSA_generate_key failed.", __func__);
1160	return private;
1161}
1162
1163int
1164key_ecdsa_bits_to_nid(int bits)
1165{
1166	switch (bits) {
1167#ifdef OPENSSL_HAS_ECC
1168	case 256:
1169		return NID_X9_62_prime256v1;
1170	case 384:
1171		return NID_secp384r1;
1172# ifdef OPENSSL_HAS_NISTP521
1173	case 521:
1174		return NID_secp521r1;
1175# endif
1176#endif
1177	default:
1178		return -1;
1179	}
1180}
1181
1182#ifdef OPENSSL_HAS_ECC
1183int
1184key_ecdsa_key_to_nid(EC_KEY *k)
1185{
1186	EC_GROUP *eg;
1187	int nids[] = {
1188		NID_X9_62_prime256v1,
1189		NID_secp384r1,
1190# ifdef OPENSSL_HAS_NISTP521
1191		NID_secp521r1,
1192# endif
1193		-1
1194	};
1195	int nid;
1196	u_int i;
1197	BN_CTX *bnctx;
1198	const EC_GROUP *g = EC_KEY_get0_group(k);
1199
1200	/*
1201	 * The group may be stored in a ASN.1 encoded private key in one of two
1202	 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1203	 * or explicit group parameters encoded into the key blob. Only the
1204	 * "named group" case sets the group NID for us, but we can figure
1205	 * it out for the other case by comparing against all the groups that
1206	 * are supported.
1207	 */
1208	if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1209		return nid;
1210	if ((bnctx = BN_CTX_new()) == NULL)
1211		fatal("%s: BN_CTX_new() failed", __func__);
1212	for (i = 0; nids[i] != -1; i++) {
1213		if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1214			fatal("%s: EC_GROUP_new_by_curve_name failed",
1215			    __func__);
1216		if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1217			break;
1218		EC_GROUP_free(eg);
1219	}
1220	BN_CTX_free(bnctx);
1221	debug3("%s: nid = %d", __func__, nids[i]);
1222	if (nids[i] != -1) {
1223		/* Use the group with the NID attached */
1224		EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1225		if (EC_KEY_set_group(k, eg) != 1)
1226			fatal("%s: EC_KEY_set_group", __func__);
1227	}
1228	return nids[i];
1229}
1230
1231static EC_KEY*
1232ecdsa_generate_private_key(u_int bits, int *nid)
1233{
1234	EC_KEY *private;
1235
1236	if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1237		fatal("%s: invalid key length", __func__);
1238	if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1239		fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1240	if (EC_KEY_generate_key(private) != 1)
1241		fatal("%s: EC_KEY_generate_key failed", __func__);
1242	EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1243	return private;
1244}
1245#endif /* OPENSSL_HAS_ECC */
1246
1247Key *
1248key_generate(int type, u_int bits)
1249{
1250	Key *k = key_new(KEY_UNSPEC);
1251	switch (type) {
1252	case KEY_DSA:
1253		k->dsa = dsa_generate_private_key(bits);
1254		break;
1255#ifdef OPENSSL_HAS_ECC
1256	case KEY_ECDSA:
1257		k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1258		break;
1259#endif
1260	case KEY_RSA:
1261	case KEY_RSA1:
1262		k->rsa = rsa_generate_private_key(bits);
1263		break;
1264	case KEY_ED25519:
1265		k->ed25519_pk = xmalloc(ED25519_PK_SZ);
1266		k->ed25519_sk = xmalloc(ED25519_SK_SZ);
1267		crypto_sign_ed25519_keypair(k->ed25519_pk, k->ed25519_sk);
1268		break;
1269	case KEY_RSA_CERT_V00:
1270	case KEY_DSA_CERT_V00:
1271	case KEY_RSA_CERT:
1272	case KEY_DSA_CERT:
1273		fatal("key_generate: cert keys cannot be generated directly");
1274	default:
1275		fatal("key_generate: unknown type %d", type);
1276	}
1277	k->type = type;
1278	return k;
1279}
1280
1281void
1282key_cert_copy(const Key *from_key, struct Key *to_key)
1283{
1284	u_int i;
1285	const struct KeyCert *from;
1286	struct KeyCert *to;
1287
1288	if (to_key->cert != NULL) {
1289		cert_free(to_key->cert);
1290		to_key->cert = NULL;
1291	}
1292
1293	if ((from = from_key->cert) == NULL)
1294		return;
1295
1296	to = to_key->cert = cert_new();
1297
1298	buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1299	    buffer_len(&from->certblob));
1300
1301	buffer_append(&to->critical,
1302	    buffer_ptr(&from->critical), buffer_len(&from->critical));
1303	buffer_append(&to->extensions,
1304	    buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1305
1306	to->serial = from->serial;
1307	to->type = from->type;
1308	to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1309	to->valid_after = from->valid_after;
1310	to->valid_before = from->valid_before;
1311	to->signature_key = from->signature_key == NULL ?
1312	    NULL : key_from_private(from->signature_key);
1313
1314	to->nprincipals = from->nprincipals;
1315	if (to->nprincipals > CERT_MAX_PRINCIPALS)
1316		fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1317		    __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1318	if (to->nprincipals > 0) {
1319		to->principals = xcalloc(from->nprincipals,
1320		    sizeof(*to->principals));
1321		for (i = 0; i < to->nprincipals; i++)
1322			to->principals[i] = xstrdup(from->principals[i]);
1323	}
1324}
1325
1326Key *
1327key_from_private(const Key *k)
1328{
1329	Key *n = NULL;
1330	switch (k->type) {
1331	case KEY_DSA:
1332	case KEY_DSA_CERT_V00:
1333	case KEY_DSA_CERT:
1334		n = key_new(k->type);
1335		if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1336		    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1337		    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1338		    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1339			fatal("key_from_private: BN_copy failed");
1340		break;
1341#ifdef OPENSSL_HAS_ECC
1342	case KEY_ECDSA:
1343	case KEY_ECDSA_CERT:
1344		n = key_new(k->type);
1345		n->ecdsa_nid = k->ecdsa_nid;
1346		if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1347			fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1348		if (EC_KEY_set_public_key(n->ecdsa,
1349		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1350			fatal("%s: EC_KEY_set_public_key failed", __func__);
1351		break;
1352#endif
1353	case KEY_RSA:
1354	case KEY_RSA1:
1355	case KEY_RSA_CERT_V00:
1356	case KEY_RSA_CERT:
1357		n = key_new(k->type);
1358		if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1359		    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1360			fatal("key_from_private: BN_copy failed");
1361		break;
1362	case KEY_ED25519:
1363	case KEY_ED25519_CERT:
1364		n = key_new(k->type);
1365		if (k->ed25519_pk != NULL) {
1366			n->ed25519_pk = xmalloc(ED25519_PK_SZ);
1367			memcpy(n->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ);
1368		}
1369		break;
1370	default:
1371		fatal("key_from_private: unknown type %d", k->type);
1372		break;
1373	}
1374	if (key_is_cert(k))
1375		key_cert_copy(k, n);
1376	return n;
1377}
1378
1379int
1380key_names_valid2(const char *names)
1381{
1382	char *s, *cp, *p;
1383
1384	if (names == NULL || strcmp(names, "") == 0)
1385		return 0;
1386	s = cp = xstrdup(names);
1387	for ((p = strsep(&cp, ",")); p && *p != '\0';
1388	    (p = strsep(&cp, ","))) {
1389		switch (key_type_from_name(p)) {
1390		case KEY_RSA1:
1391		case KEY_UNSPEC:
1392			free(s);
1393			return 0;
1394		}
1395	}
1396	debug3("key names ok: [%s]", names);
1397	free(s);
1398	return 1;
1399}
1400
1401static int
1402cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1403{
1404	u_char *principals, *critical, *exts, *sig_key, *sig;
1405	u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1406	Buffer tmp;
1407	char *principal;
1408	int ret = -1;
1409	int v00 = key->type == KEY_DSA_CERT_V00 ||
1410	    key->type == KEY_RSA_CERT_V00;
1411
1412	buffer_init(&tmp);
1413
1414	/* Copy the entire key blob for verification and later serialisation */
1415	buffer_append(&key->cert->certblob, blob, blen);
1416
1417	elen = 0; /* Not touched for v00 certs */
1418	principals = exts = critical = sig_key = sig = NULL;
1419	if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1420	    buffer_get_int_ret(&key->cert->type, b) != 0 ||
1421	    (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1422	    (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1423	    buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1424	    buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1425	    (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1426	    (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1427	    (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1428	    buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1429	    (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1430		error("%s: parse error", __func__);
1431		goto out;
1432	}
1433
1434	/* Signature is left in the buffer so we can calculate this length */
1435	signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1436
1437	if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1438		error("%s: parse error", __func__);
1439		goto out;
1440	}
1441
1442	if (key->cert->type != SSH2_CERT_TYPE_USER &&
1443	    key->cert->type != SSH2_CERT_TYPE_HOST) {
1444		error("Unknown certificate type %u", key->cert->type);
1445		goto out;
1446	}
1447
1448	buffer_append(&tmp, principals, plen);
1449	while (buffer_len(&tmp) > 0) {
1450		if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1451			error("%s: Too many principals", __func__);
1452			goto out;
1453		}
1454		if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1455			error("%s: Principals data invalid", __func__);
1456			goto out;
1457		}
1458		key->cert->principals = xrealloc(key->cert->principals,
1459		    key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1460		key->cert->principals[key->cert->nprincipals++] = principal;
1461	}
1462
1463	buffer_clear(&tmp);
1464
1465	buffer_append(&key->cert->critical, critical, clen);
1466	buffer_append(&tmp, critical, clen);
1467	/* validate structure */
1468	while (buffer_len(&tmp) != 0) {
1469		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1470		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1471			error("%s: critical option data invalid", __func__);
1472			goto out;
1473		}
1474	}
1475	buffer_clear(&tmp);
1476
1477	buffer_append(&key->cert->extensions, exts, elen);
1478	buffer_append(&tmp, exts, elen);
1479	/* validate structure */
1480	while (buffer_len(&tmp) != 0) {
1481		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1482		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1483			error("%s: extension data invalid", __func__);
1484			goto out;
1485		}
1486	}
1487	buffer_clear(&tmp);
1488
1489	if ((key->cert->signature_key = key_from_blob2(sig_key, sklen, 0))
1490	    == NULL) {
1491		error("%s: Signature key invalid", __func__);
1492		goto out;
1493	}
1494	if (!key_type_is_valid_ca(key->cert->signature_key->type)) {
1495		error("%s: Invalid signature key type %s (%d)", __func__,
1496		    key_type(key->cert->signature_key),
1497		    key->cert->signature_key->type);
1498		goto out;
1499	}
1500
1501	switch (key_verify(key->cert->signature_key, sig, slen,
1502	    buffer_ptr(&key->cert->certblob), signed_len)) {
1503	case 1:
1504		ret = 0;
1505		break; /* Good signature */
1506	case 0:
1507		error("%s: Invalid signature on certificate", __func__);
1508		goto out;
1509	case -1:
1510		error("%s: Certificate signature verification failed",
1511		    __func__);
1512		goto out;
1513	}
1514
1515 out:
1516	buffer_free(&tmp);
1517	free(principals);
1518	free(critical);
1519	free(exts);
1520	free(sig_key);
1521	free(sig);
1522	return ret;
1523}
1524
1525static Key *
1526key_from_blob2(const u_char *blob, u_int blen, int allow_cert)
1527{
1528	Buffer b;
1529	int rlen, type;
1530	u_int len;
1531	char *ktype = NULL, *curve = NULL;
1532	u_char *pk = NULL;
1533	Key *key = NULL;
1534#ifdef OPENSSL_HAS_ECC
1535	EC_POINT *q = NULL;
1536	int nid = -1;
1537#endif
1538
1539#ifdef DEBUG_PK
1540	dump_base64(stderr, blob, blen);
1541#endif
1542	buffer_init(&b);
1543	buffer_append(&b, blob, blen);
1544	if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1545		error("key_from_blob: can't read key type");
1546		goto out;
1547	}
1548
1549	type = key_type_from_name(ktype);
1550#ifdef OPENSSL_HAS_ECC
1551	if (key_type_plain(type) == KEY_ECDSA)
1552		nid = key_ecdsa_nid_from_name(ktype);
1553#endif
1554	if (!allow_cert && key_type_is_cert(type)) {
1555		error("key_from_blob: certificate not allowed in this context");
1556		goto out;
1557	}
1558	switch (type) {
1559	case KEY_RSA_CERT:
1560		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1561		/* FALLTHROUGH */
1562	case KEY_RSA:
1563	case KEY_RSA_CERT_V00:
1564		key = key_new(type);
1565		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1566		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1567			error("key_from_blob: can't read rsa key");
1568 badkey:
1569			key_free(key);
1570			key = NULL;
1571			goto out;
1572		}
1573#ifdef DEBUG_PK
1574		RSA_print_fp(stderr, key->rsa, 8);
1575#endif
1576		break;
1577	case KEY_DSA_CERT:
1578		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1579		/* FALLTHROUGH */
1580	case KEY_DSA:
1581	case KEY_DSA_CERT_V00:
1582		key = key_new(type);
1583		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1584		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1585		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1586		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1587			error("key_from_blob: can't read dsa key");
1588			goto badkey;
1589		}
1590#ifdef DEBUG_PK
1591		DSA_print_fp(stderr, key->dsa, 8);
1592#endif
1593		break;
1594#ifdef OPENSSL_HAS_ECC
1595	case KEY_ECDSA_CERT:
1596		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1597		/* FALLTHROUGH */
1598	case KEY_ECDSA:
1599		key = key_new(type);
1600		key->ecdsa_nid = nid;
1601		if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1602			error("key_from_blob: can't read ecdsa curve");
1603			goto badkey;
1604		}
1605		if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1606			error("key_from_blob: ecdsa curve doesn't match type");
1607			goto badkey;
1608		}
1609		if (key->ecdsa != NULL)
1610			EC_KEY_free(key->ecdsa);
1611		if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1612		    == NULL)
1613			fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1614		if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1615			fatal("key_from_blob: EC_POINT_new failed");
1616		if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1617		    q) == -1) {
1618			error("key_from_blob: can't read ecdsa key point");
1619			goto badkey;
1620		}
1621		if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1622		    q) != 0)
1623			goto badkey;
1624		if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1625			fatal("key_from_blob: EC_KEY_set_public_key failed");
1626#ifdef DEBUG_PK
1627		key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1628#endif
1629		break;
1630#endif /* OPENSSL_HAS_ECC */
1631	case KEY_ED25519_CERT:
1632		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1633		/* FALLTHROUGH */
1634	case KEY_ED25519:
1635		if ((pk = buffer_get_string_ret(&b, &len)) == NULL) {
1636			error("key_from_blob: can't read ed25519 key");
1637			goto badkey;
1638		}
1639		if (len != ED25519_PK_SZ) {
1640			error("key_from_blob: ed25519 len %d != %d",
1641			    len, ED25519_PK_SZ);
1642			goto badkey;
1643		}
1644		key = key_new(type);
1645		key->ed25519_pk = pk;
1646		pk = NULL;
1647		break;
1648	case KEY_UNSPEC:
1649		key = key_new(type);
1650		break;
1651	default:
1652		error("key_from_blob: cannot handle type %s", ktype);
1653		goto out;
1654	}
1655	if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1656		error("key_from_blob: can't parse cert data");
1657		goto badkey;
1658	}
1659	rlen = buffer_len(&b);
1660	if (key != NULL && rlen != 0)
1661		error("key_from_blob: remaining bytes in key blob %d", rlen);
1662 out:
1663	free(ktype);
1664	free(curve);
1665	free(pk);
1666#ifdef OPENSSL_HAS_ECC
1667	if (q != NULL)
1668		EC_POINT_free(q);
1669#endif
1670	buffer_free(&b);
1671	return key;
1672}
1673
1674Key *
1675key_from_blob(const u_char *blob, u_int blen)
1676{
1677	return key_from_blob2(blob, blen, 1);
1678}
1679
1680static int
1681to_blob(const Key *key, u_char **blobp, u_int *lenp, int force_plain)
1682{
1683	Buffer b;
1684	int len, type;
1685
1686	if (blobp != NULL)
1687		*blobp = NULL;
1688	if (lenp != NULL)
1689		*lenp = 0;
1690	if (key == NULL) {
1691		error("key_to_blob: key == NULL");
1692		return 0;
1693	}
1694	buffer_init(&b);
1695	type = force_plain ? key_type_plain(key->type) : key->type;
1696	switch (type) {
1697	case KEY_DSA_CERT_V00:
1698	case KEY_RSA_CERT_V00:
1699	case KEY_DSA_CERT:
1700	case KEY_ECDSA_CERT:
1701	case KEY_RSA_CERT:
1702	case KEY_ED25519_CERT:
1703		/* Use the existing blob */
1704		buffer_append(&b, buffer_ptr(&key->cert->certblob),
1705		    buffer_len(&key->cert->certblob));
1706		break;
1707	case KEY_DSA:
1708		buffer_put_cstring(&b,
1709		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1710		buffer_put_bignum2(&b, key->dsa->p);
1711		buffer_put_bignum2(&b, key->dsa->q);
1712		buffer_put_bignum2(&b, key->dsa->g);
1713		buffer_put_bignum2(&b, key->dsa->pub_key);
1714		break;
1715#ifdef OPENSSL_HAS_ECC
1716	case KEY_ECDSA:
1717		buffer_put_cstring(&b,
1718		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1719		buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1720		buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1721		    EC_KEY_get0_public_key(key->ecdsa));
1722		break;
1723#endif
1724	case KEY_RSA:
1725		buffer_put_cstring(&b,
1726		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1727		buffer_put_bignum2(&b, key->rsa->e);
1728		buffer_put_bignum2(&b, key->rsa->n);
1729		break;
1730	case KEY_ED25519:
1731		buffer_put_cstring(&b,
1732		    key_ssh_name_from_type_nid(type, key->ecdsa_nid));
1733		buffer_put_string(&b, key->ed25519_pk, ED25519_PK_SZ);
1734		break;
1735	default:
1736		error("key_to_blob: unsupported key type %d", key->type);
1737		buffer_free(&b);
1738		return 0;
1739	}
1740	len = buffer_len(&b);
1741	if (lenp != NULL)
1742		*lenp = len;
1743	if (blobp != NULL) {
1744		*blobp = xmalloc(len);
1745		memcpy(*blobp, buffer_ptr(&b), len);
1746	}
1747	explicit_bzero(buffer_ptr(&b), len);
1748	buffer_free(&b);
1749	return len;
1750}
1751
1752int
1753key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1754{
1755	return to_blob(key, blobp, lenp, 0);
1756}
1757
1758int
1759key_sign(
1760    const Key *key,
1761    u_char **sigp, u_int *lenp,
1762    const u_char *data, u_int datalen)
1763{
1764	switch (key->type) {
1765	case KEY_DSA_CERT_V00:
1766	case KEY_DSA_CERT:
1767	case KEY_DSA:
1768		return ssh_dss_sign(key, sigp, lenp, data, datalen);
1769#ifdef OPENSSL_HAS_ECC
1770	case KEY_ECDSA_CERT:
1771	case KEY_ECDSA:
1772		return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1773#endif
1774	case KEY_RSA_CERT_V00:
1775	case KEY_RSA_CERT:
1776	case KEY_RSA:
1777		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1778	case KEY_ED25519:
1779	case KEY_ED25519_CERT:
1780		return ssh_ed25519_sign(key, sigp, lenp, data, datalen);
1781	default:
1782		error("key_sign: invalid key type %d", key->type);
1783		return -1;
1784	}
1785}
1786
1787/*
1788 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1789 * and -1 on error.
1790 */
1791int
1792key_verify(
1793    const Key *key,
1794    const u_char *signature, u_int signaturelen,
1795    const u_char *data, u_int datalen)
1796{
1797	if (signaturelen == 0)
1798		return -1;
1799
1800	switch (key->type) {
1801	case KEY_DSA_CERT_V00:
1802	case KEY_DSA_CERT:
1803	case KEY_DSA:
1804		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1805#ifdef OPENSSL_HAS_ECC
1806	case KEY_ECDSA_CERT:
1807	case KEY_ECDSA:
1808		return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1809#endif
1810	case KEY_RSA_CERT_V00:
1811	case KEY_RSA_CERT:
1812	case KEY_RSA:
1813		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1814	case KEY_ED25519:
1815	case KEY_ED25519_CERT:
1816		return ssh_ed25519_verify(key, signature, signaturelen, data, datalen);
1817	default:
1818		error("key_verify: invalid key type %d", key->type);
1819		return -1;
1820	}
1821}
1822
1823/* Converts a private to a public key */
1824Key *
1825key_demote(const Key *k)
1826{
1827	Key *pk;
1828
1829	pk = xcalloc(1, sizeof(*pk));
1830	pk->type = k->type;
1831	pk->flags = k->flags;
1832	pk->ecdsa_nid = k->ecdsa_nid;
1833	pk->dsa = NULL;
1834	pk->ecdsa = NULL;
1835	pk->rsa = NULL;
1836	pk->ed25519_pk = NULL;
1837	pk->ed25519_sk = NULL;
1838
1839	switch (k->type) {
1840	case KEY_RSA_CERT_V00:
1841	case KEY_RSA_CERT:
1842		key_cert_copy(k, pk);
1843		/* FALLTHROUGH */
1844	case KEY_RSA1:
1845	case KEY_RSA:
1846		if ((pk->rsa = RSA_new()) == NULL)
1847			fatal("key_demote: RSA_new failed");
1848		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1849			fatal("key_demote: BN_dup failed");
1850		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1851			fatal("key_demote: BN_dup failed");
1852		break;
1853	case KEY_DSA_CERT_V00:
1854	case KEY_DSA_CERT:
1855		key_cert_copy(k, pk);
1856		/* FALLTHROUGH */
1857	case KEY_DSA:
1858		if ((pk->dsa = DSA_new()) == NULL)
1859			fatal("key_demote: DSA_new failed");
1860		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1861			fatal("key_demote: BN_dup failed");
1862		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1863			fatal("key_demote: BN_dup failed");
1864		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1865			fatal("key_demote: BN_dup failed");
1866		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1867			fatal("key_demote: BN_dup failed");
1868		break;
1869#ifdef OPENSSL_HAS_ECC
1870	case KEY_ECDSA_CERT:
1871		key_cert_copy(k, pk);
1872		/* FALLTHROUGH */
1873	case KEY_ECDSA:
1874		if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1875			fatal("key_demote: EC_KEY_new_by_curve_name failed");
1876		if (EC_KEY_set_public_key(pk->ecdsa,
1877		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1878			fatal("key_demote: EC_KEY_set_public_key failed");
1879		break;
1880#endif
1881	case KEY_ED25519_CERT:
1882		key_cert_copy(k, pk);
1883		/* FALLTHROUGH */
1884	case KEY_ED25519:
1885		if (k->ed25519_pk != NULL) {
1886			pk->ed25519_pk = xmalloc(ED25519_PK_SZ);
1887			memcpy(pk->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ);
1888		}
1889		break;
1890	default:
1891		fatal("key_demote: bad key type %d", k->type);
1892		break;
1893	}
1894
1895	return (pk);
1896}
1897
1898int
1899key_is_cert(const Key *k)
1900{
1901	if (k == NULL)
1902		return 0;
1903	return key_type_is_cert(k->type);
1904}
1905
1906/* Return the cert-less equivalent to a certified key type */
1907int
1908key_type_plain(int type)
1909{
1910	switch (type) {
1911	case KEY_RSA_CERT_V00:
1912	case KEY_RSA_CERT:
1913		return KEY_RSA;
1914	case KEY_DSA_CERT_V00:
1915	case KEY_DSA_CERT:
1916		return KEY_DSA;
1917	case KEY_ECDSA_CERT:
1918		return KEY_ECDSA;
1919	case KEY_ED25519_CERT:
1920		return KEY_ED25519;
1921	default:
1922		return type;
1923	}
1924}
1925
1926/* Convert a plain key to their _CERT equivalent */
1927int
1928key_to_certified(Key *k, int legacy)
1929{
1930	switch (k->type) {
1931	case KEY_RSA:
1932		k->cert = cert_new();
1933		k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1934		return 0;
1935	case KEY_DSA:
1936		k->cert = cert_new();
1937		k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1938		return 0;
1939	case KEY_ECDSA:
1940		if (legacy)
1941			fatal("%s: legacy ECDSA certificates are not supported",
1942			    __func__);
1943		k->cert = cert_new();
1944		k->type = KEY_ECDSA_CERT;
1945		return 0;
1946	case KEY_ED25519:
1947		if (legacy)
1948			fatal("%s: legacy ED25519 certificates are not "
1949			    "supported", __func__);
1950		k->cert = cert_new();
1951		k->type = KEY_ED25519_CERT;
1952		return 0;
1953	default:
1954		error("%s: key has incorrect type %s", __func__, key_type(k));
1955		return -1;
1956	}
1957}
1958
1959/* Convert a certificate to its raw key equivalent */
1960int
1961key_drop_cert(Key *k)
1962{
1963	if (!key_type_is_cert(k->type)) {
1964		error("%s: key has incorrect type %s", __func__, key_type(k));
1965		return -1;
1966	}
1967	cert_free(k->cert);
1968	k->cert = NULL;
1969	k->type = key_type_plain(k->type);
1970	return 0;
1971}
1972
1973/* Sign a certified key, (re-)generating the signed certblob. */
1974int
1975key_certify(Key *k, Key *ca)
1976{
1977	Buffer principals;
1978	u_char *ca_blob, *sig_blob, nonce[32];
1979	u_int i, ca_len, sig_len;
1980
1981	if (k->cert == NULL) {
1982		error("%s: key lacks cert info", __func__);
1983		return -1;
1984	}
1985
1986	if (!key_is_cert(k)) {
1987		error("%s: certificate has unknown type %d", __func__,
1988		    k->cert->type);
1989		return -1;
1990	}
1991
1992	if (!key_type_is_valid_ca(ca->type)) {
1993		error("%s: CA key has unsupported type %s", __func__,
1994		    key_type(ca));
1995		return -1;
1996	}
1997
1998	key_to_blob(ca, &ca_blob, &ca_len);
1999
2000	buffer_clear(&k->cert->certblob);
2001	buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
2002
2003	/* -v01 certs put nonce first */
2004	arc4random_buf(&nonce, sizeof(nonce));
2005	if (!key_cert_is_legacy(k))
2006		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
2007
2008	/* XXX this substantially duplicates to_blob(); refactor */
2009	switch (k->type) {
2010	case KEY_DSA_CERT_V00:
2011	case KEY_DSA_CERT:
2012		buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
2013		buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
2014		buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
2015		buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
2016		break;
2017#ifdef OPENSSL_HAS_ECC
2018	case KEY_ECDSA_CERT:
2019		buffer_put_cstring(&k->cert->certblob,
2020		    key_curve_nid_to_name(k->ecdsa_nid));
2021		buffer_put_ecpoint(&k->cert->certblob,
2022		    EC_KEY_get0_group(k->ecdsa),
2023		    EC_KEY_get0_public_key(k->ecdsa));
2024		break;
2025#endif
2026	case KEY_RSA_CERT_V00:
2027	case KEY_RSA_CERT:
2028		buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
2029		buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
2030		break;
2031	case KEY_ED25519_CERT:
2032		buffer_put_string(&k->cert->certblob,
2033		    k->ed25519_pk, ED25519_PK_SZ);
2034		break;
2035	default:
2036		error("%s: key has incorrect type %s", __func__, key_type(k));
2037		buffer_clear(&k->cert->certblob);
2038		free(ca_blob);
2039		return -1;
2040	}
2041
2042	/* -v01 certs have a serial number next */
2043	if (!key_cert_is_legacy(k))
2044		buffer_put_int64(&k->cert->certblob, k->cert->serial);
2045
2046	buffer_put_int(&k->cert->certblob, k->cert->type);
2047	buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
2048
2049	buffer_init(&principals);
2050	for (i = 0; i < k->cert->nprincipals; i++)
2051		buffer_put_cstring(&principals, k->cert->principals[i]);
2052	buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
2053	    buffer_len(&principals));
2054	buffer_free(&principals);
2055
2056	buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
2057	buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
2058	buffer_put_string(&k->cert->certblob,
2059	    buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
2060
2061	/* -v01 certs have non-critical options here */
2062	if (!key_cert_is_legacy(k)) {
2063		buffer_put_string(&k->cert->certblob,
2064		    buffer_ptr(&k->cert->extensions),
2065		    buffer_len(&k->cert->extensions));
2066	}
2067
2068	/* -v00 certs put the nonce at the end */
2069	if (key_cert_is_legacy(k))
2070		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
2071
2072	buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
2073	buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
2074	free(ca_blob);
2075
2076	/* Sign the whole mess */
2077	if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
2078	    buffer_len(&k->cert->certblob)) != 0) {
2079		error("%s: signature operation failed", __func__);
2080		buffer_clear(&k->cert->certblob);
2081		return -1;
2082	}
2083	/* Append signature and we are done */
2084	buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
2085	free(sig_blob);
2086
2087	return 0;
2088}
2089
2090int
2091key_cert_check_authority(const Key *k, int want_host, int require_principal,
2092    const char *name, const char **reason)
2093{
2094	u_int i, principal_matches;
2095	time_t now = time(NULL);
2096
2097	if (want_host) {
2098		if (k->cert->type != SSH2_CERT_TYPE_HOST) {
2099			*reason = "Certificate invalid: not a host certificate";
2100			return -1;
2101		}
2102	} else {
2103		if (k->cert->type != SSH2_CERT_TYPE_USER) {
2104			*reason = "Certificate invalid: not a user certificate";
2105			return -1;
2106		}
2107	}
2108	if (now < 0) {
2109		error("%s: system clock lies before epoch", __func__);
2110		*reason = "Certificate invalid: not yet valid";
2111		return -1;
2112	}
2113	if ((u_int64_t)now < k->cert->valid_after) {
2114		*reason = "Certificate invalid: not yet valid";
2115		return -1;
2116	}
2117	if ((u_int64_t)now >= k->cert->valid_before) {
2118		*reason = "Certificate invalid: expired";
2119		return -1;
2120	}
2121	if (k->cert->nprincipals == 0) {
2122		if (require_principal) {
2123			*reason = "Certificate lacks principal list";
2124			return -1;
2125		}
2126	} else if (name != NULL) {
2127		principal_matches = 0;
2128		for (i = 0; i < k->cert->nprincipals; i++) {
2129			if (strcmp(name, k->cert->principals[i]) == 0) {
2130				principal_matches = 1;
2131				break;
2132			}
2133		}
2134		if (!principal_matches) {
2135			*reason = "Certificate invalid: name is not a listed "
2136			    "principal";
2137			return -1;
2138		}
2139	}
2140	return 0;
2141}
2142
2143int
2144key_cert_is_legacy(const Key *k)
2145{
2146	switch (k->type) {
2147	case KEY_DSA_CERT_V00:
2148	case KEY_RSA_CERT_V00:
2149		return 1;
2150	default:
2151		return 0;
2152	}
2153}
2154
2155/* XXX: these are really begging for a table-driven approach */
2156int
2157key_curve_name_to_nid(const char *name)
2158{
2159#ifdef OPENSSL_HAS_ECC
2160	if (strcmp(name, "nistp256") == 0)
2161		return NID_X9_62_prime256v1;
2162	else if (strcmp(name, "nistp384") == 0)
2163		return NID_secp384r1;
2164# ifdef OPENSSL_HAS_NISTP521
2165	else if (strcmp(name, "nistp521") == 0)
2166		return NID_secp521r1;
2167# endif
2168#endif
2169
2170	debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2171	return -1;
2172}
2173
2174u_int
2175key_curve_nid_to_bits(int nid)
2176{
2177	switch (nid) {
2178#ifdef OPENSSL_HAS_ECC
2179	case NID_X9_62_prime256v1:
2180		return 256;
2181	case NID_secp384r1:
2182		return 384;
2183# ifdef OPENSSL_HAS_NISTP521
2184	case NID_secp521r1:
2185		return 521;
2186# endif
2187#endif
2188	default:
2189		error("%s: unsupported EC curve nid %d", __func__, nid);
2190		return 0;
2191	}
2192}
2193
2194const char *
2195key_curve_nid_to_name(int nid)
2196{
2197#ifdef OPENSSL_HAS_ECC
2198	if (nid == NID_X9_62_prime256v1)
2199		return "nistp256";
2200	else if (nid == NID_secp384r1)
2201		return "nistp384";
2202# ifdef OPENSSL_HAS_NISTP521
2203	else if (nid == NID_secp521r1)
2204		return "nistp521";
2205# endif
2206#endif
2207	error("%s: unsupported EC curve nid %d", __func__, nid);
2208	return NULL;
2209}
2210
2211#ifdef OPENSSL_HAS_ECC
2212int
2213key_ec_nid_to_hash_alg(int nid)
2214{
2215	int kbits = key_curve_nid_to_bits(nid);
2216
2217	if (kbits == 0)
2218		fatal("%s: invalid nid %d", __func__, nid);
2219	/* RFC5656 section 6.2.1 */
2220	if (kbits <= 256)
2221		return SSH_DIGEST_SHA256;
2222	else if (kbits <= 384)
2223		return SSH_DIGEST_SHA384;
2224	else
2225		return SSH_DIGEST_SHA512;
2226}
2227
2228int
2229key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2230{
2231	BN_CTX *bnctx;
2232	EC_POINT *nq = NULL;
2233	BIGNUM *order, *x, *y, *tmp;
2234	int ret = -1;
2235
2236	if ((bnctx = BN_CTX_new()) == NULL)
2237		fatal("%s: BN_CTX_new failed", __func__);
2238	BN_CTX_start(bnctx);
2239
2240	/*
2241	 * We shouldn't ever hit this case because bignum_get_ecpoint()
2242	 * refuses to load GF2m points.
2243	 */
2244	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2245	    NID_X9_62_prime_field) {
2246		error("%s: group is not a prime field", __func__);
2247		goto out;
2248	}
2249
2250	/* Q != infinity */
2251	if (EC_POINT_is_at_infinity(group, public)) {
2252		error("%s: received degenerate public key (infinity)",
2253		    __func__);
2254		goto out;
2255	}
2256
2257	if ((x = BN_CTX_get(bnctx)) == NULL ||
2258	    (y = BN_CTX_get(bnctx)) == NULL ||
2259	    (order = BN_CTX_get(bnctx)) == NULL ||
2260	    (tmp = BN_CTX_get(bnctx)) == NULL)
2261		fatal("%s: BN_CTX_get failed", __func__);
2262
2263	/* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2264	if (EC_GROUP_get_order(group, order, bnctx) != 1)
2265		fatal("%s: EC_GROUP_get_order failed", __func__);
2266	if (EC_POINT_get_affine_coordinates_GFp(group, public,
2267	    x, y, bnctx) != 1)
2268		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2269	if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2270		error("%s: public key x coordinate too small: "
2271		    "bits(x) = %d, bits(order)/2 = %d", __func__,
2272		    BN_num_bits(x), BN_num_bits(order) / 2);
2273		goto out;
2274	}
2275	if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2276		error("%s: public key y coordinate too small: "
2277		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2278		    BN_num_bits(x), BN_num_bits(order) / 2);
2279		goto out;
2280	}
2281
2282	/* nQ == infinity (n == order of subgroup) */
2283	if ((nq = EC_POINT_new(group)) == NULL)
2284		fatal("%s: BN_CTX_tmp failed", __func__);
2285	if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2286		fatal("%s: EC_GROUP_mul failed", __func__);
2287	if (EC_POINT_is_at_infinity(group, nq) != 1) {
2288		error("%s: received degenerate public key (nQ != infinity)",
2289		    __func__);
2290		goto out;
2291	}
2292
2293	/* x < order - 1, y < order - 1 */
2294	if (!BN_sub(tmp, order, BN_value_one()))
2295		fatal("%s: BN_sub failed", __func__);
2296	if (BN_cmp(x, tmp) >= 0) {
2297		error("%s: public key x coordinate >= group order - 1",
2298		    __func__);
2299		goto out;
2300	}
2301	if (BN_cmp(y, tmp) >= 0) {
2302		error("%s: public key y coordinate >= group order - 1",
2303		    __func__);
2304		goto out;
2305	}
2306	ret = 0;
2307 out:
2308	BN_CTX_free(bnctx);
2309	EC_POINT_free(nq);
2310	return ret;
2311}
2312
2313int
2314key_ec_validate_private(const EC_KEY *key)
2315{
2316	BN_CTX *bnctx;
2317	BIGNUM *order, *tmp;
2318	int ret = -1;
2319
2320	if ((bnctx = BN_CTX_new()) == NULL)
2321		fatal("%s: BN_CTX_new failed", __func__);
2322	BN_CTX_start(bnctx);
2323
2324	if ((order = BN_CTX_get(bnctx)) == NULL ||
2325	    (tmp = BN_CTX_get(bnctx)) == NULL)
2326		fatal("%s: BN_CTX_get failed", __func__);
2327
2328	/* log2(private) > log2(order)/2 */
2329	if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2330		fatal("%s: EC_GROUP_get_order failed", __func__);
2331	if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2332	    BN_num_bits(order) / 2) {
2333		error("%s: private key too small: "
2334		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2335		    BN_num_bits(EC_KEY_get0_private_key(key)),
2336		    BN_num_bits(order) / 2);
2337		goto out;
2338	}
2339
2340	/* private < order - 1 */
2341	if (!BN_sub(tmp, order, BN_value_one()))
2342		fatal("%s: BN_sub failed", __func__);
2343	if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2344		error("%s: private key >= group order - 1", __func__);
2345		goto out;
2346	}
2347	ret = 0;
2348 out:
2349	BN_CTX_free(bnctx);
2350	return ret;
2351}
2352
2353#if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2354void
2355key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2356{
2357	BIGNUM *x, *y;
2358	BN_CTX *bnctx;
2359
2360	if (point == NULL) {
2361		fputs("point=(NULL)\n", stderr);
2362		return;
2363	}
2364	if ((bnctx = BN_CTX_new()) == NULL)
2365		fatal("%s: BN_CTX_new failed", __func__);
2366	BN_CTX_start(bnctx);
2367	if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2368		fatal("%s: BN_CTX_get failed", __func__);
2369	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2370	    NID_X9_62_prime_field)
2371		fatal("%s: group is not a prime field", __func__);
2372	if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2373		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2374	fputs("x=", stderr);
2375	BN_print_fp(stderr, x);
2376	fputs("\ny=", stderr);
2377	BN_print_fp(stderr, y);
2378	fputs("\n", stderr);
2379	BN_CTX_free(bnctx);
2380}
2381
2382void
2383key_dump_ec_key(const EC_KEY *key)
2384{
2385	const BIGNUM *exponent;
2386
2387	key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2388	fputs("exponent=", stderr);
2389	if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2390		fputs("(NULL)", stderr);
2391	else
2392		BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2393	fputs("\n", stderr);
2394}
2395#endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2396#endif /* OPENSSL_HAS_ECC */
2397
2398void
2399key_private_serialize(const Key *key, Buffer *b)
2400{
2401	buffer_put_cstring(b, key_ssh_name(key));
2402	switch (key->type) {
2403	case KEY_RSA:
2404		buffer_put_bignum2(b, key->rsa->n);
2405		buffer_put_bignum2(b, key->rsa->e);
2406		buffer_put_bignum2(b, key->rsa->d);
2407		buffer_put_bignum2(b, key->rsa->iqmp);
2408		buffer_put_bignum2(b, key->rsa->p);
2409		buffer_put_bignum2(b, key->rsa->q);
2410		break;
2411	case KEY_RSA_CERT_V00:
2412	case KEY_RSA_CERT:
2413		if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0)
2414			fatal("%s: no cert/certblob", __func__);
2415		buffer_put_string(b, buffer_ptr(&key->cert->certblob),
2416		    buffer_len(&key->cert->certblob));
2417		buffer_put_bignum2(b, key->rsa->d);
2418		buffer_put_bignum2(b, key->rsa->iqmp);
2419		buffer_put_bignum2(b, key->rsa->p);
2420		buffer_put_bignum2(b, key->rsa->q);
2421		break;
2422	case KEY_DSA:
2423		buffer_put_bignum2(b, key->dsa->p);
2424		buffer_put_bignum2(b, key->dsa->q);
2425		buffer_put_bignum2(b, key->dsa->g);
2426		buffer_put_bignum2(b, key->dsa->pub_key);
2427		buffer_put_bignum2(b, key->dsa->priv_key);
2428		break;
2429	case KEY_DSA_CERT_V00:
2430	case KEY_DSA_CERT:
2431		if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0)
2432			fatal("%s: no cert/certblob", __func__);
2433		buffer_put_string(b, buffer_ptr(&key->cert->certblob),
2434		    buffer_len(&key->cert->certblob));
2435		buffer_put_bignum2(b, key->dsa->priv_key);
2436		break;
2437#ifdef OPENSSL_HAS_ECC
2438	case KEY_ECDSA:
2439		buffer_put_cstring(b, key_curve_nid_to_name(key->ecdsa_nid));
2440		buffer_put_ecpoint(b, EC_KEY_get0_group(key->ecdsa),
2441		    EC_KEY_get0_public_key(key->ecdsa));
2442		buffer_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa));
2443		break;
2444	case KEY_ECDSA_CERT:
2445		if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0)
2446			fatal("%s: no cert/certblob", __func__);
2447		buffer_put_string(b, buffer_ptr(&key->cert->certblob),
2448		    buffer_len(&key->cert->certblob));
2449		buffer_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa));
2450		break;
2451#endif /* OPENSSL_HAS_ECC */
2452	case KEY_ED25519:
2453		buffer_put_string(b, key->ed25519_pk, ED25519_PK_SZ);
2454		buffer_put_string(b, key->ed25519_sk, ED25519_SK_SZ);
2455		break;
2456	case KEY_ED25519_CERT:
2457		if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0)
2458			fatal("%s: no cert/certblob", __func__);
2459		buffer_put_string(b, buffer_ptr(&key->cert->certblob),
2460		    buffer_len(&key->cert->certblob));
2461		buffer_put_string(b, key->ed25519_pk, ED25519_PK_SZ);
2462		buffer_put_string(b, key->ed25519_sk, ED25519_SK_SZ);
2463		break;
2464	}
2465}
2466
2467Key *
2468key_private_deserialize(Buffer *blob)
2469{
2470	char *type_name;
2471	Key *k = NULL;
2472	u_char *cert;
2473	u_int len, pklen, sklen;
2474	int type;
2475#ifdef OPENSSL_HAS_ECC
2476	char *curve;
2477	BIGNUM *exponent;
2478	EC_POINT *q;
2479#endif
2480
2481	type_name = buffer_get_string(blob, NULL);
2482	type = key_type_from_name(type_name);
2483	switch (type) {
2484	case KEY_DSA:
2485		k = key_new_private(type);
2486		buffer_get_bignum2(blob, k->dsa->p);
2487		buffer_get_bignum2(blob, k->dsa->q);
2488		buffer_get_bignum2(blob, k->dsa->g);
2489		buffer_get_bignum2(blob, k->dsa->pub_key);
2490		buffer_get_bignum2(blob, k->dsa->priv_key);
2491		break;
2492	case KEY_DSA_CERT_V00:
2493	case KEY_DSA_CERT:
2494		cert = buffer_get_string(blob, &len);
2495		if ((k = key_from_blob(cert, len)) == NULL)
2496			fatal("Certificate parse failed");
2497		free(cert);
2498		key_add_private(k);
2499		buffer_get_bignum2(blob, k->dsa->priv_key);
2500		break;
2501#ifdef OPENSSL_HAS_ECC
2502	case KEY_ECDSA:
2503		k = key_new_private(type);
2504		k->ecdsa_nid = key_ecdsa_nid_from_name(type_name);
2505		curve = buffer_get_string(blob, NULL);
2506		if (k->ecdsa_nid != key_curve_name_to_nid(curve))
2507			fatal("%s: curve names mismatch", __func__);
2508		free(curve);
2509		k->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid);
2510		if (k->ecdsa == NULL)
2511			fatal("%s: EC_KEY_new_by_curve_name failed",
2512			    __func__);
2513		q = EC_POINT_new(EC_KEY_get0_group(k->ecdsa));
2514		if (q == NULL)
2515			fatal("%s: BN_new failed", __func__);
2516		if ((exponent = BN_new()) == NULL)
2517			fatal("%s: BN_new failed", __func__);
2518		buffer_get_ecpoint(blob,
2519			EC_KEY_get0_group(k->ecdsa), q);
2520		buffer_get_bignum2(blob, exponent);
2521		if (EC_KEY_set_public_key(k->ecdsa, q) != 1)
2522			fatal("%s: EC_KEY_set_public_key failed",
2523			    __func__);
2524		if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1)
2525			fatal("%s: EC_KEY_set_private_key failed",
2526			    __func__);
2527		if (key_ec_validate_public(EC_KEY_get0_group(k->ecdsa),
2528		    EC_KEY_get0_public_key(k->ecdsa)) != 0)
2529			fatal("%s: bad ECDSA public key", __func__);
2530		if (key_ec_validate_private(k->ecdsa) != 0)
2531			fatal("%s: bad ECDSA private key", __func__);
2532		BN_clear_free(exponent);
2533		EC_POINT_free(q);
2534		break;
2535	case KEY_ECDSA_CERT:
2536		cert = buffer_get_string(blob, &len);
2537		if ((k = key_from_blob(cert, len)) == NULL)
2538			fatal("Certificate parse failed");
2539		free(cert);
2540		key_add_private(k);
2541		if ((exponent = BN_new()) == NULL)
2542			fatal("%s: BN_new failed", __func__);
2543		buffer_get_bignum2(blob, exponent);
2544		if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1)
2545			fatal("%s: EC_KEY_set_private_key failed",
2546			    __func__);
2547		if (key_ec_validate_public(EC_KEY_get0_group(k->ecdsa),
2548		    EC_KEY_get0_public_key(k->ecdsa)) != 0 ||
2549		    key_ec_validate_private(k->ecdsa) != 0)
2550			fatal("%s: bad ECDSA key", __func__);
2551		BN_clear_free(exponent);
2552		break;
2553#endif
2554	case KEY_RSA:
2555		k = key_new_private(type);
2556		buffer_get_bignum2(blob, k->rsa->n);
2557		buffer_get_bignum2(blob, k->rsa->e);
2558		buffer_get_bignum2(blob, k->rsa->d);
2559		buffer_get_bignum2(blob, k->rsa->iqmp);
2560		buffer_get_bignum2(blob, k->rsa->p);
2561		buffer_get_bignum2(blob, k->rsa->q);
2562
2563		/* Generate additional parameters */
2564		rsa_generate_additional_parameters(k->rsa);
2565		break;
2566	case KEY_RSA_CERT_V00:
2567	case KEY_RSA_CERT:
2568		cert = buffer_get_string(blob, &len);
2569		if ((k = key_from_blob(cert, len)) == NULL)
2570			fatal("Certificate parse failed");
2571		free(cert);
2572		key_add_private(k);
2573		buffer_get_bignum2(blob, k->rsa->d);
2574		buffer_get_bignum2(blob, k->rsa->iqmp);
2575		buffer_get_bignum2(blob, k->rsa->p);
2576		buffer_get_bignum2(blob, k->rsa->q);
2577		break;
2578	case KEY_ED25519:
2579		k = key_new_private(type);
2580		k->ed25519_pk = buffer_get_string(blob, &pklen);
2581		k->ed25519_sk = buffer_get_string(blob, &sklen);
2582		if (pklen != ED25519_PK_SZ)
2583			fatal("%s: ed25519 pklen %d != %d",
2584			    __func__, pklen, ED25519_PK_SZ);
2585		if (sklen != ED25519_SK_SZ)
2586			fatal("%s: ed25519 sklen %d != %d",
2587			    __func__, sklen, ED25519_SK_SZ);
2588		break;
2589	case KEY_ED25519_CERT:
2590		cert = buffer_get_string(blob, &len);
2591		if ((k = key_from_blob(cert, len)) == NULL)
2592			fatal("Certificate parse failed");
2593		free(cert);
2594		key_add_private(k);
2595		k->ed25519_pk = buffer_get_string(blob, &pklen);
2596		k->ed25519_sk = buffer_get_string(blob, &sklen);
2597		if (pklen != ED25519_PK_SZ)
2598			fatal("%s: ed25519 pklen %d != %d",
2599			    __func__, pklen, ED25519_PK_SZ);
2600		if (sklen != ED25519_SK_SZ)
2601			fatal("%s: ed25519 sklen %d != %d",
2602			    __func__, sklen, ED25519_SK_SZ);
2603		break;
2604	default:
2605		free(type_name);
2606		buffer_clear(blob);
2607		return NULL;
2608	}
2609	free(type_name);
2610
2611	/* enable blinding */
2612	switch (k->type) {
2613	case KEY_RSA:
2614	case KEY_RSA_CERT_V00:
2615	case KEY_RSA_CERT:
2616	case KEY_RSA1:
2617		if (RSA_blinding_on(k->rsa, NULL) != 1) {
2618			error("%s: RSA_blinding_on failed", __func__);
2619			key_free(k);
2620			return NULL;
2621		}
2622		break;
2623	}
2624	return k;
2625}
2626