simple_coder.c revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       simple_coder.c
4/// \brief      Wrapper for simple filters
5///
6/// Simple filters don't change the size of the data i.e. number of bytes
7/// in equals the number of bytes out.
8//
9//  Author:     Lasse Collin
10//
11//  This file has been put into the public domain.
12//  You can do whatever you want with this file.
13//
14///////////////////////////////////////////////////////////////////////////////
15
16#include "simple_private.h"
17
18
19/// Copied or encodes/decodes more data to out[].
20static lzma_ret
21copy_or_code(lzma_coder *coder, const lzma_allocator *allocator,
22		const uint8_t *restrict in, size_t *restrict in_pos,
23		size_t in_size, uint8_t *restrict out,
24		size_t *restrict out_pos, size_t out_size, lzma_action action)
25{
26	assert(!coder->end_was_reached);
27
28	if (coder->next.code == NULL) {
29		lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30
31		// Check if end of stream was reached.
32		if (coder->is_encoder && action == LZMA_FINISH
33				&& *in_pos == in_size)
34			coder->end_was_reached = true;
35
36	} else {
37		// Call the next coder in the chain to provide us some data.
38		const lzma_ret ret = coder->next.code(
39				coder->next.coder, allocator,
40				in, in_pos, in_size,
41				out, out_pos, out_size, action);
42
43		if (ret == LZMA_STREAM_END) {
44			assert(!coder->is_encoder
45					|| action == LZMA_FINISH);
46			coder->end_was_reached = true;
47
48		} else if (ret != LZMA_OK) {
49			return ret;
50		}
51	}
52
53	return LZMA_OK;
54}
55
56
57static size_t
58call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
59{
60	const size_t filtered = coder->filter(coder->simple,
61			coder->now_pos, coder->is_encoder,
62			buffer, size);
63	coder->now_pos += filtered;
64	return filtered;
65}
66
67
68static lzma_ret
69simple_code(lzma_coder *coder, const lzma_allocator *allocator,
70		const uint8_t *restrict in, size_t *restrict in_pos,
71		size_t in_size, uint8_t *restrict out,
72		size_t *restrict out_pos, size_t out_size, lzma_action action)
73{
74	// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
75	// in cases when the filter is able to filter everything. With most
76	// simple filters it can be done at offset that is a multiple of 2,
77	// 4, or 16. With x86 filter, it needs good luck, and thus cannot
78	// be made to work predictably.
79	if (action == LZMA_SYNC_FLUSH)
80		return LZMA_OPTIONS_ERROR;
81
82	// Flush already filtered data from coder->buffer[] to out[].
83	if (coder->pos < coder->filtered) {
84		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
85				out, out_pos, out_size);
86
87		// If we couldn't flush all the filtered data, return to
88		// application immediately.
89		if (coder->pos < coder->filtered)
90			return LZMA_OK;
91
92		if (coder->end_was_reached) {
93			assert(coder->filtered == coder->size);
94			return LZMA_STREAM_END;
95		}
96	}
97
98	// If we get here, there is no filtered data left in the buffer.
99	coder->filtered = 0;
100
101	assert(!coder->end_was_reached);
102
103	// If there is more output space left than there is unfiltered data
104	// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
105	// more data to out[] hopefully filling it completely. Then filter
106	// the data in out[]. This step is where most of the data gets
107	// filtered if the buffer sizes used by the application are reasonable.
108	const size_t out_avail = out_size - *out_pos;
109	const size_t buf_avail = coder->size - coder->pos;
110	if (out_avail > buf_avail || buf_avail == 0) {
111		// Store the old position so that we know from which byte
112		// to start filtering.
113		const size_t out_start = *out_pos;
114
115		// Flush data from coder->buffer[] to out[], but don't reset
116		// coder->pos and coder->size yet. This way the coder can be
117		// restarted if the next filter in the chain returns e.g.
118		// LZMA_MEM_ERROR.
119		memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
120		*out_pos += buf_avail;
121
122		// Copy/Encode/Decode more data to out[].
123		{
124			const lzma_ret ret = copy_or_code(coder, allocator,
125					in, in_pos, in_size,
126					out, out_pos, out_size, action);
127			assert(ret != LZMA_STREAM_END);
128			if (ret != LZMA_OK)
129				return ret;
130		}
131
132		// Filter out[].
133		const size_t size = *out_pos - out_start;
134		const size_t filtered = call_filter(
135				coder, out + out_start, size);
136
137		const size_t unfiltered = size - filtered;
138		assert(unfiltered <= coder->allocated / 2);
139
140		// Now we can update coder->pos and coder->size, because
141		// the next coder in the chain (if any) was successful.
142		coder->pos = 0;
143		coder->size = unfiltered;
144
145		if (coder->end_was_reached) {
146			// The last byte has been copied to out[] already.
147			// They are left as is.
148			coder->size = 0;
149
150		} else if (unfiltered > 0) {
151			// There is unfiltered data left in out[]. Copy it to
152			// coder->buffer[] and rewind *out_pos appropriately.
153			*out_pos -= unfiltered;
154			memcpy(coder->buffer, out + *out_pos, unfiltered);
155		}
156	} else if (coder->pos > 0) {
157		memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
158		coder->size -= coder->pos;
159		coder->pos = 0;
160	}
161
162	assert(coder->pos == 0);
163
164	// If coder->buffer[] isn't empty, try to fill it by copying/decoding
165	// more data. Then filter coder->buffer[] and copy the successfully
166	// filtered data to out[]. It is probable, that some filtered and
167	// unfiltered data will be left to coder->buffer[].
168	if (coder->size > 0) {
169		{
170			const lzma_ret ret = copy_or_code(coder, allocator,
171					in, in_pos, in_size,
172					coder->buffer, &coder->size,
173					coder->allocated, action);
174			assert(ret != LZMA_STREAM_END);
175			if (ret != LZMA_OK)
176				return ret;
177		}
178
179		coder->filtered = call_filter(
180				coder, coder->buffer, coder->size);
181
182		// Everything is considered to be filtered if coder->buffer[]
183		// contains the last bytes of the data.
184		if (coder->end_was_reached)
185			coder->filtered = coder->size;
186
187		// Flush as much as possible.
188		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
189				out, out_pos, out_size);
190	}
191
192	// Check if we got everything done.
193	if (coder->end_was_reached && coder->pos == coder->size)
194		return LZMA_STREAM_END;
195
196	return LZMA_OK;
197}
198
199
200static void
201simple_coder_end(lzma_coder *coder, const lzma_allocator *allocator)
202{
203	lzma_next_end(&coder->next, allocator);
204	lzma_free(coder->simple, allocator);
205	lzma_free(coder, allocator);
206	return;
207}
208
209
210static lzma_ret
211simple_coder_update(lzma_coder *coder, const lzma_allocator *allocator,
212		const lzma_filter *filters_null lzma_attribute((__unused__)),
213		const lzma_filter *reversed_filters)
214{
215	// No update support, just call the next filter in the chain.
216	return lzma_next_filter_update(
217			&coder->next, allocator, reversed_filters + 1);
218}
219
220
221extern lzma_ret
222lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
223		const lzma_filter_info *filters,
224		size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
225			bool is_encoder, uint8_t *buffer, size_t size),
226		size_t simple_size, size_t unfiltered_max,
227		uint32_t alignment, bool is_encoder)
228{
229	// Allocate memory for the lzma_coder structure if needed.
230	if (next->coder == NULL) {
231		// Here we allocate space also for the temporary buffer. We
232		// need twice the size of unfiltered_max, because then it
233		// is always possible to filter at least unfiltered_max bytes
234		// more data in coder->buffer[] if it can be filled completely.
235		next->coder = lzma_alloc(sizeof(lzma_coder)
236				+ 2 * unfiltered_max, allocator);
237		if (next->coder == NULL)
238			return LZMA_MEM_ERROR;
239
240		next->code = &simple_code;
241		next->end = &simple_coder_end;
242		next->update = &simple_coder_update;
243
244		next->coder->next = LZMA_NEXT_CODER_INIT;
245		next->coder->filter = filter;
246		next->coder->allocated = 2 * unfiltered_max;
247
248		// Allocate memory for filter-specific data structure.
249		if (simple_size > 0) {
250			next->coder->simple = lzma_alloc(
251					simple_size, allocator);
252			if (next->coder->simple == NULL)
253				return LZMA_MEM_ERROR;
254		} else {
255			next->coder->simple = NULL;
256		}
257	}
258
259	if (filters[0].options != NULL) {
260		const lzma_options_bcj *simple = filters[0].options;
261		next->coder->now_pos = simple->start_offset;
262		if (next->coder->now_pos & (alignment - 1))
263			return LZMA_OPTIONS_ERROR;
264	} else {
265		next->coder->now_pos = 0;
266	}
267
268	// Reset variables.
269	next->coder->is_encoder = is_encoder;
270	next->coder->end_was_reached = false;
271	next->coder->pos = 0;
272	next->coder->filtered = 0;
273	next->coder->size = 0;
274
275	return lzma_next_filter_init(
276			&next->coder->next, allocator, filters + 1);
277}
278