lzma_encoder.c revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       lzma_encoder.c
4/// \brief      LZMA encoder
5///
6//  Authors:    Igor Pavlov
7//              Lasse Collin
8//
9//  This file has been put into the public domain.
10//  You can do whatever you want with this file.
11//
12///////////////////////////////////////////////////////////////////////////////
13
14#include "lzma2_encoder.h"
15#include "lzma_encoder_private.h"
16#include "fastpos.h"
17
18
19/////////////
20// Literal //
21/////////////
22
23static inline void
24literal_matched(lzma_range_encoder *rc, probability *subcoder,
25		uint32_t match_byte, uint32_t symbol)
26{
27	uint32_t offset = 0x100;
28	symbol += UINT32_C(1) << 8;
29
30	do {
31		match_byte <<= 1;
32		const uint32_t match_bit = match_byte & offset;
33		const uint32_t subcoder_index
34				= offset + match_bit + (symbol >> 8);
35		const uint32_t bit = (symbol >> 7) & 1;
36		rc_bit(rc, &subcoder[subcoder_index], bit);
37
38		symbol <<= 1;
39		offset &= ~(match_byte ^ symbol);
40
41	} while (symbol < (UINT32_C(1) << 16));
42}
43
44
45static inline void
46literal(lzma_coder *coder, lzma_mf *mf, uint32_t position)
47{
48	// Locate the literal byte to be encoded and the subcoder.
49	const uint8_t cur_byte = mf->buffer[
50			mf->read_pos - mf->read_ahead];
51	probability *subcoder = literal_subcoder(coder->literal,
52			coder->literal_context_bits, coder->literal_pos_mask,
53			position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
54
55	if (is_literal_state(coder->state)) {
56		// Previous LZMA-symbol was a literal. Encode a normal
57		// literal without a match byte.
58		rc_bittree(&coder->rc, subcoder, 8, cur_byte);
59	} else {
60		// Previous LZMA-symbol was a match. Use the last byte of
61		// the match as a "match byte". That is, compare the bits
62		// of the current literal and the match byte.
63		const uint8_t match_byte = mf->buffer[
64				mf->read_pos - coder->reps[0] - 1
65				- mf->read_ahead];
66		literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
67	}
68
69	update_literal(coder->state);
70}
71
72
73//////////////////
74// Match length //
75//////////////////
76
77static void
78length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
79{
80	const uint32_t table_size = lc->table_size;
81	lc->counters[pos_state] = table_size;
82
83	const uint32_t a0 = rc_bit_0_price(lc->choice);
84	const uint32_t a1 = rc_bit_1_price(lc->choice);
85	const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
86	const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
87	uint32_t *const prices = lc->prices[pos_state];
88
89	uint32_t i;
90	for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
91		prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
92				LEN_LOW_BITS, i);
93
94	for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
95		prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
96				LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
97
98	for (; i < table_size; ++i)
99		prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
100				i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
101
102	return;
103}
104
105
106static inline void
107length(lzma_range_encoder *rc, lzma_length_encoder *lc,
108		const uint32_t pos_state, uint32_t len, const bool fast_mode)
109{
110	assert(len <= MATCH_LEN_MAX);
111	len -= MATCH_LEN_MIN;
112
113	if (len < LEN_LOW_SYMBOLS) {
114		rc_bit(rc, &lc->choice, 0);
115		rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
116	} else {
117		rc_bit(rc, &lc->choice, 1);
118		len -= LEN_LOW_SYMBOLS;
119
120		if (len < LEN_MID_SYMBOLS) {
121			rc_bit(rc, &lc->choice2, 0);
122			rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
123		} else {
124			rc_bit(rc, &lc->choice2, 1);
125			len -= LEN_MID_SYMBOLS;
126			rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
127		}
128	}
129
130	// Only getoptimum uses the prices so don't update the table when
131	// in fast mode.
132	if (!fast_mode)
133		if (--lc->counters[pos_state] == 0)
134			length_update_prices(lc, pos_state);
135}
136
137
138///////////
139// Match //
140///////////
141
142static inline void
143match(lzma_coder *coder, const uint32_t pos_state,
144		const uint32_t distance, const uint32_t len)
145{
146	update_match(coder->state);
147
148	length(&coder->rc, &coder->match_len_encoder, pos_state, len,
149			coder->fast_mode);
150
151	const uint32_t dist_slot = get_dist_slot(distance);
152	const uint32_t dist_state = get_dist_state(len);
153	rc_bittree(&coder->rc, coder->dist_slot[dist_state],
154			DIST_SLOT_BITS, dist_slot);
155
156	if (dist_slot >= DIST_MODEL_START) {
157		const uint32_t footer_bits = (dist_slot >> 1) - 1;
158		const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
159		const uint32_t dist_reduced = distance - base;
160
161		if (dist_slot < DIST_MODEL_END) {
162			// Careful here: base - dist_slot - 1 can be -1, but
163			// rc_bittree_reverse starts at probs[1], not probs[0].
164			rc_bittree_reverse(&coder->rc,
165				coder->dist_special + base - dist_slot - 1,
166				footer_bits, dist_reduced);
167		} else {
168			rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
169					footer_bits - ALIGN_BITS);
170			rc_bittree_reverse(
171					&coder->rc, coder->dist_align,
172					ALIGN_BITS, dist_reduced & ALIGN_MASK);
173			++coder->align_price_count;
174		}
175	}
176
177	coder->reps[3] = coder->reps[2];
178	coder->reps[2] = coder->reps[1];
179	coder->reps[1] = coder->reps[0];
180	coder->reps[0] = distance;
181	++coder->match_price_count;
182}
183
184
185////////////////////
186// Repeated match //
187////////////////////
188
189static inline void
190rep_match(lzma_coder *coder, const uint32_t pos_state,
191		const uint32_t rep, const uint32_t len)
192{
193	if (rep == 0) {
194		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
195		rc_bit(&coder->rc,
196				&coder->is_rep0_long[coder->state][pos_state],
197				len != 1);
198	} else {
199		const uint32_t distance = coder->reps[rep];
200		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
201
202		if (rep == 1) {
203			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
204		} else {
205			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
206			rc_bit(&coder->rc, &coder->is_rep2[coder->state],
207					rep - 2);
208
209			if (rep == 3)
210				coder->reps[3] = coder->reps[2];
211
212			coder->reps[2] = coder->reps[1];
213		}
214
215		coder->reps[1] = coder->reps[0];
216		coder->reps[0] = distance;
217	}
218
219	if (len == 1) {
220		update_short_rep(coder->state);
221	} else {
222		length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
223				coder->fast_mode);
224		update_long_rep(coder->state);
225	}
226}
227
228
229//////////
230// Main //
231//////////
232
233static void
234encode_symbol(lzma_coder *coder, lzma_mf *mf,
235		uint32_t back, uint32_t len, uint32_t position)
236{
237	const uint32_t pos_state = position & coder->pos_mask;
238
239	if (back == UINT32_MAX) {
240		// Literal i.e. eight-bit byte
241		assert(len == 1);
242		rc_bit(&coder->rc,
243				&coder->is_match[coder->state][pos_state], 0);
244		literal(coder, mf, position);
245	} else {
246		// Some type of match
247		rc_bit(&coder->rc,
248			&coder->is_match[coder->state][pos_state], 1);
249
250		if (back < REPS) {
251			// It's a repeated match i.e. the same distance
252			// has been used earlier.
253			rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
254			rep_match(coder, pos_state, back, len);
255		} else {
256			// Normal match
257			rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
258			match(coder, pos_state, back - REPS, len);
259		}
260	}
261
262	assert(mf->read_ahead >= len);
263	mf->read_ahead -= len;
264}
265
266
267static bool
268encode_init(lzma_coder *coder, lzma_mf *mf)
269{
270	assert(mf_position(mf) == 0);
271
272	if (mf->read_pos == mf->read_limit) {
273		if (mf->action == LZMA_RUN)
274			return false; // We cannot do anything.
275
276		// We are finishing (we cannot get here when flushing).
277		assert(mf->write_pos == mf->read_pos);
278		assert(mf->action == LZMA_FINISH);
279	} else {
280		// Do the actual initialization. The first LZMA symbol must
281		// always be a literal.
282		mf_skip(mf, 1);
283		mf->read_ahead = 0;
284		rc_bit(&coder->rc, &coder->is_match[0][0], 0);
285		rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
286	}
287
288	// Initialization is done (except if empty file).
289	coder->is_initialized = true;
290
291	return true;
292}
293
294
295static void
296encode_eopm(lzma_coder *coder, uint32_t position)
297{
298	const uint32_t pos_state = position & coder->pos_mask;
299	rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
300	rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
301	match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
302}
303
304
305/// Number of bytes that a single encoding loop in lzma_lzma_encode() can
306/// consume from the dictionary. This limit comes from lzma_lzma_optimum()
307/// and may need to be updated if that function is significantly modified.
308#define LOOP_INPUT_MAX (OPTS + 1)
309
310
311extern lzma_ret
312lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
313		uint8_t *restrict out, size_t *restrict out_pos,
314		size_t out_size, uint32_t limit)
315{
316	// Initialize the stream if no data has been encoded yet.
317	if (!coder->is_initialized && !encode_init(coder, mf))
318		return LZMA_OK;
319
320	// Get the lowest bits of the uncompressed offset from the LZ layer.
321	uint32_t position = mf_position(mf);
322
323	while (true) {
324		// Encode pending bits, if any. Calling this before encoding
325		// the next symbol is needed only with plain LZMA, since
326		// LZMA2 always provides big enough buffer to flush
327		// everything out from the range encoder. For the same reason,
328		// rc_encode() never returns true when this function is used
329		// as part of LZMA2 encoder.
330		if (rc_encode(&coder->rc, out, out_pos, out_size)) {
331			assert(limit == UINT32_MAX);
332			return LZMA_OK;
333		}
334
335		// With LZMA2 we need to take care that compressed size of
336		// a chunk doesn't get too big.
337		// FIXME? Check if this could be improved.
338		if (limit != UINT32_MAX
339				&& (mf->read_pos - mf->read_ahead >= limit
340					|| *out_pos + rc_pending(&coder->rc)
341						>= LZMA2_CHUNK_MAX
342							- LOOP_INPUT_MAX))
343			break;
344
345		// Check that there is some input to process.
346		if (mf->read_pos >= mf->read_limit) {
347			if (mf->action == LZMA_RUN)
348				return LZMA_OK;
349
350			if (mf->read_ahead == 0)
351				break;
352		}
353
354		// Get optimal match (repeat position and length).
355		// Value ranges for pos:
356		//   - [0, REPS): repeated match
357		//   - [REPS, UINT32_MAX):
358		//     match at (pos - REPS)
359		//   - UINT32_MAX: not a match but a literal
360		// Value ranges for len:
361		//   - [MATCH_LEN_MIN, MATCH_LEN_MAX]
362		uint32_t len;
363		uint32_t back;
364
365		if (coder->fast_mode)
366			lzma_lzma_optimum_fast(coder, mf, &back, &len);
367		else
368			lzma_lzma_optimum_normal(
369					coder, mf, &back, &len, position);
370
371		encode_symbol(coder, mf, back, len, position);
372
373		position += len;
374	}
375
376	if (!coder->is_flushed) {
377		coder->is_flushed = true;
378
379		// We don't support encoding plain LZMA streams without EOPM,
380		// and LZMA2 doesn't use EOPM at LZMA level.
381		if (limit == UINT32_MAX)
382			encode_eopm(coder, position);
383
384		// Flush the remaining bytes from the range encoder.
385		rc_flush(&coder->rc);
386
387		// Copy the remaining bytes to the output buffer. If there
388		// isn't enough output space, we will copy out the remaining
389		// bytes on the next call to this function by using
390		// the rc_encode() call in the encoding loop above.
391		if (rc_encode(&coder->rc, out, out_pos, out_size)) {
392			assert(limit == UINT32_MAX);
393			return LZMA_OK;
394		}
395	}
396
397	// Make it ready for the next LZMA2 chunk.
398	coder->is_flushed = false;
399
400	return LZMA_STREAM_END;
401}
402
403
404static lzma_ret
405lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
406		uint8_t *restrict out, size_t *restrict out_pos,
407		size_t out_size)
408{
409	// Plain LZMA has no support for sync-flushing.
410	if (unlikely(mf->action == LZMA_SYNC_FLUSH))
411		return LZMA_OPTIONS_ERROR;
412
413	return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
414}
415
416
417////////////////////
418// Initialization //
419////////////////////
420
421static bool
422is_options_valid(const lzma_options_lzma *options)
423{
424	// Validate some of the options. LZ encoder validates nice_len too
425	// but we need a valid value here earlier.
426	return is_lclppb_valid(options)
427			&& options->nice_len >= MATCH_LEN_MIN
428			&& options->nice_len <= MATCH_LEN_MAX
429			&& (options->mode == LZMA_MODE_FAST
430				|| options->mode == LZMA_MODE_NORMAL);
431}
432
433
434static void
435set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
436{
437	// LZ encoder initialization does the validation for these so we
438	// don't need to validate here.
439	lz_options->before_size = OPTS;
440	lz_options->dict_size = options->dict_size;
441	lz_options->after_size = LOOP_INPUT_MAX;
442	lz_options->match_len_max = MATCH_LEN_MAX;
443	lz_options->nice_len = options->nice_len;
444	lz_options->match_finder = options->mf;
445	lz_options->depth = options->depth;
446	lz_options->preset_dict = options->preset_dict;
447	lz_options->preset_dict_size = options->preset_dict_size;
448	return;
449}
450
451
452static void
453length_encoder_reset(lzma_length_encoder *lencoder,
454		const uint32_t num_pos_states, const bool fast_mode)
455{
456	bit_reset(lencoder->choice);
457	bit_reset(lencoder->choice2);
458
459	for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
460		bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
461		bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
462	}
463
464	bittree_reset(lencoder->high, LEN_HIGH_BITS);
465
466	if (!fast_mode)
467		for (uint32_t pos_state = 0; pos_state < num_pos_states;
468				++pos_state)
469			length_update_prices(lencoder, pos_state);
470
471	return;
472}
473
474
475extern lzma_ret
476lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options)
477{
478	if (!is_options_valid(options))
479		return LZMA_OPTIONS_ERROR;
480
481	coder->pos_mask = (1U << options->pb) - 1;
482	coder->literal_context_bits = options->lc;
483	coder->literal_pos_mask = (1U << options->lp) - 1;
484
485	// Range coder
486	rc_reset(&coder->rc);
487
488	// State
489	coder->state = STATE_LIT_LIT;
490	for (size_t i = 0; i < REPS; ++i)
491		coder->reps[i] = 0;
492
493	literal_init(coder->literal, options->lc, options->lp);
494
495	// Bit encoders
496	for (size_t i = 0; i < STATES; ++i) {
497		for (size_t j = 0; j <= coder->pos_mask; ++j) {
498			bit_reset(coder->is_match[i][j]);
499			bit_reset(coder->is_rep0_long[i][j]);
500		}
501
502		bit_reset(coder->is_rep[i]);
503		bit_reset(coder->is_rep0[i]);
504		bit_reset(coder->is_rep1[i]);
505		bit_reset(coder->is_rep2[i]);
506	}
507
508	for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
509		bit_reset(coder->dist_special[i]);
510
511	// Bit tree encoders
512	for (size_t i = 0; i < DIST_STATES; ++i)
513		bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
514
515	bittree_reset(coder->dist_align, ALIGN_BITS);
516
517	// Length encoders
518	length_encoder_reset(&coder->match_len_encoder,
519			1U << options->pb, coder->fast_mode);
520
521	length_encoder_reset(&coder->rep_len_encoder,
522			1U << options->pb, coder->fast_mode);
523
524	// Price counts are incremented every time appropriate probabilities
525	// are changed. price counts are set to zero when the price tables
526	// are updated, which is done when the appropriate price counts have
527	// big enough value, and lzma_mf.read_ahead == 0 which happens at
528	// least every OPTS (a few thousand) possible price count increments.
529	//
530	// By resetting price counts to UINT32_MAX / 2, we make sure that the
531	// price tables will be initialized before they will be used (since
532	// the value is definitely big enough), and that it is OK to increment
533	// price counts without risk of integer overflow (since UINT32_MAX / 2
534	// is small enough). The current code doesn't increment price counts
535	// before initializing price tables, but it maybe done in future if
536	// we add support for saving the state between LZMA2 chunks.
537	coder->match_price_count = UINT32_MAX / 2;
538	coder->align_price_count = UINT32_MAX / 2;
539
540	coder->opts_end_index = 0;
541	coder->opts_current_index = 0;
542
543	return LZMA_OK;
544}
545
546
547extern lzma_ret
548lzma_lzma_encoder_create(lzma_coder **coder_ptr,
549		const lzma_allocator *allocator,
550		const lzma_options_lzma *options, lzma_lz_options *lz_options)
551{
552	// Allocate lzma_coder if it wasn't already allocated.
553	if (*coder_ptr == NULL) {
554		*coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator);
555		if (*coder_ptr == NULL)
556			return LZMA_MEM_ERROR;
557	}
558
559	lzma_coder *coder = *coder_ptr;
560
561	// Set compression mode. We haven't validates the options yet,
562	// but it's OK here, since nothing bad happens with invalid
563	// options in the code below, and they will get rejected by
564	// lzma_lzma_encoder_reset() call at the end of this function.
565	switch (options->mode) {
566		case LZMA_MODE_FAST:
567			coder->fast_mode = true;
568			break;
569
570		case LZMA_MODE_NORMAL: {
571			coder->fast_mode = false;
572
573			// Set dist_table_size.
574			// Round the dictionary size up to next 2^n.
575			uint32_t log_size = 0;
576			while ((UINT32_C(1) << log_size) < options->dict_size)
577				++log_size;
578
579			coder->dist_table_size = log_size * 2;
580
581			// Length encoders' price table size
582			coder->match_len_encoder.table_size
583				= options->nice_len + 1 - MATCH_LEN_MIN;
584			coder->rep_len_encoder.table_size
585				= options->nice_len + 1 - MATCH_LEN_MIN;
586			break;
587		}
588
589		default:
590			return LZMA_OPTIONS_ERROR;
591	}
592
593	// We don't need to write the first byte as literal if there is
594	// a non-empty preset dictionary. encode_init() wouldn't even work
595	// if there is a non-empty preset dictionary, because encode_init()
596	// assumes that position is zero and previous byte is also zero.
597	coder->is_initialized = options->preset_dict != NULL
598			&& options->preset_dict_size > 0;
599	coder->is_flushed = false;
600
601	set_lz_options(lz_options, options);
602
603	return lzma_lzma_encoder_reset(coder, options);
604}
605
606
607static lzma_ret
608lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
609		const void *options, lzma_lz_options *lz_options)
610{
611	lz->code = &lzma_encode;
612	return lzma_lzma_encoder_create(
613			&lz->coder, allocator, options, lz_options);
614}
615
616
617extern lzma_ret
618lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
619		const lzma_filter_info *filters)
620{
621	return lzma_lz_encoder_init(
622			next, allocator, filters, &lzma_encoder_init);
623}
624
625
626extern uint64_t
627lzma_lzma_encoder_memusage(const void *options)
628{
629	if (!is_options_valid(options))
630		return UINT64_MAX;
631
632	lzma_lz_options lz_options;
633	set_lz_options(&lz_options, options);
634
635	const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
636	if (lz_memusage == UINT64_MAX)
637		return UINT64_MAX;
638
639	return (uint64_t)(sizeof(lzma_coder)) + lz_memusage;
640}
641
642
643extern bool
644lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
645{
646	if (!is_lclppb_valid(options))
647		return true;
648
649	*byte = (options->pb * 5 + options->lp) * 9 + options->lc;
650	assert(*byte <= (4 * 5 + 4) * 9 + 8);
651
652	return false;
653}
654
655
656#ifdef HAVE_ENCODER_LZMA1
657extern lzma_ret
658lzma_lzma_props_encode(const void *options, uint8_t *out)
659{
660	const lzma_options_lzma *const opt = options;
661
662	if (lzma_lzma_lclppb_encode(opt, out))
663		return LZMA_PROG_ERROR;
664
665	unaligned_write32le(out + 1, opt->dict_size);
666
667	return LZMA_OK;
668}
669#endif
670
671
672extern LZMA_API(lzma_bool)
673lzma_mode_is_supported(lzma_mode mode)
674{
675	return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
676}
677