lz_encoder.c revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       lz_encoder.c
4/// \brief      LZ in window
5///
6//  Authors:    Igor Pavlov
7//              Lasse Collin
8//
9//  This file has been put into the public domain.
10//  You can do whatever you want with this file.
11//
12///////////////////////////////////////////////////////////////////////////////
13
14#include "lz_encoder.h"
15#include "lz_encoder_hash.h"
16
17// See lz_encoder_hash.h. This is a bit hackish but avoids making
18// endianness a conditional in makefiles.
19#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
20#	include "lz_encoder_hash_table.h"
21#endif
22
23#include "memcmplen.h"
24
25
26struct lzma_coder_s {
27	/// LZ-based encoder e.g. LZMA
28	lzma_lz_encoder lz;
29
30	/// History buffer and match finder
31	lzma_mf mf;
32
33	/// Next coder in the chain
34	lzma_next_coder next;
35};
36
37
38/// \brief      Moves the data in the input window to free space for new data
39///
40/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
41/// bytes of input history available all the time. Now and then we need to
42/// "slide" the buffer to make space for the new data to the end of the
43/// buffer. At the same time, data older than keep_size_before is dropped.
44///
45static void
46move_window(lzma_mf *mf)
47{
48	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
49	// like LZMA use the lowest bits of mf->read_pos to know the
50	// alignment of the uncompressed data. We also get better speed
51	// for memmove() with aligned buffers.
52	assert(mf->read_pos > mf->keep_size_before);
53	const uint32_t move_offset
54		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
55
56	assert(mf->write_pos > move_offset);
57	const size_t move_size = mf->write_pos - move_offset;
58
59	assert(move_offset + move_size <= mf->size);
60
61	memmove(mf->buffer, mf->buffer + move_offset, move_size);
62
63	mf->offset += move_offset;
64	mf->read_pos -= move_offset;
65	mf->read_limit -= move_offset;
66	mf->write_pos -= move_offset;
67
68	return;
69}
70
71
72/// \brief      Tries to fill the input window (mf->buffer)
73///
74/// If we are the last encoder in the chain, our input data is in in[].
75/// Otherwise we call the next filter in the chain to process in[] and
76/// write its output to mf->buffer.
77///
78/// This function must not be called once it has returned LZMA_STREAM_END.
79///
80static lzma_ret
81fill_window(lzma_coder *coder, const lzma_allocator *allocator,
82		const uint8_t *in, size_t *in_pos, size_t in_size,
83		lzma_action action)
84{
85	assert(coder->mf.read_pos <= coder->mf.write_pos);
86
87	// Move the sliding window if needed.
88	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
89		move_window(&coder->mf);
90
91	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
92	// (which I find cleanest), but we need size_t here when filling
93	// the history window.
94	size_t write_pos = coder->mf.write_pos;
95	lzma_ret ret;
96	if (coder->next.code == NULL) {
97		// Not using a filter, simply memcpy() as much as possible.
98		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
99				&write_pos, coder->mf.size);
100
101		ret = action != LZMA_RUN && *in_pos == in_size
102				? LZMA_STREAM_END : LZMA_OK;
103
104	} else {
105		ret = coder->next.code(coder->next.coder, allocator,
106				in, in_pos, in_size,
107				coder->mf.buffer, &write_pos,
108				coder->mf.size, action);
109	}
110
111	coder->mf.write_pos = write_pos;
112
113	// Silence Valgrind. lzma_memcmplen() can read extra bytes
114	// and Valgrind will give warnings if those bytes are uninitialized
115	// because Valgrind cannot see that the values of the uninitialized
116	// bytes are eventually ignored.
117	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
118
119	// If end of stream has been reached or flushing completed, we allow
120	// the encoder to process all the input (that is, read_pos is allowed
121	// to reach write_pos). Otherwise we keep keep_size_after bytes
122	// available as prebuffer.
123	if (ret == LZMA_STREAM_END) {
124		assert(*in_pos == in_size);
125		ret = LZMA_OK;
126		coder->mf.action = action;
127		coder->mf.read_limit = coder->mf.write_pos;
128
129	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
130		// This needs to be done conditionally, because if we got
131		// only little new input, there may be too little input
132		// to do any encoding yet.
133		coder->mf.read_limit = coder->mf.write_pos
134				- coder->mf.keep_size_after;
135	}
136
137	// Restart the match finder after finished LZMA_SYNC_FLUSH.
138	if (coder->mf.pending > 0
139			&& coder->mf.read_pos < coder->mf.read_limit) {
140		// Match finder may update coder->pending and expects it to
141		// start from zero, so use a temporary variable.
142		const uint32_t pending = coder->mf.pending;
143		coder->mf.pending = 0;
144
145		// Rewind read_pos so that the match finder can hash
146		// the pending bytes.
147		assert(coder->mf.read_pos >= pending);
148		coder->mf.read_pos -= pending;
149
150		// Call the skip function directly instead of using
151		// mf_skip(), since we don't want to touch mf->read_ahead.
152		coder->mf.skip(&coder->mf, pending);
153	}
154
155	return ret;
156}
157
158
159static lzma_ret
160lz_encode(lzma_coder *coder, const lzma_allocator *allocator,
161		const uint8_t *restrict in, size_t *restrict in_pos,
162		size_t in_size,
163		uint8_t *restrict out, size_t *restrict out_pos,
164		size_t out_size, lzma_action action)
165{
166	while (*out_pos < out_size
167			&& (*in_pos < in_size || action != LZMA_RUN)) {
168		// Read more data to coder->mf.buffer if needed.
169		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
170				>= coder->mf.read_limit)
171			return_if_error(fill_window(coder, allocator,
172					in, in_pos, in_size, action));
173
174		// Encode
175		const lzma_ret ret = coder->lz.code(coder->lz.coder,
176				&coder->mf, out, out_pos, out_size);
177		if (ret != LZMA_OK) {
178			// Setting this to LZMA_RUN for cases when we are
179			// flushing. It doesn't matter when finishing or if
180			// an error occurred.
181			coder->mf.action = LZMA_RUN;
182			return ret;
183		}
184	}
185
186	return LZMA_OK;
187}
188
189
190static bool
191lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
192		const lzma_lz_options *lz_options)
193{
194	// For now, the dictionary size is limited to 1.5 GiB. This may grow
195	// in the future if needed, but it needs a little more work than just
196	// changing this check.
197	if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
198			|| lz_options->dict_size
199				> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
200			|| lz_options->nice_len > lz_options->match_len_max)
201		return true;
202
203	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
204
205	mf->keep_size_after = lz_options->after_size
206			+ lz_options->match_len_max;
207
208	// To avoid constant memmove()s, allocate some extra space. Since
209	// memmove()s become more expensive when the size of the buffer
210	// increases, we reserve more space when a large dictionary is
211	// used to make the memmove() calls rarer.
212	//
213	// This works with dictionaries up to about 3 GiB. If bigger
214	// dictionary is wanted, some extra work is needed:
215	//   - Several variables in lzma_mf have to be changed from uint32_t
216	//     to size_t.
217	//   - Memory usage calculation needs something too, e.g. use uint64_t
218	//     for mf->size.
219	uint32_t reserve = lz_options->dict_size / 2;
220	if (reserve > (UINT32_C(1) << 30))
221		reserve /= 2;
222
223	reserve += (lz_options->before_size + lz_options->match_len_max
224			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
225
226	const uint32_t old_size = mf->size;
227	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
228
229	// Deallocate the old history buffer if it exists but has different
230	// size than what is needed now.
231	if (mf->buffer != NULL && old_size != mf->size) {
232		lzma_free(mf->buffer, allocator);
233		mf->buffer = NULL;
234	}
235
236	// Match finder options
237	mf->match_len_max = lz_options->match_len_max;
238	mf->nice_len = lz_options->nice_len;
239
240	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
241	// mean limiting dictionary size to less than 2 GiB. With a match
242	// finder that uses multibyte resolution (hashes start at e.g. every
243	// fourth byte), cyclic_size would stay below 2 Gi even when
244	// dictionary size is greater than 2 GiB.
245	//
246	// It would be possible to allow cyclic_size >= 2 Gi, but then we
247	// would need to be careful to use 64-bit types in various places
248	// (size_t could do since we would need bigger than 32-bit address
249	// space anyway). It would also require either zeroing a multigigabyte
250	// buffer at initialization (waste of time and RAM) or allow
251	// normalization in lz_encoder_mf.c to access uninitialized
252	// memory to keep the code simpler. The current way is simple and
253	// still allows pretty big dictionaries, so I don't expect these
254	// limits to change.
255	mf->cyclic_size = lz_options->dict_size + 1;
256
257	// Validate the match finder ID and setup the function pointers.
258	switch (lz_options->match_finder) {
259#ifdef HAVE_MF_HC3
260	case LZMA_MF_HC3:
261		mf->find = &lzma_mf_hc3_find;
262		mf->skip = &lzma_mf_hc3_skip;
263		break;
264#endif
265#ifdef HAVE_MF_HC4
266	case LZMA_MF_HC4:
267		mf->find = &lzma_mf_hc4_find;
268		mf->skip = &lzma_mf_hc4_skip;
269		break;
270#endif
271#ifdef HAVE_MF_BT2
272	case LZMA_MF_BT2:
273		mf->find = &lzma_mf_bt2_find;
274		mf->skip = &lzma_mf_bt2_skip;
275		break;
276#endif
277#ifdef HAVE_MF_BT3
278	case LZMA_MF_BT3:
279		mf->find = &lzma_mf_bt3_find;
280		mf->skip = &lzma_mf_bt3_skip;
281		break;
282#endif
283#ifdef HAVE_MF_BT4
284	case LZMA_MF_BT4:
285		mf->find = &lzma_mf_bt4_find;
286		mf->skip = &lzma_mf_bt4_skip;
287		break;
288#endif
289
290	default:
291		return true;
292	}
293
294	// Calculate the sizes of mf->hash and mf->son and check that
295	// nice_len is big enough for the selected match finder.
296	const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
297	if (hash_bytes > mf->nice_len)
298		return true;
299
300	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
301	uint32_t hs;
302
303	if (hash_bytes == 2) {
304		hs = 0xFFFF;
305	} else {
306		// Round dictionary size up to the next 2^n - 1 so it can
307		// be used as a hash mask.
308		hs = lz_options->dict_size - 1;
309		hs |= hs >> 1;
310		hs |= hs >> 2;
311		hs |= hs >> 4;
312		hs |= hs >> 8;
313		hs >>= 1;
314		hs |= 0xFFFF;
315
316		if (hs > (UINT32_C(1) << 24)) {
317			if (hash_bytes == 3)
318				hs = (UINT32_C(1) << 24) - 1;
319			else
320				hs >>= 1;
321		}
322	}
323
324	mf->hash_mask = hs;
325
326	++hs;
327	if (hash_bytes > 2)
328		hs += HASH_2_SIZE;
329	if (hash_bytes > 3)
330		hs += HASH_3_SIZE;
331/*
332	No match finder uses this at the moment.
333	if (mf->hash_bytes > 4)
334		hs += HASH_4_SIZE;
335*/
336
337	const uint32_t old_hash_count = mf->hash_count;
338	const uint32_t old_sons_count = mf->sons_count;
339	mf->hash_count = hs;
340	mf->sons_count = mf->cyclic_size;
341	if (is_bt)
342		mf->sons_count *= 2;
343
344	// Deallocate the old hash array if it exists and has different size
345	// than what is needed now.
346	if (old_hash_count != mf->hash_count
347			|| old_sons_count != mf->sons_count) {
348		lzma_free(mf->hash, allocator);
349		mf->hash = NULL;
350
351		lzma_free(mf->son, allocator);
352		mf->son = NULL;
353	}
354
355	// Maximum number of match finder cycles
356	mf->depth = lz_options->depth;
357	if (mf->depth == 0) {
358		if (is_bt)
359			mf->depth = 16 + mf->nice_len / 2;
360		else
361			mf->depth = 4 + mf->nice_len / 4;
362	}
363
364	return false;
365}
366
367
368static bool
369lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
370		const lzma_lz_options *lz_options)
371{
372	// Allocate the history buffer.
373	if (mf->buffer == NULL) {
374		// lzma_memcmplen() is used for the dictionary buffer
375		// so we need to allocate a few extra bytes to prevent
376		// it from reading past the end of the buffer.
377		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
378				allocator);
379		if (mf->buffer == NULL)
380			return true;
381
382		// Keep Valgrind happy with lzma_memcmplen() and initialize
383		// the extra bytes whose value may get read but which will
384		// effectively get ignored.
385		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
386	}
387
388	// Use cyclic_size as initial mf->offset. This allows
389	// avoiding a few branches in the match finders. The downside is
390	// that match finder needs to be normalized more often, which may
391	// hurt performance with huge dictionaries.
392	mf->offset = mf->cyclic_size;
393	mf->read_pos = 0;
394	mf->read_ahead = 0;
395	mf->read_limit = 0;
396	mf->write_pos = 0;
397	mf->pending = 0;
398
399#if UINT32_MAX >= SIZE_MAX / 4
400	// Check for integer overflow. (Huge dictionaries are not
401	// possible on 32-bit CPU.)
402	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
403			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
404		return true;
405#endif
406
407	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
408	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
409	//
410	// We don't need to initialize mf->son, but not doing that may
411	// make Valgrind complain in normalization (see normalize() in
412	// lz_encoder_mf.c). Skipping the initialization is *very* good
413	// when big dictionary is used but only small amount of data gets
414	// actually compressed: most of the mf->son won't get actually
415	// allocated by the kernel, so we avoid wasting RAM and improve
416	// initialization speed a lot.
417	if (mf->hash == NULL) {
418		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
419				allocator);
420		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
421				allocator);
422
423		if (mf->hash == NULL || mf->son == NULL) {
424			lzma_free(mf->hash, allocator);
425			mf->hash = NULL;
426
427			lzma_free(mf->son, allocator);
428			mf->son = NULL;
429
430			return true;
431		}
432	} else {
433/*
434		for (uint32_t i = 0; i < mf->hash_count; ++i)
435			mf->hash[i] = EMPTY_HASH_VALUE;
436*/
437		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
438	}
439
440	mf->cyclic_pos = 0;
441
442	// Handle preset dictionary.
443	if (lz_options->preset_dict != NULL
444			&& lz_options->preset_dict_size > 0) {
445		// If the preset dictionary is bigger than the actual
446		// dictionary, use only the tail.
447		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
448		memcpy(mf->buffer, lz_options->preset_dict
449				+ lz_options->preset_dict_size - mf->write_pos,
450				mf->write_pos);
451		mf->action = LZMA_SYNC_FLUSH;
452		mf->skip(mf, mf->write_pos);
453	}
454
455	mf->action = LZMA_RUN;
456
457	return false;
458}
459
460
461extern uint64_t
462lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
463{
464	// Old buffers must not exist when calling lz_encoder_prepare().
465	lzma_mf mf = {
466		.buffer = NULL,
467		.hash = NULL,
468		.son = NULL,
469		.hash_count = 0,
470		.sons_count = 0,
471	};
472
473	// Setup the size information into mf.
474	if (lz_encoder_prepare(&mf, NULL, lz_options))
475		return UINT64_MAX;
476
477	// Calculate the memory usage.
478	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
479			+ mf.size + sizeof(lzma_coder);
480}
481
482
483static void
484lz_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
485{
486	lzma_next_end(&coder->next, allocator);
487
488	lzma_free(coder->mf.son, allocator);
489	lzma_free(coder->mf.hash, allocator);
490	lzma_free(coder->mf.buffer, allocator);
491
492	if (coder->lz.end != NULL)
493		coder->lz.end(coder->lz.coder, allocator);
494	else
495		lzma_free(coder->lz.coder, allocator);
496
497	lzma_free(coder, allocator);
498	return;
499}
500
501
502static lzma_ret
503lz_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
504		const lzma_filter *filters_null lzma_attribute((__unused__)),
505		const lzma_filter *reversed_filters)
506{
507	if (coder->lz.options_update == NULL)
508		return LZMA_PROG_ERROR;
509
510	return_if_error(coder->lz.options_update(
511			coder->lz.coder, reversed_filters));
512
513	return lzma_next_filter_update(
514			&coder->next, allocator, reversed_filters + 1);
515}
516
517
518extern lzma_ret
519lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
520		const lzma_filter_info *filters,
521		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
522			const lzma_allocator *allocator, const void *options,
523			lzma_lz_options *lz_options))
524{
525#ifdef HAVE_SMALL
526	// We need that the CRC32 table has been initialized.
527	lzma_crc32_init();
528#endif
529
530	// Allocate and initialize the base data structure.
531	if (next->coder == NULL) {
532		next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
533		if (next->coder == NULL)
534			return LZMA_MEM_ERROR;
535
536		next->code = &lz_encode;
537		next->end = &lz_encoder_end;
538		next->update = &lz_encoder_update;
539
540		next->coder->lz.coder = NULL;
541		next->coder->lz.code = NULL;
542		next->coder->lz.end = NULL;
543
544		next->coder->mf.buffer = NULL;
545		next->coder->mf.hash = NULL;
546		next->coder->mf.son = NULL;
547		next->coder->mf.hash_count = 0;
548		next->coder->mf.sons_count = 0;
549
550		next->coder->next = LZMA_NEXT_CODER_INIT;
551	}
552
553	// Initialize the LZ-based encoder.
554	lzma_lz_options lz_options;
555	return_if_error(lz_init(&next->coder->lz, allocator,
556			filters[0].options, &lz_options));
557
558	// Setup the size information into next->coder->mf and deallocate
559	// old buffers if they have wrong size.
560	if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
561		return LZMA_OPTIONS_ERROR;
562
563	// Allocate new buffers if needed, and do the rest of
564	// the initialization.
565	if (lz_encoder_init(&next->coder->mf, allocator, &lz_options))
566		return LZMA_MEM_ERROR;
567
568	// Initialize the next filter in the chain, if any.
569	return lzma_next_filter_init(&next->coder->next, allocator,
570			filters + 1);
571}
572
573
574extern LZMA_API(lzma_bool)
575lzma_mf_is_supported(lzma_match_finder mf)
576{
577	bool ret = false;
578
579#ifdef HAVE_MF_HC3
580	if (mf == LZMA_MF_HC3)
581		ret = true;
582#endif
583
584#ifdef HAVE_MF_HC4
585	if (mf == LZMA_MF_HC4)
586		ret = true;
587#endif
588
589#ifdef HAVE_MF_BT2
590	if (mf == LZMA_MF_BT2)
591		ret = true;
592#endif
593
594#ifdef HAVE_MF_BT3
595	if (mf == LZMA_MF_BT3)
596		ret = true;
597#endif
598
599#ifdef HAVE_MF_BT4
600	if (mf == LZMA_MF_BT4)
601		ret = true;
602#endif
603
604	return ret;
605}
606