memcmplen.h revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       memcmplen.h
4/// \brief      Optimized comparison of two buffers
5//
6//  Author:     Lasse Collin
7//
8//  This file has been put into the public domain.
9//  You can do whatever you want with this file.
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#ifndef LZMA_MEMCMPLEN_H
14#define LZMA_MEMCMPLEN_H
15
16#include "common.h"
17
18#ifdef HAVE_IMMINTRIN_H
19#	include <immintrin.h>
20#endif
21
22
23/// Find out how many equal bytes the two buffers have.
24///
25/// \param      buf1    First buffer
26/// \param      buf2    Second buffer
27/// \param      len     How many bytes have already been compared and will
28///                     be assumed to match
29/// \param      limit   How many bytes to compare at most, including the
30///                     already-compared bytes. This must be significantly
31///                     smaller than UINT32_MAX to avoid integer overflows.
32///                     Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
33///                     the specified limit from both buf1 and buf2.
34///
35/// \return     Number of equal bytes in the buffers is returned.
36///             This is always at least len and at most limit.
37///
38/// \note       LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
39///             It's rounded up to 2^n. This extra amount needs to be
40///             allocated in the buffers being used. It needs to be
41///             initialized too to keep Valgrind quiet.
42static inline uint32_t lzma_attribute((__always_inline__))
43lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
44		uint32_t len, uint32_t limit)
45{
46	assert(len <= limit);
47	assert(limit <= UINT32_MAX / 2);
48
49#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
50		&& ((TUKLIB_GNUC_REQ(3, 4) && defined(__x86_64__)) \
51			|| (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
52			|| (defined(__INTEL_COMPILER) && defined(_M_X64)) \
53			|| (defined(_MSC_VER) && defined(_M_X64)))
54	// NOTE: This will use 64-bit unaligned access which
55	// TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit, but
56	// it's convenient here at least as long as it's x86-64 only.
57	//
58	// I keep this x86-64 only for now since that's where I know this
59	// to be a good method. This may be fine on other 64-bit CPUs too.
60	// On big endian one should use xor instead of subtraction and switch
61	// to __builtin_clzll().
62#define LZMA_MEMCMPLEN_EXTRA 8
63	while (len < limit) {
64		const uint64_t x = *(const uint64_t *)(buf1 + len)
65				- *(const uint64_t *)(buf2 + len);
66		if (x != 0) {
67#	if defined(_M_X64) // MSVC or Intel C compiler on Windows
68			unsigned long tmp;
69			_BitScanForward64(&tmp, x);
70			len += (uint32_t)tmp >> 3;
71#	else // GCC, clang, or Intel C compiler
72			len += (uint32_t)__builtin_ctzll(x) >> 3;
73#	endif
74			return my_min(len, limit);
75		}
76
77		len += 8;
78	}
79
80	return limit;
81
82#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
83		&& defined(HAVE__MM_MOVEMASK_EPI8) \
84		&& ((defined(__GNUC__) && defined(__SSE2_MATH__)) \
85			|| (defined(__INTEL_COMPILER) && defined(__SSE2__)) \
86			|| (defined(_MSC_VER) && defined(_M_IX86_FP) \
87				&& _M_IX86_FP >= 2))
88	// NOTE: Like above, this will use 128-bit unaligned access which
89	// TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit.
90	//
91	// SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
92	// version is sometimes significantly faster and sometimes
93	// slightly slower than this SSE2 version, so this SSE2
94	// version isn't used on x86-64.
95#	define LZMA_MEMCMPLEN_EXTRA 16
96	while (len < limit) {
97		const uint32_t x = 0xFFFF ^ _mm_movemask_epi8(_mm_cmpeq_epi8(
98			_mm_loadu_si128((const __m128i *)(buf1 + len)),
99			_mm_loadu_si128((const __m128i *)(buf2 + len))));
100
101		if (x != 0) {
102#	if defined(__INTEL_COMPILER)
103			len += _bit_scan_forward(x);
104#	elif defined(_MSC_VER)
105			unsigned long tmp;
106			_BitScanForward(&tmp, x);
107			len += tmp;
108#	else
109			len += __builtin_ctz(x);
110#	endif
111			return my_min(len, limit);
112		}
113
114		len += 16;
115	}
116
117	return limit;
118
119#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
120	// Generic 32-bit little endian method
121#	define LZMA_MEMCMPLEN_EXTRA 4
122	while (len < limit) {
123		uint32_t x = *(const uint32_t *)(buf1 + len)
124				- *(const uint32_t *)(buf2 + len);
125		if (x != 0) {
126			if ((x & 0xFFFF) == 0) {
127				len += 2;
128				x >>= 16;
129			}
130
131			if ((x & 0xFF) == 0)
132				++len;
133
134			return my_min(len, limit);
135		}
136
137		len += 4;
138	}
139
140	return limit;
141
142#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
143	// Generic 32-bit big endian method
144#	define LZMA_MEMCMPLEN_EXTRA 4
145	while (len < limit) {
146		uint32_t x = *(const uint32_t *)(buf1 + len)
147				^ *(const uint32_t *)(buf2 + len);
148		if (x != 0) {
149			if ((x & 0xFFFF0000) == 0) {
150				len += 2;
151				x <<= 16;
152			}
153
154			if ((x & 0xFF000000) == 0)
155				++len;
156
157			return my_min(len, limit);
158		}
159
160		len += 4;
161	}
162
163	return limit;
164
165#else
166	// Simple portable version that doesn't use unaligned access.
167#	define LZMA_MEMCMPLEN_EXTRA 0
168	while (len < limit && buf1[len] == buf2[len])
169		++len;
170
171	return len;
172#endif
173}
174
175#endif
176