common.c revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       common.h
4/// \brief      Common functions needed in many places in liblzma
5//
6//  Author:     Lasse Collin
7//
8//  This file has been put into the public domain.
9//  You can do whatever you want with this file.
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#include "common.h"
14
15
16/////////////
17// Version //
18/////////////
19
20extern LZMA_API(uint32_t)
21lzma_version_number(void)
22{
23	return LZMA_VERSION;
24}
25
26
27extern LZMA_API(const char *)
28lzma_version_string(void)
29{
30	return LZMA_VERSION_STRING;
31}
32
33
34///////////////////////
35// Memory allocation //
36///////////////////////
37
38extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
39lzma_alloc(size_t size, const lzma_allocator *allocator)
40{
41	// Some malloc() variants return NULL if called with size == 0.
42	if (size == 0)
43		size = 1;
44
45	void *ptr;
46
47	if (allocator != NULL && allocator->alloc != NULL)
48		ptr = allocator->alloc(allocator->opaque, 1, size);
49	else
50		ptr = malloc(size);
51
52	return ptr;
53}
54
55
56extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
57lzma_alloc_zero(size_t size, const lzma_allocator *allocator)
58{
59	// Some calloc() variants return NULL if called with size == 0.
60	if (size == 0)
61		size = 1;
62
63	void *ptr;
64
65	if (allocator != NULL && allocator->alloc != NULL) {
66		ptr = allocator->alloc(allocator->opaque, 1, size);
67		if (ptr != NULL)
68			memzero(ptr, size);
69	} else {
70		ptr = calloc(1, size);
71	}
72
73	return ptr;
74}
75
76
77extern void
78lzma_free(void *ptr, const lzma_allocator *allocator)
79{
80	if (allocator != NULL && allocator->free != NULL)
81		allocator->free(allocator->opaque, ptr);
82	else
83		free(ptr);
84
85	return;
86}
87
88
89//////////
90// Misc //
91//////////
92
93extern size_t
94lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
95		size_t in_size, uint8_t *restrict out,
96		size_t *restrict out_pos, size_t out_size)
97{
98	const size_t in_avail = in_size - *in_pos;
99	const size_t out_avail = out_size - *out_pos;
100	const size_t copy_size = my_min(in_avail, out_avail);
101
102	memcpy(out + *out_pos, in + *in_pos, copy_size);
103
104	*in_pos += copy_size;
105	*out_pos += copy_size;
106
107	return copy_size;
108}
109
110
111extern lzma_ret
112lzma_next_filter_init(lzma_next_coder *next, const lzma_allocator *allocator,
113		const lzma_filter_info *filters)
114{
115	lzma_next_coder_init(filters[0].init, next, allocator);
116	next->id = filters[0].id;
117	return filters[0].init == NULL
118			? LZMA_OK : filters[0].init(next, allocator, filters);
119}
120
121
122extern lzma_ret
123lzma_next_filter_update(lzma_next_coder *next, const lzma_allocator *allocator,
124		const lzma_filter *reversed_filters)
125{
126	// Check that the application isn't trying to change the Filter ID.
127	// End of filters is indicated with LZMA_VLI_UNKNOWN in both
128	// reversed_filters[0].id and next->id.
129	if (reversed_filters[0].id != next->id)
130		return LZMA_PROG_ERROR;
131
132	if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
133		return LZMA_OK;
134
135	assert(next->update != NULL);
136	return next->update(next->coder, allocator, NULL, reversed_filters);
137}
138
139
140extern void
141lzma_next_end(lzma_next_coder *next, const lzma_allocator *allocator)
142{
143	if (next->init != (uintptr_t)(NULL)) {
144		// To avoid tiny end functions that simply call
145		// lzma_free(coder, allocator), we allow leaving next->end
146		// NULL and call lzma_free() here.
147		if (next->end != NULL)
148			next->end(next->coder, allocator);
149		else
150			lzma_free(next->coder, allocator);
151
152		// Reset the variables so the we don't accidentally think
153		// that it is an already initialized coder.
154		*next = LZMA_NEXT_CODER_INIT;
155	}
156
157	return;
158}
159
160
161//////////////////////////////////////
162// External to internal API wrapper //
163//////////////////////////////////////
164
165extern lzma_ret
166lzma_strm_init(lzma_stream *strm)
167{
168	if (strm == NULL)
169		return LZMA_PROG_ERROR;
170
171	if (strm->internal == NULL) {
172		strm->internal = lzma_alloc(sizeof(lzma_internal),
173				strm->allocator);
174		if (strm->internal == NULL)
175			return LZMA_MEM_ERROR;
176
177		strm->internal->next = LZMA_NEXT_CODER_INIT;
178	}
179
180	memzero(strm->internal->supported_actions,
181			sizeof(strm->internal->supported_actions));
182	strm->internal->sequence = ISEQ_RUN;
183	strm->internal->allow_buf_error = false;
184
185	strm->total_in = 0;
186	strm->total_out = 0;
187
188	return LZMA_OK;
189}
190
191
192extern LZMA_API(lzma_ret)
193lzma_code(lzma_stream *strm, lzma_action action)
194{
195	// Sanity checks
196	if ((strm->next_in == NULL && strm->avail_in != 0)
197			|| (strm->next_out == NULL && strm->avail_out != 0)
198			|| strm->internal == NULL
199			|| strm->internal->next.code == NULL
200			|| (unsigned int)(action) > LZMA_ACTION_MAX
201			|| !strm->internal->supported_actions[action])
202		return LZMA_PROG_ERROR;
203
204	// Check if unsupported members have been set to non-zero or non-NULL,
205	// which would indicate that some new feature is wanted.
206	if (strm->reserved_ptr1 != NULL
207			|| strm->reserved_ptr2 != NULL
208			|| strm->reserved_ptr3 != NULL
209			|| strm->reserved_ptr4 != NULL
210			|| strm->reserved_int1 != 0
211			|| strm->reserved_int2 != 0
212			|| strm->reserved_int3 != 0
213			|| strm->reserved_int4 != 0
214			|| strm->reserved_enum1 != LZMA_RESERVED_ENUM
215			|| strm->reserved_enum2 != LZMA_RESERVED_ENUM)
216		return LZMA_OPTIONS_ERROR;
217
218	switch (strm->internal->sequence) {
219	case ISEQ_RUN:
220		switch (action) {
221		case LZMA_RUN:
222			break;
223
224		case LZMA_SYNC_FLUSH:
225			strm->internal->sequence = ISEQ_SYNC_FLUSH;
226			break;
227
228		case LZMA_FULL_FLUSH:
229			strm->internal->sequence = ISEQ_FULL_FLUSH;
230			break;
231
232		case LZMA_FINISH:
233			strm->internal->sequence = ISEQ_FINISH;
234			break;
235
236		case LZMA_FULL_BARRIER:
237			strm->internal->sequence = ISEQ_FULL_BARRIER;
238			break;
239		}
240
241		break;
242
243	case ISEQ_SYNC_FLUSH:
244		// The same action must be used until we return
245		// LZMA_STREAM_END, and the amount of input must not change.
246		if (action != LZMA_SYNC_FLUSH
247				|| strm->internal->avail_in != strm->avail_in)
248			return LZMA_PROG_ERROR;
249
250		break;
251
252	case ISEQ_FULL_FLUSH:
253		if (action != LZMA_FULL_FLUSH
254				|| strm->internal->avail_in != strm->avail_in)
255			return LZMA_PROG_ERROR;
256
257		break;
258
259	case ISEQ_FINISH:
260		if (action != LZMA_FINISH
261				|| strm->internal->avail_in != strm->avail_in)
262			return LZMA_PROG_ERROR;
263
264		break;
265
266	case ISEQ_FULL_BARRIER:
267		if (action != LZMA_FULL_BARRIER
268				|| strm->internal->avail_in != strm->avail_in)
269			return LZMA_PROG_ERROR;
270
271		break;
272
273	case ISEQ_END:
274		return LZMA_STREAM_END;
275
276	case ISEQ_ERROR:
277	default:
278		return LZMA_PROG_ERROR;
279	}
280
281	size_t in_pos = 0;
282	size_t out_pos = 0;
283	lzma_ret ret = strm->internal->next.code(
284			strm->internal->next.coder, strm->allocator,
285			strm->next_in, &in_pos, strm->avail_in,
286			strm->next_out, &out_pos, strm->avail_out, action);
287
288	strm->next_in += in_pos;
289	strm->avail_in -= in_pos;
290	strm->total_in += in_pos;
291
292	strm->next_out += out_pos;
293	strm->avail_out -= out_pos;
294	strm->total_out += out_pos;
295
296	strm->internal->avail_in = strm->avail_in;
297
298	// Cast is needed to silence a warning about LZMA_TIMED_OUT, which
299	// isn't part of lzma_ret enumeration.
300	switch ((unsigned int)(ret)) {
301	case LZMA_OK:
302		// Don't return LZMA_BUF_ERROR when it happens the first time.
303		// This is to avoid returning LZMA_BUF_ERROR when avail_out
304		// was zero but still there was no more data left to written
305		// to next_out.
306		if (out_pos == 0 && in_pos == 0) {
307			if (strm->internal->allow_buf_error)
308				ret = LZMA_BUF_ERROR;
309			else
310				strm->internal->allow_buf_error = true;
311		} else {
312			strm->internal->allow_buf_error = false;
313		}
314		break;
315
316	case LZMA_TIMED_OUT:
317		strm->internal->allow_buf_error = false;
318		ret = LZMA_OK;
319		break;
320
321	case LZMA_STREAM_END:
322		if (strm->internal->sequence == ISEQ_SYNC_FLUSH
323				|| strm->internal->sequence == ISEQ_FULL_FLUSH
324				|| strm->internal->sequence
325					== ISEQ_FULL_BARRIER)
326			strm->internal->sequence = ISEQ_RUN;
327		else
328			strm->internal->sequence = ISEQ_END;
329
330	// Fall through
331
332	case LZMA_NO_CHECK:
333	case LZMA_UNSUPPORTED_CHECK:
334	case LZMA_GET_CHECK:
335	case LZMA_MEMLIMIT_ERROR:
336		// Something else than LZMA_OK, but not a fatal error,
337		// that is, coding may be continued (except if ISEQ_END).
338		strm->internal->allow_buf_error = false;
339		break;
340
341	default:
342		// All the other errors are fatal; coding cannot be continued.
343		assert(ret != LZMA_BUF_ERROR);
344		strm->internal->sequence = ISEQ_ERROR;
345		break;
346	}
347
348	return ret;
349}
350
351
352extern LZMA_API(void)
353lzma_end(lzma_stream *strm)
354{
355	if (strm != NULL && strm->internal != NULL) {
356		lzma_next_end(&strm->internal->next, strm->allocator);
357		lzma_free(strm->internal, strm->allocator);
358		strm->internal = NULL;
359	}
360
361	return;
362}
363
364
365extern LZMA_API(void)
366lzma_get_progress(lzma_stream *strm,
367		uint64_t *progress_in, uint64_t *progress_out)
368{
369	if (strm->internal->next.get_progress != NULL) {
370		strm->internal->next.get_progress(strm->internal->next.coder,
371				progress_in, progress_out);
372	} else {
373		*progress_in = strm->total_in;
374		*progress_out = strm->total_out;
375	}
376
377	return;
378}
379
380
381extern LZMA_API(lzma_check)
382lzma_get_check(const lzma_stream *strm)
383{
384	// Return LZMA_CHECK_NONE if we cannot know the check type.
385	// It's a bug in the application if this happens.
386	if (strm->internal->next.get_check == NULL)
387		return LZMA_CHECK_NONE;
388
389	return strm->internal->next.get_check(strm->internal->next.coder);
390}
391
392
393extern LZMA_API(uint64_t)
394lzma_memusage(const lzma_stream *strm)
395{
396	uint64_t memusage;
397	uint64_t old_memlimit;
398
399	if (strm == NULL || strm->internal == NULL
400			|| strm->internal->next.memconfig == NULL
401			|| strm->internal->next.memconfig(
402				strm->internal->next.coder,
403				&memusage, &old_memlimit, 0) != LZMA_OK)
404		return 0;
405
406	return memusage;
407}
408
409
410extern LZMA_API(uint64_t)
411lzma_memlimit_get(const lzma_stream *strm)
412{
413	uint64_t old_memlimit;
414	uint64_t memusage;
415
416	if (strm == NULL || strm->internal == NULL
417			|| strm->internal->next.memconfig == NULL
418			|| strm->internal->next.memconfig(
419				strm->internal->next.coder,
420				&memusage, &old_memlimit, 0) != LZMA_OK)
421		return 0;
422
423	return old_memlimit;
424}
425
426
427extern LZMA_API(lzma_ret)
428lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
429{
430	// Dummy variables to simplify memconfig functions
431	uint64_t old_memlimit;
432	uint64_t memusage;
433
434	if (strm == NULL || strm->internal == NULL
435			|| strm->internal->next.memconfig == NULL)
436		return LZMA_PROG_ERROR;
437
438	if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE)
439		return LZMA_MEMLIMIT_ERROR;
440
441	return strm->internal->next.memconfig(strm->internal->next.coder,
442			&memusage, &old_memlimit, new_memlimit);
443}
444