block_buffer_encoder.c revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       block_buffer_encoder.c
4/// \brief      Single-call .xz Block encoder
5//
6//  Author:     Lasse Collin
7//
8//  This file has been put into the public domain.
9//  You can do whatever you want with this file.
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#include "block_buffer_encoder.h"
14#include "block_encoder.h"
15#include "filter_encoder.h"
16#include "lzma2_encoder.h"
17#include "check.h"
18
19
20/// Estimate the maximum size of the Block Header and Check fields for
21/// a Block that uses LZMA2 uncompressed chunks. We could use
22/// lzma_block_header_size() but this is simpler.
23///
24/// Block Header Size + Block Flags + Compressed Size
25/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
26/// and round up to the next multiple of four to take Header Padding
27/// into account.
28#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
29		+ LZMA_CHECK_SIZE_MAX + 3) & ~3)
30
31
32static uint64_t
33lzma2_bound(uint64_t uncompressed_size)
34{
35	// Prevent integer overflow in overhead calculation.
36	if (uncompressed_size > COMPRESSED_SIZE_MAX)
37		return 0;
38
39	// Calculate the exact overhead of the LZMA2 headers: Round
40	// uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
41	// multiply by the size of per-chunk header, and add one byte for
42	// the end marker.
43	const uint64_t overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
44				/ LZMA2_CHUNK_MAX)
45			* LZMA2_HEADER_UNCOMPRESSED + 1;
46
47	// Catch the possible integer overflow.
48	if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
49		return 0;
50
51	return uncompressed_size + overhead;
52}
53
54
55extern uint64_t
56lzma_block_buffer_bound64(uint64_t uncompressed_size)
57{
58	// If the data doesn't compress, we always use uncompressed
59	// LZMA2 chunks.
60	uint64_t lzma2_size = lzma2_bound(uncompressed_size);
61	if (lzma2_size == 0)
62		return 0;
63
64	// Take Block Padding into account.
65	lzma2_size = (lzma2_size + 3) & ~UINT64_C(3);
66
67	// No risk of integer overflow because lzma2_bound() already takes
68	// into account the size of the headers in the Block.
69	return HEADERS_BOUND + lzma2_size;
70}
71
72
73extern LZMA_API(size_t)
74lzma_block_buffer_bound(size_t uncompressed_size)
75{
76	uint64_t ret = lzma_block_buffer_bound64(uncompressed_size);
77
78#if SIZE_MAX < UINT64_MAX
79	// Catch the possible integer overflow on 32-bit systems.
80	if (ret > SIZE_MAX)
81		return 0;
82#endif
83
84	return ret;
85}
86
87
88static lzma_ret
89block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
90		uint8_t *out, size_t *out_pos, size_t out_size)
91{
92	// Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
93	// all, but LZMA2 always requires a dictionary, so use the minimum
94	// value to minimize memory usage of the decoder.
95	lzma_options_lzma lzma2 = {
96		.dict_size = LZMA_DICT_SIZE_MIN,
97	};
98
99	lzma_filter filters[2];
100	filters[0].id = LZMA_FILTER_LZMA2;
101	filters[0].options = &lzma2;
102	filters[1].id = LZMA_VLI_UNKNOWN;
103
104	// Set the above filter options to *block temporarily so that we can
105	// encode the Block Header.
106	lzma_filter *filters_orig = block->filters;
107	block->filters = filters;
108
109	if (lzma_block_header_size(block) != LZMA_OK) {
110		block->filters = filters_orig;
111		return LZMA_PROG_ERROR;
112	}
113
114	// Check that there's enough output space. The caller has already
115	// set block->compressed_size to what lzma2_bound() has returned,
116	// so we can reuse that value. We know that compressed_size is a
117	// known valid VLI and header_size is a small value so their sum
118	// will never overflow.
119	assert(block->compressed_size == lzma2_bound(in_size));
120	if (out_size - *out_pos
121			< block->header_size + block->compressed_size) {
122		block->filters = filters_orig;
123		return LZMA_BUF_ERROR;
124	}
125
126	if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
127		block->filters = filters_orig;
128		return LZMA_PROG_ERROR;
129	}
130
131	block->filters = filters_orig;
132	*out_pos += block->header_size;
133
134	// Encode the data using LZMA2 uncompressed chunks.
135	size_t in_pos = 0;
136	uint8_t control = 0x01; // Dictionary reset
137
138	while (in_pos < in_size) {
139		// Control byte: Indicate uncompressed chunk, of which
140		// the first resets the dictionary.
141		out[(*out_pos)++] = control;
142		control = 0x02; // No dictionary reset
143
144		// Size of the uncompressed chunk
145		const size_t copy_size
146				= my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
147		out[(*out_pos)++] = (copy_size - 1) >> 8;
148		out[(*out_pos)++] = (copy_size - 1) & 0xFF;
149
150		// The actual data
151		assert(*out_pos + copy_size <= out_size);
152		memcpy(out + *out_pos, in + in_pos, copy_size);
153
154		in_pos += copy_size;
155		*out_pos += copy_size;
156	}
157
158	// End marker
159	out[(*out_pos)++] = 0x00;
160	assert(*out_pos <= out_size);
161
162	return LZMA_OK;
163}
164
165
166static lzma_ret
167block_encode_normal(lzma_block *block, const lzma_allocator *allocator,
168		const uint8_t *in, size_t in_size,
169		uint8_t *out, size_t *out_pos, size_t out_size)
170{
171	// Find out the size of the Block Header.
172	return_if_error(lzma_block_header_size(block));
173
174	// Reserve space for the Block Header and skip it for now.
175	if (out_size - *out_pos <= block->header_size)
176		return LZMA_BUF_ERROR;
177
178	const size_t out_start = *out_pos;
179	*out_pos += block->header_size;
180
181	// Limit out_size so that we stop encoding if the output would grow
182	// bigger than what uncompressed Block would be.
183	if (out_size - *out_pos > block->compressed_size)
184		out_size = *out_pos + block->compressed_size;
185
186	// TODO: In many common cases this could be optimized to use
187	// significantly less memory.
188	lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
189	lzma_ret ret = lzma_raw_encoder_init(
190			&raw_encoder, allocator, block->filters);
191
192	if (ret == LZMA_OK) {
193		size_t in_pos = 0;
194		ret = raw_encoder.code(raw_encoder.coder, allocator,
195				in, &in_pos, in_size, out, out_pos, out_size,
196				LZMA_FINISH);
197	}
198
199	// NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
200	lzma_next_end(&raw_encoder, allocator);
201
202	if (ret == LZMA_STREAM_END) {
203		// Compression was successful. Write the Block Header.
204		block->compressed_size
205				= *out_pos - (out_start + block->header_size);
206		ret = lzma_block_header_encode(block, out + out_start);
207		if (ret != LZMA_OK)
208			ret = LZMA_PROG_ERROR;
209
210	} else if (ret == LZMA_OK) {
211		// Output buffer became full.
212		ret = LZMA_BUF_ERROR;
213	}
214
215	// Reset *out_pos if something went wrong.
216	if (ret != LZMA_OK)
217		*out_pos = out_start;
218
219	return ret;
220}
221
222
223static lzma_ret
224block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
225		const uint8_t *in, size_t in_size,
226		uint8_t *out, size_t *out_pos, size_t out_size,
227		bool try_to_compress)
228{
229	// Validate the arguments.
230	if (block == NULL || (in == NULL && in_size != 0) || out == NULL
231			|| out_pos == NULL || *out_pos > out_size)
232		return LZMA_PROG_ERROR;
233
234	// The contents of the structure may depend on the version so
235	// check the version before validating the contents of *block.
236	if (block->version > 1)
237		return LZMA_OPTIONS_ERROR;
238
239	if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
240			|| (try_to_compress && block->filters == NULL))
241		return LZMA_PROG_ERROR;
242
243	if (!lzma_check_is_supported(block->check))
244		return LZMA_UNSUPPORTED_CHECK;
245
246	// Size of a Block has to be a multiple of four, so limit the size
247	// here already. This way we don't need to check it again when adding
248	// Block Padding.
249	out_size -= (out_size - *out_pos) & 3;
250
251	// Get the size of the Check field.
252	const size_t check_size = lzma_check_size(block->check);
253	assert(check_size != UINT32_MAX);
254
255	// Reserve space for the Check field.
256	if (out_size - *out_pos <= check_size)
257		return LZMA_BUF_ERROR;
258
259	out_size -= check_size;
260
261	// Initialize block->uncompressed_size and calculate the worst-case
262	// value for block->compressed_size.
263	block->uncompressed_size = in_size;
264	block->compressed_size = lzma2_bound(in_size);
265	if (block->compressed_size == 0)
266		return LZMA_DATA_ERROR;
267
268	// Do the actual compression.
269	lzma_ret ret = LZMA_BUF_ERROR;
270	if (try_to_compress)
271		ret = block_encode_normal(block, allocator,
272				in, in_size, out, out_pos, out_size);
273
274	if (ret != LZMA_OK) {
275		// If the error was something else than output buffer
276		// becoming full, return the error now.
277		if (ret != LZMA_BUF_ERROR)
278			return ret;
279
280		// The data was uncompressible (at least with the options
281		// given to us) or the output buffer was too small. Use the
282		// uncompressed chunks of LZMA2 to wrap the data into a valid
283		// Block. If we haven't been given enough output space, even
284		// this may fail.
285		return_if_error(block_encode_uncompressed(block, in, in_size,
286				out, out_pos, out_size));
287	}
288
289	assert(*out_pos <= out_size);
290
291	// Block Padding. No buffer overflow here, because we already adjusted
292	// out_size so that (out_size - out_start) is a multiple of four.
293	// Thus, if the buffer is full, the loop body can never run.
294	for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
295		assert(*out_pos < out_size);
296		out[(*out_pos)++] = 0x00;
297	}
298
299	// If there's no Check field, we are done now.
300	if (check_size > 0) {
301		// Calculate the integrity check. We reserved space for
302		// the Check field earlier so we don't need to check for
303		// available output space here.
304		lzma_check_state check;
305		lzma_check_init(&check, block->check);
306		lzma_check_update(&check, block->check, in, in_size);
307		lzma_check_finish(&check, block->check);
308
309		memcpy(block->raw_check, check.buffer.u8, check_size);
310		memcpy(out + *out_pos, check.buffer.u8, check_size);
311		*out_pos += check_size;
312	}
313
314	return LZMA_OK;
315}
316
317
318extern LZMA_API(lzma_ret)
319lzma_block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
320		const uint8_t *in, size_t in_size,
321		uint8_t *out, size_t *out_pos, size_t out_size)
322{
323	return block_buffer_encode(block, allocator,
324			in, in_size, out, out_pos, out_size, true);
325}
326
327
328extern LZMA_API(lzma_ret)
329lzma_block_uncomp_encode(lzma_block *block,
330		const uint8_t *in, size_t in_size,
331		uint8_t *out, size_t *out_pos, size_t out_size)
332{
333	// It won't allocate any memory from heap so no need
334	// for lzma_allocator.
335	return block_buffer_encode(block, NULL,
336			in, in_size, out, out_pos, out_size, false);
337}
338