tuklib_integer.h revision 292588
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       tuklib_integer.h
4/// \brief      Various integer and bit operations
5///
6/// This file provides macros or functions to do some basic integer and bit
7/// operations.
8///
9/// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l):
10///   - Byte swapping: bswapXX(num)
11///   - Byte order conversions to/from native: convXXYe(num)
12///   - Aligned reads: readXXYe(ptr)
13///   - Aligned writes: writeXXYe(ptr, num)
14///   - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr)
15///   - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num)
16///
17/// Since they can macros, the arguments should have no side effects since
18/// they may be evaluated more than once.
19///
20/// \todo       PowerPC and possibly some other architectures support
21///             byte swapping load and store instructions. This file
22///             doesn't take advantage of those instructions.
23///
24/// Bit scan operations for non-zero 32-bit integers:
25///   - Bit scan reverse (find highest non-zero bit): bsr32(num)
26///   - Count leading zeros: clz32(num)
27///   - Count trailing zeros: ctz32(num)
28///   - Bit scan forward (simply an alias for ctz32()): bsf32(num)
29///
30/// The above bit scan operations return 0-31. If num is zero,
31/// the result is undefined.
32//
33//  Authors:    Lasse Collin
34//              Joachim Henke
35//
36//  This file has been put into the public domain.
37//  You can do whatever you want with this file.
38//
39///////////////////////////////////////////////////////////////////////////////
40
41#ifndef TUKLIB_INTEGER_H
42#define TUKLIB_INTEGER_H
43
44#include "tuklib_common.h"
45
46
47////////////////////////////////////////
48// Operating system specific features //
49////////////////////////////////////////
50
51#if defined(HAVE_BYTESWAP_H)
52	// glibc, uClibc, dietlibc
53#	include <byteswap.h>
54#	ifdef HAVE_BSWAP_16
55#		define bswap16(num) bswap_16(num)
56#	endif
57#	ifdef HAVE_BSWAP_32
58#		define bswap32(num) bswap_32(num)
59#	endif
60#	ifdef HAVE_BSWAP_64
61#		define bswap64(num) bswap_64(num)
62#	endif
63
64#elif defined(HAVE_SYS_ENDIAN_H)
65	// *BSDs and Darwin
66#	include <sys/endian.h>
67
68#elif defined(HAVE_SYS_BYTEORDER_H)
69	// Solaris
70#	include <sys/byteorder.h>
71#	ifdef BSWAP_16
72#		define bswap16(num) BSWAP_16(num)
73#	endif
74#	ifdef BSWAP_32
75#		define bswap32(num) BSWAP_32(num)
76#	endif
77#	ifdef BSWAP_64
78#		define bswap64(num) BSWAP_64(num)
79#	endif
80#	ifdef BE_16
81#		define conv16be(num) BE_16(num)
82#	endif
83#	ifdef BE_32
84#		define conv32be(num) BE_32(num)
85#	endif
86#	ifdef BE_64
87#		define conv64be(num) BE_64(num)
88#	endif
89#	ifdef LE_16
90#		define conv16le(num) LE_16(num)
91#	endif
92#	ifdef LE_32
93#		define conv32le(num) LE_32(num)
94#	endif
95#	ifdef LE_64
96#		define conv64le(num) LE_64(num)
97#	endif
98#endif
99
100
101///////////////////
102// Byte swapping //
103///////////////////
104
105#ifndef bswap16
106#	define bswap16(num) \
107		(((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8))
108#endif
109
110#ifndef bswap32
111#	define bswap32(num) \
112		( (((uint32_t)(num) << 24)                       ) \
113		| (((uint32_t)(num) <<  8) & UINT32_C(0x00FF0000)) \
114		| (((uint32_t)(num) >>  8) & UINT32_C(0x0000FF00)) \
115		| (((uint32_t)(num) >> 24)                       ) )
116#endif
117
118#ifndef bswap64
119#	define bswap64(num) \
120		( (((uint64_t)(num) << 56)                               ) \
121		| (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \
122		| (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \
123		| (((uint64_t)(num) <<  8) & UINT64_C(0x000000FF00000000)) \
124		| (((uint64_t)(num) >>  8) & UINT64_C(0x00000000FF000000)) \
125		| (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \
126		| (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \
127		| (((uint64_t)(num) >> 56)                               ) )
128#endif
129
130// Define conversion macros using the basic byte swapping macros.
131#ifdef WORDS_BIGENDIAN
132#	ifndef conv16be
133#		define conv16be(num) ((uint16_t)(num))
134#	endif
135#	ifndef conv32be
136#		define conv32be(num) ((uint32_t)(num))
137#	endif
138#	ifndef conv64be
139#		define conv64be(num) ((uint64_t)(num))
140#	endif
141#	ifndef conv16le
142#		define conv16le(num) bswap16(num)
143#	endif
144#	ifndef conv32le
145#		define conv32le(num) bswap32(num)
146#	endif
147#	ifndef conv64le
148#		define conv64le(num) bswap64(num)
149#	endif
150#else
151#	ifndef conv16be
152#		define conv16be(num) bswap16(num)
153#	endif
154#	ifndef conv32be
155#		define conv32be(num) bswap32(num)
156#	endif
157#	ifndef conv64be
158#		define conv64be(num) bswap64(num)
159#	endif
160#	ifndef conv16le
161#		define conv16le(num) ((uint16_t)(num))
162#	endif
163#	ifndef conv32le
164#		define conv32le(num) ((uint32_t)(num))
165#	endif
166#	ifndef conv64le
167#		define conv64le(num) ((uint64_t)(num))
168#	endif
169#endif
170
171
172//////////////////////////////
173// Aligned reads and writes //
174//////////////////////////////
175
176static inline uint16_t
177read16be(const uint8_t *buf)
178{
179	uint16_t num = *(const uint16_t *)buf;
180	return conv16be(num);
181}
182
183
184static inline uint16_t
185read16le(const uint8_t *buf)
186{
187	uint16_t num = *(const uint16_t *)buf;
188	return conv16le(num);
189}
190
191
192static inline uint32_t
193read32be(const uint8_t *buf)
194{
195	uint32_t num = *(const uint32_t *)buf;
196	return conv32be(num);
197}
198
199
200static inline uint32_t
201read32le(const uint8_t *buf)
202{
203	uint32_t num = *(const uint32_t *)buf;
204	return conv32le(num);
205}
206
207
208static inline uint64_t
209read64be(const uint8_t *buf)
210{
211	uint64_t num = *(const uint64_t *)buf;
212	return conv64be(num);
213}
214
215
216static inline uint64_t
217read64le(const uint8_t *buf)
218{
219	uint64_t num = *(const uint64_t *)buf;
220	return conv64le(num);
221}
222
223
224// NOTE: Possible byte swapping must be done in a macro to allow GCC
225// to optimize byte swapping of constants when using glibc's or *BSD's
226// byte swapping macros. The actual write is done in an inline function
227// to make type checking of the buf pointer possible similarly to readXXYe()
228// functions.
229
230#define write16be(buf, num) write16ne((buf), conv16be(num))
231#define write16le(buf, num) write16ne((buf), conv16le(num))
232#define write32be(buf, num) write32ne((buf), conv32be(num))
233#define write32le(buf, num) write32ne((buf), conv32le(num))
234#define write64be(buf, num) write64ne((buf), conv64be(num))
235#define write64le(buf, num) write64ne((buf), conv64le(num))
236
237
238static inline void
239write16ne(uint8_t *buf, uint16_t num)
240{
241	*(uint16_t *)buf = num;
242	return;
243}
244
245
246static inline void
247write32ne(uint8_t *buf, uint32_t num)
248{
249	*(uint32_t *)buf = num;
250	return;
251}
252
253
254static inline void
255write64ne(uint8_t *buf, uint64_t num)
256{
257	*(uint64_t *)buf = num;
258	return;
259}
260
261
262////////////////////////////////
263// Unaligned reads and writes //
264////////////////////////////////
265
266// NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and
267// 32-bit unaligned integer loads and stores. It's possible that 64-bit
268// unaligned access doesn't work or is slower than byte-by-byte access.
269// Since unaligned 64-bit is probably not needed as often as 16-bit or
270// 32-bit, we simply don't support 64-bit unaligned access for now.
271#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
272#	define unaligned_read16be read16be
273#	define unaligned_read16le read16le
274#	define unaligned_read32be read32be
275#	define unaligned_read32le read32le
276#	define unaligned_write16be write16be
277#	define unaligned_write16le write16le
278#	define unaligned_write32be write32be
279#	define unaligned_write32le write32le
280
281#else
282
283static inline uint16_t
284unaligned_read16be(const uint8_t *buf)
285{
286	uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
287	return num;
288}
289
290
291static inline uint16_t
292unaligned_read16le(const uint8_t *buf)
293{
294	uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
295	return num;
296}
297
298
299static inline uint32_t
300unaligned_read32be(const uint8_t *buf)
301{
302	uint32_t num = (uint32_t)buf[0] << 24;
303	num |= (uint32_t)buf[1] << 16;
304	num |= (uint32_t)buf[2] << 8;
305	num |= (uint32_t)buf[3];
306	return num;
307}
308
309
310static inline uint32_t
311unaligned_read32le(const uint8_t *buf)
312{
313	uint32_t num = (uint32_t)buf[0];
314	num |= (uint32_t)buf[1] << 8;
315	num |= (uint32_t)buf[2] << 16;
316	num |= (uint32_t)buf[3] << 24;
317	return num;
318}
319
320
321static inline void
322unaligned_write16be(uint8_t *buf, uint16_t num)
323{
324	buf[0] = (uint8_t)(num >> 8);
325	buf[1] = (uint8_t)num;
326	return;
327}
328
329
330static inline void
331unaligned_write16le(uint8_t *buf, uint16_t num)
332{
333	buf[0] = (uint8_t)num;
334	buf[1] = (uint8_t)(num >> 8);
335	return;
336}
337
338
339static inline void
340unaligned_write32be(uint8_t *buf, uint32_t num)
341{
342	buf[0] = (uint8_t)(num >> 24);
343	buf[1] = (uint8_t)(num >> 16);
344	buf[2] = (uint8_t)(num >> 8);
345	buf[3] = (uint8_t)num;
346	return;
347}
348
349
350static inline void
351unaligned_write32le(uint8_t *buf, uint32_t num)
352{
353	buf[0] = (uint8_t)num;
354	buf[1] = (uint8_t)(num >> 8);
355	buf[2] = (uint8_t)(num >> 16);
356	buf[3] = (uint8_t)(num >> 24);
357	return;
358}
359
360#endif
361
362
363static inline uint32_t
364bsr32(uint32_t n)
365{
366	// Check for ICC first, since it tends to define __GNUC__ too.
367#if defined(__INTEL_COMPILER)
368	return _bit_scan_reverse(n);
369
370#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
371	// GCC >= 3.4 has __builtin_clz(), which gives good results on
372	// multiple architectures. On x86, __builtin_clz() ^ 31U becomes
373	// either plain BSR (so the XOR gets optimized away) or LZCNT and
374	// XOR (if -march indicates that SSE4a instructions are supported).
375	return __builtin_clz(n) ^ 31U;
376
377#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
378	uint32_t i;
379	__asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
380	return i;
381
382#elif defined(_MSC_VER) && _MSC_VER >= 1400
383	// MSVC isn't supported by tuklib, but since this code exists,
384	// it doesn't hurt to have it here anyway.
385	uint32_t i;
386	_BitScanReverse((DWORD *)&i, n);
387	return i;
388
389#else
390	uint32_t i = 31;
391
392	if ((n & UINT32_C(0xFFFF0000)) == 0) {
393		n <<= 16;
394		i = 15;
395	}
396
397	if ((n & UINT32_C(0xFF000000)) == 0) {
398		n <<= 8;
399		i -= 8;
400	}
401
402	if ((n & UINT32_C(0xF0000000)) == 0) {
403		n <<= 4;
404		i -= 4;
405	}
406
407	if ((n & UINT32_C(0xC0000000)) == 0) {
408		n <<= 2;
409		i -= 2;
410	}
411
412	if ((n & UINT32_C(0x80000000)) == 0)
413		--i;
414
415	return i;
416#endif
417}
418
419
420static inline uint32_t
421clz32(uint32_t n)
422{
423#if defined(__INTEL_COMPILER)
424	return _bit_scan_reverse(n) ^ 31U;
425
426#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
427	return __builtin_clz(n);
428
429#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
430	uint32_t i;
431	__asm__("bsrl %1, %0\n\t"
432		"xorl $31, %0"
433		: "=r" (i) : "rm" (n));
434	return i;
435
436#elif defined(_MSC_VER) && _MSC_VER >= 1400
437	uint32_t i;
438	_BitScanReverse((DWORD *)&i, n);
439	return i ^ 31U;
440
441#else
442	uint32_t i = 0;
443
444	if ((n & UINT32_C(0xFFFF0000)) == 0) {
445		n <<= 16;
446		i = 16;
447	}
448
449	if ((n & UINT32_C(0xFF000000)) == 0) {
450		n <<= 8;
451		i += 8;
452	}
453
454	if ((n & UINT32_C(0xF0000000)) == 0) {
455		n <<= 4;
456		i += 4;
457	}
458
459	if ((n & UINT32_C(0xC0000000)) == 0) {
460		n <<= 2;
461		i += 2;
462	}
463
464	if ((n & UINT32_C(0x80000000)) == 0)
465		++i;
466
467	return i;
468#endif
469}
470
471
472static inline uint32_t
473ctz32(uint32_t n)
474{
475#if defined(__INTEL_COMPILER)
476	return _bit_scan_forward(n);
477
478#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX
479	return __builtin_ctz(n);
480
481#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
482	uint32_t i;
483	__asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
484	return i;
485
486#elif defined(_MSC_VER) && _MSC_VER >= 1400
487	uint32_t i;
488	_BitScanForward((DWORD *)&i, n);
489	return i;
490
491#else
492	uint32_t i = 0;
493
494	if ((n & UINT32_C(0x0000FFFF)) == 0) {
495		n >>= 16;
496		i = 16;
497	}
498
499	if ((n & UINT32_C(0x000000FF)) == 0) {
500		n >>= 8;
501		i += 8;
502	}
503
504	if ((n & UINT32_C(0x0000000F)) == 0) {
505		n >>= 4;
506		i += 4;
507	}
508
509	if ((n & UINT32_C(0x00000003)) == 0) {
510		n >>= 2;
511		i += 2;
512	}
513
514	if ((n & UINT32_C(0x00000001)) == 0)
515		++i;
516
517	return i;
518#endif
519}
520
521#define bsf32 ctz32
522
523#endif
524