val_neg.c revision 291767
1/*
2 * validator/val_neg.c - validator aggressive negative caching functions.
3 *
4 * Copyright (c) 2008, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with aggressive negative caching.
41 * This creates new denials of existance, and proofs for absence of types
42 * from cached NSEC records.
43 */
44#include "config.h"
45#ifdef HAVE_OPENSSL_SSL_H
46#include "openssl/ssl.h"
47#define NSEC3_SHA_LEN SHA_DIGEST_LENGTH
48#else
49#define NSEC3_SHA_LEN 20
50#endif
51#include "validator/val_neg.h"
52#include "validator/val_nsec.h"
53#include "validator/val_nsec3.h"
54#include "validator/val_utils.h"
55#include "util/data/dname.h"
56#include "util/data/msgreply.h"
57#include "util/log.h"
58#include "util/net_help.h"
59#include "util/config_file.h"
60#include "services/cache/rrset.h"
61#include "services/cache/dns.h"
62#include "sldns/rrdef.h"
63#include "sldns/sbuffer.h"
64
65int val_neg_data_compare(const void* a, const void* b)
66{
67	struct val_neg_data* x = (struct val_neg_data*)a;
68	struct val_neg_data* y = (struct val_neg_data*)b;
69	int m;
70	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
71}
72
73int val_neg_zone_compare(const void* a, const void* b)
74{
75	struct val_neg_zone* x = (struct val_neg_zone*)a;
76	struct val_neg_zone* y = (struct val_neg_zone*)b;
77	int m;
78	if(x->dclass != y->dclass) {
79		if(x->dclass < y->dclass)
80			return -1;
81		return 1;
82	}
83	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
84}
85
86struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter)
87{
88	struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1,
89		sizeof(*neg));
90	if(!neg) {
91		log_err("Could not create neg cache: out of memory");
92		return NULL;
93	}
94	neg->nsec3_max_iter = maxiter;
95	neg->max = 1024*1024; /* 1 M is thousands of entries */
96	if(cfg) neg->max = cfg->neg_cache_size;
97	rbtree_init(&neg->tree, &val_neg_zone_compare);
98	lock_basic_init(&neg->lock);
99	lock_protect(&neg->lock, neg, sizeof(*neg));
100	return neg;
101}
102
103size_t val_neg_get_mem(struct val_neg_cache* neg)
104{
105	size_t result;
106	lock_basic_lock(&neg->lock);
107	result = sizeof(*neg) + neg->use;
108	lock_basic_unlock(&neg->lock);
109	return result;
110}
111
112/** clear datas on cache deletion */
113static void
114neg_clear_datas(rbnode_t* n, void* ATTR_UNUSED(arg))
115{
116	struct val_neg_data* d = (struct val_neg_data*)n;
117	free(d->name);
118	free(d);
119}
120
121/** clear zones on cache deletion */
122static void
123neg_clear_zones(rbnode_t* n, void* ATTR_UNUSED(arg))
124{
125	struct val_neg_zone* z = (struct val_neg_zone*)n;
126	/* delete all the rrset entries in the tree */
127	traverse_postorder(&z->tree, &neg_clear_datas, NULL);
128	free(z->nsec3_salt);
129	free(z->name);
130	free(z);
131}
132
133void neg_cache_delete(struct val_neg_cache* neg)
134{
135	if(!neg) return;
136	lock_basic_destroy(&neg->lock);
137	/* delete all the zones in the tree */
138	traverse_postorder(&neg->tree, &neg_clear_zones, NULL);
139	free(neg);
140}
141
142/**
143 * Put data element at the front of the LRU list.
144 * @param neg: negative cache with LRU start and end.
145 * @param data: this data is fronted.
146 */
147static void neg_lru_front(struct val_neg_cache* neg,
148	struct val_neg_data* data)
149{
150	data->prev = NULL;
151	data->next = neg->first;
152	if(!neg->first)
153		neg->last = data;
154	else	neg->first->prev = data;
155	neg->first = data;
156}
157
158/**
159 * Remove data element from LRU list.
160 * @param neg: negative cache with LRU start and end.
161 * @param data: this data is removed from the list.
162 */
163static void neg_lru_remove(struct val_neg_cache* neg,
164	struct val_neg_data* data)
165{
166	if(data->prev)
167		data->prev->next = data->next;
168	else	neg->first = data->next;
169	if(data->next)
170		data->next->prev = data->prev;
171	else	neg->last = data->prev;
172}
173
174/**
175 * Touch LRU for data element, put it at the start of the LRU list.
176 * @param neg: negative cache with LRU start and end.
177 * @param data: this data is used.
178 */
179static void neg_lru_touch(struct val_neg_cache* neg,
180	struct val_neg_data* data)
181{
182	if(data == neg->first)
183		return; /* nothing to do */
184	/* remove from current lru position */
185	neg_lru_remove(neg, data);
186	/* add at front */
187	neg_lru_front(neg, data);
188}
189
190/**
191 * Delete a zone element from the negative cache.
192 * May delete other zone elements to keep tree coherent, or
193 * only mark the element as 'not in use'.
194 * @param neg: negative cache.
195 * @param z: zone element to delete.
196 */
197static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z)
198{
199	struct val_neg_zone* p, *np;
200	if(!z) return;
201	log_assert(z->in_use);
202	log_assert(z->count > 0);
203	z->in_use = 0;
204
205	/* go up the tree and reduce counts */
206	p = z;
207	while(p) {
208		log_assert(p->count > 0);
209		p->count --;
210		p = p->parent;
211	}
212
213	/* remove zones with zero count */
214	p = z;
215	while(p && p->count == 0) {
216		np = p->parent;
217		(void)rbtree_delete(&neg->tree, &p->node);
218		neg->use -= p->len + sizeof(*p);
219		free(p->nsec3_salt);
220		free(p->name);
221		free(p);
222		p = np;
223	}
224}
225
226void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el)
227{
228	struct val_neg_zone* z;
229	struct val_neg_data* p, *np;
230	if(!el) return;
231	z = el->zone;
232	log_assert(el->in_use);
233	log_assert(el->count > 0);
234	el->in_use = 0;
235
236	/* remove it from the lru list */
237	neg_lru_remove(neg, el);
238
239	/* go up the tree and reduce counts */
240	p = el;
241	while(p) {
242		log_assert(p->count > 0);
243		p->count --;
244		p = p->parent;
245	}
246
247	/* delete 0 count items from tree */
248	p = el;
249	while(p && p->count == 0) {
250		np = p->parent;
251		(void)rbtree_delete(&z->tree, &p->node);
252		neg->use -= p->len + sizeof(*p);
253		free(p->name);
254		free(p);
255		p = np;
256	}
257
258	/* check if the zone is now unused */
259	if(z->tree.count == 0) {
260		neg_delete_zone(neg, z);
261	}
262}
263
264/**
265 * Create more space in negative cache
266 * The oldest elements are deleted until enough space is present.
267 * Empty zones are deleted.
268 * @param neg: negative cache.
269 * @param need: how many bytes are needed.
270 */
271static void neg_make_space(struct val_neg_cache* neg, size_t need)
272{
273	/* delete elements until enough space or its empty */
274	while(neg->last && neg->max < neg->use + need) {
275		neg_delete_data(neg, neg->last);
276	}
277}
278
279struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg,
280	uint8_t* nm, size_t len, uint16_t dclass)
281{
282	struct val_neg_zone lookfor;
283	struct val_neg_zone* result;
284	lookfor.node.key = &lookfor;
285	lookfor.name = nm;
286	lookfor.len = len;
287	lookfor.labs = dname_count_labels(lookfor.name);
288	lookfor.dclass = dclass;
289
290	result = (struct val_neg_zone*)
291		rbtree_search(&neg->tree, lookfor.node.key);
292	return result;
293}
294
295/**
296 * Find the given data
297 * @param zone: negative zone
298 * @param nm: what to look for.
299 * @param len: length of nm
300 * @param labs: labels in nm
301 * @return data or NULL if not found.
302 */
303static struct val_neg_data* neg_find_data(struct val_neg_zone* zone,
304	uint8_t* nm, size_t len, int labs)
305{
306	struct val_neg_data lookfor;
307	struct val_neg_data* result;
308	lookfor.node.key = &lookfor;
309	lookfor.name = nm;
310	lookfor.len = len;
311	lookfor.labs = labs;
312
313	result = (struct val_neg_data*)
314		rbtree_search(&zone->tree, lookfor.node.key);
315	return result;
316}
317
318/**
319 * Calculate space needed for the data and all its parents
320 * @param rep: NSEC entries.
321 * @return size.
322 */
323static size_t calc_data_need(struct reply_info* rep)
324{
325	uint8_t* d;
326	size_t i, len, res = 0;
327
328	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
329		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
330			d = rep->rrsets[i]->rk.dname;
331			len = rep->rrsets[i]->rk.dname_len;
332			res = sizeof(struct val_neg_data) + len;
333			while(!dname_is_root(d)) {
334				log_assert(len > 1); /* not root label */
335				dname_remove_label(&d, &len);
336				res += sizeof(struct val_neg_data) + len;
337			}
338		}
339	}
340	return res;
341}
342
343/**
344 * Calculate space needed for zone and all its parents
345 * @param d: name of zone
346 * @param len: length of name
347 * @return size.
348 */
349static size_t calc_zone_need(uint8_t* d, size_t len)
350{
351	size_t res = sizeof(struct val_neg_zone) + len;
352	while(!dname_is_root(d)) {
353		log_assert(len > 1); /* not root label */
354		dname_remove_label(&d, &len);
355		res += sizeof(struct val_neg_zone) + len;
356	}
357	return res;
358}
359
360/**
361 * Find closest existing parent zone of the given name.
362 * @param neg: negative cache.
363 * @param nm: name to look for
364 * @param nm_len: length of nm
365 * @param labs: labelcount of nm.
366 * @param qclass: class.
367 * @return the zone or NULL if none found.
368 */
369static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg,
370	uint8_t* nm, size_t nm_len, int labs, uint16_t qclass)
371{
372	struct val_neg_zone key;
373	struct val_neg_zone* result;
374	rbnode_t* res = NULL;
375	key.node.key = &key;
376	key.name = nm;
377	key.len = nm_len;
378	key.labs = labs;
379	key.dclass = qclass;
380	if(rbtree_find_less_equal(&neg->tree, &key, &res)) {
381		/* exact match */
382		result = (struct val_neg_zone*)res;
383	} else {
384		/* smaller element (or no element) */
385		int m;
386		result = (struct val_neg_zone*)res;
387		if(!result || result->dclass != qclass)
388			return NULL;
389		/* count number of labels matched */
390		(void)dname_lab_cmp(result->name, result->labs, key.name,
391			key.labs, &m);
392		while(result) { /* go up until qname is subdomain of stub */
393			if(result->labs <= m)
394				break;
395			result = result->parent;
396		}
397	}
398	return result;
399}
400
401/**
402 * Find closest existing parent data for the given name.
403 * @param zone: to look in.
404 * @param nm: name to look for
405 * @param nm_len: length of nm
406 * @param labs: labelcount of nm.
407 * @return the data or NULL if none found.
408 */
409static struct val_neg_data* neg_closest_data_parent(
410	struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs)
411{
412	struct val_neg_data key;
413	struct val_neg_data* result;
414	rbnode_t* res = NULL;
415	key.node.key = &key;
416	key.name = nm;
417	key.len = nm_len;
418	key.labs = labs;
419	if(rbtree_find_less_equal(&zone->tree, &key, &res)) {
420		/* exact match */
421		result = (struct val_neg_data*)res;
422	} else {
423		/* smaller element (or no element) */
424		int m;
425		result = (struct val_neg_data*)res;
426		if(!result)
427			return NULL;
428		/* count number of labels matched */
429		(void)dname_lab_cmp(result->name, result->labs, key.name,
430			key.labs, &m);
431		while(result) { /* go up until qname is subdomain of stub */
432			if(result->labs <= m)
433				break;
434			result = result->parent;
435		}
436	}
437	return result;
438}
439
440/**
441 * Create a single zone node
442 * @param nm: name for zone (copied)
443 * @param nm_len: length of name
444 * @param labs: labels in name.
445 * @param dclass: class of zone, host order.
446 * @return new zone or NULL on failure
447 */
448static struct val_neg_zone* neg_setup_zone_node(
449	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass)
450{
451	struct val_neg_zone* zone =
452		(struct val_neg_zone*)calloc(1, sizeof(*zone));
453	if(!zone) {
454		return NULL;
455	}
456	zone->node.key = zone;
457	zone->name = memdup(nm, nm_len);
458	if(!zone->name) {
459		free(zone);
460		return NULL;
461	}
462	zone->len = nm_len;
463	zone->labs = labs;
464	zone->dclass = dclass;
465
466	rbtree_init(&zone->tree, &val_neg_data_compare);
467	return zone;
468}
469
470/**
471 * Create a linked list of parent zones, starting at longname ending on
472 * the parent (can be NULL, creates to the root).
473 * @param nm: name for lowest in chain
474 * @param nm_len: length of name
475 * @param labs: labels in name.
476 * @param dclass: class of zone.
477 * @param parent: NULL for to root, else so it fits under here.
478 * @return zone; a chain of zones and their parents up to the parent.
479 *  	or NULL on malloc failure
480 */
481static struct val_neg_zone* neg_zone_chain(
482	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass,
483	struct val_neg_zone* parent)
484{
485	int i;
486	int tolabs = parent?parent->labs:0;
487	struct val_neg_zone* zone, *prev = NULL, *first = NULL;
488
489	/* create the new subtree, i is labelcount of current creation */
490	/* this creates a 'first' to z->parent=NULL list of zones */
491	for(i=labs; i!=tolabs; i--) {
492		/* create new item */
493		zone = neg_setup_zone_node(nm, nm_len, i, dclass);
494		if(!zone) {
495			/* need to delete other allocations in this routine!*/
496			struct val_neg_zone* p=first, *np;
497			while(p) {
498				np = p->parent;
499				free(p->name);
500				free(p);
501				p = np;
502			}
503			return NULL;
504		}
505		if(i == labs) {
506			first = zone;
507		} else {
508			prev->parent = zone;
509		}
510		/* prepare for next name */
511		prev = zone;
512		dname_remove_label(&nm, &nm_len);
513	}
514	return first;
515}
516
517void val_neg_zone_take_inuse(struct val_neg_zone* zone)
518{
519	if(!zone->in_use) {
520		struct val_neg_zone* p;
521		zone->in_use = 1;
522		/* increase usage count of all parents */
523		for(p=zone; p; p = p->parent) {
524			p->count++;
525		}
526	}
527}
528
529struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg,
530	uint8_t* nm, size_t nm_len, uint16_t dclass)
531{
532	struct val_neg_zone* zone;
533	struct val_neg_zone* parent;
534	struct val_neg_zone* p, *np;
535	int labs = dname_count_labels(nm);
536
537	/* find closest enclosing parent zone that (still) exists */
538	parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass);
539	if(parent && query_dname_compare(parent->name, nm) == 0)
540		return parent; /* already exists, weird */
541	/* if parent exists, it is in use */
542	log_assert(!parent || parent->count > 0);
543	zone = neg_zone_chain(nm, nm_len, labs, dclass, parent);
544	if(!zone) {
545		return NULL;
546	}
547
548	/* insert the list of zones into the tree */
549	p = zone;
550	while(p) {
551		np = p->parent;
552		/* mem use */
553		neg->use += sizeof(struct val_neg_zone) + p->len;
554		/* insert in tree */
555		(void)rbtree_insert(&neg->tree, &p->node);
556		/* last one needs proper parent pointer */
557		if(np == NULL)
558			p->parent = parent;
559		p = np;
560	}
561	return zone;
562}
563
564/** find zone name of message, returns the SOA record */
565static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep)
566{
567	size_t i;
568	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
569		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA)
570			return rep->rrsets[i];
571	}
572	return NULL;
573}
574
575/** see if the reply has NSEC records worthy of caching */
576static int reply_has_nsec(struct reply_info* rep)
577{
578	size_t i;
579	struct packed_rrset_data* d;
580	if(rep->security != sec_status_secure)
581		return 0;
582	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
583		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
584			d = (struct packed_rrset_data*)rep->rrsets[i]->
585				entry.data;
586			if(d->security == sec_status_secure)
587				return 1;
588		}
589	}
590	return 0;
591}
592
593
594/**
595 * Create single node of data element.
596 * @param nm: name (copied)
597 * @param nm_len: length of name
598 * @param labs: labels in name.
599 * @return element with name nm, or NULL malloc failure.
600 */
601static struct val_neg_data* neg_setup_data_node(
602	uint8_t* nm, size_t nm_len, int labs)
603{
604	struct val_neg_data* el;
605	el = (struct val_neg_data*)calloc(1, sizeof(*el));
606	if(!el) {
607		return NULL;
608	}
609	el->node.key = el;
610	el->name = memdup(nm, nm_len);
611	if(!el->name) {
612		free(el);
613		return NULL;
614	}
615	el->len = nm_len;
616	el->labs = labs;
617	return el;
618}
619
620/**
621 * Create chain of data element and parents
622 * @param nm: name
623 * @param nm_len: length of name
624 * @param labs: labels in name.
625 * @param parent: up to where to make, if NULL up to root label.
626 * @return lowest element with name nm, or NULL malloc failure.
627 */
628static struct val_neg_data* neg_data_chain(
629	uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent)
630{
631	int i;
632	int tolabs = parent?parent->labs:0;
633	struct val_neg_data* el, *first = NULL, *prev = NULL;
634
635	/* create the new subtree, i is labelcount of current creation */
636	/* this creates a 'first' to z->parent=NULL list of zones */
637	for(i=labs; i!=tolabs; i--) {
638		/* create new item */
639		el = neg_setup_data_node(nm, nm_len, i);
640		if(!el) {
641			/* need to delete other allocations in this routine!*/
642			struct val_neg_data* p = first, *np;
643			while(p) {
644				np = p->parent;
645				free(p->name);
646				free(p);
647				p = np;
648			}
649			return NULL;
650		}
651		if(i == labs) {
652			first = el;
653		} else {
654			prev->parent = el;
655		}
656
657		/* prepare for next name */
658		prev = el;
659		dname_remove_label(&nm, &nm_len);
660	}
661	return first;
662}
663
664/**
665 * Remove NSEC records between start and end points.
666 * By walking the tree, the tree is sorted canonically.
667 * @param neg: negative cache.
668 * @param zone: the zone
669 * @param el: element to start walking at.
670 * @param nsec: the nsec record with the end point
671 */
672static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone,
673	struct val_neg_data* el, struct ub_packed_rrset_key* nsec)
674{
675	struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
676		entry.data;
677	uint8_t* end;
678	size_t end_len;
679	int end_labs, m;
680	rbnode_t* walk, *next;
681	struct val_neg_data* cur;
682	uint8_t buf[257];
683	/* get endpoint */
684	if(!d || d->count == 0 || d->rr_len[0] < 2+1)
685		return;
686	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) {
687		end = d->rr_data[0]+2;
688		end_len = dname_valid(end, d->rr_len[0]-2);
689		end_labs = dname_count_labels(end);
690	} else {
691		/* NSEC3 */
692		if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf)))
693			return;
694		end = buf;
695		end_labs = dname_count_size_labels(end, &end_len);
696	}
697
698	/* sanity check, both owner and end must be below the zone apex */
699	if(!dname_subdomain_c(el->name, zone->name) ||
700		!dname_subdomain_c(end, zone->name))
701		return;
702
703	/* detect end of zone NSEC ; wipe until the end of zone */
704	if(query_dname_compare(end, zone->name) == 0) {
705		end = NULL;
706	}
707
708	walk = rbtree_next(&el->node);
709	while(walk && walk != RBTREE_NULL) {
710		cur = (struct val_neg_data*)walk;
711		/* sanity check: must be larger than start */
712		if(dname_canon_lab_cmp(cur->name, cur->labs,
713			el->name, el->labs, &m) <= 0) {
714			/* r == 0 skip original record. */
715			/* r < 0  too small! */
716			walk = rbtree_next(walk);
717			continue;
718		}
719		/* stop at endpoint, also data at empty nonterminals must be
720		 * removed (no NSECs there) so everything between
721		 * start and end */
722		if(end && dname_canon_lab_cmp(cur->name, cur->labs,
723			end, end_labs, &m) >= 0) {
724			break;
725		}
726		/* this element has to be deleted, but we cannot do it
727		 * now, because we are walking the tree still ... */
728		/* get the next element: */
729		next = rbtree_next(walk);
730		/* now delete the original element, this may trigger
731		 * rbtree rebalances, but really, the next element is
732		 * the one we need.
733		 * But it may trigger delete of other data and the
734		 * entire zone. However, if that happens, this is done
735		 * by deleting the *parents* of the element for deletion,
736		 * and maybe also the entire zone if it is empty.
737		 * But parents are smaller in canonical compare, thus,
738		 * if a larger element exists, then it is not a parent,
739		 * it cannot get deleted, the zone cannot get empty.
740		 * If the next==NULL, then zone can be empty. */
741		if(cur->in_use)
742			neg_delete_data(neg, cur);
743		walk = next;
744	}
745}
746
747void neg_insert_data(struct val_neg_cache* neg,
748	struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec)
749{
750	struct packed_rrset_data* d;
751	struct val_neg_data* parent;
752	struct val_neg_data* el;
753	uint8_t* nm = nsec->rk.dname;
754	size_t nm_len = nsec->rk.dname_len;
755	int labs = dname_count_labels(nsec->rk.dname);
756
757	d = (struct packed_rrset_data*)nsec->entry.data;
758	if( !(d->security == sec_status_secure ||
759		(d->security == sec_status_unchecked && d->rrsig_count > 0)))
760		return;
761	log_nametypeclass(VERB_ALGO, "negcache rr",
762		nsec->rk.dname, ntohs(nsec->rk.type),
763		ntohs(nsec->rk.rrset_class));
764
765	/* find closest enclosing parent data that (still) exists */
766	parent = neg_closest_data_parent(zone, nm, nm_len, labs);
767	if(parent && query_dname_compare(parent->name, nm) == 0) {
768		/* perfect match already exists */
769		log_assert(parent->count > 0);
770		el = parent;
771	} else {
772		struct val_neg_data* p, *np;
773
774		/* create subtree for perfect match */
775		/* if parent exists, it is in use */
776		log_assert(!parent || parent->count > 0);
777
778		el = neg_data_chain(nm, nm_len, labs, parent);
779		if(!el) {
780			log_err("out of memory inserting NSEC negative cache");
781			return;
782		}
783		el->in_use = 0; /* set on below */
784
785		/* insert the list of zones into the tree */
786		p = el;
787		while(p) {
788			np = p->parent;
789			/* mem use */
790			neg->use += sizeof(struct val_neg_data) + p->len;
791			/* insert in tree */
792			p->zone = zone;
793			(void)rbtree_insert(&zone->tree, &p->node);
794			/* last one needs proper parent pointer */
795			if(np == NULL)
796				p->parent = parent;
797			p = np;
798		}
799	}
800
801	if(!el->in_use) {
802		struct val_neg_data* p;
803
804		el->in_use = 1;
805		/* increase usage count of all parents */
806		for(p=el; p; p = p->parent) {
807			p->count++;
808		}
809
810		neg_lru_front(neg, el);
811	} else {
812		/* in use, bring to front, lru */
813		neg_lru_touch(neg, el);
814	}
815
816	/* if nsec3 store last used parameters */
817	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) {
818		int h;
819		uint8_t* s;
820		size_t slen, it;
821		if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) &&
822			it <= neg->nsec3_max_iter &&
823			(h != zone->nsec3_hash || it != zone->nsec3_iter ||
824			slen != zone->nsec3_saltlen ||
825			memcmp(zone->nsec3_salt, s, slen) != 0)) {
826			uint8_t* sa = memdup(s, slen);
827			if(sa) {
828				free(zone->nsec3_salt);
829				zone->nsec3_salt = sa;
830				zone->nsec3_saltlen = slen;
831				zone->nsec3_hash = h;
832				zone->nsec3_iter = it;
833			}
834		}
835	}
836
837	/* wipe out the cache items between NSEC start and end */
838	wipeout(neg, zone, el, nsec);
839}
840
841void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep)
842{
843	size_t i, need;
844	struct ub_packed_rrset_key* soa;
845	struct val_neg_zone* zone;
846	/* see if secure nsecs inside */
847	if(!reply_has_nsec(rep))
848		return;
849	/* find the zone name in message */
850	soa = reply_find_soa(rep);
851	if(!soa)
852		return;
853
854	log_nametypeclass(VERB_ALGO, "negcache insert for zone",
855		soa->rk.dname, LDNS_RR_TYPE_SOA, ntohs(soa->rk.rrset_class));
856
857	/* ask for enough space to store all of it */
858	need = calc_data_need(rep) +
859		calc_zone_need(soa->rk.dname, soa->rk.dname_len);
860	lock_basic_lock(&neg->lock);
861	neg_make_space(neg, need);
862
863	/* find or create the zone entry */
864	zone = neg_find_zone(neg, soa->rk.dname, soa->rk.dname_len,
865		ntohs(soa->rk.rrset_class));
866	if(!zone) {
867		if(!(zone = neg_create_zone(neg, soa->rk.dname,
868			soa->rk.dname_len, ntohs(soa->rk.rrset_class)))) {
869			lock_basic_unlock(&neg->lock);
870			log_err("out of memory adding negative zone");
871			return;
872		}
873	}
874	val_neg_zone_take_inuse(zone);
875
876	/* insert the NSECs */
877	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
878		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
879			continue;
880		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
881			zone->name)) continue;
882		/* insert NSEC into this zone's tree */
883		neg_insert_data(neg, zone, rep->rrsets[i]);
884	}
885	if(zone->tree.count == 0) {
886		/* remove empty zone if inserts failed */
887		neg_delete_zone(neg, zone);
888	}
889	lock_basic_unlock(&neg->lock);
890}
891
892/**
893 * Lookup closest data record. For NSEC denial.
894 * @param zone: zone to look in
895 * @param qname: name to look for.
896 * @param len: length of name
897 * @param labs: labels in name
898 * @param data: data element, exact or smaller or NULL
899 * @return true if exact match.
900 */
901static int neg_closest_data(struct val_neg_zone* zone,
902	uint8_t* qname, size_t len, int labs, struct val_neg_data** data)
903{
904	struct val_neg_data key;
905	rbnode_t* r;
906	key.node.key = &key;
907	key.name = qname;
908	key.len = len;
909	key.labs = labs;
910	if(rbtree_find_less_equal(&zone->tree, &key, &r)) {
911		/* exact match */
912		*data = (struct val_neg_data*)r;
913		return 1;
914	} else {
915		/* smaller match */
916		*data = (struct val_neg_data*)r;
917		return 0;
918	}
919}
920
921int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len,
922        uint16_t qclass, struct rrset_cache* rrset_cache, time_t now)
923{
924	/* lookup closest zone */
925	struct val_neg_zone* zone;
926	struct val_neg_data* data;
927	int labs;
928	struct ub_packed_rrset_key* nsec;
929	struct packed_rrset_data* d;
930	uint32_t flags;
931	uint8_t* wc;
932	struct query_info qinfo;
933	if(!neg) return 0;
934
935	log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname,
936		LDNS_RR_TYPE_DLV, qclass);
937
938	labs = dname_count_labels(qname);
939	lock_basic_lock(&neg->lock);
940	zone = neg_closest_zone_parent(neg, qname, len, labs, qclass);
941	while(zone && !zone->in_use)
942		zone = zone->parent;
943	if(!zone) {
944		lock_basic_unlock(&neg->lock);
945		return 0;
946	}
947	log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0,
948		zone->dclass);
949
950	/* DLV is defined to use NSEC only */
951	if(zone->nsec3_hash) {
952		lock_basic_unlock(&neg->lock);
953		return 0;
954	}
955
956	/* lookup closest data record */
957	(void)neg_closest_data(zone, qname, len, labs, &data);
958	while(data && !data->in_use)
959		data = data->parent;
960	if(!data) {
961		lock_basic_unlock(&neg->lock);
962		return 0;
963	}
964	log_nametypeclass(VERB_ALGO, "negcache rr", data->name,
965		LDNS_RR_TYPE_NSEC, zone->dclass);
966
967	/* lookup rrset in rrset cache */
968	flags = 0;
969	if(query_dname_compare(data->name, zone->name) == 0)
970		flags = PACKED_RRSET_NSEC_AT_APEX;
971	nsec = rrset_cache_lookup(rrset_cache, data->name, data->len,
972		LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0);
973
974	/* check if secure and TTL ok */
975	if(!nsec) {
976		lock_basic_unlock(&neg->lock);
977		return 0;
978	}
979	d = (struct packed_rrset_data*)nsec->entry.data;
980	if(!d || now > d->ttl) {
981		lock_rw_unlock(&nsec->entry.lock);
982		/* delete data record if expired */
983		neg_delete_data(neg, data);
984		lock_basic_unlock(&neg->lock);
985		return 0;
986	}
987	if(d->security != sec_status_secure) {
988		lock_rw_unlock(&nsec->entry.lock);
989		neg_delete_data(neg, data);
990		lock_basic_unlock(&neg->lock);
991		return 0;
992	}
993	verbose(VERB_ALGO, "negcache got secure rrset");
994
995	/* check NSEC security */
996	/* check if NSEC proves no DLV type exists */
997	/* check if NSEC proves NXDOMAIN for qname */
998	qinfo.qname = qname;
999	qinfo.qtype = LDNS_RR_TYPE_DLV;
1000	qinfo.qclass = qclass;
1001	if(!nsec_proves_nodata(nsec, &qinfo, &wc) &&
1002		!val_nsec_proves_name_error(nsec, qname)) {
1003		/* the NSEC is not a denial for the DLV */
1004		lock_rw_unlock(&nsec->entry.lock);
1005		lock_basic_unlock(&neg->lock);
1006		verbose(VERB_ALGO, "negcache not proven");
1007		return 0;
1008	}
1009	/* so the NSEC was a NODATA proof, or NXDOMAIN proof. */
1010
1011	/* no need to check for wildcard NSEC; no wildcards in DLV repos */
1012	/* no need to lookup SOA record for client; no response message */
1013
1014	lock_rw_unlock(&nsec->entry.lock);
1015	/* if OK touch the LRU for neg_data element */
1016	neg_lru_touch(neg, data);
1017	lock_basic_unlock(&neg->lock);
1018	verbose(VERB_ALGO, "negcache DLV denial proven");
1019	return 1;
1020}
1021
1022/** see if the reply has signed NSEC records and return the signer */
1023static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len,
1024	uint16_t* dclass)
1025{
1026	size_t i;
1027	struct packed_rrset_data* d;
1028	uint8_t* s;
1029	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1030		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC ||
1031			ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) {
1032			d = (struct packed_rrset_data*)rep->rrsets[i]->
1033				entry.data;
1034			/* return first signer name of first NSEC */
1035			if(d->rrsig_count != 0) {
1036				val_find_rrset_signer(rep->rrsets[i],
1037					&s, signer_len);
1038				if(s && *signer_len) {
1039					*dclass = ntohs(rep->rrsets[i]->
1040						rk.rrset_class);
1041					return s;
1042				}
1043			}
1044		}
1045	}
1046	return 0;
1047}
1048
1049void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep,
1050	uint8_t* zone_name)
1051{
1052	size_t i, need;
1053	uint8_t* signer;
1054	size_t signer_len;
1055	uint16_t dclass;
1056	struct val_neg_zone* zone;
1057	/* no SOA in this message, find RRSIG over NSEC's signer name.
1058	 * note the NSEC records are maybe not validated yet */
1059	signer = reply_nsec_signer(rep, &signer_len, &dclass);
1060	if(!signer)
1061		return;
1062	if(!dname_subdomain_c(signer, zone_name)) {
1063		/* the signer is not in the bailiwick, throw it out */
1064		return;
1065	}
1066
1067	log_nametypeclass(VERB_ALGO, "negcache insert referral ",
1068		signer, LDNS_RR_TYPE_NS, dclass);
1069
1070	/* ask for enough space to store all of it */
1071	need = calc_data_need(rep) + calc_zone_need(signer, signer_len);
1072	lock_basic_lock(&neg->lock);
1073	neg_make_space(neg, need);
1074
1075	/* find or create the zone entry */
1076	zone = neg_find_zone(neg, signer, signer_len, dclass);
1077	if(!zone) {
1078		if(!(zone = neg_create_zone(neg, signer, signer_len,
1079			dclass))) {
1080			lock_basic_unlock(&neg->lock);
1081			log_err("out of memory adding negative zone");
1082			return;
1083		}
1084	}
1085	val_neg_zone_take_inuse(zone);
1086
1087	/* insert the NSECs */
1088	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1089		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC &&
1090			ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3)
1091			continue;
1092		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
1093			zone->name)) continue;
1094		/* insert NSEC into this zone's tree */
1095		neg_insert_data(neg, zone, rep->rrsets[i]);
1096	}
1097	if(zone->tree.count == 0) {
1098		/* remove empty zone if inserts failed */
1099		neg_delete_zone(neg, zone);
1100	}
1101	lock_basic_unlock(&neg->lock);
1102}
1103
1104/**
1105 * Check that an NSEC3 rrset does not have a type set.
1106 * None of the nsec3s in a hash-collision are allowed to have the type.
1107 * (since we do not know which one is the nsec3 looked at, flags, ..., we
1108 * ignore the cached item and let it bypass negative caching).
1109 * @param k: the nsec3 rrset to check.
1110 * @param t: type to check
1111 * @return true if no RRs have the type.
1112 */
1113static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t)
1114{
1115	int count = (int)((struct packed_rrset_data*)k->entry.data)->count;
1116	int i;
1117	for(i=0; i<count; i++)
1118		if(nsec3_has_type(k, i, t))
1119			return 0;
1120	return 1;
1121}
1122
1123/**
1124 * See if rrset exists in rrset cache.
1125 * If it does, the bit is checked, and if not expired, it is returned
1126 * allocated in region.
1127 * @param rrset_cache: rrset cache
1128 * @param qname: to lookup rrset name
1129 * @param qname_len: length of qname.
1130 * @param qtype: type of rrset to lookup, host order
1131 * @param qclass: class of rrset to lookup, host order
1132 * @param flags: flags for rrset to lookup
1133 * @param region: where to alloc result
1134 * @param checkbit: if true, a bit in the nsec typemap is checked for absence.
1135 * @param checktype: which bit to check
1136 * @param now: to check ttl against
1137 * @return rrset or NULL
1138 */
1139static struct ub_packed_rrset_key*
1140grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len,
1141	uint16_t qtype, uint16_t qclass, uint32_t flags,
1142	struct regional* region, int checkbit, uint16_t checktype,
1143	time_t now)
1144{
1145	struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache,
1146		qname, qname_len, qtype, qclass, flags, now, 0);
1147	struct packed_rrset_data* d;
1148	if(!k) return NULL;
1149	d = (struct packed_rrset_data*)k->entry.data;
1150	if(d->ttl < now) {
1151		lock_rw_unlock(&k->entry.lock);
1152		return NULL;
1153	}
1154	/* only secure or unchecked records that have signatures. */
1155	if( ! ( d->security == sec_status_secure ||
1156		(d->security == sec_status_unchecked &&
1157		d->rrsig_count > 0) ) ) {
1158		lock_rw_unlock(&k->entry.lock);
1159		return NULL;
1160	}
1161	/* check if checktype is absent */
1162	if(checkbit && (
1163		(qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) ||
1164		(qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype))
1165		)) {
1166		lock_rw_unlock(&k->entry.lock);
1167		return NULL;
1168	}
1169	/* looks OK! copy to region and return it */
1170	r = packed_rrset_copy_region(k, region, now);
1171	/* if it failed, we return the NULL */
1172	lock_rw_unlock(&k->entry.lock);
1173	return r;
1174}
1175
1176/** find nsec3 closest encloser in neg cache */
1177static struct val_neg_data*
1178neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1179		int qlabs, sldns_buffer* buf, uint8_t* hashnc, size_t* nclen)
1180{
1181	struct val_neg_data* data;
1182	uint8_t hashce[NSEC3_SHA_LEN];
1183	uint8_t b32[257];
1184	size_t celen, b32len;
1185
1186	*nclen = 0;
1187	while(qlabs > 0) {
1188		/* hash */
1189		if(!(celen=nsec3_get_hashed(buf, qname, qname_len,
1190			zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt,
1191			zone->nsec3_saltlen, hashce, sizeof(hashce))))
1192			return NULL;
1193		if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name,
1194			zone->len, b32, sizeof(b32))))
1195			return NULL;
1196
1197		/* lookup (exact match only) */
1198		data = neg_find_data(zone, b32, b32len, zone->labs+1);
1199		if(data && data->in_use) {
1200			/* found ce match! */
1201			return data;
1202		}
1203
1204		*nclen = celen;
1205		memmove(hashnc, hashce, celen);
1206		dname_remove_label(&qname, &qname_len);
1207		qlabs --;
1208	}
1209	return NULL;
1210}
1211
1212/** check nsec3 parameters on nsec3 rrset with current zone values */
1213static int
1214neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset)
1215{
1216	int h;
1217	uint8_t* s;
1218	size_t slen, it;
1219	if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen))
1220		return 0;
1221	return (h == zone->nsec3_hash && it == zone->nsec3_iter &&
1222		slen == zone->nsec3_saltlen &&
1223		memcmp(zone->nsec3_salt, s, slen) == 0);
1224}
1225
1226/** get next closer for nsec3 proof */
1227static struct ub_packed_rrset_key*
1228neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen,
1229	struct rrset_cache* rrset_cache, struct regional* region,
1230	time_t now, uint8_t* b32, size_t maxb32)
1231{
1232	struct ub_packed_rrset_key* nc_rrset;
1233	struct val_neg_data* data;
1234	size_t b32len;
1235
1236	if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name,
1237		zone->len, b32, maxb32)))
1238		return NULL;
1239	(void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data);
1240	if(!data && zone->tree.count != 0) {
1241		/* could be before the first entry ; return the last
1242		 * entry (possibly the rollover nsec3 at end) */
1243		data = (struct val_neg_data*)rbtree_last(&zone->tree);
1244	}
1245	while(data && !data->in_use)
1246		data = data->parent;
1247	if(!data)
1248		return NULL;
1249	/* got a data element in tree, grab it */
1250	nc_rrset = grab_nsec(rrset_cache, data->name, data->len,
1251		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now);
1252	if(!nc_rrset)
1253		return NULL;
1254	if(!neg_params_ok(zone, nc_rrset))
1255		return NULL;
1256	return nc_rrset;
1257}
1258
1259/** neg cache nsec3 proof procedure*/
1260static struct dns_msg*
1261neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1262		int qlabs, sldns_buffer* buf, struct rrset_cache* rrset_cache,
1263		struct regional* region, time_t now, uint8_t* topname)
1264{
1265	struct dns_msg* msg;
1266	struct val_neg_data* data;
1267	uint8_t hashnc[NSEC3_SHA_LEN];
1268	size_t nclen;
1269	struct ub_packed_rrset_key* ce_rrset, *nc_rrset;
1270	struct nsec3_cached_hash c;
1271	uint8_t nc_b32[257];
1272
1273	/* for NSEC3 ; determine the closest encloser for which we
1274	 * can find an exact match. Remember the hashed lower name,
1275	 * since that is the one we need a closest match for.
1276	 * If we find a match straight away, then it becomes NODATA.
1277	 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation.
1278	 * Also check that parameters are the same on closest encloser
1279	 * and on closest match.
1280	 */
1281	if(!zone->nsec3_hash)
1282		return NULL; /* not nsec3 zone */
1283
1284	if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf,
1285		hashnc, &nclen))) {
1286		return NULL;
1287	}
1288
1289	/* grab the ce rrset */
1290	ce_rrset = grab_nsec(rrset_cache, data->name, data->len,
1291		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1,
1292		LDNS_RR_TYPE_DS, now);
1293	if(!ce_rrset)
1294		return NULL;
1295	if(!neg_params_ok(zone, ce_rrset))
1296		return NULL;
1297
1298	if(nclen == 0) {
1299		/* exact match, just check the type bits */
1300		/* need: -SOA, -DS, +NS */
1301		if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) ||
1302			nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) ||
1303			!nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS))
1304			return NULL;
1305		if(!(msg = dns_msg_create(qname, qname_len,
1306			LDNS_RR_TYPE_DS, zone->dclass, region, 1)))
1307			return NULL;
1308		/* TTL reduced in grab_nsec */
1309		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1310			return NULL;
1311		return msg;
1312	}
1313
1314	/* optout is not allowed without knowing the trust-anchor in use,
1315	 * otherwise the optout could spoof away that anchor */
1316	if(!topname)
1317		return NULL;
1318
1319	/* if there is no exact match, it must be in an optout span
1320	 * (an existing DS implies an NSEC3 must exist) */
1321	nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache,
1322		region, now, nc_b32, sizeof(nc_b32));
1323	if(!nc_rrset)
1324		return NULL;
1325	if(!neg_params_ok(zone, nc_rrset))
1326		return NULL;
1327	if(!nsec3_has_optout(nc_rrset, 0))
1328		return NULL;
1329	c.hash = hashnc;
1330	c.hash_len = nclen;
1331	c.b32 = nc_b32+1;
1332	c.b32_len = (size_t)nc_b32[0];
1333	if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) {
1334		/* nc_rrset covers the next closer name.
1335		 * ce_rrset equals a closer encloser.
1336		 * nc_rrset is optout.
1337		 * No need to check wildcard for type DS */
1338		/* capacity=3: ce + nc + soa(if needed) */
1339		if(!(msg = dns_msg_create(qname, qname_len,
1340			LDNS_RR_TYPE_DS, zone->dclass, region, 3)))
1341			return NULL;
1342		/* now=0 because TTL was reduced in grab_nsec */
1343		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1344			return NULL;
1345		if(!dns_msg_authadd(msg, region, nc_rrset, 0))
1346			return NULL;
1347		return msg;
1348	}
1349	return NULL;
1350}
1351
1352/**
1353 * Add SOA record for external responses.
1354 * @param rrset_cache: to look into.
1355 * @param now: current time.
1356 * @param region: where to perform the allocation
1357 * @param msg: current msg with NSEC.
1358 * @param zone: val_neg_zone if we have one.
1359 * @return false on lookup or alloc failure.
1360 */
1361static int add_soa(struct rrset_cache* rrset_cache, time_t now,
1362	struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone)
1363{
1364	struct ub_packed_rrset_key* soa;
1365	uint8_t* nm;
1366	size_t nmlen;
1367	uint16_t dclass;
1368	if(zone) {
1369		nm = zone->name;
1370		nmlen = zone->len;
1371		dclass = zone->dclass;
1372	} else {
1373		/* Assumes the signer is the zone SOA to add */
1374		nm = reply_nsec_signer(msg->rep, &nmlen, &dclass);
1375		if(!nm)
1376			return 0;
1377	}
1378	soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA,
1379		dclass, PACKED_RRSET_SOA_NEG, now, 0);
1380	if(!soa)
1381		return 0;
1382	if(!dns_msg_authadd(msg, region, soa, now)) {
1383		lock_rw_unlock(&soa->entry.lock);
1384		return 0;
1385	}
1386	lock_rw_unlock(&soa->entry.lock);
1387	return 1;
1388}
1389
1390struct dns_msg*
1391val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo,
1392	struct regional* region, struct rrset_cache* rrset_cache,
1393	sldns_buffer* buf, time_t now, int addsoa, uint8_t* topname)
1394{
1395	struct dns_msg* msg;
1396	struct ub_packed_rrset_key* rrset;
1397	uint8_t* zname;
1398	size_t zname_len;
1399	int zname_labs;
1400	struct val_neg_zone* zone;
1401
1402	/* only for DS queries */
1403	if(qinfo->qtype != LDNS_RR_TYPE_DS)
1404		return NULL;
1405	log_assert(!topname || dname_subdomain_c(qinfo->qname, topname));
1406
1407	/* see if info from neg cache is available
1408	 * For NSECs, because there is no optout; a DS next to a delegation
1409	 * always has exactly an NSEC for it itself; check its DS bit.
1410	 * flags=0 (not the zone apex).
1411	 */
1412	rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len,
1413		LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1,
1414		qinfo->qtype, now);
1415	if(rrset) {
1416		/* return msg with that rrset */
1417		if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len,
1418			qinfo->qtype, qinfo->qclass, region, 2)))
1419			return NULL;
1420		/* TTL already subtracted in grab_nsec */
1421		if(!dns_msg_authadd(msg, region, rrset, 0))
1422			return NULL;
1423		if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL))
1424			return NULL;
1425		return msg;
1426	}
1427
1428	/* check NSEC3 neg cache for type DS */
1429	/* need to look one zone higher for DS type */
1430	zname = qinfo->qname;
1431	zname_len = qinfo->qname_len;
1432	dname_remove_label(&zname, &zname_len);
1433	zname_labs = dname_count_labels(zname);
1434
1435	/* lookup closest zone */
1436	lock_basic_lock(&neg->lock);
1437	zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs,
1438		qinfo->qclass);
1439	while(zone && !zone->in_use)
1440		zone = zone->parent;
1441	/* check that the zone is not too high up so that we do not pick data
1442	 * out of a zone that is above the last-seen key (or trust-anchor). */
1443	if(zone && topname) {
1444		if(!dname_subdomain_c(zone->name, topname))
1445			zone = NULL;
1446	}
1447	if(!zone) {
1448		lock_basic_unlock(&neg->lock);
1449		return NULL;
1450	}
1451
1452	msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len,
1453		zname_labs+1, buf, rrset_cache, region, now, topname);
1454	if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) {
1455		lock_basic_unlock(&neg->lock);
1456		return NULL;
1457	}
1458	lock_basic_unlock(&neg->lock);
1459	return msg;
1460}
1461