iter_utils.c revision 269257
1/*
2 * iterator/iter_utils.c - iterative resolver module utility functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains functions to assist the iterator module.
40 * Configuration options. Forward zones.
41 */
42#include "config.h"
43#include "iterator/iter_utils.h"
44#include "iterator/iterator.h"
45#include "iterator/iter_hints.h"
46#include "iterator/iter_fwd.h"
47#include "iterator/iter_donotq.h"
48#include "iterator/iter_delegpt.h"
49#include "iterator/iter_priv.h"
50#include "services/cache/infra.h"
51#include "services/cache/dns.h"
52#include "services/cache/rrset.h"
53#include "util/net_help.h"
54#include "util/module.h"
55#include "util/log.h"
56#include "util/config_file.h"
57#include "util/regional.h"
58#include "util/data/msgparse.h"
59#include "util/data/dname.h"
60#include "util/random.h"
61#include "util/fptr_wlist.h"
62#include "validator/val_anchor.h"
63#include "validator/val_kcache.h"
64#include "validator/val_kentry.h"
65#include "validator/val_utils.h"
66#include "validator/val_sigcrypt.h"
67#include "ldns/sbuffer.h"
68
69/** time when nameserver glue is said to be 'recent' */
70#define SUSPICION_RECENT_EXPIRY 86400
71/** penalty to validation failed blacklisted IPs */
72#define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
73
74/** fillup fetch policy array */
75static void
76fetch_fill(struct iter_env* ie, const char* str)
77{
78	char* s = (char*)str, *e;
79	int i;
80	for(i=0; i<ie->max_dependency_depth+1; i++) {
81		ie->target_fetch_policy[i] = strtol(s, &e, 10);
82		if(s == e)
83			fatal_exit("cannot parse fetch policy number %s", s);
84		s = e;
85	}
86}
87
88/** Read config string that represents the target fetch policy */
89static int
90read_fetch_policy(struct iter_env* ie, const char* str)
91{
92	int count = cfg_count_numbers(str);
93	if(count < 1) {
94		log_err("Cannot parse target fetch policy: \"%s\"", str);
95		return 0;
96	}
97	ie->max_dependency_depth = count - 1;
98	ie->target_fetch_policy = (int*)calloc(
99		(size_t)ie->max_dependency_depth+1, sizeof(int));
100	if(!ie->target_fetch_policy) {
101		log_err("alloc fetch policy: out of memory");
102		return 0;
103	}
104	fetch_fill(ie, str);
105	return 1;
106}
107
108int
109iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
110{
111	int i;
112	/* target fetch policy */
113	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
114		return 0;
115	for(i=0; i<iter_env->max_dependency_depth+1; i++)
116		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
117			i, iter_env->target_fetch_policy[i]);
118
119	if(!iter_env->donotq)
120		iter_env->donotq = donotq_create();
121	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
122		log_err("Could not set donotqueryaddresses");
123		return 0;
124	}
125	if(!iter_env->priv)
126		iter_env->priv = priv_create();
127	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
128		log_err("Could not set private addresses");
129		return 0;
130	}
131	iter_env->supports_ipv6 = cfg->do_ip6;
132	iter_env->supports_ipv4 = cfg->do_ip4;
133	return 1;
134}
135
136/** filter out unsuitable targets
137 * @param iter_env: iterator environment with ipv6-support flag.
138 * @param env: module environment with infra cache.
139 * @param name: zone name
140 * @param namelen: length of name
141 * @param qtype: query type (host order).
142 * @param now: current time
143 * @param a: address in delegation point we are examining.
144 * @return an integer that signals the target suitability.
145 *	as follows:
146 *	-1: The address should be omitted from the list.
147 *	    Because:
148 *		o The address is bogus (DNSSEC validation failure).
149 *		o Listed as donotquery
150 *		o is ipv6 but no ipv6 support (in operating system).
151 *		o is ipv4 but no ipv4 support (in operating system).
152 *		o is lame
153 *	Otherwise, an rtt in milliseconds.
154 *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
155 *		The roundtrip time timeout estimate. less than 2 minutes.
156 *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
157 *		values 0 .. 49 are not used, unless that is changed.
158 *	USEFUL_SERVER_TOP_TIMEOUT
159 *		This value exactly is given for unresponsive blacklisted.
160 *	USEFUL_SERVER_TOP_TIMEOUT+1
161 *		For non-blacklisted servers: huge timeout, but has traffic.
162 *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
163 *		parent-side lame servers get this penalty. A dispreferential
164 *		server. (lame in delegpt).
165 *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
166 *		dnsseclame servers get penalty
167 *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
168 *		recursion lame servers get penalty
169 *	UNKNOWN_SERVER_NICENESS
170 *		If no information is known about the server, this is
171 *		returned. 376 msec or so.
172 *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
173 *
174 * When a final value is chosen that is dnsseclame ; dnsseclameness checking
175 * is turned off (so we do not discard the reply).
176 * When a final value is chosen that is recursionlame; RD bit is set on query.
177 * Because of the numbers this means recursionlame also have dnssec lameness
178 * checking turned off.
179 */
180static int
181iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
182	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
183	struct delegpt_addr* a)
184{
185	int rtt, lame, reclame, dnsseclame;
186	if(a->bogus)
187		return -1; /* address of server is bogus */
188	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
189		log_addr(VERB_ALGO, "skip addr on the donotquery list",
190			&a->addr, a->addrlen);
191		return -1; /* server is on the donotquery list */
192	}
193	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
194		return -1; /* there is no ip6 available */
195	}
196	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
197		return -1; /* there is no ip4 available */
198	}
199	/* check lameness - need zone , class info */
200	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
201		name, namelen, qtype, &lame, &dnsseclame, &reclame,
202		&rtt, now)) {
203		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
204		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
205			lame?" LAME":"",
206			dnsseclame?" DNSSEC_LAME":"",
207			reclame?" REC_LAME":"",
208			a->lame?" ADDR_LAME":"");
209		if(lame)
210			return -1; /* server is lame */
211		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
212			/* server is unresponsive,
213			 * we used to return TOP_TIMOUT, but fairly useless,
214			 * because if == TOP_TIMEOUT is dropped because
215			 * blacklisted later, instead, remove it here, so
216			 * other choices (that are not blacklisted) can be
217			 * tried */
218			return -1;
219		/* select remainder from worst to best */
220		else if(reclame)
221			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
222		else if(dnsseclame || a->dnsseclame)
223			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
224		else if(a->lame)
225			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
226		else	return rtt;
227	}
228	/* no server information present */
229	if(a->dnsseclame)
230		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
231	else if(a->lame)
232		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
233	return UNKNOWN_SERVER_NICENESS;
234}
235
236/** lookup RTT information, and also store fastest rtt (if any) */
237static int
238iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
239	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
240	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist)
241{
242	int got_it = 0;
243	struct delegpt_addr* a;
244	if(dp->bogus)
245		return 0; /* NS bogus, all bogus, nothing found */
246	for(a=dp->result_list; a; a = a->next_result) {
247		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
248			name, namelen, qtype, now, a);
249		if(a->sel_rtt != -1) {
250			if(sock_list_find(blacklist, &a->addr, a->addrlen))
251				a->sel_rtt += BLACKLIST_PENALTY;
252
253			if(!got_it) {
254				*best_rtt = a->sel_rtt;
255				got_it = 1;
256			} else if(a->sel_rtt < *best_rtt) {
257				*best_rtt = a->sel_rtt;
258			}
259		}
260	}
261	return got_it;
262}
263
264/** filter the addres list, putting best targets at front,
265 * returns number of best targets (or 0, no suitable targets) */
266static int
267iter_filter_order(struct iter_env* iter_env, struct module_env* env,
268	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
269	struct delegpt* dp, int* selected_rtt, int open_target,
270	struct sock_list* blacklist)
271{
272	int got_num = 0, low_rtt = 0, swap_to_front;
273	struct delegpt_addr* a, *n, *prev=NULL;
274
275	/* fillup sel_rtt and find best rtt in the bunch */
276	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
277		&low_rtt, blacklist);
278	if(got_num == 0)
279		return 0;
280	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
281		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
282		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
283		return 0; /* we want more choice. The best choice is a bad one.
284			     return 0 to force the caller to fetch more */
285	}
286
287	got_num = 0;
288	a = dp->result_list;
289	while(a) {
290		/* skip unsuitable targets */
291		if(a->sel_rtt == -1) {
292			prev = a;
293			a = a->next_result;
294			continue;
295		}
296		/* classify the server address and determine what to do */
297		swap_to_front = 0;
298		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) {
299			got_num++;
300			swap_to_front = 1;
301		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) {
302			got_num++;
303			swap_to_front = 1;
304		}
305		/* swap to front if necessary, or move to next result */
306		if(swap_to_front && prev) {
307			n = a->next_result;
308			prev->next_result = n;
309			a->next_result = dp->result_list;
310			dp->result_list = a;
311			a = n;
312		} else {
313			prev = a;
314			a = a->next_result;
315		}
316	}
317	*selected_rtt = low_rtt;
318	return got_num;
319}
320
321struct delegpt_addr*
322iter_server_selection(struct iter_env* iter_env,
323	struct module_env* env, struct delegpt* dp,
324	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
325	int* chase_to_rd, int open_target, struct sock_list* blacklist)
326{
327	int sel;
328	int selrtt;
329	struct delegpt_addr* a, *prev;
330	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
331		*env->now, dp, &selrtt, open_target, blacklist);
332
333	if(num == 0)
334		return NULL;
335	verbose(VERB_ALGO, "selrtt %d", selrtt);
336	if(selrtt > BLACKLIST_PENALTY) {
337		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
338			verbose(VERB_ALGO, "chase to "
339				"blacklisted recursion lame server");
340			*chase_to_rd = 1;
341		}
342		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
343			verbose(VERB_ALGO, "chase to "
344				"blacklisted dnssec lame server");
345			*dnssec_lame = 1;
346		}
347	} else {
348		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
349			verbose(VERB_ALGO, "chase to recursion lame server");
350			*chase_to_rd = 1;
351		}
352		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
353			verbose(VERB_ALGO, "chase to dnssec lame server");
354			*dnssec_lame = 1;
355		}
356		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
357			verbose(VERB_ALGO, "chase to blacklisted lame server");
358			return NULL;
359		}
360	}
361
362	if(num == 1) {
363		a = dp->result_list;
364		if(++a->attempts < OUTBOUND_MSG_RETRY)
365			return a;
366		dp->result_list = a->next_result;
367		return a;
368	}
369
370	/* randomly select a target from the list */
371	log_assert(num > 1);
372	/* grab secure random number, to pick unexpected server.
373	 * also we need it to be threadsafe. */
374	sel = ub_random_max(env->rnd, num);
375	a = dp->result_list;
376	prev = NULL;
377	while(sel > 0 && a) {
378		prev = a;
379		a = a->next_result;
380		sel--;
381	}
382	if(!a)  /* robustness */
383		return NULL;
384	if(++a->attempts < OUTBOUND_MSG_RETRY)
385		return a;
386	/* remove it from the delegation point result list */
387	if(prev)
388		prev->next_result = a->next_result;
389	else	dp->result_list = a->next_result;
390	return a;
391}
392
393struct dns_msg*
394dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
395	struct regional* region)
396{
397	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
398		sizeof(struct dns_msg));
399	if(!m)
400		return NULL;
401	memset(m, 0, sizeof(*m));
402	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
403		log_err("malloc failure: allocating incoming dns_msg");
404		return NULL;
405	}
406	return m;
407}
408
409struct dns_msg*
410dns_copy_msg(struct dns_msg* from, struct regional* region)
411{
412	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
413		sizeof(struct dns_msg));
414	if(!m)
415		return NULL;
416	m->qinfo = from->qinfo;
417	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
418		from->qinfo.qname_len)))
419		return NULL;
420	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
421		return NULL;
422	return m;
423}
424
425void
426iter_dns_store(struct module_env* env, struct query_info* msgqinf,
427	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
428	struct regional* region)
429{
430	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
431		pside, region))
432		log_err("out of memory: cannot store data in cache");
433}
434
435int
436iter_ns_probability(struct ub_randstate* rnd, int n, int m)
437{
438	int sel;
439	if(n == m) /* 100% chance */
440		return 1;
441	/* we do not need secure random numbers here, but
442	 * we do need it to be threadsafe, so we use this */
443	sel = ub_random_max(rnd, m);
444	return (sel < n);
445}
446
447/** detect dependency cycle for query and target */
448static int
449causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
450	uint16_t t, uint16_t c)
451{
452	struct query_info qinf;
453	qinf.qname = name;
454	qinf.qname_len = namelen;
455	qinf.qtype = t;
456	qinf.qclass = c;
457	fptr_ok(fptr_whitelist_modenv_detect_cycle(
458		qstate->env->detect_cycle));
459	return (*qstate->env->detect_cycle)(qstate, &qinf,
460		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming);
461}
462
463void
464iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
465{
466	struct delegpt_ns* ns;
467	for(ns = dp->nslist; ns; ns = ns->next) {
468		if(ns->resolved)
469			continue;
470		/* see if this ns as target causes dependency cycle */
471		if(causes_cycle(qstate, ns->name, ns->namelen,
472			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
473		   causes_cycle(qstate, ns->name, ns->namelen,
474			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
475			log_nametypeclass(VERB_QUERY, "skipping target due "
476			 	"to dependency cycle (harden-glue: no may "
477				"fix some of the cycles)",
478				ns->name, LDNS_RR_TYPE_A,
479				qstate->qinfo.qclass);
480			ns->resolved = 1;
481		}
482	}
483}
484
485void
486iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
487{
488	struct delegpt_ns* ns;
489	for(ns = dp->nslist; ns; ns = ns->next) {
490		if(ns->done_pside4 && ns->done_pside6)
491			continue;
492		/* see if this ns as target causes dependency cycle */
493		if(causes_cycle(qstate, ns->name, ns->namelen,
494			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
495			log_nametypeclass(VERB_QUERY, "skipping target due "
496			 	"to dependency cycle", ns->name,
497				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
498			ns->done_pside4 = 1;
499		}
500		if(causes_cycle(qstate, ns->name, ns->namelen,
501			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
502			log_nametypeclass(VERB_QUERY, "skipping target due "
503			 	"to dependency cycle", ns->name,
504				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
505			ns->done_pside6 = 1;
506		}
507	}
508}
509
510int
511iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
512	struct delegpt* dp)
513{
514	struct delegpt_ns* ns;
515	/* check:
516	 *      o RD qflag is on.
517	 *      o no addresses are provided.
518	 *      o all NS items are required glue.
519	 * OR
520	 *      o RD qflag is on.
521	 *      o no addresses are provided.
522	 *      o the query is for one of the nameservers in dp,
523	 *        and that nameserver is a glue-name for this dp.
524	 */
525	if(!(qflags&BIT_RD))
526		return 0;
527	/* either available or unused targets */
528	if(dp->usable_list || dp->result_list)
529		return 0;
530
531	/* see if query is for one of the nameservers, which is glue */
532	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
533		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
534		dname_subdomain_c(qinfo->qname, dp->name) &&
535		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
536		return 1;
537
538	for(ns = dp->nslist; ns; ns = ns->next) {
539		if(ns->resolved) /* skip failed targets */
540			continue;
541		if(!dname_subdomain_c(ns->name, dp->name))
542			return 0; /* one address is not required glue */
543	}
544	return 1;
545}
546
547int
548iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
549        struct dns_msg* msg, uint16_t dclass)
550{
551	struct trust_anchor* a;
552	/* information not available, !env->anchors can be common */
553	if(!env || !env->anchors || !dp || !dp->name)
554		return 0;
555	/* a trust anchor exists with this name, RRSIGs expected */
556	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
557		dclass))) {
558		lock_basic_unlock(&a->lock);
559		return 1;
560	}
561	/* see if DS rrset was given, in AUTH section */
562	if(msg && msg->rep &&
563		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
564		LDNS_RR_TYPE_DS, dclass))
565		return 1;
566	/* look in key cache */
567	if(env->key_cache) {
568		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
569			dp->name, dp->namelen, dclass, env->scratch, *env->now);
570		if(kk) {
571			if(query_dname_compare(kk->name, dp->name) == 0) {
572			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
573				regional_free_all(env->scratch);
574				return 1;
575			  } else if(key_entry_isnull(kk)) {
576				regional_free_all(env->scratch);
577				return 0;
578			  }
579			}
580			regional_free_all(env->scratch);
581		}
582	}
583	return 0;
584}
585
586int
587iter_msg_has_dnssec(struct dns_msg* msg)
588{
589	size_t i;
590	if(!msg || !msg->rep)
591		return 0;
592	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
593		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
594			entry.data)->rrsig_count > 0)
595			return 1;
596	}
597	/* empty message has no DNSSEC info, with DNSSEC the reply is
598	 * not empty (NSEC) */
599	return 0;
600}
601
602int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
603        enum response_type type, uint16_t dclass)
604{
605	if(!msg || !dp || !msg->rep || !dp->name)
606		return 0;
607	/* SOA RRset - always from reply zone */
608	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
609		LDNS_RR_TYPE_SOA, dclass) ||
610	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
611		LDNS_RR_TYPE_SOA, dclass))
612		return 1;
613	if(type == RESPONSE_TYPE_REFERRAL) {
614		size_t i;
615		/* if it adds a single label, i.e. we expect .com,
616		 * and referral to example.com. NS ... , then origin zone
617		 * is .com. For a referral to sub.example.com. NS ... then
618		 * we do not know, since example.com. may be in between. */
619		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
620			i++) {
621			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
622			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
623				ntohs(s->rk.rrset_class) == dclass) {
624				int l = dname_count_labels(s->rk.dname);
625				if(l == dp->namelabs + 1 &&
626					dname_strict_subdomain(s->rk.dname,
627					l, dp->name, dp->namelabs))
628					return 1;
629			}
630		}
631		return 0;
632	}
633	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
634	/* not a referral, and not lame delegation (upwards), so,
635	 * any NS rrset must be from the zone itself */
636	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
637		LDNS_RR_TYPE_NS, dclass) ||
638	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
639		LDNS_RR_TYPE_NS, dclass))
640		return 1;
641	/* a DNSKEY set is expected at the zone apex as well */
642	/* this is for 'minimal responses' for DNSKEYs */
643	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
644		LDNS_RR_TYPE_DNSKEY, dclass))
645		return 1;
646	return 0;
647}
648
649/**
650 * check equality of two rrsets
651 * @param k1: rrset
652 * @param k2: rrset
653 * @return true if equal
654 */
655static int
656rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
657{
658	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
659		k1->entry.data;
660	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
661		k2->entry.data;
662	size_t i, t;
663	if(k1->rk.dname_len != k2->rk.dname_len ||
664		k1->rk.flags != k2->rk.flags ||
665		k1->rk.type != k2->rk.type ||
666		k1->rk.rrset_class != k2->rk.rrset_class ||
667		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
668		return 0;
669	if(d1->ttl != d2->ttl ||
670		d1->count != d2->count ||
671		d1->rrsig_count != d2->rrsig_count ||
672		d1->trust != d2->trust ||
673		d1->security != d2->security)
674		return 0;
675	t = d1->count + d1->rrsig_count;
676	for(i=0; i<t; i++) {
677		if(d1->rr_len[i] != d2->rr_len[i] ||
678			d1->rr_ttl[i] != d2->rr_ttl[i] ||
679			memcmp(d1->rr_data[i], d2->rr_data[i],
680				d1->rr_len[i]) != 0)
681			return 0;
682	}
683	return 1;
684}
685
686int
687reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
688{
689	size_t i;
690	if(p->flags != q->flags ||
691		p->qdcount != q->qdcount ||
692		p->ttl != q->ttl ||
693		p->prefetch_ttl != q->prefetch_ttl ||
694		p->security != q->security ||
695		p->an_numrrsets != q->an_numrrsets ||
696		p->ns_numrrsets != q->ns_numrrsets ||
697		p->ar_numrrsets != q->ar_numrrsets ||
698		p->rrset_count != q->rrset_count)
699		return 0;
700	for(i=0; i<p->rrset_count; i++) {
701		if(!rrset_equal(p->rrsets[i], q->rrsets[i])) {
702			if(!rrset_canonical_equal(region, p->rrsets[i],
703				q->rrsets[i])) {
704				regional_free_all(region);
705				return 0;
706			}
707			regional_free_all(region);
708		}
709	}
710	return 1;
711}
712
713void
714iter_store_parentside_rrset(struct module_env* env,
715	struct ub_packed_rrset_key* rrset)
716{
717	struct rrset_ref ref;
718	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
719	if(!rrset) {
720		log_err("malloc failure in store_parentside_rrset");
721		return;
722	}
723	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
724	rrset->entry.hash = rrset_key_hash(&rrset->rk);
725	ref.key = rrset;
726	ref.id = rrset->id;
727	/* ignore ret: if it was in the cache, ref updated */
728	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
729}
730
731/** fetch NS record from reply, if any */
732static struct ub_packed_rrset_key*
733reply_get_NS_rrset(struct reply_info* rep)
734{
735	size_t i;
736	for(i=0; i<rep->rrset_count; i++) {
737		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
738			return rep->rrsets[i];
739		}
740	}
741	return NULL;
742}
743
744void
745iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
746{
747	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
748	if(rrset) {
749		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
750		iter_store_parentside_rrset(env, rrset);
751	}
752}
753
754void iter_store_parentside_neg(struct module_env* env,
755        struct query_info* qinfo, struct reply_info* rep)
756{
757	/* TTL: NS from referral in iq->deleg_msg,
758	 *      or first RR from iq->response,
759	 *      or servfail5secs if !iq->response */
760	time_t ttl = NORR_TTL;
761	struct ub_packed_rrset_key* neg;
762	struct packed_rrset_data* newd;
763	if(rep) {
764		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
765		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
766		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
767	}
768	/* create empty rrset to store */
769	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
770	                sizeof(struct ub_packed_rrset_key));
771	if(!neg) {
772		log_err("out of memory in store_parentside_neg");
773		return;
774	}
775	memset(&neg->entry, 0, sizeof(neg->entry));
776	neg->entry.key = neg;
777	neg->rk.type = htons(qinfo->qtype);
778	neg->rk.rrset_class = htons(qinfo->qclass);
779	neg->rk.flags = 0;
780	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
781		qinfo->qname_len);
782	if(!neg->rk.dname) {
783		log_err("out of memory in store_parentside_neg");
784		return;
785	}
786	neg->rk.dname_len = qinfo->qname_len;
787	neg->entry.hash = rrset_key_hash(&neg->rk);
788	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
789		sizeof(struct packed_rrset_data) + sizeof(size_t) +
790		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
791	if(!newd) {
792		log_err("out of memory in store_parentside_neg");
793		return;
794	}
795	neg->entry.data = newd;
796	newd->ttl = ttl;
797	/* entry must have one RR, otherwise not valid in cache.
798	 * put in one RR with empty rdata: those are ignored as nameserver */
799	newd->count = 1;
800	newd->rrsig_count = 0;
801	newd->trust = rrset_trust_ans_noAA;
802	newd->rr_len = (size_t*)((uint8_t*)newd +
803		sizeof(struct packed_rrset_data));
804	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
805	packed_rrset_ptr_fixup(newd);
806	newd->rr_ttl[0] = newd->ttl;
807	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
808	/* store it */
809	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
810	iter_store_parentside_rrset(env, neg);
811}
812
813int
814iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
815	struct regional* region, struct query_info* qinfo)
816{
817	struct ub_packed_rrset_key* akey;
818	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
819		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
820		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
821	if(akey) {
822		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
823		dp->has_parent_side_NS = 1;
824		/* and mark the new names as lame */
825		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
826			lock_rw_unlock(&akey->entry.lock);
827			return 0;
828		}
829		lock_rw_unlock(&akey->entry.lock);
830	}
831	return 1;
832}
833
834int iter_lookup_parent_glue_from_cache(struct module_env* env,
835        struct delegpt* dp, struct regional* region, struct query_info* qinfo)
836{
837	struct ub_packed_rrset_key* akey;
838	struct delegpt_ns* ns;
839	size_t num = delegpt_count_targets(dp);
840	for(ns = dp->nslist; ns; ns = ns->next) {
841		/* get cached parentside A */
842		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
843			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
844			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
845		if(akey) {
846			log_rrset_key(VERB_ALGO, "found parent-side", akey);
847			ns->done_pside4 = 1;
848			/* a negative-cache-element has no addresses it adds */
849			if(!delegpt_add_rrset_A(dp, region, akey, 1))
850				log_err("malloc failure in lookup_parent_glue");
851			lock_rw_unlock(&akey->entry.lock);
852		}
853		/* get cached parentside AAAA */
854		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
855			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
856			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
857		if(akey) {
858			log_rrset_key(VERB_ALGO, "found parent-side", akey);
859			ns->done_pside6 = 1;
860			/* a negative-cache-element has no addresses it adds */
861			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1))
862				log_err("malloc failure in lookup_parent_glue");
863			lock_rw_unlock(&akey->entry.lock);
864		}
865	}
866	/* see if new (but lame) addresses have become available */
867	return delegpt_count_targets(dp) != num;
868}
869
870int
871iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
872	uint16_t* c)
873{
874	uint16_t c1 = *c, c2 = *c;
875	int r1 = hints_next_root(hints, &c1);
876	int r2 = forwards_next_root(fwd, &c2);
877	if(!r1 && !r2) /* got none, end of list */
878		return 0;
879	else if(!r1) /* got one, return that */
880		*c = c2;
881	else if(!r2)
882		*c = c1;
883	else if(c1 < c2) /* got both take smallest */
884		*c = c1;
885	else	*c = c2;
886	return 1;
887}
888
889void
890iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
891{
892	/* Only the DS record for the delegation itself is expected.
893	 * We allow DS for everything between the bailiwick and the
894	 * zonecut, thus DS records must be at or above the zonecut.
895	 * And the DS records must be below the server authority zone.
896	 * The answer section is already scrubbed. */
897	size_t i = msg->rep->an_numrrsets;
898	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
899		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
900		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
901			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
902			|| query_dname_compare(z, s->rk.dname) == 0)) {
903			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
904				s->rk.dname, ntohs(s->rk.type),
905				ntohs(s->rk.rrset_class));
906			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
907				sizeof(struct ub_packed_rrset_key*) *
908				(msg->rep->rrset_count-i-1));
909			msg->rep->ns_numrrsets--;
910			msg->rep->rrset_count--;
911			/* stay at same i, but new record */
912			continue;
913		}
914		i++;
915	}
916}
917
918void iter_dec_attempts(struct delegpt* dp, int d)
919{
920	struct delegpt_addr* a;
921	for(a=dp->target_list; a; a = a->next_target) {
922		if(a->attempts >= OUTBOUND_MSG_RETRY) {
923			/* add back to result list */
924			a->next_result = dp->result_list;
925			dp->result_list = a;
926		}
927		if(a->attempts > d)
928			a->attempts -= d;
929		else a->attempts = 0;
930	}
931}
932
933void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
934{
935	struct delegpt_addr* a, *o, *prev;
936	for(a=dp->target_list; a; a = a->next_target) {
937		o = delegpt_find_addr(old, &a->addr, a->addrlen);
938		if(o) {
939			log_addr(VERB_ALGO, "copy attempt count previous dp",
940				&a->addr, a->addrlen);
941			a->attempts = o->attempts;
942		}
943	}
944	prev = NULL;
945	a = dp->usable_list;
946	while(a) {
947		if(a->attempts >= OUTBOUND_MSG_RETRY) {
948			log_addr(VERB_ALGO, "remove from usable list dp",
949				&a->addr, a->addrlen);
950			/* remove from result list */
951			if(prev)
952				prev->next_usable = a->next_usable;
953			else	dp->usable_list = a->next_usable;
954			/* prev stays the same */
955			a = a->next_usable;
956			continue;
957		}
958		prev = a;
959		a = a->next_usable;
960	}
961}
962
963int
964iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
965{
966	/* if for query example.com, there is example.com SOA or a subdomain
967	 * of example.com, then we are too low and need to fetch NS. */
968	size_t i;
969	/* if we have a DNAME or CNAME we are probably wrong */
970	/* if we have a qtype DS in the answer section, its fine */
971	for(i=0; i < msg->rep->an_numrrsets; i++) {
972		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
973		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
974			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
975			/* not the right answer, maybe too low, check the
976			 * RRSIG signer name (if there is any) for a hint
977			 * that it is from the dp zone anyway */
978			uint8_t* sname;
979			size_t slen;
980			val_find_rrset_signer(s, &sname, &slen);
981			if(sname && query_dname_compare(dp->name, sname)==0)
982				return 0; /* it is fine, from the right dp */
983			return 1;
984		}
985		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
986			return 0; /* fine, we have a DS record */
987	}
988	for(i=msg->rep->an_numrrsets;
989		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
990		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
991		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
992			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
993				return 1; /* point is too low */
994			if(query_dname_compare(s->rk.dname, dp->name)==0)
995				return 0; /* right dp */
996		}
997		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
998			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
999			uint8_t* sname;
1000			size_t slen;
1001			val_find_rrset_signer(s, &sname, &slen);
1002			if(sname && query_dname_compare(dp->name, sname)==0)
1003				return 0; /* it is fine, from the right dp */
1004			return 1;
1005		}
1006	}
1007	/* we do not know */
1008	return 1;
1009}
1010
1011int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1012{
1013	/* no delegation point, do not see how we can go down,
1014	 * robust check, it should really exist */
1015	if(!dp) return 0;
1016
1017	/* see if dp equals the qname, then we cannot go down further */
1018	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1019		return 0;
1020	/* if dp is one label above the name we also cannot go down further */
1021	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1022		return 0;
1023	return 1;
1024}
1025