localtime.c revision 275508
1/*
2** This file is in the public domain, so clarified as of
3** 1996-06-05 by Arthur David Olson.
4*/
5
6#include <sys/cdefs.h>
7#ifndef lint
8#ifndef NOID
9static char	elsieid[] __unused = "@(#)localtime.c	8.14";
10#endif /* !defined NOID */
11#endif /* !defined lint */
12__FBSDID("$FreeBSD: stable/10/contrib/tzcode/stdtime/localtime.c 275508 2014-12-05 12:23:29Z ngie $");
13
14/*
15** Leap second handling from Bradley White.
16** POSIX-style TZ environment variable handling from Guy Harris.
17*/
18
19/*LINTLIBRARY*/
20
21#include "namespace.h"
22#include <sys/types.h>
23#include <sys/stat.h>
24#include <errno.h>
25#include <fcntl.h>
26#include <pthread.h>
27#include "private.h"
28#include "un-namespace.h"
29
30#include "tzfile.h"
31#include "float.h"	/* for FLT_MAX and DBL_MAX */
32
33#ifndef TZ_ABBR_MAX_LEN
34#define TZ_ABBR_MAX_LEN	16
35#endif /* !defined TZ_ABBR_MAX_LEN */
36
37#ifndef TZ_ABBR_CHAR_SET
38#define TZ_ABBR_CHAR_SET \
39	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
40#endif /* !defined TZ_ABBR_CHAR_SET */
41
42#ifndef TZ_ABBR_ERR_CHAR
43#define TZ_ABBR_ERR_CHAR	'_'
44#endif /* !defined TZ_ABBR_ERR_CHAR */
45
46#include "libc_private.h"
47
48#define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
49#define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
50
51#define _RWLOCK_RDLOCK(x)						\
52		do {							\
53			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
54		} while (0)
55
56#define _RWLOCK_WRLOCK(x)						\
57		do {							\
58			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
59		} while (0)
60
61#define _RWLOCK_UNLOCK(x)						\
62		do {							\
63			if (__isthreaded) _pthread_rwlock_unlock(x);	\
64		} while (0)
65
66/*
67** SunOS 4.1.1 headers lack O_BINARY.
68*/
69
70#ifdef O_BINARY
71#define OPEN_MODE	(O_RDONLY | O_BINARY)
72#endif /* defined O_BINARY */
73#ifndef O_BINARY
74#define OPEN_MODE	O_RDONLY
75#endif /* !defined O_BINARY */
76
77#ifndef WILDABBR
78/*
79** Someone might make incorrect use of a time zone abbreviation:
80**	1.	They might reference tzname[0] before calling tzset (explicitly
81**		or implicitly).
82**	2.	They might reference tzname[1] before calling tzset (explicitly
83**		or implicitly).
84**	3.	They might reference tzname[1] after setting to a time zone
85**		in which Daylight Saving Time is never observed.
86**	4.	They might reference tzname[0] after setting to a time zone
87**		in which Standard Time is never observed.
88**	5.	They might reference tm.TM_ZONE after calling offtime.
89** What's best to do in the above cases is open to debate;
90** for now, we just set things up so that in any of the five cases
91** WILDABBR is used. Another possibility: initialize tzname[0] to the
92** string "tzname[0] used before set", and similarly for the other cases.
93** And another: initialize tzname[0] to "ERA", with an explanation in the
94** manual page of what this "time zone abbreviation" means (doing this so
95** that tzname[0] has the "normal" length of three characters).
96*/
97#define WILDABBR	"   "
98#endif /* !defined WILDABBR */
99
100static char		wildabbr[] = WILDABBR;
101
102/*
103 * In June 2004 it was decided UTC was a more appropriate default time
104 * zone than GMT.
105 */
106
107static const char	gmt[] = "UTC";
108
109/*
110** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
111** We default to US rules as of 1999-08-17.
112** POSIX 1003.1 section 8.1.1 says that the default DST rules are
113** implementation dependent; for historical reasons, US rules are a
114** common default.
115*/
116#ifndef TZDEFRULESTRING
117#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
118#endif /* !defined TZDEFDST */
119
120struct ttinfo {				/* time type information */
121	long		tt_gmtoff;	/* UTC offset in seconds */
122	int		tt_isdst;	/* used to set tm_isdst */
123	int		tt_abbrind;	/* abbreviation list index */
124	int		tt_ttisstd;	/* TRUE if transition is std time */
125	int		tt_ttisgmt;	/* TRUE if transition is UTC */
126};
127
128struct lsinfo {				/* leap second information */
129	time_t		ls_trans;	/* transition time */
130	long		ls_corr;	/* correction to apply */
131};
132
133#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
134
135#ifdef TZNAME_MAX
136#define MY_TZNAME_MAX	TZNAME_MAX
137#endif /* defined TZNAME_MAX */
138#ifndef TZNAME_MAX
139#define MY_TZNAME_MAX	255
140#endif /* !defined TZNAME_MAX */
141
142struct state {
143	int		leapcnt;
144	int		timecnt;
145	int		typecnt;
146	int		charcnt;
147	int		goback;
148	int		goahead;
149	time_t		ats[TZ_MAX_TIMES];
150	unsigned char	types[TZ_MAX_TIMES];
151	struct ttinfo	ttis[TZ_MAX_TYPES];
152	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
153				(2 * (MY_TZNAME_MAX + 1)))];
154	struct lsinfo	lsis[TZ_MAX_LEAPS];
155};
156
157struct rule {
158	int		r_type;		/* type of rule--see below */
159	int		r_day;		/* day number of rule */
160	int		r_week;		/* week number of rule */
161	int		r_mon;		/* month number of rule */
162	long		r_time;		/* transition time of rule */
163};
164
165#define JULIAN_DAY		0	/* Jn - Julian day */
166#define DAY_OF_YEAR		1	/* n - day of year */
167#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
168
169/*
170** Prototypes for static functions.
171*/
172
173static long		detzcode(const char * codep);
174static time_t		detzcode64(const char * codep);
175static int		differ_by_repeat(time_t t1, time_t t0);
176static const char *	getzname(const char * strp);
177static const char *	getqzname(const char * strp, const int delim);
178static const char *	getnum(const char * strp, int * nump, int min,
179				int max);
180static const char *	getsecs(const char * strp, long * secsp);
181static const char *	getoffset(const char * strp, long * offsetp);
182static const char *	getrule(const char * strp, struct rule * rulep);
183static void		gmtload(struct state * sp);
184static struct tm *	gmtsub(const time_t * timep, long offset,
185				struct tm * tmp);
186static struct tm *	localsub(const time_t * timep, long offset,
187				struct tm * tmp);
188static int		increment_overflow(int * number, int delta);
189static int		leaps_thru_end_of(int y);
190static int		long_increment_overflow(long * number, int delta);
191static int		long_normalize_overflow(long * tensptr,
192				int * unitsptr, int base);
193static int		normalize_overflow(int * tensptr, int * unitsptr,
194				int base);
195static void		settzname(void);
196static time_t		time1(struct tm * tmp,
197				struct tm * (*funcp)(const time_t *,
198				long, struct tm *),
199				long offset);
200static time_t		time2(struct tm *tmp,
201				struct tm * (*funcp)(const time_t *,
202				long, struct tm*),
203				long offset, int * okayp);
204static time_t		time2sub(struct tm *tmp,
205				struct tm * (*funcp)(const time_t *,
206				long, struct tm*),
207				long offset, int * okayp, int do_norm_secs);
208static struct tm *	timesub(const time_t * timep, long offset,
209				const struct state * sp, struct tm * tmp);
210static int		tmcomp(const struct tm * atmp,
211				const struct tm * btmp);
212static time_t		transtime(time_t janfirst, int year,
213				const struct rule * rulep, long offset);
214static int		typesequiv(const struct state * sp, int a, int b);
215static int		tzload(const char * name, struct state * sp,
216				int doextend);
217static int		tzparse(const char * name, struct state * sp,
218				int lastditch);
219
220#ifdef ALL_STATE
221static struct state *	lclptr;
222static struct state *	gmtptr;
223#endif /* defined ALL_STATE */
224
225#ifndef ALL_STATE
226static struct state	lclmem;
227static struct state	gmtmem;
228#define lclptr		(&lclmem)
229#define gmtptr		(&gmtmem)
230#endif /* State Farm */
231
232#ifndef TZ_STRLEN_MAX
233#define TZ_STRLEN_MAX 255
234#endif /* !defined TZ_STRLEN_MAX */
235
236static char		lcl_TZname[TZ_STRLEN_MAX + 1];
237static int		lcl_is_set;
238static pthread_once_t	gmt_once = PTHREAD_ONCE_INIT;
239static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
240static pthread_once_t	gmtime_once = PTHREAD_ONCE_INIT;
241static pthread_key_t	gmtime_key;
242static int		gmtime_key_error;
243static pthread_once_t	localtime_once = PTHREAD_ONCE_INIT;
244static pthread_key_t	localtime_key;
245static int		localtime_key_error;
246
247char *			tzname[2] = {
248	wildabbr,
249	wildabbr
250};
251
252/*
253** Section 4.12.3 of X3.159-1989 requires that
254**	Except for the strftime function, these functions [asctime,
255**	ctime, gmtime, localtime] return values in one of two static
256**	objects: a broken-down time structure and an array of char.
257** Thanks to Paul Eggert for noting this.
258*/
259
260static struct tm	tm;
261
262#ifdef USG_COMPAT
263time_t			timezone = 0;
264int			daylight = 0;
265#endif /* defined USG_COMPAT */
266
267#ifdef ALTZONE
268time_t			altzone = 0;
269#endif /* defined ALTZONE */
270
271static long
272detzcode(codep)
273const char * const	codep;
274{
275	long	result;
276	int	i;
277
278	result = (codep[0] & 0x80) ? ~0L : 0;
279	for (i = 0; i < 4; ++i)
280		result = (result << 8) | (codep[i] & 0xff);
281	return result;
282}
283
284static time_t
285detzcode64(codep)
286const char * const	codep;
287{
288	register time_t	result;
289	register int	i;
290
291	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
292	for (i = 0; i < 8; ++i)
293		result = result * 256 + (codep[i] & 0xff);
294	return result;
295}
296
297static void
298settzname(void)
299{
300	struct state * 	sp = lclptr;
301	int			i;
302
303	tzname[0] = wildabbr;
304	tzname[1] = wildabbr;
305#ifdef USG_COMPAT
306	daylight = 0;
307	timezone = 0;
308#endif /* defined USG_COMPAT */
309#ifdef ALTZONE
310	altzone = 0;
311#endif /* defined ALTZONE */
312#ifdef ALL_STATE
313	if (sp == NULL) {
314		tzname[0] = tzname[1] = gmt;
315		return;
316	}
317#endif /* defined ALL_STATE */
318	/*
319	** And to get the latest zone names into tzname. . .
320	*/
321	for (i = 0; i < sp->typecnt; ++i) {
322		const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
323
324		tzname[ttisp->tt_isdst] =
325			&sp->chars[ttisp->tt_abbrind];
326#ifdef USG_COMPAT
327		if (ttisp->tt_isdst)
328			daylight = 1;
329		if (!ttisp->tt_isdst)
330			timezone = -(ttisp->tt_gmtoff);
331#endif /* defined USG_COMPAT */
332#ifdef ALTZONE
333		if (ttisp->tt_isdst)
334			altzone = -(ttisp->tt_gmtoff);
335#endif /* defined ALTZONE */
336	}
337	/*
338	** Finally, scrub the abbreviations.
339	** First, replace bogus characters.
340	*/
341	for (i = 0; i < sp->charcnt; ++i)
342		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
343			sp->chars[i] = TZ_ABBR_ERR_CHAR;
344	/*
345	** Second, truncate long abbreviations.
346	*/
347	for (i = 0; i < sp->typecnt; ++i) {
348		register const struct ttinfo * const	ttisp = &sp->ttis[i];
349		register char *				cp = &sp->chars[ttisp->tt_abbrind];
350
351		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
352			strcmp(cp, GRANDPARENTED) != 0)
353				*(cp + TZ_ABBR_MAX_LEN) = '\0';
354	}
355}
356
357static int
358differ_by_repeat(t1, t0)
359const time_t	t1;
360const time_t	t0;
361{
362	int_fast64_t _t0 = t0;
363	int_fast64_t _t1 = t1;
364
365	if (TYPE_INTEGRAL(time_t) &&
366		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
367			return 0;
368	//turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
369	return _t1 - _t0 == SECSPERREPEAT;
370}
371
372static int
373tzload(name, sp, doextend)
374const char *		name;
375struct state * const	sp;
376register const int	doextend;
377{
378	const char *	p;
379	int		i;
380	int		fid;
381	int		stored;
382	int		nread;
383	int		res;
384	union {
385		struct tzhead	tzhead;
386		char		buf[2 * sizeof(struct tzhead) +
387					2 * sizeof *sp +
388					4 * TZ_MAX_TIMES];
389	} *u;
390
391	u = NULL;
392	res = -1;
393	sp->goback = sp->goahead = FALSE;
394
395	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
396	if (name != NULL && issetugid() != 0)
397		if ((name[0] == ':' && name[1] == '/') ||
398		    name[0] == '/' || strchr(name, '.'))
399			name = NULL;
400	if (name == NULL && (name = TZDEFAULT) == NULL)
401		return -1;
402	{
403		int	doaccess;
404		struct stat	stab;
405		/*
406		** Section 4.9.1 of the C standard says that
407		** "FILENAME_MAX expands to an integral constant expression
408		** that is the size needed for an array of char large enough
409		** to hold the longest file name string that the implementation
410		** guarantees can be opened."
411		*/
412		char		*fullname;
413
414		fullname = malloc(FILENAME_MAX + 1);
415		if (fullname == NULL)
416			goto out;
417
418		if (name[0] == ':')
419			++name;
420		doaccess = name[0] == '/';
421		if (!doaccess) {
422			if ((p = TZDIR) == NULL) {
423				free(fullname);
424				return -1;
425			}
426			if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
427				free(fullname);
428				return -1;
429			}
430			(void) strcpy(fullname, p);
431			(void) strcat(fullname, "/");
432			(void) strcat(fullname, name);
433			/*
434			** Set doaccess if '.' (as in "../") shows up in name.
435			*/
436			if (strchr(name, '.') != NULL)
437				doaccess = TRUE;
438			name = fullname;
439		}
440		if (doaccess && access(name, R_OK) != 0) {
441			free(fullname);
442		     	return -1;
443		}
444		if ((fid = _open(name, OPEN_MODE)) == -1) {
445			free(fullname);
446			return -1;
447		}
448		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
449			free(fullname);
450			_close(fid);
451			return -1;
452		}
453		free(fullname);
454	}
455	u = malloc(sizeof(*u));
456	if (u == NULL)
457		goto out;
458	nread = _read(fid, u->buf, sizeof u->buf);
459	if (_close(fid) < 0 || nread <= 0)
460		goto out;
461	for (stored = 4; stored <= 8; stored *= 2) {
462		int		ttisstdcnt;
463		int		ttisgmtcnt;
464
465		ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
466		ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
467		sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
468		sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
469		sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
470		sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
471		p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
472		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
473			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
474			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
475			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
476			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
477			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
478				goto out;
479		if (nread - (p - u->buf) <
480			sp->timecnt * stored +		/* ats */
481			sp->timecnt +			/* types */
482			sp->typecnt * 6 +		/* ttinfos */
483			sp->charcnt +			/* chars */
484			sp->leapcnt * (stored + 4) +	/* lsinfos */
485			ttisstdcnt +			/* ttisstds */
486			ttisgmtcnt)			/* ttisgmts */
487				goto out;
488		for (i = 0; i < sp->timecnt; ++i) {
489			sp->ats[i] = (stored == 4) ?
490				detzcode(p) : detzcode64(p);
491			p += stored;
492		}
493		for (i = 0; i < sp->timecnt; ++i) {
494			sp->types[i] = (unsigned char) *p++;
495			if (sp->types[i] >= sp->typecnt)
496				goto out;
497		}
498		for (i = 0; i < sp->typecnt; ++i) {
499			struct ttinfo *	ttisp;
500
501			ttisp = &sp->ttis[i];
502			ttisp->tt_gmtoff = detzcode(p);
503			p += 4;
504			ttisp->tt_isdst = (unsigned char) *p++;
505			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
506				goto out;
507			ttisp->tt_abbrind = (unsigned char) *p++;
508			if (ttisp->tt_abbrind < 0 ||
509				ttisp->tt_abbrind > sp->charcnt)
510					goto out;
511		}
512		for (i = 0; i < sp->charcnt; ++i)
513			sp->chars[i] = *p++;
514		sp->chars[i] = '\0';	/* ensure '\0' at end */
515		for (i = 0; i < sp->leapcnt; ++i) {
516			struct lsinfo *	lsisp;
517
518			lsisp = &sp->lsis[i];
519			lsisp->ls_trans = (stored == 4) ?
520				detzcode(p) : detzcode64(p);
521			p += stored;
522			lsisp->ls_corr = detzcode(p);
523			p += 4;
524		}
525		for (i = 0; i < sp->typecnt; ++i) {
526			struct ttinfo *	ttisp;
527
528			ttisp = &sp->ttis[i];
529			if (ttisstdcnt == 0)
530				ttisp->tt_ttisstd = FALSE;
531			else {
532				ttisp->tt_ttisstd = *p++;
533				if (ttisp->tt_ttisstd != TRUE &&
534					ttisp->tt_ttisstd != FALSE)
535						goto out;
536			}
537		}
538		for (i = 0; i < sp->typecnt; ++i) {
539			struct ttinfo *	ttisp;
540
541			ttisp = &sp->ttis[i];
542			if (ttisgmtcnt == 0)
543				ttisp->tt_ttisgmt = FALSE;
544			else {
545				ttisp->tt_ttisgmt = *p++;
546				if (ttisp->tt_ttisgmt != TRUE &&
547					ttisp->tt_ttisgmt != FALSE)
548						goto out;
549			}
550		}
551		/*
552		** Out-of-sort ats should mean we're running on a
553		** signed time_t system but using a data file with
554		** unsigned values (or vice versa).
555		*/
556		for (i = 0; i < sp->timecnt - 2; ++i)
557			if (sp->ats[i] > sp->ats[i + 1]) {
558				++i;
559				if (TYPE_SIGNED(time_t)) {
560					/*
561					** Ignore the end (easy).
562					*/
563					sp->timecnt = i;
564				} else {
565					/*
566					** Ignore the beginning (harder).
567					*/
568					register int	j;
569
570					for (j = 0; j + i < sp->timecnt; ++j) {
571						sp->ats[j] = sp->ats[j + i];
572						sp->types[j] = sp->types[j + i];
573					}
574					sp->timecnt = j;
575				}
576				break;
577			}
578		/*
579		** If this is an old file, we're done.
580		*/
581		if (u->tzhead.tzh_version[0] == '\0')
582			break;
583		nread -= p - u->buf;
584		for (i = 0; i < nread; ++i)
585			u->buf[i] = p[i];
586		/*
587		** If this is a narrow integer time_t system, we're done.
588		*/
589		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
590			break;
591	}
592	if (doextend && nread > 2 &&
593		u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
594		sp->typecnt + 2 <= TZ_MAX_TYPES) {
595			struct state	*ts;
596			register int	result;
597
598			ts = malloc(sizeof(*ts));
599			if (ts == NULL)
600				goto out;
601			u->buf[nread - 1] = '\0';
602			result = tzparse(&u->buf[1], ts, FALSE);
603			if (result == 0 && ts->typecnt == 2 &&
604				sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
605					for (i = 0; i < 2; ++i)
606						ts->ttis[i].tt_abbrind +=
607							sp->charcnt;
608					for (i = 0; i < ts->charcnt; ++i)
609						sp->chars[sp->charcnt++] =
610							ts->chars[i];
611					i = 0;
612					while (i < ts->timecnt &&
613						ts->ats[i] <=
614						sp->ats[sp->timecnt - 1])
615							++i;
616					while (i < ts->timecnt &&
617					    sp->timecnt < TZ_MAX_TIMES) {
618						sp->ats[sp->timecnt] =
619							ts->ats[i];
620						sp->types[sp->timecnt] =
621							sp->typecnt +
622							ts->types[i];
623						++sp->timecnt;
624						++i;
625					}
626					sp->ttis[sp->typecnt++] = ts->ttis[0];
627					sp->ttis[sp->typecnt++] = ts->ttis[1];
628			}
629			free(ts);
630	}
631	if (sp->timecnt > 1) {
632		for (i = 1; i < sp->timecnt; ++i)
633			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
634				differ_by_repeat(sp->ats[i], sp->ats[0])) {
635					sp->goback = TRUE;
636					break;
637				}
638		for (i = sp->timecnt - 2; i >= 0; --i)
639			if (typesequiv(sp, sp->types[sp->timecnt - 1],
640				sp->types[i]) &&
641				differ_by_repeat(sp->ats[sp->timecnt - 1],
642				sp->ats[i])) {
643					sp->goahead = TRUE;
644					break;
645		}
646	}
647	res = 0;
648out:
649	free(u);
650	return (res);
651}
652
653static int
654typesequiv(sp, a, b)
655const struct state * const	sp;
656const int			a;
657const int			b;
658{
659	register int	result;
660
661	if (sp == NULL ||
662		a < 0 || a >= sp->typecnt ||
663		b < 0 || b >= sp->typecnt)
664			result = FALSE;
665	else {
666		register const struct ttinfo *	ap = &sp->ttis[a];
667		register const struct ttinfo *	bp = &sp->ttis[b];
668		result = ap->tt_gmtoff == bp->tt_gmtoff &&
669			ap->tt_isdst == bp->tt_isdst &&
670			ap->tt_ttisstd == bp->tt_ttisstd &&
671			ap->tt_ttisgmt == bp->tt_ttisgmt &&
672			strcmp(&sp->chars[ap->tt_abbrind],
673			&sp->chars[bp->tt_abbrind]) == 0;
674	}
675	return result;
676}
677
678static const int	mon_lengths[2][MONSPERYEAR] = {
679	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
680	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
681};
682
683static const int	year_lengths[2] = {
684	DAYSPERNYEAR, DAYSPERLYEAR
685};
686
687/*
688** Given a pointer into a time zone string, scan until a character that is not
689** a valid character in a zone name is found. Return a pointer to that
690** character.
691*/
692
693static const char *
694getzname(strp)
695const char *	strp;
696{
697	char	c;
698
699	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
700		c != '+')
701			++strp;
702	return strp;
703}
704
705/*
706** Given a pointer into an extended time zone string, scan until the ending
707** delimiter of the zone name is located. Return a pointer to the delimiter.
708**
709** As with getzname above, the legal character set is actually quite
710** restricted, with other characters producing undefined results.
711** We don't do any checking here; checking is done later in common-case code.
712*/
713
714static const char *
715getqzname(register const char *strp, const int delim)
716{
717	register int	c;
718
719	while ((c = *strp) != '\0' && c != delim)
720		++strp;
721	return strp;
722}
723
724/*
725** Given a pointer into a time zone string, extract a number from that string.
726** Check that the number is within a specified range; if it is not, return
727** NULL.
728** Otherwise, return a pointer to the first character not part of the number.
729*/
730
731static const char *
732getnum(strp, nump, min, max)
733const char *	strp;
734int * const		nump;
735const int		min;
736const int		max;
737{
738	char	c;
739	int	num;
740
741	if (strp == NULL || !is_digit(c = *strp))
742		return NULL;
743	num = 0;
744	do {
745		num = num * 10 + (c - '0');
746		if (num > max)
747			return NULL;	/* illegal value */
748		c = *++strp;
749	} while (is_digit(c));
750	if (num < min)
751		return NULL;		/* illegal value */
752	*nump = num;
753	return strp;
754}
755
756/*
757** Given a pointer into a time zone string, extract a number of seconds,
758** in hh[:mm[:ss]] form, from the string.
759** If any error occurs, return NULL.
760** Otherwise, return a pointer to the first character not part of the number
761** of seconds.
762*/
763
764static const char *
765getsecs(strp, secsp)
766const char *	strp;
767long * const		secsp;
768{
769	int	num;
770
771	/*
772	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
773	** "M10.4.6/26", which does not conform to Posix,
774	** but which specifies the equivalent of
775	** ``02:00 on the first Sunday on or after 23 Oct''.
776	*/
777	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
778	if (strp == NULL)
779		return NULL;
780	*secsp = num * (long) SECSPERHOUR;
781	if (*strp == ':') {
782		++strp;
783		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
784		if (strp == NULL)
785			return NULL;
786		*secsp += num * SECSPERMIN;
787		if (*strp == ':') {
788			++strp;
789			/* `SECSPERMIN' allows for leap seconds. */
790			strp = getnum(strp, &num, 0, SECSPERMIN);
791			if (strp == NULL)
792				return NULL;
793			*secsp += num;
794		}
795	}
796	return strp;
797}
798
799/*
800** Given a pointer into a time zone string, extract an offset, in
801** [+-]hh[:mm[:ss]] form, from the string.
802** If any error occurs, return NULL.
803** Otherwise, return a pointer to the first character not part of the time.
804*/
805
806static const char *
807getoffset(strp, offsetp)
808const char *	strp;
809long * const		offsetp;
810{
811	int	neg = 0;
812
813	if (*strp == '-') {
814		neg = 1;
815		++strp;
816	} else if (*strp == '+')
817		++strp;
818	strp = getsecs(strp, offsetp);
819	if (strp == NULL)
820		return NULL;		/* illegal time */
821	if (neg)
822		*offsetp = -*offsetp;
823	return strp;
824}
825
826/*
827** Given a pointer into a time zone string, extract a rule in the form
828** date[/time]. See POSIX section 8 for the format of "date" and "time".
829** If a valid rule is not found, return NULL.
830** Otherwise, return a pointer to the first character not part of the rule.
831*/
832
833static const char *
834getrule(strp, rulep)
835const char *			strp;
836struct rule * const	rulep;
837{
838	if (*strp == 'J') {
839		/*
840		** Julian day.
841		*/
842		rulep->r_type = JULIAN_DAY;
843		++strp;
844		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
845	} else if (*strp == 'M') {
846		/*
847		** Month, week, day.
848		*/
849		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
850		++strp;
851		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
852		if (strp == NULL)
853			return NULL;
854		if (*strp++ != '.')
855			return NULL;
856		strp = getnum(strp, &rulep->r_week, 1, 5);
857		if (strp == NULL)
858			return NULL;
859		if (*strp++ != '.')
860			return NULL;
861		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
862	} else if (is_digit(*strp)) {
863		/*
864		** Day of year.
865		*/
866		rulep->r_type = DAY_OF_YEAR;
867		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
868	} else	return NULL;		/* invalid format */
869	if (strp == NULL)
870		return NULL;
871	if (*strp == '/') {
872		/*
873		** Time specified.
874		*/
875		++strp;
876		strp = getsecs(strp, &rulep->r_time);
877	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
878	return strp;
879}
880
881/*
882** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
883** year, a rule, and the offset from UTC at the time that rule takes effect,
884** calculate the Epoch-relative time that rule takes effect.
885*/
886
887static time_t
888transtime(janfirst, year, rulep, offset)
889const time_t				janfirst;
890const int				year;
891const struct rule * const	rulep;
892const long				offset;
893{
894	int	leapyear;
895	time_t	value;
896	int	i;
897	int		d, m1, yy0, yy1, yy2, dow;
898
899	INITIALIZE(value);
900	leapyear = isleap(year);
901	switch (rulep->r_type) {
902
903	case JULIAN_DAY:
904		/*
905		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
906		** years.
907		** In non-leap years, or if the day number is 59 or less, just
908		** add SECSPERDAY times the day number-1 to the time of
909		** January 1, midnight, to get the day.
910		*/
911		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
912		if (leapyear && rulep->r_day >= 60)
913			value += SECSPERDAY;
914		break;
915
916	case DAY_OF_YEAR:
917		/*
918		** n - day of year.
919		** Just add SECSPERDAY times the day number to the time of
920		** January 1, midnight, to get the day.
921		*/
922		value = janfirst + rulep->r_day * SECSPERDAY;
923		break;
924
925	case MONTH_NTH_DAY_OF_WEEK:
926		/*
927		** Mm.n.d - nth "dth day" of month m.
928		*/
929		value = janfirst;
930		for (i = 0; i < rulep->r_mon - 1; ++i)
931			value += mon_lengths[leapyear][i] * SECSPERDAY;
932
933		/*
934		** Use Zeller's Congruence to get day-of-week of first day of
935		** month.
936		*/
937		m1 = (rulep->r_mon + 9) % 12 + 1;
938		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
939		yy1 = yy0 / 100;
940		yy2 = yy0 % 100;
941		dow = ((26 * m1 - 2) / 10 +
942			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
943		if (dow < 0)
944			dow += DAYSPERWEEK;
945
946		/*
947		** "dow" is the day-of-week of the first day of the month. Get
948		** the day-of-month (zero-origin) of the first "dow" day of the
949		** month.
950		*/
951		d = rulep->r_day - dow;
952		if (d < 0)
953			d += DAYSPERWEEK;
954		for (i = 1; i < rulep->r_week; ++i) {
955			if (d + DAYSPERWEEK >=
956				mon_lengths[leapyear][rulep->r_mon - 1])
957					break;
958			d += DAYSPERWEEK;
959		}
960
961		/*
962		** "d" is the day-of-month (zero-origin) of the day we want.
963		*/
964		value += d * SECSPERDAY;
965		break;
966	}
967
968	/*
969	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
970	** question. To get the Epoch-relative time of the specified local
971	** time on that day, add the transition time and the current offset
972	** from UTC.
973	*/
974	return value + rulep->r_time + offset;
975}
976
977/*
978** Given a POSIX section 8-style TZ string, fill in the rule tables as
979** appropriate.
980*/
981
982static int
983tzparse(name, sp, lastditch)
984const char *			name;
985struct state * const	sp;
986const int			lastditch;
987{
988	const char *			stdname;
989	const char *			dstname;
990	size_t				stdlen;
991	size_t				dstlen;
992	long				stdoffset;
993	long				dstoffset;
994	time_t *		atp;
995	unsigned char *	typep;
996	char *			cp;
997	int			load_result;
998
999	INITIALIZE(dstname);
1000	stdname = name;
1001	if (lastditch) {
1002		stdlen = strlen(name);	/* length of standard zone name */
1003		name += stdlen;
1004		if (stdlen >= sizeof sp->chars)
1005			stdlen = (sizeof sp->chars) - 1;
1006		stdoffset = 0;
1007	} else {
1008		if (*name == '<') {
1009			name++;
1010			stdname = name;
1011			name = getqzname(name, '>');
1012			if (*name != '>')
1013				return (-1);
1014			stdlen = name - stdname;
1015			name++;
1016		} else {
1017			name = getzname(name);
1018			stdlen = name - stdname;
1019		}
1020		if (*name == '\0')
1021			return -1;	/* was "stdoffset = 0;" */
1022		else {
1023			name = getoffset(name, &stdoffset);
1024			if (name == NULL)
1025				return -1;
1026		}
1027	}
1028	load_result = tzload(TZDEFRULES, sp, FALSE);
1029	if (load_result != 0)
1030		sp->leapcnt = 0;		/* so, we're off a little */
1031	if (*name != '\0') {
1032		if (*name == '<') {
1033			dstname = ++name;
1034			name = getqzname(name, '>');
1035			if (*name != '>')
1036				return -1;
1037			dstlen = name - dstname;
1038			name++;
1039		} else {
1040			dstname = name;
1041			name = getzname(name);
1042			dstlen = name - dstname; /* length of DST zone name */
1043		}
1044		if (*name != '\0' && *name != ',' && *name != ';') {
1045			name = getoffset(name, &dstoffset);
1046			if (name == NULL)
1047				return -1;
1048		} else	dstoffset = stdoffset - SECSPERHOUR;
1049		if (*name == '\0' && load_result != 0)
1050			name = TZDEFRULESTRING;
1051		if (*name == ',' || *name == ';') {
1052			struct rule	start;
1053			struct rule	end;
1054			int	year;
1055			time_t	janfirst;
1056			time_t		starttime;
1057			time_t		endtime;
1058
1059			++name;
1060			if ((name = getrule(name, &start)) == NULL)
1061				return -1;
1062			if (*name++ != ',')
1063				return -1;
1064			if ((name = getrule(name, &end)) == NULL)
1065				return -1;
1066			if (*name != '\0')
1067				return -1;
1068			sp->typecnt = 2;	/* standard time and DST */
1069			/*
1070			** Two transitions per year, from EPOCH_YEAR forward.
1071			*/
1072			sp->ttis[0].tt_gmtoff = -dstoffset;
1073			sp->ttis[0].tt_isdst = 1;
1074			sp->ttis[0].tt_abbrind = stdlen + 1;
1075			sp->ttis[1].tt_gmtoff = -stdoffset;
1076			sp->ttis[1].tt_isdst = 0;
1077			sp->ttis[1].tt_abbrind = 0;
1078			atp = sp->ats;
1079			typep = sp->types;
1080			janfirst = 0;
1081			sp->timecnt = 0;
1082			for (year = EPOCH_YEAR;
1083			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1084			    ++year) {
1085			    	time_t	newfirst;
1086
1087				starttime = transtime(janfirst, year, &start,
1088					stdoffset);
1089				endtime = transtime(janfirst, year, &end,
1090					dstoffset);
1091				if (starttime > endtime) {
1092					*atp++ = endtime;
1093					*typep++ = 1;	/* DST ends */
1094					*atp++ = starttime;
1095					*typep++ = 0;	/* DST begins */
1096				} else {
1097					*atp++ = starttime;
1098					*typep++ = 0;	/* DST begins */
1099					*atp++ = endtime;
1100					*typep++ = 1;	/* DST ends */
1101				}
1102				sp->timecnt += 2;
1103				newfirst = janfirst;
1104				newfirst += year_lengths[isleap(year)] *
1105					SECSPERDAY;
1106				if (newfirst <= janfirst)
1107					break;
1108				janfirst = newfirst;
1109			}
1110		} else {
1111			long	theirstdoffset;
1112			long	theirdstoffset;
1113			long	theiroffset;
1114			int	isdst;
1115			int	i;
1116			int	j;
1117
1118			if (*name != '\0')
1119				return -1;
1120			/*
1121			** Initial values of theirstdoffset and theirdstoffset.
1122			*/
1123			theirstdoffset = 0;
1124			for (i = 0; i < sp->timecnt; ++i) {
1125				j = sp->types[i];
1126				if (!sp->ttis[j].tt_isdst) {
1127					theirstdoffset =
1128						-sp->ttis[j].tt_gmtoff;
1129					break;
1130				}
1131			}
1132			theirdstoffset = 0;
1133			for (i = 0; i < sp->timecnt; ++i) {
1134				j = sp->types[i];
1135				if (sp->ttis[j].tt_isdst) {
1136					theirdstoffset =
1137						-sp->ttis[j].tt_gmtoff;
1138					break;
1139				}
1140			}
1141			/*
1142			** Initially we're assumed to be in standard time.
1143			*/
1144			isdst = FALSE;
1145			theiroffset = theirstdoffset;
1146			/*
1147			** Now juggle transition times and types
1148			** tracking offsets as you do.
1149			*/
1150			for (i = 0; i < sp->timecnt; ++i) {
1151				j = sp->types[i];
1152				sp->types[i] = sp->ttis[j].tt_isdst;
1153				if (sp->ttis[j].tt_ttisgmt) {
1154					/* No adjustment to transition time */
1155				} else {
1156					/*
1157					** If summer time is in effect, and the
1158					** transition time was not specified as
1159					** standard time, add the summer time
1160					** offset to the transition time;
1161					** otherwise, add the standard time
1162					** offset to the transition time.
1163					*/
1164					/*
1165					** Transitions from DST to DDST
1166					** will effectively disappear since
1167					** POSIX provides for only one DST
1168					** offset.
1169					*/
1170					if (isdst && !sp->ttis[j].tt_ttisstd) {
1171						sp->ats[i] += dstoffset -
1172							theirdstoffset;
1173					} else {
1174						sp->ats[i] += stdoffset -
1175							theirstdoffset;
1176					}
1177				}
1178				theiroffset = -sp->ttis[j].tt_gmtoff;
1179				if (sp->ttis[j].tt_isdst)
1180					theirdstoffset = theiroffset;
1181				else	theirstdoffset = theiroffset;
1182			}
1183			/*
1184			** Finally, fill in ttis.
1185			** ttisstd and ttisgmt need not be handled.
1186			*/
1187			sp->ttis[0].tt_gmtoff = -stdoffset;
1188			sp->ttis[0].tt_isdst = FALSE;
1189			sp->ttis[0].tt_abbrind = 0;
1190			sp->ttis[1].tt_gmtoff = -dstoffset;
1191			sp->ttis[1].tt_isdst = TRUE;
1192			sp->ttis[1].tt_abbrind = stdlen + 1;
1193			sp->typecnt = 2;
1194		}
1195	} else {
1196		dstlen = 0;
1197		sp->typecnt = 1;		/* only standard time */
1198		sp->timecnt = 0;
1199		sp->ttis[0].tt_gmtoff = -stdoffset;
1200		sp->ttis[0].tt_isdst = 0;
1201		sp->ttis[0].tt_abbrind = 0;
1202	}
1203	sp->charcnt = stdlen + 1;
1204	if (dstlen != 0)
1205		sp->charcnt += dstlen + 1;
1206	if ((size_t) sp->charcnt > sizeof sp->chars)
1207		return -1;
1208	cp = sp->chars;
1209	(void) strncpy(cp, stdname, stdlen);
1210	cp += stdlen;
1211	*cp++ = '\0';
1212	if (dstlen != 0) {
1213		(void) strncpy(cp, dstname, dstlen);
1214		*(cp + dstlen) = '\0';
1215	}
1216	return 0;
1217}
1218
1219static void
1220gmtload(sp)
1221struct state * const	sp;
1222{
1223	if (tzload(gmt, sp, TRUE) != 0)
1224		(void) tzparse(gmt, sp, TRUE);
1225}
1226
1227static void
1228tzsetwall_basic(int rdlocked)
1229{
1230	if (!rdlocked)
1231		_RWLOCK_RDLOCK(&lcl_rwlock);
1232	if (lcl_is_set < 0) {
1233		if (!rdlocked)
1234			_RWLOCK_UNLOCK(&lcl_rwlock);
1235		return;
1236	}
1237	_RWLOCK_UNLOCK(&lcl_rwlock);
1238
1239	_RWLOCK_WRLOCK(&lcl_rwlock);
1240	lcl_is_set = -1;
1241
1242#ifdef ALL_STATE
1243	if (lclptr == NULL) {
1244		lclptr = (struct state *) calloc(1, sizeof *lclptr);
1245		if (lclptr == NULL) {
1246			settzname();	/* all we can do */
1247			_RWLOCK_UNLOCK(&lcl_rwlock);
1248			if (rdlocked)
1249				_RWLOCK_RDLOCK(&lcl_rwlock);
1250			return;
1251		}
1252	}
1253#endif /* defined ALL_STATE */
1254	if (tzload((char *) NULL, lclptr, TRUE) != 0)
1255		gmtload(lclptr);
1256	settzname();
1257	_RWLOCK_UNLOCK(&lcl_rwlock);
1258
1259	if (rdlocked)
1260		_RWLOCK_RDLOCK(&lcl_rwlock);
1261}
1262
1263void
1264tzsetwall(void)
1265{
1266	tzsetwall_basic(0);
1267}
1268
1269static void
1270tzset_basic(int rdlocked)
1271{
1272	const char *	name;
1273
1274	name = getenv("TZ");
1275	if (name == NULL) {
1276		tzsetwall_basic(rdlocked);
1277		return;
1278	}
1279
1280	if (!rdlocked)
1281		_RWLOCK_RDLOCK(&lcl_rwlock);
1282	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1283		if (!rdlocked)
1284			_RWLOCK_UNLOCK(&lcl_rwlock);
1285		return;
1286	}
1287	_RWLOCK_UNLOCK(&lcl_rwlock);
1288
1289	_RWLOCK_WRLOCK(&lcl_rwlock);
1290	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1291	if (lcl_is_set)
1292		(void) strcpy(lcl_TZname, name);
1293
1294#ifdef ALL_STATE
1295	if (lclptr == NULL) {
1296		lclptr = (struct state *) calloc(1, sizeof *lclptr);
1297		if (lclptr == NULL) {
1298			settzname();	/* all we can do */
1299			_RWLOCK_UNLOCK(&lcl_rwlock);
1300			if (rdlocked)
1301				_RWLOCK_RDLOCK(&lcl_rwlock);
1302			return;
1303		}
1304	}
1305#endif /* defined ALL_STATE */
1306	if (*name == '\0') {
1307		/*
1308		** User wants it fast rather than right.
1309		*/
1310		lclptr->leapcnt = 0;		/* so, we're off a little */
1311		lclptr->timecnt = 0;
1312		lclptr->typecnt = 0;
1313		lclptr->ttis[0].tt_isdst = 0;
1314		lclptr->ttis[0].tt_gmtoff = 0;
1315		lclptr->ttis[0].tt_abbrind = 0;
1316		(void) strcpy(lclptr->chars, gmt);
1317	} else if (tzload(name, lclptr, TRUE) != 0)
1318		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1319			(void) gmtload(lclptr);
1320	settzname();
1321	_RWLOCK_UNLOCK(&lcl_rwlock);
1322
1323	if (rdlocked)
1324		_RWLOCK_RDLOCK(&lcl_rwlock);
1325}
1326
1327void
1328tzset(void)
1329{
1330	tzset_basic(0);
1331}
1332
1333/*
1334** The easy way to behave "as if no library function calls" localtime
1335** is to not call it--so we drop its guts into "localsub", which can be
1336** freely called. (And no, the PANS doesn't require the above behavior--
1337** but it *is* desirable.)
1338**
1339** The unused offset argument is for the benefit of mktime variants.
1340*/
1341
1342/*ARGSUSED*/
1343static struct tm *
1344localsub(timep, offset, tmp)
1345const time_t * const	timep;
1346const long		offset;
1347struct tm * const	tmp;
1348{
1349	struct state *		sp;
1350	const struct ttinfo *	ttisp;
1351	int			i;
1352	struct tm *		result;
1353	const time_t		t = *timep;
1354
1355	sp = lclptr;
1356#ifdef ALL_STATE
1357	if (sp == NULL)
1358		return gmtsub(timep, offset, tmp);
1359#endif /* defined ALL_STATE */
1360	if ((sp->goback && t < sp->ats[0]) ||
1361		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1362			time_t			newt = t;
1363			register time_t		seconds;
1364			register time_t		tcycles;
1365			register int_fast64_t	icycles;
1366
1367			if (t < sp->ats[0])
1368				seconds = sp->ats[0] - t;
1369			else	seconds = t - sp->ats[sp->timecnt - 1];
1370			--seconds;
1371			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1372			++tcycles;
1373			icycles = tcycles;
1374			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1375				return NULL;
1376			seconds = icycles;
1377			seconds *= YEARSPERREPEAT;
1378			seconds *= AVGSECSPERYEAR;
1379			if (t < sp->ats[0])
1380				newt += seconds;
1381			else	newt -= seconds;
1382			if (newt < sp->ats[0] ||
1383				newt > sp->ats[sp->timecnt - 1])
1384					return NULL;	/* "cannot happen" */
1385			result = localsub(&newt, offset, tmp);
1386			if (result == tmp) {
1387				register time_t	newy;
1388
1389				newy = tmp->tm_year;
1390				if (t < sp->ats[0])
1391					newy -= icycles * YEARSPERREPEAT;
1392				else	newy += icycles * YEARSPERREPEAT;
1393				tmp->tm_year = newy;
1394				if (tmp->tm_year != newy)
1395					return NULL;
1396			}
1397			return result;
1398	}
1399	if (sp->timecnt == 0 || t < sp->ats[0]) {
1400		i = 0;
1401		while (sp->ttis[i].tt_isdst)
1402			if (++i >= sp->typecnt) {
1403				i = 0;
1404				break;
1405			}
1406	} else {
1407		register int	lo = 1;
1408		register int	hi = sp->timecnt;
1409
1410		while (lo < hi) {
1411			register int	mid = (lo + hi) >> 1;
1412
1413			if (t < sp->ats[mid])
1414				hi = mid;
1415			else	lo = mid + 1;
1416		}
1417		i = (int) sp->types[lo - 1];
1418	}
1419	ttisp = &sp->ttis[i];
1420	/*
1421	** To get (wrong) behavior that's compatible with System V Release 2.0
1422	** you'd replace the statement below with
1423	**	t += ttisp->tt_gmtoff;
1424	**	timesub(&t, 0L, sp, tmp);
1425	*/
1426	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1427	tmp->tm_isdst = ttisp->tt_isdst;
1428	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1429#ifdef TM_ZONE
1430	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1431#endif /* defined TM_ZONE */
1432	return result;
1433}
1434
1435static void
1436localtime_key_init(void)
1437{
1438
1439	localtime_key_error = _pthread_key_create(&localtime_key, free);
1440}
1441
1442struct tm *
1443localtime(timep)
1444const time_t * const	timep;
1445{
1446	struct tm *p_tm;
1447
1448	if (__isthreaded != 0) {
1449		_pthread_once(&localtime_once, localtime_key_init);
1450		if (localtime_key_error != 0) {
1451			errno = localtime_key_error;
1452			return(NULL);
1453		}
1454		p_tm = _pthread_getspecific(localtime_key);
1455		if (p_tm == NULL) {
1456			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1457			    == NULL)
1458				return(NULL);
1459			_pthread_setspecific(localtime_key, p_tm);
1460		}
1461		_RWLOCK_RDLOCK(&lcl_rwlock);
1462		tzset_basic(1);
1463		localsub(timep, 0L, p_tm);
1464		_RWLOCK_UNLOCK(&lcl_rwlock);
1465		return(p_tm);
1466	} else {
1467		tzset_basic(0);
1468		localsub(timep, 0L, &tm);
1469		return(&tm);
1470	}
1471}
1472
1473/*
1474** Re-entrant version of localtime.
1475*/
1476
1477struct tm *
1478localtime_r(timep, tmp)
1479const time_t * const	timep;
1480struct tm *		tmp;
1481{
1482	_RWLOCK_RDLOCK(&lcl_rwlock);
1483	tzset_basic(1);
1484	localsub(timep, 0L, tmp);
1485	_RWLOCK_UNLOCK(&lcl_rwlock);
1486	return tmp;
1487}
1488
1489static void
1490gmt_init(void)
1491{
1492
1493#ifdef ALL_STATE
1494	gmtptr = (struct state *) calloc(1, sizeof *gmtptr);
1495	if (gmtptr != NULL)
1496#endif /* defined ALL_STATE */
1497		gmtload(gmtptr);
1498}
1499
1500/*
1501** gmtsub is to gmtime as localsub is to localtime.
1502*/
1503
1504static struct tm *
1505gmtsub(timep, offset, tmp)
1506const time_t * const	timep;
1507const long		offset;
1508struct tm * const	tmp;
1509{
1510	register struct tm *	result;
1511
1512	_once(&gmt_once, gmt_init);
1513	result = timesub(timep, offset, gmtptr, tmp);
1514#ifdef TM_ZONE
1515	/*
1516	** Could get fancy here and deliver something such as
1517	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1518	** but this is no time for a treasure hunt.
1519	*/
1520	if (offset != 0)
1521		tmp->TM_ZONE = wildabbr;
1522	else {
1523#ifdef ALL_STATE
1524		if (gmtptr == NULL)
1525			tmp->TM_ZONE = gmt;
1526		else	tmp->TM_ZONE = gmtptr->chars;
1527#endif /* defined ALL_STATE */
1528#ifndef ALL_STATE
1529		tmp->TM_ZONE = gmtptr->chars;
1530#endif /* State Farm */
1531	}
1532#endif /* defined TM_ZONE */
1533	return result;
1534}
1535
1536static void
1537gmtime_key_init(void)
1538{
1539
1540	gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1541}
1542
1543struct tm *
1544gmtime(timep)
1545const time_t * const	timep;
1546{
1547	struct tm *p_tm;
1548
1549	if (__isthreaded != 0) {
1550		_pthread_once(&gmtime_once, gmtime_key_init);
1551		if (gmtime_key_error != 0) {
1552			errno = gmtime_key_error;
1553			return(NULL);
1554		}
1555		/*
1556		 * Changed to follow POSIX.1 threads standard, which
1557		 * is what BSD currently has.
1558		 */
1559		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1560			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1561			    == NULL) {
1562				return(NULL);
1563			}
1564			_pthread_setspecific(gmtime_key, p_tm);
1565		}
1566		gmtsub(timep, 0L, p_tm);
1567		return(p_tm);
1568	}
1569	else {
1570		gmtsub(timep, 0L, &tm);
1571		return(&tm);
1572	}
1573}
1574
1575/*
1576* Re-entrant version of gmtime.
1577*/
1578
1579struct tm *
1580gmtime_r(timep, tmp)
1581const time_t * const	timep;
1582struct tm *		tmp;
1583{
1584	return gmtsub(timep, 0L, tmp);
1585}
1586
1587#ifdef STD_INSPIRED
1588
1589struct tm *
1590offtime(timep, offset)
1591const time_t * const	timep;
1592const long		offset;
1593{
1594	return gmtsub(timep, offset, &tm);
1595}
1596
1597#endif /* defined STD_INSPIRED */
1598
1599/*
1600** Return the number of leap years through the end of the given year
1601** where, to make the math easy, the answer for year zero is defined as zero.
1602*/
1603
1604static int
1605leaps_thru_end_of(y)
1606register const int	y;
1607{
1608	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1609		-(leaps_thru_end_of(-(y + 1)) + 1);
1610}
1611
1612static struct tm *
1613timesub(timep, offset, sp, tmp)
1614const time_t * const			timep;
1615const long				offset;
1616const struct state * const	sp;
1617struct tm * const		tmp;
1618{
1619	const struct lsinfo *	lp;
1620	time_t			tdays;
1621	int			idays;	/* unsigned would be so 2003 */
1622	long			rem;
1623	int			y;
1624	const int *		ip;
1625	long			corr;
1626	int			hit;
1627	int			i;
1628
1629	corr = 0;
1630	hit = 0;
1631#ifdef ALL_STATE
1632	i = (sp == NULL) ? 0 : sp->leapcnt;
1633#endif /* defined ALL_STATE */
1634#ifndef ALL_STATE
1635	i = sp->leapcnt;
1636#endif /* State Farm */
1637	while (--i >= 0) {
1638		lp = &sp->lsis[i];
1639		if (*timep >= lp->ls_trans) {
1640			if (*timep == lp->ls_trans) {
1641				hit = ((i == 0 && lp->ls_corr > 0) ||
1642					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1643				if (hit)
1644					while (i > 0 &&
1645						sp->lsis[i].ls_trans ==
1646						sp->lsis[i - 1].ls_trans + 1 &&
1647						sp->lsis[i].ls_corr ==
1648						sp->lsis[i - 1].ls_corr + 1) {
1649							++hit;
1650							--i;
1651					}
1652			}
1653			corr = lp->ls_corr;
1654			break;
1655		}
1656	}
1657	y = EPOCH_YEAR;
1658	tdays = *timep / SECSPERDAY;
1659	rem = *timep - tdays * SECSPERDAY;
1660	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1661		int		newy;
1662		register time_t	tdelta;
1663		register int	idelta;
1664		register int	leapdays;
1665
1666		tdelta = tdays / DAYSPERLYEAR;
1667		idelta = tdelta;
1668		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1669			return NULL;
1670		if (idelta == 0)
1671			idelta = (tdays < 0) ? -1 : 1;
1672		newy = y;
1673		if (increment_overflow(&newy, idelta))
1674			return NULL;
1675		leapdays = leaps_thru_end_of(newy - 1) -
1676			leaps_thru_end_of(y - 1);
1677		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1678		tdays -= leapdays;
1679		y = newy;
1680	}
1681	{
1682		register long	seconds;
1683
1684		seconds = tdays * SECSPERDAY + 0.5;
1685		tdays = seconds / SECSPERDAY;
1686		rem += seconds - tdays * SECSPERDAY;
1687	}
1688	/*
1689	** Given the range, we can now fearlessly cast...
1690	*/
1691	idays = tdays;
1692	rem += offset - corr;
1693	while (rem < 0) {
1694		rem += SECSPERDAY;
1695		--idays;
1696	}
1697	while (rem >= SECSPERDAY) {
1698		rem -= SECSPERDAY;
1699		++idays;
1700	}
1701	while (idays < 0) {
1702		if (increment_overflow(&y, -1))
1703			return NULL;
1704		idays += year_lengths[isleap(y)];
1705	}
1706	while (idays >= year_lengths[isleap(y)]) {
1707		idays -= year_lengths[isleap(y)];
1708		if (increment_overflow(&y, 1))
1709			return NULL;
1710	}
1711	tmp->tm_year = y;
1712	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1713		return NULL;
1714	tmp->tm_yday = idays;
1715	/*
1716	** The "extra" mods below avoid overflow problems.
1717	*/
1718	tmp->tm_wday = EPOCH_WDAY +
1719		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1720		(DAYSPERNYEAR % DAYSPERWEEK) +
1721		leaps_thru_end_of(y - 1) -
1722		leaps_thru_end_of(EPOCH_YEAR - 1) +
1723		idays;
1724	tmp->tm_wday %= DAYSPERWEEK;
1725	if (tmp->tm_wday < 0)
1726		tmp->tm_wday += DAYSPERWEEK;
1727	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1728	rem %= SECSPERHOUR;
1729	tmp->tm_min = (int) (rem / SECSPERMIN);
1730	/*
1731	** A positive leap second requires a special
1732	** representation. This uses "... ??:59:60" et seq.
1733	*/
1734	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1735	ip = mon_lengths[isleap(y)];
1736	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1737		idays -= ip[tmp->tm_mon];
1738	tmp->tm_mday = (int) (idays + 1);
1739	tmp->tm_isdst = 0;
1740#ifdef TM_GMTOFF
1741	tmp->TM_GMTOFF = offset;
1742#endif /* defined TM_GMTOFF */
1743	return tmp;
1744}
1745
1746char *
1747ctime(timep)
1748const time_t * const	timep;
1749{
1750/*
1751** Section 4.12.3.2 of X3.159-1989 requires that
1752**	The ctime function converts the calendar time pointed to by timer
1753**	to local time in the form of a string. It is equivalent to
1754**		asctime(localtime(timer))
1755*/
1756	return asctime(localtime(timep));
1757}
1758
1759char *
1760ctime_r(timep, buf)
1761const time_t * const	timep;
1762char *			buf;
1763{
1764	struct tm	mytm;
1765
1766	return asctime_r(localtime_r(timep, &mytm), buf);
1767}
1768
1769/*
1770** Adapted from code provided by Robert Elz, who writes:
1771**	The "best" way to do mktime I think is based on an idea of Bob
1772**	Kridle's (so its said...) from a long time ago.
1773**	It does a binary search of the time_t space. Since time_t's are
1774**	just 32 bits, its a max of 32 iterations (even at 64 bits it
1775**	would still be very reasonable).
1776*/
1777
1778#ifndef WRONG
1779#define WRONG	(-1)
1780#endif /* !defined WRONG */
1781
1782/*
1783** Simplified normalize logic courtesy Paul Eggert.
1784*/
1785
1786static int
1787increment_overflow(number, delta)
1788int *	number;
1789int	delta;
1790{
1791	int	number0;
1792
1793	number0 = *number;
1794	*number += delta;
1795	if ((*number < number0) != (delta < 0)) {
1796		errno = EOVERFLOW;
1797		return (1);
1798	}
1799	return (0);
1800}
1801
1802static int
1803long_increment_overflow(number, delta)
1804long *	number;
1805int	delta;
1806{
1807	long	number0;
1808
1809	number0 = *number;
1810	*number += delta;
1811	if ((*number < number0) != (delta < 0)) {
1812		errno = EOVERFLOW;
1813		return (1);
1814	}
1815	return (0);
1816}
1817
1818static int
1819normalize_overflow(tensptr, unitsptr, base)
1820int * const	tensptr;
1821int * const	unitsptr;
1822const int	base;
1823{
1824	int	tensdelta;
1825
1826	tensdelta = (*unitsptr >= 0) ?
1827		(*unitsptr / base) :
1828		(-1 - (-1 - *unitsptr) / base);
1829	*unitsptr -= tensdelta * base;
1830	return increment_overflow(tensptr, tensdelta);
1831}
1832
1833static int
1834long_normalize_overflow(tensptr, unitsptr, base)
1835long * const	tensptr;
1836int * const	unitsptr;
1837const int	base;
1838{
1839	register int	tensdelta;
1840
1841	tensdelta = (*unitsptr >= 0) ?
1842		(*unitsptr / base) :
1843		(-1 - (-1 - *unitsptr) / base);
1844	*unitsptr -= tensdelta * base;
1845	return long_increment_overflow(tensptr, tensdelta);
1846}
1847
1848static int
1849tmcomp(atmp, btmp)
1850const struct tm * const atmp;
1851const struct tm * const btmp;
1852{
1853	int	result;
1854
1855	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1856		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1857		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1858		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1859		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1860			result = atmp->tm_sec - btmp->tm_sec;
1861	return result;
1862}
1863
1864static time_t
1865time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1866struct tm * const	tmp;
1867struct tm * (* const	funcp)(const time_t*, long, struct tm*);
1868const long		offset;
1869int * const		okayp;
1870const int		do_norm_secs;
1871{
1872	const struct state *	sp;
1873	int			dir;
1874	int			i, j;
1875	int			saved_seconds;
1876	long			li;
1877	time_t			lo;
1878	time_t			hi;
1879	long			y;
1880	time_t			newt;
1881	time_t			t;
1882	struct tm		yourtm, mytm;
1883
1884	*okayp = FALSE;
1885	yourtm = *tmp;
1886	if (do_norm_secs) {
1887		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1888			SECSPERMIN))
1889				return WRONG;
1890	}
1891	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1892		return WRONG;
1893	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1894		return WRONG;
1895	y = yourtm.tm_year;
1896	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1897		return WRONG;
1898	/*
1899	** Turn y into an actual year number for now.
1900	** It is converted back to an offset from TM_YEAR_BASE later.
1901	*/
1902	if (long_increment_overflow(&y, TM_YEAR_BASE))
1903		return WRONG;
1904	while (yourtm.tm_mday <= 0) {
1905		if (long_increment_overflow(&y, -1))
1906			return WRONG;
1907		li = y + (1 < yourtm.tm_mon);
1908		yourtm.tm_mday += year_lengths[isleap(li)];
1909	}
1910	while (yourtm.tm_mday > DAYSPERLYEAR) {
1911		li = y + (1 < yourtm.tm_mon);
1912		yourtm.tm_mday -= year_lengths[isleap(li)];
1913		if (long_increment_overflow(&y, 1))
1914			return WRONG;
1915	}
1916	for ( ; ; ) {
1917		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1918		if (yourtm.tm_mday <= i)
1919			break;
1920		yourtm.tm_mday -= i;
1921		if (++yourtm.tm_mon >= MONSPERYEAR) {
1922			yourtm.tm_mon = 0;
1923			if (long_increment_overflow(&y, 1))
1924				return WRONG;
1925		}
1926	}
1927	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1928		return WRONG;
1929	yourtm.tm_year = y;
1930	if (yourtm.tm_year != y)
1931		return WRONG;
1932	/* Don't go below 1900 for POLA */
1933	if (yourtm.tm_year < 0)
1934		return WRONG;
1935	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1936		saved_seconds = 0;
1937	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1938		/*
1939		** We can't set tm_sec to 0, because that might push the
1940		** time below the minimum representable time.
1941		** Set tm_sec to 59 instead.
1942		** This assumes that the minimum representable time is
1943		** not in the same minute that a leap second was deleted from,
1944		** which is a safer assumption than using 58 would be.
1945		*/
1946		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1947			return WRONG;
1948		saved_seconds = yourtm.tm_sec;
1949		yourtm.tm_sec = SECSPERMIN - 1;
1950	} else {
1951		saved_seconds = yourtm.tm_sec;
1952		yourtm.tm_sec = 0;
1953	}
1954	/*
1955	** Do a binary search (this works whatever time_t's type is).
1956	*/
1957	if (!TYPE_SIGNED(time_t)) {
1958		lo = 0;
1959		hi = lo - 1;
1960	} else if (!TYPE_INTEGRAL(time_t)) {
1961		if (sizeof(time_t) > sizeof(float))
1962			hi = (time_t) DBL_MAX;
1963		else	hi = (time_t) FLT_MAX;
1964		lo = -hi;
1965	} else {
1966		lo = 1;
1967		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1968			lo *= 2;
1969		hi = -(lo + 1);
1970	}
1971	for ( ; ; ) {
1972		t = lo / 2 + hi / 2;
1973		if (t < lo)
1974			t = lo;
1975		else if (t > hi)
1976			t = hi;
1977		if ((*funcp)(&t, offset, &mytm) == NULL) {
1978			/*
1979			** Assume that t is too extreme to be represented in
1980			** a struct tm; arrange things so that it is less
1981			** extreme on the next pass.
1982			*/
1983			dir = (t > 0) ? 1 : -1;
1984		} else	dir = tmcomp(&mytm, &yourtm);
1985		if (dir != 0) {
1986			if (t == lo) {
1987				++t;
1988				if (t <= lo)
1989					return WRONG;
1990				++lo;
1991			} else if (t == hi) {
1992				--t;
1993				if (t >= hi)
1994					return WRONG;
1995				--hi;
1996			}
1997			if (lo > hi)
1998				return WRONG;
1999			if (dir > 0)
2000				hi = t;
2001			else	lo = t;
2002			continue;
2003		}
2004		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2005			break;
2006		/*
2007		** Right time, wrong type.
2008		** Hunt for right time, right type.
2009		** It's okay to guess wrong since the guess
2010		** gets checked.
2011		*/
2012		sp = (const struct state *)
2013			((funcp == localsub) ? lclptr : gmtptr);
2014#ifdef ALL_STATE
2015		if (sp == NULL)
2016			return WRONG;
2017#endif /* defined ALL_STATE */
2018		for (i = sp->typecnt - 1; i >= 0; --i) {
2019			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2020				continue;
2021			for (j = sp->typecnt - 1; j >= 0; --j) {
2022				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2023					continue;
2024				newt = t + sp->ttis[j].tt_gmtoff -
2025					sp->ttis[i].tt_gmtoff;
2026				if ((*funcp)(&newt, offset, &mytm) == NULL)
2027					continue;
2028				if (tmcomp(&mytm, &yourtm) != 0)
2029					continue;
2030				if (mytm.tm_isdst != yourtm.tm_isdst)
2031					continue;
2032				/*
2033				** We have a match.
2034				*/
2035				t = newt;
2036				goto label;
2037			}
2038		}
2039		return WRONG;
2040	}
2041label:
2042	newt = t + saved_seconds;
2043	if ((newt < t) != (saved_seconds < 0))
2044		return WRONG;
2045	t = newt;
2046	if ((*funcp)(&t, offset, tmp))
2047		*okayp = TRUE;
2048	return t;
2049}
2050
2051static time_t
2052time2(tmp, funcp, offset, okayp)
2053struct tm * const	tmp;
2054struct tm * (* const	funcp)(const time_t*, long, struct tm*);
2055const long		offset;
2056int * const		okayp;
2057{
2058	time_t	t;
2059
2060	/*
2061	** First try without normalization of seconds
2062	** (in case tm_sec contains a value associated with a leap second).
2063	** If that fails, try with normalization of seconds.
2064	*/
2065	t = time2sub(tmp, funcp, offset, okayp, FALSE);
2066	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2067}
2068
2069static time_t
2070time1(tmp, funcp, offset)
2071struct tm * const	tmp;
2072struct tm * (* const  funcp)(const time_t *, long, struct tm *);
2073const long		offset;
2074{
2075	time_t			t;
2076	const struct state *	sp;
2077	int			samei, otheri;
2078	int			sameind, otherind;
2079	int			i;
2080	int			nseen;
2081	int				seen[TZ_MAX_TYPES];
2082	int				types[TZ_MAX_TYPES];
2083	int				okay;
2084
2085	if (tmp == NULL) {
2086		errno = EINVAL;
2087		return WRONG;
2088	}
2089
2090	if (tmp->tm_isdst > 1)
2091		tmp->tm_isdst = 1;
2092	t = time2(tmp, funcp, offset, &okay);
2093#ifdef PCTS
2094	/*
2095	** PCTS code courtesy Grant Sullivan.
2096	*/
2097	if (okay)
2098		return t;
2099	if (tmp->tm_isdst < 0)
2100		tmp->tm_isdst = 0;	/* reset to std and try again */
2101#endif /* defined PCTS */
2102#ifndef PCTS
2103	if (okay || tmp->tm_isdst < 0)
2104		return t;
2105#endif /* !defined PCTS */
2106	/*
2107	** We're supposed to assume that somebody took a time of one type
2108	** and did some math on it that yielded a "struct tm" that's bad.
2109	** We try to divine the type they started from and adjust to the
2110	** type they need.
2111	*/
2112	sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2113#ifdef ALL_STATE
2114	if (sp == NULL)
2115		return WRONG;
2116#endif /* defined ALL_STATE */
2117	for (i = 0; i < sp->typecnt; ++i)
2118		seen[i] = FALSE;
2119	nseen = 0;
2120	for (i = sp->timecnt - 1; i >= 0; --i)
2121		if (!seen[sp->types[i]]) {
2122			seen[sp->types[i]] = TRUE;
2123			types[nseen++] = sp->types[i];
2124		}
2125	for (sameind = 0; sameind < nseen; ++sameind) {
2126		samei = types[sameind];
2127		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2128			continue;
2129		for (otherind = 0; otherind < nseen; ++otherind) {
2130			otheri = types[otherind];
2131			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2132				continue;
2133			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2134					sp->ttis[samei].tt_gmtoff;
2135			tmp->tm_isdst = !tmp->tm_isdst;
2136			t = time2(tmp, funcp, offset, &okay);
2137			if (okay)
2138				return t;
2139			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2140					sp->ttis[samei].tt_gmtoff;
2141			tmp->tm_isdst = !tmp->tm_isdst;
2142		}
2143	}
2144	return WRONG;
2145}
2146
2147time_t
2148mktime(tmp)
2149struct tm * const	tmp;
2150{
2151	time_t mktime_return_value;
2152	_RWLOCK_RDLOCK(&lcl_rwlock);
2153	tzset_basic(1);
2154	mktime_return_value = time1(tmp, localsub, 0L);
2155	_RWLOCK_UNLOCK(&lcl_rwlock);
2156	return(mktime_return_value);
2157}
2158
2159#ifdef STD_INSPIRED
2160
2161time_t
2162timelocal(tmp)
2163struct tm * const	tmp;
2164{
2165	if (tmp != NULL)
2166		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2167	return mktime(tmp);
2168}
2169
2170time_t
2171timegm(tmp)
2172struct tm * const	tmp;
2173{
2174	if (tmp != NULL)
2175		tmp->tm_isdst = 0;
2176	return time1(tmp, gmtsub, 0L);
2177}
2178
2179time_t
2180timeoff(tmp, offset)
2181struct tm * const	tmp;
2182const long		offset;
2183{
2184	if (tmp != NULL)
2185		tmp->tm_isdst = 0;
2186	return time1(tmp, gmtsub, offset);
2187}
2188
2189#endif /* defined STD_INSPIRED */
2190
2191#ifdef CMUCS
2192
2193/*
2194** The following is supplied for compatibility with
2195** previous versions of the CMUCS runtime library.
2196*/
2197
2198long
2199gtime(tmp)
2200struct tm * const	tmp;
2201{
2202	const time_t	t = mktime(tmp);
2203
2204	if (t == WRONG)
2205		return -1;
2206	return t;
2207}
2208
2209#endif /* defined CMUCS */
2210
2211/*
2212** XXX--is the below the right way to conditionalize??
2213*/
2214
2215#ifdef STD_INSPIRED
2216
2217/*
2218** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2219** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2220** is not the case if we are accounting for leap seconds.
2221** So, we provide the following conversion routines for use
2222** when exchanging timestamps with POSIX conforming systems.
2223*/
2224
2225static long
2226leapcorr(timep)
2227time_t *	timep;
2228{
2229	struct state *		sp;
2230	struct lsinfo *	lp;
2231	int			i;
2232
2233	sp = lclptr;
2234	i = sp->leapcnt;
2235	while (--i >= 0) {
2236		lp = &sp->lsis[i];
2237		if (*timep >= lp->ls_trans)
2238			return lp->ls_corr;
2239	}
2240	return 0;
2241}
2242
2243time_t
2244time2posix(t)
2245time_t	t;
2246{
2247	tzset();
2248	return t - leapcorr(&t);
2249}
2250
2251time_t
2252posix2time(t)
2253time_t	t;
2254{
2255	time_t	x;
2256	time_t	y;
2257
2258	tzset();
2259	/*
2260	** For a positive leap second hit, the result
2261	** is not unique. For a negative leap second
2262	** hit, the corresponding time doesn't exist,
2263	** so we return an adjacent second.
2264	*/
2265	x = t + leapcorr(&t);
2266	y = x - leapcorr(&x);
2267	if (y < t) {
2268		do {
2269			x++;
2270			y = x - leapcorr(&x);
2271		} while (y < t);
2272		if (t != y)
2273			return x - 1;
2274	} else if (y > t) {
2275		do {
2276			--x;
2277			y = x - leapcorr(&x);
2278		} while (y > t);
2279		if (t != y)
2280			return x + 1;
2281	}
2282	return x;
2283}
2284
2285#endif /* defined STD_INSPIRED */
2286