1/*
2 * Program to generate cryptographic keys for ntp clients and servers
3 *
4 * This program generates password encrypted data files for use with the
5 * Autokey security protocol and Network Time Protocol Version 4. Files
6 * are prefixed with a header giving the name and date of creation
7 * followed by a type-specific descriptive label and PEM-encoded data
8 * structure compatible with programs of the OpenSSL library.
9 *
10 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
11 * <type> is the file type, <hostname> the generating host name and
12 * <filestamp> the generation time in NTP seconds. The NTP programs
13 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
14 * association maintained by soft links. Following is a list of file
15 * types; the first line is the file name and the second link name.
16 *
17 * ntpkey_MD5key_<hostname>.<filestamp>
18 * 	MD5 (128-bit) keys used to compute message digests in symmetric
19 *	key cryptography
20 *
21 * ntpkey_RSAhost_<hostname>.<filestamp>
22 * ntpkey_host_<hostname>
23 *	RSA private/public host key pair used for public key signatures
24 *
25 * ntpkey_RSAsign_<hostname>.<filestamp>
26 * ntpkey_sign_<hostname>
27 *	RSA private/public sign key pair used for public key signatures
28 *
29 * ntpkey_DSAsign_<hostname>.<filestamp>
30 * ntpkey_sign_<hostname>
31 *	DSA Private/public sign key pair used for public key signatures
32 *
33 * Available digest/signature schemes
34 *
35 * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
36 * DSA:	DSA-SHA, DSA-SHA1
37 *
38 * ntpkey_XXXcert_<hostname>.<filestamp>
39 * ntpkey_cert_<hostname>
40 *	X509v3 certificate using RSA or DSA public keys and signatures.
41 *	XXX is a code identifying the message digest and signature
42 *	encryption algorithm
43 *
44 * Identity schemes. The key type par is used for the challenge; the key
45 * type key is used for the response.
46 *
47 * ntpkey_IFFkey_<groupname>.<filestamp>
48 * ntpkey_iffkey_<groupname>
49 *	Schnorr (IFF) identity parameters and keys
50 *
51 * ntpkey_GQkey_<groupname>.<filestamp>,
52 * ntpkey_gqkey_<groupname>
53 *	Guillou-Quisquater (GQ) identity parameters and keys
54 *
55 * ntpkey_MVkeyX_<groupname>.<filestamp>,
56 * ntpkey_mvkey_<groupname>
57 *	Mu-Varadharajan (MV) identity parameters and keys
58 *
59 * Note: Once in a while because of some statistical fluke this program
60 * fails to generate and verify some cryptographic data, as indicated by
61 * exit status -1. In this case simply run the program again. If the
62 * program does complete with exit code 0, the data are correct as
63 * verified.
64 *
65 * These cryptographic routines are characterized by the prime modulus
66 * size in bits. The default value of 512 bits is a compromise between
67 * cryptographic strength and computing time and is ordinarily
68 * considered adequate for this application. The routines have been
69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
70 * digest and signature encryption schemes work with sizes less than 512
71 * bits. The computing time for sizes greater than 2048 bits is
72 * prohibitive on all but the fastest processors. An UltraSPARC Blade
73 * 1000 took something over nine minutes to generate and verify the
74 * values with size 2048. An old SPARC IPC would take a week.
75 *
76 * The OpenSSL library used by this program expects a random seed file.
77 * As described in the OpenSSL documentation, the file name defaults to
78 * first the RANDFILE environment variable in the user's home directory
79 * and then .rnd in the user's home directory.
80 */
81#ifdef HAVE_CONFIG_H
82# include <config.h>
83#endif
84#include <string.h>
85#include <stdio.h>
86#include <stdlib.h>
87#include <unistd.h>
88#include <sys/stat.h>
89#include <sys/time.h>
90#include <sys/types.h>
91
92#include "ntp.h"
93#include "ntp_random.h"
94#include "ntp_stdlib.h"
95#include "ntp_assert.h"
96#include "ntp_libopts.h"
97#include "ntp_unixtime.h"
98#include "ntp-keygen-opts.h"
99
100#ifdef OPENSSL
101#include "openssl/asn1.h"
102#include "openssl/bn.h"
103#include "openssl/crypto.h"
104#include "openssl/evp.h"
105#include "openssl/err.h"
106#include "openssl/rand.h"
107#include "openssl/opensslv.h"
108#include "openssl/pem.h"
109#include "openssl/x509.h"
110#include "openssl/x509v3.h"
111#include <openssl/objects.h>
112#include "libssl_compat.h"
113#endif	/* OPENSSL */
114#include <ssl_applink.c>
115
116#define _UC(str)	((char *)(intptr_t)(str))
117/*
118 * Cryptodefines
119 */
120#define	MD5KEYS		10	/* number of keys generated of each type */
121#define	MD5SIZE		20	/* maximum key size */
122#ifdef AUTOKEY
123#define	PLEN		512	/* default prime modulus size (bits) */
124#define	ILEN		256	/* default identity modulus size (bits) */
125#define	MVMAX		100	/* max MV parameters */
126
127/*
128 * Strings used in X509v3 extension fields
129 */
130#define KEY_USAGE		"digitalSignature,keyCertSign"
131#define BASIC_CONSTRAINTS	"critical,CA:TRUE"
132#define EXT_KEY_PRIVATE		"private"
133#define EXT_KEY_TRUST		"trustRoot"
134#endif	/* AUTOKEY */
135
136/*
137 * Prototypes
138 */
139FILE	*fheader	(const char *, const char *, const char *);
140int	gen_md5		(const char *);
141void	followlink	(char *, size_t);
142#ifdef AUTOKEY
143EVP_PKEY *gen_rsa	(const char *);
144EVP_PKEY *gen_dsa	(const char *);
145EVP_PKEY *gen_iffkey	(const char *);
146EVP_PKEY *gen_gqkey	(const char *);
147EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
148void	gen_mvserv	(char *, EVP_PKEY **);
149int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
150			    char *);
151void	cb		(int, int, void *);
152EVP_PKEY *genkey	(const char *, const char *);
153EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
154void	writekey	(char *, char *, u_int *, EVP_PKEY **);
155u_long	asn2ntp		(ASN1_TIME *);
156
157static DSA* genDsaParams(int, char*);
158static RSA* genRsaKeyPair(int, char*);
159
160#endif	/* AUTOKEY */
161
162/*
163 * Program variables
164 */
165extern char *optarg;		/* command line argument */
166char	const *progname;
167u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
168int	nkeys;			/* MV keys */
169time_t	epoch;			/* Unix epoch (seconds) since 1970 */
170u_int	fstamp;			/* NTP filestamp */
171char	hostbuf[MAXHOSTNAME + 1];
172char	*hostname = NULL;	/* host, used in cert filenames */
173char	*groupname = NULL;	/* group name */
174char	certnamebuf[2 * sizeof(hostbuf)];
175char	*certname = NULL;	/* certificate subject/issuer name */
176char	*passwd1 = NULL;	/* input private key password */
177char	*passwd2 = NULL;	/* output private key password */
178char	filename[MAXFILENAME + 1]; /* file name */
179#ifdef AUTOKEY
180u_int	modulus = PLEN;		/* prime modulus size (bits) */
181u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
182long	d0, d1, d2, d3;		/* callback counters */
183const EVP_CIPHER * cipher = NULL;
184#endif	/* AUTOKEY */
185
186#ifdef SYS_WINNT
187BOOL init_randfile();
188
189/*
190 * Don't try to follow symbolic links on Windows.  Assume link == file.
191 */
192int
193readlink(
194	char *	link,
195	char *	file,
196	int	len
197	)
198{
199	return (int)strlen(file); /* assume no overflow possible */
200}
201
202/*
203 * Don't try to create symbolic links on Windows, that is supported on
204 * Vista and later only.  Instead, if CreateHardLink is available (XP
205 * and later), hardlink the linkname to the original filename.  On
206 * earlier systems, user must rename file to match expected link for
207 * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
208 * Windows pre-XP, runtime link to CreateHardLinkA().
209 */
210int
211symlink(
212	char *	filename,
213	char*	linkname
214	)
215{
216	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
217		__in LPCSTR	lpFileName,
218		__in LPCSTR	lpExistingFileName,
219		__reserved LPSECURITY_ATTRIBUTES lpSA
220		);
221	static PCREATEHARDLINKA pCreateHardLinkA;
222	static int		tried;
223	HMODULE			hDll;
224	FARPROC			pfn;
225	int			link_created;
226	int			saved_errno;
227
228	if (!tried) {
229		tried = TRUE;
230		hDll = LoadLibrary("kernel32");
231		pfn = GetProcAddress(hDll, "CreateHardLinkA");
232		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
233	}
234
235	if (NULL == pCreateHardLinkA) {
236		errno = ENOSYS;
237		return -1;
238	}
239
240	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
241
242	if (link_created)
243		return 0;
244
245	saved_errno = GetLastError();	/* yes we play loose */
246	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
247		 linkname, filename);
248	errno = saved_errno;
249	return -1;
250}
251
252void
253InitWin32Sockets() {
254	WORD wVersionRequested;
255	WSADATA wsaData;
256	wVersionRequested = MAKEWORD(2,0);
257	if (WSAStartup(wVersionRequested, &wsaData))
258	{
259		fprintf(stderr, "No useable winsock.dll\n");
260		exit(1);
261	}
262}
263#endif /* SYS_WINNT */
264
265
266/*
267 * followlink() - replace filename with its target if symlink.
268 *
269 * Some readlink() implementations do not null-terminate the result.
270 */
271void
272followlink(
273	char *	fname,
274	size_t	bufsiz
275	)
276{
277	int len;
278
279	REQUIRE(bufsiz > 0);
280
281	len = readlink(fname, fname, (int)bufsiz);
282	if (len < 0 ) {
283		fname[0] = '\0';
284		return;
285	}
286	if (len > (int)bufsiz - 1)
287		len = (int)bufsiz - 1;
288	fname[len] = '\0';
289}
290
291
292/*
293 * Main program
294 */
295int
296main(
297	int	argc,		/* command line options */
298	char	**argv
299	)
300{
301	struct timeval tv;	/* initialization vector */
302	int	md5key = 0;	/* generate MD5 keys */
303	int	optct;		/* option count */
304#ifdef AUTOKEY
305	X509	*cert = NULL;	/* X509 certificate */
306	EVP_PKEY *pkey_host = NULL; /* host key */
307	EVP_PKEY *pkey_sign = NULL; /* sign key */
308	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
309	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
310	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
311	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
312	int	hostkey = 0;	/* generate RSA keys */
313	int	iffkey = 0;	/* generate IFF keys */
314	int	gqkey = 0;	/* generate GQ keys */
315	int	mvkey = 0;	/* update MV keys */
316	int	mvpar = 0;	/* generate MV parameters */
317	char	*sign = NULL;	/* sign key */
318	EVP_PKEY *pkey = NULL;	/* temp key */
319	const EVP_MD *ectx;	/* EVP digest */
320	char	pathbuf[MAXFILENAME + 1];
321	const char *scheme = NULL; /* digest/signature scheme */
322	const char *ciphername = NULL; /* to encrypt priv. key */
323	const char *exten = NULL;	/* private extension */
324	char	*grpkey = NULL;	/* identity extension */
325	int	nid;		/* X509 digest/signature scheme */
326	FILE	*fstr = NULL;	/* file handle */
327	char	groupbuf[MAXHOSTNAME + 1];
328	u_int	temp;
329	BIO *	bp;
330	int	i, cnt;
331	char *	ptr;
332#endif	/* AUTOKEY */
333#ifdef OPENSSL
334	const char *sslvtext;
335	int sslvmatch;
336#endif /* OPENSSL */
337
338	progname = argv[0];
339
340#ifdef SYS_WINNT
341	/* Initialize before OpenSSL checks */
342	InitWin32Sockets();
343	if (!init_randfile())
344		fprintf(stderr, "Unable to initialize .rnd file\n");
345	ssl_applink();
346#endif
347
348#ifdef OPENSSL
349	ssl_check_version();
350#endif	/* OPENSSL */
351
352	ntp_crypto_srandom();
353
354	/*
355	 * Process options, initialize host name and timestamp.
356	 * gethostname() won't null-terminate if hostname is exactly the
357	 * length provided for the buffer.
358	 */
359	gethostname(hostbuf, sizeof(hostbuf) - 1);
360	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
361	hostname = hostbuf;
362	groupname = hostbuf;
363	passwd1 = hostbuf;
364	passwd2 = NULL;
365	GETTIMEOFDAY(&tv, NULL);
366	epoch = tv.tv_sec;
367	fstamp = (u_int)(epoch + JAN_1970);
368
369	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
370	argc -= optct;	// Just in case we care later.
371	argv += optct;	// Just in case we care later.
372
373#ifdef OPENSSL
374	sslvtext = OpenSSL_version(OPENSSL_VERSION);
375	sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
376	if (sslvmatch)
377		fprintf(stderr, "Using OpenSSL version %s\n",
378			sslvtext);
379	else
380		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
381			OPENSSL_VERSION_TEXT, sslvtext);
382#endif /* OPENSSL */
383
384	debug = OPT_VALUE_SET_DEBUG_LEVEL;
385
386	if (HAVE_OPT( MD5KEY ))
387		md5key++;
388#ifdef AUTOKEY
389	if (HAVE_OPT( PASSWORD ))
390		passwd1 = estrdup(OPT_ARG( PASSWORD ));
391
392	if (HAVE_OPT( EXPORT_PASSWD ))
393		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
394
395	if (HAVE_OPT( HOST_KEY ))
396		hostkey++;
397
398	if (HAVE_OPT( SIGN_KEY ))
399		sign = estrdup(OPT_ARG( SIGN_KEY ));
400
401	if (HAVE_OPT( GQ_PARAMS ))
402		gqkey++;
403
404	if (HAVE_OPT( IFFKEY ))
405		iffkey++;
406
407	if (HAVE_OPT( MV_PARAMS )) {
408		mvkey++;
409		nkeys = OPT_VALUE_MV_PARAMS;
410	}
411	if (HAVE_OPT( MV_KEYS )) {
412		mvpar++;
413		nkeys = OPT_VALUE_MV_KEYS;
414	}
415
416	if (HAVE_OPT( IMBITS ))
417		modulus2 = OPT_VALUE_IMBITS;
418
419	if (HAVE_OPT( MODULUS ))
420		modulus = OPT_VALUE_MODULUS;
421
422	if (HAVE_OPT( CERTIFICATE ))
423		scheme = OPT_ARG( CERTIFICATE );
424
425	if (HAVE_OPT( CIPHER ))
426		ciphername = OPT_ARG( CIPHER );
427
428	if (HAVE_OPT( SUBJECT_NAME ))
429		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
430
431	if (HAVE_OPT( IDENT ))
432		groupname = estrdup(OPT_ARG( IDENT ));
433
434	if (HAVE_OPT( LIFETIME ))
435		lifetime = OPT_VALUE_LIFETIME;
436
437	if (HAVE_OPT( PVT_CERT ))
438		exten = EXT_KEY_PRIVATE;
439
440	if (HAVE_OPT( TRUSTED_CERT ))
441		exten = EXT_KEY_TRUST;
442
443	/*
444	 * Remove the group name from the hostname variable used
445	 * in host and sign certificate file names.
446	 */
447	if (hostname != hostbuf)
448		ptr = strchr(hostname, '@');
449	else
450		ptr = NULL;
451	if (ptr != NULL) {
452		*ptr = '\0';
453		groupname = estrdup(ptr + 1);
454		/* -s @group is equivalent to -i group, host unch. */
455		if (ptr == hostname)
456			hostname = hostbuf;
457	}
458
459	/*
460	 * Derive host certificate issuer/subject names from host name
461	 * and optional group.  If no groupname is provided, the issuer
462	 * and subject is the hostname with no '@group', and the
463	 * groupname variable is pointed to hostname for use in IFF, GQ,
464	 * and MV parameters file names.
465	 */
466	if (groupname == hostbuf) {
467		certname = hostname;
468	} else {
469		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
470			 hostname, groupname);
471		certname = certnamebuf;
472	}
473
474	/*
475	 * Seed random number generator and grow weeds.
476	 */
477#if OPENSSL_VERSION_NUMBER < 0x10100000L
478	ERR_load_crypto_strings();
479	OpenSSL_add_all_algorithms();
480#endif /* OPENSSL_VERSION_NUMBER */
481	if (!RAND_status()) {
482		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
483			fprintf(stderr, "RAND_file_name %s\n",
484			    ERR_error_string(ERR_get_error(), NULL));
485			exit (-1);
486		}
487		temp = RAND_load_file(pathbuf, -1);
488		if (temp == 0) {
489			fprintf(stderr,
490			    "RAND_load_file %s not found or empty\n",
491			    pathbuf);
492			exit (-1);
493		}
494		fprintf(stderr,
495		    "Random seed file %s %u bytes\n", pathbuf, temp);
496		RAND_add(&epoch, sizeof(epoch), 4.0);
497	}
498#endif	/* AUTOKEY */
499
500	/*
501	 * Create new unencrypted MD5 keys file if requested. If this
502	 * option is selected, ignore all other options.
503	 */
504	if (md5key) {
505		gen_md5("md5");
506		exit (0);
507	}
508
509#ifdef AUTOKEY
510	/*
511	 * Load previous certificate if available.
512	 */
513	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
514	if ((fstr = fopen(filename, "r")) != NULL) {
515		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
516		fclose(fstr);
517	}
518	if (cert != NULL) {
519
520		/*
521		 * Extract subject name.
522		 */
523		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
524		    MAXFILENAME);
525
526		/*
527		 * Extract digest/signature scheme.
528		 */
529		if (scheme == NULL) {
530			nid = X509_get_signature_nid(cert);
531			scheme = OBJ_nid2sn(nid);
532		}
533
534		/*
535		 * If a key_usage extension field is present, determine
536		 * whether this is a trusted or private certificate.
537		 */
538		if (exten == NULL) {
539			ptr = strstr(groupbuf, "CN=");
540			cnt = X509_get_ext_count(cert);
541			for (i = 0; i < cnt; i++) {
542				X509_EXTENSION *ext;
543				ASN1_OBJECT *obj;
544
545				ext = X509_get_ext(cert, i);
546				obj = X509_EXTENSION_get_object(ext);
547
548				if (OBJ_obj2nid(obj) ==
549				    NID_ext_key_usage) {
550					bp = BIO_new(BIO_s_mem());
551					X509V3_EXT_print(bp, ext, 0, 0);
552					BIO_gets(bp, pathbuf,
553					    MAXFILENAME);
554					BIO_free(bp);
555					if (strcmp(pathbuf,
556					    "Trust Root") == 0)
557						exten = EXT_KEY_TRUST;
558					else if (strcmp(pathbuf,
559					    "Private") == 0)
560						exten = EXT_KEY_PRIVATE;
561					certname = estrdup(ptr + 3);
562				}
563			}
564		}
565	}
566	if (scheme == NULL)
567		scheme = "RSA-MD5";
568	if (ciphername == NULL)
569		ciphername = "des-ede3-cbc";
570	cipher = EVP_get_cipherbyname(ciphername);
571	if (cipher == NULL) {
572		fprintf(stderr, "Unknown cipher %s\n", ciphername);
573		exit(-1);
574	}
575	fprintf(stderr, "Using host %s group %s\n", hostname,
576	    groupname);
577
578	/*
579	 * Create a new encrypted RSA host key file if requested;
580	 * otherwise, look for an existing host key file. If not found,
581	 * create a new encrypted RSA host key file. If that fails, go
582	 * no further.
583	 */
584	if (hostkey)
585		pkey_host = genkey("RSA", "host");
586	if (pkey_host == NULL) {
587		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
588		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
589		if (pkey_host != NULL) {
590			followlink(filename, sizeof(filename));
591			fprintf(stderr, "Using host key %s\n",
592			    filename);
593		} else {
594			pkey_host = genkey("RSA", "host");
595		}
596	}
597	if (pkey_host == NULL) {
598		fprintf(stderr, "Generating host key fails\n");
599		exit(-1);
600	}
601
602	/*
603	 * Create new encrypted RSA or DSA sign keys file if requested;
604	 * otherwise, look for an existing sign key file. If not found,
605	 * use the host key instead.
606	 */
607	if (sign != NULL)
608		pkey_sign = genkey(sign, "sign");
609	if (pkey_sign == NULL) {
610		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
611			 hostname);
612		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
613		if (pkey_sign != NULL) {
614			followlink(filename, sizeof(filename));
615			fprintf(stderr, "Using sign key %s\n",
616			    filename);
617		} else {
618			pkey_sign = pkey_host;
619			fprintf(stderr, "Using host key as sign key\n");
620		}
621	}
622
623	/*
624	 * Create new encrypted GQ server keys file if requested;
625	 * otherwise, look for an exisiting file. If found, fetch the
626	 * public key for the certificate.
627	 */
628	if (gqkey)
629		pkey_gqkey = gen_gqkey("gqkey");
630	if (pkey_gqkey == NULL) {
631		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
632		    groupname);
633		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
634		if (pkey_gqkey != NULL) {
635			followlink(filename, sizeof(filename));
636			fprintf(stderr, "Using GQ parameters %s\n",
637			    filename);
638		}
639	}
640	if (pkey_gqkey != NULL) {
641		RSA	*rsa;
642		const BIGNUM *q;
643
644		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
645		RSA_get0_factors(rsa, NULL, &q);
646		grpkey = BN_bn2hex(q);
647	}
648
649	/*
650	 * Write the nonencrypted GQ client parameters to the stdout
651	 * stream. The parameter file is the server key file with the
652	 * private key obscured.
653	 */
654	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
655		RSA	*rsa;
656
657		snprintf(filename, sizeof(filename),
658		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
659		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
660		    filename);
661		fprintf(stdout, "# %s\n# %s\n", filename,
662		    ctime(&epoch));
663		/* XXX: This modifies the private key and should probably use a
664		 * copy of it instead. */
665		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
666		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
667		pkey = EVP_PKEY_new();
668		EVP_PKEY_assign_RSA(pkey, rsa);
669		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
670		    NULL, NULL);
671		fflush(stdout);
672		if (debug)
673			RSA_print_fp(stderr, rsa, 0);
674	}
675
676	/*
677	 * Write the encrypted GQ server keys to the stdout stream.
678	 */
679	if (pkey_gqkey != NULL && passwd2 != NULL) {
680		RSA	*rsa;
681
682		snprintf(filename, sizeof(filename),
683		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
684		fprintf(stderr, "Writing GQ keys %s to stdout\n",
685		    filename);
686		fprintf(stdout, "# %s\n# %s\n", filename,
687		    ctime(&epoch));
688		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
689		pkey = EVP_PKEY_new();
690		EVP_PKEY_assign_RSA(pkey, rsa);
691		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
692		    NULL, passwd2);
693		fflush(stdout);
694		if (debug)
695			RSA_print_fp(stderr, rsa, 0);
696	}
697
698	/*
699	 * Create new encrypted IFF server keys file if requested;
700	 * otherwise, look for existing file.
701	 */
702	if (iffkey)
703		pkey_iffkey = gen_iffkey("iffkey");
704	if (pkey_iffkey == NULL) {
705		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
706		    groupname);
707		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
708		if (pkey_iffkey != NULL) {
709			followlink(filename, sizeof(filename));
710			fprintf(stderr, "Using IFF keys %s\n",
711			    filename);
712		}
713	}
714
715	/*
716	 * Write the nonencrypted IFF client parameters to the stdout
717	 * stream. The parameter file is the server key file with the
718	 * private key obscured.
719	 */
720	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
721		DSA	*dsa;
722
723		snprintf(filename, sizeof(filename),
724		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
725		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
726		    filename);
727		fprintf(stdout, "# %s\n# %s\n", filename,
728		    ctime(&epoch));
729		/* XXX: This modifies the private key and should probably use a
730		 * copy of it instead. */
731		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
732		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
733		pkey = EVP_PKEY_new();
734		EVP_PKEY_assign_DSA(pkey, dsa);
735		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
736		    NULL, NULL);
737		fflush(stdout);
738		if (debug)
739			DSA_print_fp(stderr, dsa, 0);
740	}
741
742	/*
743	 * Write the encrypted IFF server keys to the stdout stream.
744	 */
745	if (pkey_iffkey != NULL && passwd2 != NULL) {
746		DSA	*dsa;
747
748		snprintf(filename, sizeof(filename),
749		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
750		fprintf(stderr, "Writing IFF keys %s to stdout\n",
751		    filename);
752		fprintf(stdout, "# %s\n# %s\n", filename,
753		    ctime(&epoch));
754		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
755		pkey = EVP_PKEY_new();
756		EVP_PKEY_assign_DSA(pkey, dsa);
757		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
758		    NULL, passwd2);
759		fflush(stdout);
760		if (debug)
761			DSA_print_fp(stderr, dsa, 0);
762	}
763
764	/*
765	 * Create new encrypted MV trusted-authority keys file if
766	 * requested; otherwise, look for existing keys file.
767	 */
768	if (mvkey)
769		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
770	if (pkey_mvkey == NULL) {
771		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
772		    groupname);
773		pkey_mvkey = readkey(filename, passwd1, &fstamp,
774		    pkey_mvpar);
775		if (pkey_mvkey != NULL) {
776			followlink(filename, sizeof(filename));
777			fprintf(stderr, "Using MV keys %s\n",
778			    filename);
779		}
780	}
781
782	/*
783	 * Write the nonencrypted MV client parameters to the stdout
784	 * stream. For the moment, we always use the client parameters
785	 * associated with client key 1.
786	 */
787	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
788		snprintf(filename, sizeof(filename),
789		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
790		fprintf(stderr, "Writing MV parameters %s to stdout\n",
791		    filename);
792		fprintf(stdout, "# %s\n# %s\n", filename,
793		    ctime(&epoch));
794		pkey = pkey_mvpar[2];
795		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
796		    NULL, NULL);
797		fflush(stdout);
798		if (debug)
799			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
800	}
801
802	/*
803	 * Write the encrypted MV server keys to the stdout stream.
804	 */
805	if (pkey_mvkey != NULL && passwd2 != NULL) {
806		snprintf(filename, sizeof(filename),
807		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
808		fprintf(stderr, "Writing MV keys %s to stdout\n",
809		    filename);
810		fprintf(stdout, "# %s\n# %s\n", filename,
811		    ctime(&epoch));
812		pkey = pkey_mvpar[1];
813		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
814		    NULL, passwd2);
815		fflush(stdout);
816		if (debug)
817			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
818	}
819
820	/*
821	 * Decode the digest/signature scheme and create the
822	 * certificate. Do this every time we run the program.
823	 */
824	ectx = EVP_get_digestbyname(scheme);
825	if (ectx == NULL) {
826		fprintf(stderr,
827		    "Invalid digest/signature combination %s\n",
828		    scheme);
829			exit (-1);
830	}
831	x509(pkey_sign, ectx, grpkey, exten, certname);
832#endif	/* AUTOKEY */
833	exit(0);
834}
835
836
837/*
838 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
839 * if OpenSSL is around, generate random SHA1 keys compatible with
840 * symmetric key cryptography.
841 */
842int
843gen_md5(
844	const char *id		/* file name id */
845	)
846{
847	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
848	FILE	*str;
849	int	i, j;
850#ifdef OPENSSL
851	u_char	keystr[MD5SIZE];
852	u_char	hexstr[2 * MD5SIZE + 1];
853	u_char	hex[] = "0123456789abcdef";
854#endif	/* OPENSSL */
855
856	str = fheader("MD5key", id, groupname);
857	for (i = 1; i <= MD5KEYS; i++) {
858		for (j = 0; j < MD5SIZE; j++) {
859			u_char temp;
860
861			while (1) {
862				int rc;
863
864				rc = ntp_crypto_random_buf(
865				    &temp, sizeof(temp));
866				if (-1 == rc) {
867					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
868					exit (-1);
869				}
870				if (temp == '#')
871					continue;
872
873				if (temp > 0x20 && temp < 0x7f)
874					break;
875			}
876			md5key[j] = temp;
877		}
878		md5key[j] = '\0';
879		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
880		    md5key);
881	}
882#ifdef OPENSSL
883	for (i = 1; i <= MD5KEYS; i++) {
884		RAND_bytes(keystr, 20);
885		for (j = 0; j < MD5SIZE; j++) {
886			hexstr[2 * j] = hex[keystr[j] >> 4];
887			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
888		}
889		hexstr[2 * MD5SIZE] = '\0';
890		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
891		    hexstr);
892	}
893#endif	/* OPENSSL */
894	fclose(str);
895	return (1);
896}
897
898
899#ifdef AUTOKEY
900/*
901 * readkey - load cryptographic parameters and keys
902 *
903 * This routine loads a PEM-encoded file of given name and password and
904 * extracts the filestamp from the file name. It returns a pointer to
905 * the first key if valid, NULL if not.
906 */
907EVP_PKEY *			/* public/private key pair */
908readkey(
909	char	*cp,		/* file name */
910	char	*passwd,	/* password */
911	u_int	*estamp,	/* file stamp */
912	EVP_PKEY **evpars	/* parameter list pointer */
913	)
914{
915	FILE	*str;		/* file handle */
916	EVP_PKEY *pkey = NULL;	/* public/private key */
917	u_int	gstamp;		/* filestamp */
918	char	linkname[MAXFILENAME]; /* filestamp buffer) */
919	EVP_PKEY *parkey;
920	char	*ptr;
921	int	i;
922
923	/*
924	 * Open the key file.
925	 */
926	str = fopen(cp, "r");
927	if (str == NULL)
928		return (NULL);
929
930	/*
931	 * Read the filestamp, which is contained in the first line.
932	 */
933	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
934		fprintf(stderr, "Empty key file %s\n", cp);
935		fclose(str);
936		return (NULL);
937	}
938	if ((ptr = strrchr(ptr, '.')) == NULL) {
939		fprintf(stderr, "No filestamp found in %s\n", cp);
940		fclose(str);
941		return (NULL);
942	}
943	if (sscanf(++ptr, "%u", &gstamp) != 1) {
944		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
945		fclose(str);
946		return (NULL);
947	}
948
949	/*
950	 * Read and decrypt PEM-encoded private keys. The first one
951	 * found is returned. If others are expected, add them to the
952	 * parameter list.
953	 */
954	for (i = 0; i <= MVMAX - 1;) {
955		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
956		if (evpars != NULL) {
957			evpars[i++] = parkey;
958			evpars[i] = NULL;
959		}
960		if (parkey == NULL)
961			break;
962
963		if (pkey == NULL)
964			pkey = parkey;
965		if (debug) {
966			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
967				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
968				    0);
969			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
970				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
971				    0);
972		}
973	}
974	fclose(str);
975	if (pkey == NULL) {
976		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
977		    cp, passwd, ERR_error_string(ERR_get_error(),
978		    NULL));
979		exit (-1);
980	}
981	*estamp = gstamp;
982	return (pkey);
983}
984
985
986/*
987 * Generate RSA public/private key pair
988 */
989EVP_PKEY *			/* public/private key pair */
990gen_rsa(
991	const char *id		/* file name id */
992	)
993{
994	EVP_PKEY *pkey;		/* private key */
995	RSA	*rsa;		/* RSA parameters and key pair */
996	FILE	*str;
997
998	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
999	rsa = genRsaKeyPair(modulus, _UC("RSA"));
1000	fprintf(stderr, "\n");
1001	if (rsa == NULL) {
1002		fprintf(stderr, "RSA generate keys fails\n%s\n",
1003		    ERR_error_string(ERR_get_error(), NULL));
1004		return (NULL);
1005	}
1006
1007	/*
1008	 * For signature encryption it is not necessary that the RSA
1009	 * parameters be strictly groomed and once in a while the
1010	 * modulus turns out to be non-prime. Just for grins, we check
1011	 * the primality.
1012	 */
1013	if (!RSA_check_key(rsa)) {
1014		fprintf(stderr, "Invalid RSA key\n%s\n",
1015		    ERR_error_string(ERR_get_error(), NULL));
1016		RSA_free(rsa);
1017		return (NULL);
1018	}
1019
1020	/*
1021	 * Write the RSA parameters and keys as a RSA private key
1022	 * encoded in PEM.
1023	 */
1024	if (strcmp(id, "sign") == 0)
1025		str = fheader("RSAsign", id, hostname);
1026	else
1027		str = fheader("RSAhost", id, hostname);
1028	pkey = EVP_PKEY_new();
1029	EVP_PKEY_assign_RSA(pkey, rsa);
1030	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1031	    passwd1);
1032	fclose(str);
1033	if (debug)
1034		RSA_print_fp(stderr, rsa, 0);
1035	return (pkey);
1036}
1037
1038
1039/*
1040 * Generate DSA public/private key pair
1041 */
1042EVP_PKEY *			/* public/private key pair */
1043gen_dsa(
1044	const char *id		/* file name id */
1045	)
1046{
1047	EVP_PKEY *pkey;		/* private key */
1048	DSA	*dsa;		/* DSA parameters */
1049	FILE	*str;
1050
1051	/*
1052	 * Generate DSA parameters.
1053	 */
1054	fprintf(stderr,
1055	    "Generating DSA parameters (%d bits)...\n", modulus);
1056	dsa = genDsaParams(modulus, _UC("DSA"));
1057	fprintf(stderr, "\n");
1058	if (dsa == NULL) {
1059		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1060		    ERR_error_string(ERR_get_error(), NULL));
1061		return (NULL);
1062	}
1063
1064	/*
1065	 * Generate DSA keys.
1066	 */
1067	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1068	if (!DSA_generate_key(dsa)) {
1069		fprintf(stderr, "DSA generate keys fails\n%s\n",
1070		    ERR_error_string(ERR_get_error(), NULL));
1071		DSA_free(dsa);
1072		return (NULL);
1073	}
1074
1075	/*
1076	 * Write the DSA parameters and keys as a DSA private key
1077	 * encoded in PEM.
1078	 */
1079	str = fheader("DSAsign", id, hostname);
1080	pkey = EVP_PKEY_new();
1081	EVP_PKEY_assign_DSA(pkey, dsa);
1082	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1083	    passwd1);
1084	fclose(str);
1085	if (debug)
1086		DSA_print_fp(stderr, dsa, 0);
1087	return (pkey);
1088}
1089
1090
1091/*
1092 ***********************************************************************
1093 *								       *
1094 * The following routines implement the Schnorr (IFF) identity scheme  *
1095 *								       *
1096 ***********************************************************************
1097 *
1098 * The Schnorr (IFF) identity scheme is intended for use when
1099 * certificates are generated by some other trusted certificate
1100 * authority and the certificate cannot be used to convey public
1101 * parameters. There are two kinds of files: encrypted server files that
1102 * contain private and public values and nonencrypted client files that
1103 * contain only public values. New generations of server files must be
1104 * securely transmitted to all servers of the group; client files can be
1105 * distributed by any means. The scheme is self contained and
1106 * independent of new generations of host keys, sign keys and
1107 * certificates.
1108 *
1109 * The IFF values hide in a DSA cuckoo structure which uses the same
1110 * parameters. The values are used by an identity scheme based on DSA
1111 * cryptography and described in Stimson p. 285. The p is a 512-bit
1112 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1113 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1114 * private random group key b (0 < b < q) and public key v = g^b, then
1115 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1116 * Alice challenges Bob to confirm identity using the protocol described
1117 * below.
1118 *
1119 * How it works
1120 *
1121 * The scheme goes like this. Both Alice and Bob have the public primes
1122 * p, q and generator g. The TA gives private key b to Bob and public
1123 * key v to Alice.
1124 *
1125 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1126 * the IFF request message. Bob rolls new random k (0 < k < q), then
1127 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1128 * to Alice in the response message. Besides making the response
1129 * shorter, the hash makes it effectivey impossible for an intruder to
1130 * solve for b by observing a number of these messages.
1131 *
1132 * Alice receives the response and computes g^y v^r mod p. After a bit
1133 * of algebra, this simplifies to g^k. If the hash of this result
1134 * matches hash(x), Alice knows that Bob has the group key b. The signed
1135 * response binds this knowledge to Bob's private key and the public key
1136 * previously received in his certificate.
1137 */
1138/*
1139 * Generate Schnorr (IFF) keys.
1140 */
1141EVP_PKEY *			/* DSA cuckoo nest */
1142gen_iffkey(
1143	const char *id		/* file name id */
1144	)
1145{
1146	EVP_PKEY *pkey;		/* private key */
1147	DSA	*dsa;		/* DSA parameters */
1148	BN_CTX	*ctx;		/* BN working space */
1149	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1150	FILE	*str;
1151	u_int	temp;
1152	const BIGNUM *p, *q, *g;
1153	BIGNUM *pub_key, *priv_key;
1154
1155	/*
1156	 * Generate DSA parameters for use as IFF parameters.
1157	 */
1158	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1159	    modulus2);
1160	dsa = genDsaParams(modulus2, _UC("IFF"));
1161	fprintf(stderr, "\n");
1162	if (dsa == NULL) {
1163		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1164		    ERR_error_string(ERR_get_error(), NULL));
1165		return (NULL);
1166	}
1167	DSA_get0_pqg(dsa, &p, &q, &g);
1168
1169	/*
1170	 * Generate the private and public keys. The DSA parameters and
1171	 * private key are distributed to the servers, while all except
1172	 * the private key are distributed to the clients.
1173	 */
1174	b = BN_new(); r = BN_new(); k = BN_new();
1175	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1176	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
1177	BN_mod(b, b, q, ctx);
1178	BN_sub(v, q, b);
1179	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
1180	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
1181	BN_mod_mul(u, u, v, p, ctx);
1182	temp = BN_is_one(u);
1183	fprintf(stderr,
1184	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1185	    "yes" : "no");
1186	if (!temp) {
1187		BN_free(b); BN_free(r); BN_free(k);
1188		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1189		return (NULL);
1190	}
1191	pub_key = BN_dup(v);
1192	priv_key = BN_dup(b);
1193	DSA_set0_key(dsa, pub_key, priv_key);
1194
1195	/*
1196	 * Here is a trial round of the protocol. First, Alice rolls
1197	 * random nonce r mod q and sends it to Bob. She needs only
1198	 * q from parameters.
1199	 */
1200	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
1201	BN_mod(r, r, q, ctx);
1202
1203	/*
1204	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1205	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1206	 * p, q and b from parameters and r from Alice.
1207	 */
1208	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
1209	BN_mod(k, k, q, ctx);
1210	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
1211	BN_add(v, v, k);
1212	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
1213	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
1214
1215	/*
1216	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1217	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1218	 * original r. We omit the detail here thatt only the hash of y
1219	 * is sent.
1220	 */
1221	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
1222	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
1223	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
1224	temp = BN_cmp(u, v);
1225	fprintf(stderr,
1226	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1227	    0 ? "yes" : "no");
1228	BN_free(b); BN_free(r);	BN_free(k);
1229	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1230	if (temp != 0) {
1231		DSA_free(dsa);
1232		return (NULL);
1233	}
1234
1235	/*
1236	 * Write the IFF keys as an encrypted DSA private key encoded in
1237	 * PEM.
1238	 *
1239	 * p	modulus p
1240	 * q	modulus q
1241	 * g	generator g
1242	 * priv_key b
1243	 * public_key v
1244	 * kinv	not used
1245	 * r	not used
1246	 */
1247	str = fheader("IFFkey", id, groupname);
1248	pkey = EVP_PKEY_new();
1249	EVP_PKEY_assign_DSA(pkey, dsa);
1250	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1251	    passwd1);
1252	fclose(str);
1253	if (debug)
1254		DSA_print_fp(stderr, dsa, 0);
1255	return (pkey);
1256}
1257
1258
1259/*
1260 ***********************************************************************
1261 *								       *
1262 * The following routines implement the Guillou-Quisquater (GQ)        *
1263 * identity scheme                                                     *
1264 *								       *
1265 ***********************************************************************
1266 *
1267 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1268 * the certificate can be used to convey public parameters. The scheme
1269 * uses a X509v3 certificate extension field do convey the public key of
1270 * a private key known only to servers. There are two kinds of files:
1271 * encrypted server files that contain private and public values and
1272 * nonencrypted client files that contain only public values. New
1273 * generations of server files must be securely transmitted to all
1274 * servers of the group; client files can be distributed by any means.
1275 * The scheme is self contained and independent of new generations of
1276 * host keys and sign keys. The scheme is self contained and independent
1277 * of new generations of host keys and sign keys.
1278 *
1279 * The GQ parameters hide in a RSA cuckoo structure which uses the same
1280 * parameters. The values are used by an identity scheme based on RSA
1281 * cryptography and described in Stimson p. 300 (with errors). The 512-
1282 * bit public modulus is n = p q, where p and q are secret large primes.
1283 * The TA rolls private random group key b as RSA exponent. These values
1284 * are known to all group members.
1285 *
1286 * When rolling new certificates, a server recomputes the private and
1287 * public keys. The private key u is a random roll, while the public key
1288 * is the inverse obscured by the group key v = (u^-1)^b. These values
1289 * replace the private and public keys normally generated by the RSA
1290 * scheme. Alice challenges Bob to confirm identity using the protocol
1291 * described below.
1292 *
1293 * How it works
1294 *
1295 * The scheme goes like this. Both Alice and Bob have the same modulus n
1296 * and some random b as the group key. These values are computed and
1297 * distributed in advance via secret means, although only the group key
1298 * b is truly secret. Each has a private random private key u and public
1299 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1300 * can regenerate the key pair from time to time without affecting
1301 * operations. The public key is conveyed on the certificate in an
1302 * extension field; the private key is never revealed.
1303 *
1304 * Alice rolls new random challenge r and sends to Bob in the GQ
1305 * request message. Bob rolls new random k, then computes y = k u^r mod
1306 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1307 * message. Besides making the response shorter, the hash makes it
1308 * effectivey impossible for an intruder to solve for b by observing
1309 * a number of these messages.
1310 *
1311 * Alice receives the response and computes y^b v^r mod n. After a bit
1312 * of algebra, this simplifies to k^b. If the hash of this result
1313 * matches hash(x), Alice knows that Bob has the group key b. The signed
1314 * response binds this knowledge to Bob's private key and the public key
1315 * previously received in his certificate.
1316 */
1317/*
1318 * Generate Guillou-Quisquater (GQ) parameters file.
1319 */
1320EVP_PKEY *			/* RSA cuckoo nest */
1321gen_gqkey(
1322	const char *id		/* file name id */
1323	)
1324{
1325	EVP_PKEY *pkey;		/* private key */
1326	RSA	*rsa;		/* RSA parameters */
1327	BN_CTX	*ctx;		/* BN working space */
1328	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1329	FILE	*str;
1330	u_int	temp;
1331	BIGNUM	*b;
1332	const BIGNUM	*n;
1333
1334	/*
1335	 * Generate RSA parameters for use as GQ parameters.
1336	 */
1337	fprintf(stderr,
1338	    "Generating GQ parameters (%d bits)...\n",
1339	     modulus2);
1340	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
1341	fprintf(stderr, "\n");
1342	if (rsa == NULL) {
1343		fprintf(stderr, "RSA generate keys fails\n%s\n",
1344		    ERR_error_string(ERR_get_error(), NULL));
1345		return (NULL);
1346	}
1347	RSA_get0_key(rsa, &n, NULL, NULL);
1348	u = BN_new(); v = BN_new(); g = BN_new();
1349	k = BN_new(); r = BN_new(); y = BN_new();
1350	b = BN_new();
1351
1352	/*
1353	 * Generate the group key b, which is saved in the e member of
1354	 * the RSA structure. The group key is transmitted to each group
1355	 * member encrypted by the member private key.
1356	 */
1357	ctx = BN_CTX_new();
1358	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
1359	BN_mod(b, b, n, ctx);
1360
1361	/*
1362	 * When generating his certificate, Bob rolls random private key
1363	 * u, then computes inverse v = u^-1.
1364	 */
1365	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
1366	BN_mod(u, u, n, ctx);
1367	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
1368	BN_mod_mul(k, v, u, n, ctx);
1369
1370	/*
1371	 * Bob computes public key v = (u^-1)^b, which is saved in an
1372	 * extension field on his certificate. We check that u^b v =
1373	 * 1 mod n.
1374	 */
1375	BN_mod_exp(v, v, b, n, ctx);
1376	BN_mod_exp(g, u, b, n, ctx); /* u^b */
1377	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
1378	temp = BN_is_one(g);
1379	fprintf(stderr,
1380	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1381	    "no");
1382	if (!temp) {
1383		BN_free(u); BN_free(v);
1384		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1385		BN_CTX_free(ctx);
1386		RSA_free(rsa);
1387		return (NULL);
1388	}
1389	/* setting 'u' and 'v' into a RSA object takes over ownership.
1390	 * Since we use these values again, we have to pass in dupes,
1391	 * or we'll corrupt the program!
1392	 */
1393	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
1394
1395	/*
1396	 * Here is a trial run of the protocol. First, Alice rolls
1397	 * random nonce r mod n and sends it to Bob. She needs only n
1398	 * from parameters.
1399	 */
1400	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
1401	BN_mod(r, r, n, ctx);
1402
1403	/*
1404	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1405	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1406	 * from parameters and r from Alice.
1407	 */
1408	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
1409	BN_mod(k, k, n, ctx);
1410	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
1411	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
1412	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
1413
1414	/*
1415	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1416	 * private key u. She needs n, g from parameters, public key v =
1417	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1418	 * original r. We omit the detaul here that only the hash of g
1419	 * is sent.
1420	 */
1421	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
1422	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
1423	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
1424	temp = BN_cmp(y, g);
1425	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1426	    "yes" : "no");
1427	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1428	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1429	if (temp != 0) {
1430		RSA_free(rsa);
1431		return (NULL);
1432	}
1433
1434	/*
1435	 * Write the GQ parameter file as an encrypted RSA private key
1436	 * encoded in PEM.
1437	 *
1438	 * n	modulus n
1439	 * e	group key b
1440	 * d	not used
1441	 * p	private key u
1442	 * q	public key (u^-1)^b
1443	 * dmp1	not used
1444	 * dmq1	not used
1445	 * iqmp	not used
1446	 */
1447	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
1448	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
1449		BN_dup(BN_value_one()));
1450	str = fheader("GQkey", id, groupname);
1451	pkey = EVP_PKEY_new();
1452	EVP_PKEY_assign_RSA(pkey, rsa);
1453	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1454	    passwd1);
1455	fclose(str);
1456	if (debug)
1457		RSA_print_fp(stderr, rsa, 0);
1458	return (pkey);
1459}
1460
1461
1462/*
1463 ***********************************************************************
1464 *								       *
1465 * The following routines implement the Mu-Varadharajan (MV) identity  *
1466 * scheme                                                              *
1467 *								       *
1468 ***********************************************************************
1469 *
1470 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1471 * servers broadcast messages to clients, but clients never send
1472 * messages to servers. There is one encryption key for the server and a
1473 * separate decryption key for each client. It operated something like a
1474 * pay-per-view satellite broadcasting system where the session key is
1475 * encrypted by the broadcaster and the decryption keys are held in a
1476 * tamperproof set-top box.
1477 *
1478 * The MV parameters and private encryption key hide in a DSA cuckoo
1479 * structure which uses the same parameters, but generated in a
1480 * different way. The values are used in an encryption scheme similar to
1481 * El Gamal cryptography and a polynomial formed from the expansion of
1482 * product terms (x - x[j]), as described in Mu, Y., and V.
1483 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1484 * 223-231. The paper has significant errors and serious omissions.
1485 *
1486 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1487 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1488 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1489 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1490 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1491 * project into Zp* as exponents of g. Sometimes we have to compute an
1492 * inverse b^-1 of random b in Zq, but for that purpose we require
1493 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1494 * relatively small, like 30. These are the parameters of the scheme and
1495 * they are expensive to compute.
1496 *
1497 * We set up an instance of the scheme as follows. A set of random
1498 * values x[j] mod q (j = 1...n), are generated as the zeros of a
1499 * polynomial of order n. The product terms (x - x[j]) are expanded to
1500 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1501 * used as exponents of the generator g mod p to generate the private
1502 * encryption key A. The pair (gbar, ghat) of public server keys and the
1503 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1504 * to construct the decryption keys. The devil is in the details.
1505 *
1506 * This routine generates a private server encryption file including the
1507 * private encryption key E and partial decryption keys gbar and ghat.
1508 * It then generates public client decryption files including the public
1509 * keys xbar[j] and xhat[j] for each client j. The partial decryption
1510 * files are used to compute the inverse of E. These values are suitably
1511 * blinded so secrets are not revealed.
1512 *
1513 * The distinguishing characteristic of this scheme is the capability to
1514 * revoke keys. Included in the calculation of E, gbar and ghat is the
1515 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1516 * subsequently removed from the product and E, gbar and ghat
1517 * recomputed, the jth client will no longer be able to compute E^-1 and
1518 * thus unable to decrypt the messageblock.
1519 *
1520 * How it works
1521 *
1522 * The scheme goes like this. Bob has the server values (p, E, q,
1523 * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1524 *
1525 * Alice rolls new random nonce r mod p and sends to Bob in the MV
1526 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1527 * mod p and sends (y, gbar^k, ghat^k) to Alice.
1528 *
1529 * Alice receives the response and computes the inverse (E^k)^-1 from
1530 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1531 * decrypts y and verifies it matches the original r. The signed
1532 * response binds this knowledge to Bob's private key and the public key
1533 * previously received in his certificate.
1534 */
1535EVP_PKEY *			/* DSA cuckoo nest */
1536gen_mvkey(
1537	const char *id,		/* file name id */
1538	EVP_PKEY **evpars	/* parameter list pointer */
1539	)
1540{
1541	EVP_PKEY *pkey, *pkey1;	/* private keys */
1542	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1543	BN_CTX	*ctx;		/* BN working space */
1544	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1545	BIGNUM	*gs[MVMAX];	/* public key vector */
1546	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1547	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1548	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1549	BIGNUM	*b;		/* group key */
1550	BIGNUM	*b1;		/* inverse group key */
1551	BIGNUM	*s;		/* enabling key */
1552	BIGNUM	*biga;		/* master encryption key */
1553	BIGNUM	*bige;		/* session encryption key */
1554	BIGNUM	*gbar, *ghat;	/* public key */
1555	BIGNUM	*u, *v, *w;	/* BN scratch */
1556	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
1557	int	i, j, n;
1558	FILE	*str;
1559	u_int	temp;
1560
1561	/*
1562	 * Generate MV parameters.
1563	 *
1564	 * The object is to generate a multiplicative group Zp* modulo a
1565	 * prime p and a subset Zq mod q, where q is the product of n
1566	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1567	 * first generate n m-bit primes, where the product n m is in
1568	 * the order of 512 bits. One or more of these may have to be
1569	 * replaced later. As a practical matter, it is tough to find
1570	 * more than 31 distinct primes for 512 bits or 61 primes for
1571	 * 1024 bits. The latter can take several hundred iterations
1572	 * and several minutes on a Sun Blade 1000.
1573	 */
1574	n = nkeys;
1575	fprintf(stderr,
1576	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1577	    modulus2 / n);
1578	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1579	b = BN_new(); b1 = BN_new();
1580	dsa = DSA_new();
1581	p = BN_new(); q = BN_new(); g = BN_new();
1582	priv_key = BN_new(); pub_key = BN_new();
1583	temp = 0;
1584	for (j = 1; j <= n; j++) {
1585		s1[j] = BN_new();
1586		while (1) {
1587			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
1588					     NULL, NULL, NULL);
1589			for (i = 1; i < j; i++) {
1590				if (BN_cmp(s1[i], s1[j]) == 0)
1591					break;
1592			}
1593			if (i == j)
1594				break;
1595			temp++;
1596		}
1597	}
1598	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1599
1600	/*
1601	 * Compute the modulus q as the product of the primes. Compute
1602	 * the modulus p as 2 * q + 1 and test p for primality. If p
1603	 * is composite, replace one of the primes with a new distinct
1604	 * one and try again. Note that q will hardly be a secret since
1605	 * we have to reveal p to servers, but not clients. However,
1606	 * factoring q to find the primes should be adequately hard, as
1607	 * this is the same problem considered hard in RSA. Question: is
1608	 * it as hard to find n small prime factors totalling n bits as
1609	 * it is to find two large prime factors totalling n bits?
1610	 * Remember, the bad guy doesn't know n.
1611	 */
1612	temp = 0;
1613	while (1) {
1614		BN_one(q);
1615		for (j = 1; j <= n; j++)
1616			BN_mul(q, q, s1[j], ctx);
1617		BN_copy(p, q);
1618		BN_add(p, p, p);
1619		BN_add_word(p, 1);
1620		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
1621			break;
1622
1623		temp++;
1624		j = temp % n + 1;
1625		while (1) {
1626			BN_generate_prime_ex(u, modulus2 / n, 0,
1627					     NULL, NULL, NULL);
1628			for (i = 1; i <= n; i++) {
1629				if (BN_cmp(u, s1[i]) == 0)
1630					break;
1631			}
1632			if (i > n)
1633				break;
1634		}
1635		BN_copy(s1[j], u);
1636	}
1637	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1638
1639	/*
1640	 * Compute the generator g using a random roll such that
1641	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1642	 * q. This may take several iterations.
1643	 */
1644	BN_copy(v, p);
1645	BN_sub_word(v, 1);
1646	while (1) {
1647		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
1648		BN_mod(g, g, p, ctx);
1649		BN_gcd(u, g, v, ctx);
1650		if (!BN_is_one(u))
1651			continue;
1652
1653		BN_mod_exp(u, g, q, p, ctx);
1654		if (BN_is_one(u))
1655			break;
1656	}
1657
1658	DSA_set0_pqg(dsa, p, q, g);
1659
1660	/*
1661	 * Setup is now complete. Roll random polynomial roots x[j]
1662	 * (j = 1...n) for all j. While it may not be strictly
1663	 * necessary, Make sure each root has no factors in common with
1664	 * q.
1665	 */
1666	fprintf(stderr,
1667	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1668	    n, BN_num_bits(q));
1669	for (j = 1; j <= n; j++) {
1670		x[j] = BN_new();
1671
1672		while (1) {
1673			BN_rand(x[j], BN_num_bits(q), 0, 0);
1674			BN_mod(x[j], x[j], q, ctx);
1675			BN_gcd(u, x[j], q, ctx);
1676			if (BN_is_one(u))
1677				break;
1678		}
1679	}
1680
1681	/*
1682	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1683	 * expansion of root products (x - x[j]) mod q for all j. The
1684	 * method is a present from Charlie Boncelet.
1685	 */
1686	for (i = 0; i <= n; i++) {
1687		a[i] = BN_new();
1688		BN_one(a[i]);
1689	}
1690	for (j = 1; j <= n; j++) {
1691		BN_zero(w);
1692		for (i = 0; i < j; i++) {
1693			BN_copy(u, q);
1694			BN_mod_mul(v, a[i], x[j], q, ctx);
1695			BN_sub(u, u, v);
1696			BN_add(u, u, w);
1697			BN_copy(w, a[i]);
1698			BN_mod(a[i], u, q, ctx);
1699		}
1700	}
1701
1702	/*
1703	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
1704	 */
1705	for (i = 0; i <= n; i++) {
1706		gs[i] = BN_new();
1707		BN_mod_exp(gs[i], g, a[i], p, ctx);
1708	}
1709
1710	/*
1711	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1712	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
1713	 * computed mod p. also note the expression given in the paper
1714	 * is incorrect.
1715	 */
1716	temp = 1;
1717	for (j = 1; j <= n; j++) {
1718		BN_one(u);
1719		for (i = 0; i <= n; i++) {
1720			BN_set_word(v, i);
1721			BN_mod_exp(v, x[j], v, q, ctx);
1722			BN_mod_mul(v, v, a[i], q, ctx);
1723			BN_mod_exp(v, g, v, p, ctx);
1724			BN_mod_mul(u, u, v, p, ctx);
1725		}
1726		if (!BN_is_one(u))
1727			temp = 0;
1728	}
1729	fprintf(stderr,
1730	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1731	    "yes" : "no");
1732	if (!temp) {
1733		return (NULL);
1734	}
1735
1736	/*
1737	 * Make private encryption key A. Keep it around for awhile,
1738	 * since it is expensive to compute.
1739	 */
1740	biga = BN_new();
1741
1742	BN_one(biga);
1743	for (j = 1; j <= n; j++) {
1744		for (i = 0; i < n; i++) {
1745			BN_set_word(v, i);
1746			BN_mod_exp(v, x[j], v, q, ctx);
1747			BN_mod_exp(v, gs[i], v, p, ctx);
1748			BN_mod_mul(biga, biga, v, p, ctx);
1749		}
1750	}
1751
1752	/*
1753	 * Roll private random group key b mod q (0 < b < q), where
1754	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1755	 * mod q. If b is changed, the client keys must be recomputed.
1756	 */
1757	while (1) {
1758		BN_rand(b, BN_num_bits(q), 0, 0);
1759		BN_mod(b, b, q, ctx);
1760		BN_gcd(u, b, q, ctx);
1761		if (BN_is_one(u))
1762			break;
1763	}
1764	BN_mod_inverse(b1, b, q, ctx);
1765
1766	/*
1767	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1768	 * that the keys for the jth client do not s1[j] or the product
1769	 * s1[j]) (j = 1...n) which is q by construction.
1770	 *
1771	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1772	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1773	 * Exercise for the student: prove the remainder is always zero.
1774	 */
1775	for (j = 1; j <= n; j++) {
1776		xbar[j] = BN_new(); xhat[j] = BN_new();
1777
1778		BN_add(w, q, s1[j]);
1779		BN_div(w, u, w, s1[j], ctx);
1780		BN_zero(xbar[j]);
1781		BN_set_word(v, n);
1782		for (i = 1; i <= n; i++) {
1783			if (i == j)
1784				continue;
1785
1786			BN_mod_exp(u, x[i], v, q, ctx);
1787			BN_add(xbar[j], xbar[j], u);
1788		}
1789		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
1790		BN_mod_exp(xhat[j], x[j], v, q, ctx);
1791		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
1792	}
1793
1794	/*
1795	 * We revoke client j by dividing q by s1[j]. The quotient
1796	 * becomes the enabling key s. Note we always have to revoke
1797	 * one key; otherwise, the plaintext and cryptotext would be
1798	 * identical. For the present there are no provisions to revoke
1799	 * additional keys, so we sail on with only token revocations.
1800	 */
1801	s = BN_new();
1802	BN_copy(s, q);
1803	BN_div(s, u, s, s1[n], ctx);
1804
1805	/*
1806	 * For each combination of clients to be revoked, make private
1807	 * encryption key E = A^s and partial decryption keys gbar = g^s
1808	 * and ghat = g^(s b), all mod p. The servers use these keys to
1809	 * compute the session encryption key and partial decryption
1810	 * keys. These values must be regenerated if the enabling key is
1811	 * changed.
1812	 */
1813	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1814	BN_mod_exp(bige, biga, s, p, ctx);
1815	BN_mod_exp(gbar, g, s, p, ctx);
1816	BN_mod_mul(v, s, b, q, ctx);
1817	BN_mod_exp(ghat, g, v, p, ctx);
1818
1819	/*
1820	 * Notes: We produce the key media in three steps. The first
1821	 * step is to generate the system parameters p, q, g, b, A and
1822	 * the enabling keys s1[j]. Associated with each s1[j] are
1823	 * parameters xbar[j] and xhat[j]. All of these parameters are
1824	 * retained in a data structure protecteted by the trusted-agent
1825	 * password. The p, xbar[j] and xhat[j] paremeters are
1826	 * distributed to the j clients. When the client keys are to be
1827	 * activated, the enabled keys are multipied together to form
1828	 * the master enabling key s. This and the other parameters are
1829	 * used to compute the server encryption key E and the partial
1830	 * decryption keys gbar and ghat.
1831	 *
1832	 * In the identity exchange the client rolls random r and sends
1833	 * it to the server. The server rolls random k, which is used
1834	 * only once, then computes the session key E^k and partial
1835	 * decryption keys gbar^k and ghat^k. The server sends the
1836	 * encrypted r along with gbar^k and ghat^k to the client. The
1837	 * client completes the decryption and verifies it matches r.
1838	 */
1839	/*
1840	 * Write the MV trusted-agent parameters and keys as a DSA
1841	 * private key encoded in PEM.
1842	 *
1843	 * p	modulus p
1844	 * q	modulus q
1845	 * g	generator g
1846	 * priv_key A mod p
1847	 * pub_key b mod q
1848	 * (remaining values are not used)
1849	 */
1850	i = 0;
1851	str = fheader("MVta", "mvta", groupname);
1852	fprintf(stderr, "Generating MV trusted-authority keys\n");
1853	BN_copy(priv_key, biga);
1854	BN_copy(pub_key, b);
1855	DSA_set0_key(dsa, pub_key, priv_key);
1856	pkey = EVP_PKEY_new();
1857	EVP_PKEY_assign_DSA(pkey, dsa);
1858	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1859	    passwd1);
1860	evpars[i++] = pkey;
1861	if (debug)
1862		DSA_print_fp(stderr, dsa, 0);
1863
1864	/*
1865	 * Append the MV server parameters and keys as a DSA key encoded
1866	 * in PEM.
1867	 *
1868	 * p	modulus p
1869	 * q	modulus q (used only when generating k)
1870	 * g	bige
1871	 * priv_key gbar
1872	 * pub_key ghat
1873	 * (remaining values are not used)
1874	 */
1875	fprintf(stderr, "Generating MV server keys\n");
1876	dsa2 = DSA_new();
1877	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
1878	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
1879	pkey1 = EVP_PKEY_new();
1880	EVP_PKEY_assign_DSA(pkey1, dsa2);
1881	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1882	    passwd1);
1883	evpars[i++] = pkey1;
1884	if (debug)
1885		DSA_print_fp(stderr, dsa2, 0);
1886
1887	/*
1888	 * Append the MV client parameters for each client j as DSA keys
1889	 * encoded in PEM.
1890	 *
1891	 * p	modulus p
1892	 * priv_key xbar[j] mod q
1893	 * pub_key xhat[j] mod q
1894	 * (remaining values are not used)
1895	 */
1896	fprintf(stderr, "Generating %d MV client keys\n", n);
1897	for (j = 1; j <= n; j++) {
1898		sdsa = DSA_new();
1899		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
1900			BN_dup(BN_value_one()));
1901		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
1902		pkey1 = EVP_PKEY_new();
1903		EVP_PKEY_set1_DSA(pkey1, sdsa);
1904		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1905		    NULL, passwd1);
1906		evpars[i++] = pkey1;
1907		if (debug)
1908			DSA_print_fp(stderr, sdsa, 0);
1909
1910		/*
1911		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1912		 * are inverses of each other. We check that the product
1913		 * is one for each client except the ones that have been
1914		 * revoked.
1915		 */
1916		BN_mod_exp(v, gbar, xhat[j], p, ctx);
1917		BN_mod_exp(u, ghat, xbar[j], p, ctx);
1918		BN_mod_mul(u, u, v, p, ctx);
1919		BN_mod_mul(u, u, bige, p, ctx);
1920		if (!BN_is_one(u)) {
1921			fprintf(stderr, "Revoke key %d\n", j);
1922			continue;
1923		}
1924	}
1925	evpars[i++] = NULL;
1926	fclose(str);
1927
1928	/*
1929	 * Free the countries.
1930	 */
1931	for (i = 0; i <= n; i++) {
1932		BN_free(a[i]); BN_free(gs[i]);
1933	}
1934	for (j = 1; j <= n; j++) {
1935		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1936		BN_free(s1[j]);
1937	}
1938	return (pkey);
1939}
1940
1941
1942/*
1943 * Generate X509v3 certificate.
1944 *
1945 * The certificate consists of the version number, serial number,
1946 * validity interval, issuer name, subject name and public key. For a
1947 * self-signed certificate, the issuer name is the same as the subject
1948 * name and these items are signed using the subject private key. The
1949 * validity interval extends from the current time to the same time one
1950 * year hence. For NTP purposes, it is convenient to use the NTP seconds
1951 * of the current time as the serial number.
1952 */
1953int
1954x509	(
1955	EVP_PKEY *pkey,		/* signing key */
1956	const EVP_MD *md,	/* signature/digest scheme */
1957	char	*gqpub,		/* identity extension (hex string) */
1958	const char *exten,	/* private cert extension */
1959	char	*name		/* subject/issuer name */
1960	)
1961{
1962	X509	*cert;		/* X509 certificate */
1963	X509_NAME *subj;	/* distinguished (common) name */
1964	X509_EXTENSION *ex;	/* X509v3 extension */
1965	FILE	*str;		/* file handle */
1966	ASN1_INTEGER *serial;	/* serial number */
1967	const char *id;		/* digest/signature scheme name */
1968	char	pathbuf[MAXFILENAME + 1];
1969
1970	/*
1971	 * Generate X509 self-signed certificate.
1972	 *
1973	 * Set the certificate serial to the NTP seconds for grins. Set
1974	 * the version to 3. Set the initial validity to the current
1975	 * time and the finalvalidity one year hence.
1976	 */
1977 	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
1978	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1979	cert = X509_new();
1980	X509_set_version(cert, 2L);
1981	serial = ASN1_INTEGER_new();
1982	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1983	X509_set_serialNumber(cert, serial);
1984	ASN1_INTEGER_free(serial);
1985	X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
1986	X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
1987	subj = X509_get_subject_name(cert);
1988	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1989	    (u_char *)name, -1, -1, 0);
1990	subj = X509_get_issuer_name(cert);
1991	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1992	    (u_char *)name, -1, -1, 0);
1993	if (!X509_set_pubkey(cert, pkey)) {
1994		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
1995		    ERR_error_string(ERR_get_error(), NULL));
1996		X509_free(cert);
1997		return (0);
1998	}
1999
2000	/*
2001	 * Add X509v3 extensions if present. These represent the minimum
2002	 * set defined in RFC3280 less the certificate_policy extension,
2003	 * which is seriously obfuscated in OpenSSL.
2004	 */
2005	/*
2006	 * The basic_constraints extension CA:TRUE allows servers to
2007	 * sign client certficitates.
2008	 */
2009	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
2010	    BASIC_CONSTRAINTS);
2011	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
2012	    _UC(BASIC_CONSTRAINTS));
2013	if (!X509_add_ext(cert, ex, -1)) {
2014		fprintf(stderr, "Add extension field fails\n%s\n",
2015		    ERR_error_string(ERR_get_error(), NULL));
2016		return (0);
2017	}
2018	X509_EXTENSION_free(ex);
2019
2020	/*
2021	 * The key_usage extension designates the purposes the key can
2022	 * be used for.
2023	 */
2024	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
2025	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
2026	if (!X509_add_ext(cert, ex, -1)) {
2027		fprintf(stderr, "Add extension field fails\n%s\n",
2028		    ERR_error_string(ERR_get_error(), NULL));
2029		return (0);
2030	}
2031	X509_EXTENSION_free(ex);
2032	/*
2033	 * The subject_key_identifier is used for the GQ public key.
2034	 * This should not be controversial.
2035	 */
2036	if (gqpub != NULL) {
2037		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2038		ex = X509V3_EXT_conf_nid(NULL, NULL,
2039		    NID_subject_key_identifier, gqpub);
2040		if (!X509_add_ext(cert, ex, -1)) {
2041			fprintf(stderr,
2042			    "Add extension field fails\n%s\n",
2043			    ERR_error_string(ERR_get_error(), NULL));
2044			return (0);
2045		}
2046		X509_EXTENSION_free(ex);
2047	}
2048
2049	/*
2050	 * The extended key usage extension is used for special purpose
2051	 * here. The semantics probably do not conform to the designer's
2052	 * intent and will likely change in future.
2053	 *
2054	 * "trustRoot" designates a root authority
2055	 * "private" designates a private certificate
2056	 */
2057	if (exten != NULL) {
2058		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2059		ex = X509V3_EXT_conf_nid(NULL, NULL,
2060		    NID_ext_key_usage, _UC(exten));
2061		if (!X509_add_ext(cert, ex, -1)) {
2062			fprintf(stderr,
2063			    "Add extension field fails\n%s\n",
2064			    ERR_error_string(ERR_get_error(), NULL));
2065			return (0);
2066		}
2067		X509_EXTENSION_free(ex);
2068	}
2069
2070	/*
2071	 * Sign and verify.
2072	 */
2073	X509_sign(cert, pkey, md);
2074	if (X509_verify(cert, pkey) <= 0) {
2075		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2076		    ERR_error_string(ERR_get_error(), NULL));
2077		X509_free(cert);
2078		return (0);
2079	}
2080
2081	/*
2082	 * Write the certificate encoded in PEM.
2083	 */
2084	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2085	str = fheader(pathbuf, "cert", hostname);
2086	PEM_write_X509(str, cert);
2087	fclose(str);
2088	if (debug)
2089		X509_print_fp(stderr, cert);
2090	X509_free(cert);
2091	return (1);
2092}
2093
2094#if 0	/* asn2ntp is used only with commercial certificates */
2095/*
2096 * asn2ntp - convert ASN1_TIME time structure to NTP time
2097 */
2098u_long
2099asn2ntp	(
2100	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2101	)
2102{
2103	char	*v;		/* pointer to ASN1_TIME string */
2104	struct	tm tm;		/* time decode structure time */
2105
2106	/*
2107	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2108	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2109	 * SS fiels start with zero and the Z character should be 'Z'
2110	 * for UTC. Also note that years less than 50 map to years
2111	 * greater than 100. Dontcha love ASN.1?
2112	 */
2113	if (asn1time->length > 13)
2114		return (-1);
2115	v = (char *)asn1time->data;
2116	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2117	if (tm.tm_year < 50)
2118		tm.tm_year += 100;
2119	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2120	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2121	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2122	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2123	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2124	tm.tm_wday = 0;
2125	tm.tm_yday = 0;
2126	tm.tm_isdst = 0;
2127	return (mktime(&tm) + JAN_1970);
2128}
2129#endif
2130
2131/*
2132 * Callback routine
2133 */
2134void
2135cb	(
2136	int	n1,		/* arg 1 */
2137	int	n2,		/* arg 2 */
2138	void	*chr		/* arg 3 */
2139	)
2140{
2141	switch (n1) {
2142	case 0:
2143		d0++;
2144		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2145		    d0);
2146		break;
2147	case 1:
2148		d1++;
2149		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2150		    n2, d1);
2151		break;
2152	case 2:
2153		d2++;
2154		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2155		    n1, n2, d2);
2156		break;
2157	case 3:
2158		d3++;
2159		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2160		    (char *)chr, n1, n2, d3);
2161		break;
2162	}
2163}
2164
2165
2166/*
2167 * Generate key
2168 */
2169EVP_PKEY *			/* public/private key pair */
2170genkey(
2171	const char *type,	/* key type (RSA or DSA) */
2172	const char *id		/* file name id */
2173	)
2174{
2175	if (type == NULL)
2176		return (NULL);
2177	if (strcmp(type, "RSA") == 0)
2178		return (gen_rsa(id));
2179
2180	else if (strcmp(type, "DSA") == 0)
2181		return (gen_dsa(id));
2182
2183	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2184	return (NULL);
2185}
2186
2187static RSA*
2188genRsaKeyPair(
2189	int	bits,
2190	char *	what
2191	)
2192{
2193	RSA *		rsa = RSA_new();
2194	BN_GENCB *	gcb = BN_GENCB_new();
2195	BIGNUM *	bne = BN_new();
2196
2197	if (gcb)
2198		BN_GENCB_set_old(gcb, cb, what);
2199	if (bne)
2200		BN_set_word(bne, 65537);
2201	if (!(rsa && gcb && bne && RSA_generate_key_ex(
2202		      rsa, bits, bne, gcb)))
2203	{
2204		RSA_free(rsa);
2205		rsa = NULL;
2206	}
2207	BN_GENCB_free(gcb);
2208	BN_free(bne);
2209	return rsa;
2210}
2211
2212static DSA*
2213genDsaParams(
2214	int	bits,
2215	char *	what
2216	)
2217{
2218
2219	DSA *		dsa = DSA_new();
2220	BN_GENCB *	gcb = BN_GENCB_new();
2221	u_char		seed[20];
2222
2223	if (gcb)
2224		BN_GENCB_set_old(gcb, cb, what);
2225	RAND_bytes(seed, sizeof(seed));
2226	if (!(dsa && gcb && DSA_generate_parameters_ex(
2227		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
2228	{
2229		DSA_free(dsa);
2230		dsa = NULL;
2231	}
2232	BN_GENCB_free(gcb);
2233	return dsa;
2234}
2235
2236#endif	/* AUTOKEY */
2237
2238
2239/*
2240 * Generate file header and link
2241 */
2242FILE *
2243fheader	(
2244	const char *file,	/* file name id */
2245	const char *ulink,	/* linkname */
2246	const char *owner	/* owner name */
2247	)
2248{
2249	FILE	*str;		/* file handle */
2250	char	linkname[MAXFILENAME]; /* link name */
2251	int	temp;
2252#ifdef HAVE_UMASK
2253        mode_t  orig_umask;
2254#endif
2255
2256	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
2257	    owner, fstamp);
2258#ifdef HAVE_UMASK
2259        orig_umask = umask( S_IWGRP | S_IRWXO );
2260        str = fopen(filename, "w");
2261        (void) umask(orig_umask);
2262#else
2263        str = fopen(filename, "w");
2264#endif
2265	if (str == NULL) {
2266		perror("Write");
2267		exit (-1);
2268	}
2269        if (strcmp(ulink, "md5") == 0) {
2270          strcpy(linkname,"ntp.keys");
2271        } else {
2272          snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
2273                   hostname);
2274        }
2275	(void)remove(linkname);		/* The symlink() line below matters */
2276	temp = symlink(filename, linkname);
2277	if (temp < 0)
2278		perror(file);
2279	fprintf(stderr, "Generating new %s file and link\n", ulink);
2280	fprintf(stderr, "%s->%s\n", linkname, filename);
2281	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2282	return (str);
2283}
2284