1/*
2 * refclock_nmea.c - clock driver for an NMEA GPS CLOCK
3 *		Michael Petry Jun 20, 1994
4 *		 based on refclock_heathn.c
5 *
6 * Updated to add support for Accord GPS Clock
7 *		Venu Gopal Dec 05, 2007
8 *		neo.venu@gmail.com, venugopal_d@pgad.gov.in
9 *
10 * Updated to process 'time1' fudge factor
11 *		Venu Gopal May 05, 2008
12 *
13 * Converted to common PPSAPI code, separate PPS fudge time1
14 * from serial timecode fudge time2.
15 *		Dave Hart July 1, 2009
16 *		hart@ntp.org, davehart@davehart.com
17 */
18
19#ifdef HAVE_CONFIG_H
20#include <config.h>
21#endif
22
23#include "ntp_types.h"
24
25#if defined(REFCLOCK) && defined(CLOCK_NMEA)
26
27#define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
28
29#include <sys/stat.h>
30#include <stdio.h>
31#include <ctype.h>
32#ifdef HAVE_SYS_SOCKET_H
33#include <sys/socket.h>
34#endif
35
36#include "ntpd.h"
37#include "ntp_io.h"
38#include "ntp_unixtime.h"
39#include "ntp_refclock.h"
40#include "ntp_stdlib.h"
41#include "ntp_calendar.h"
42#include "timespecops.h"
43
44#ifdef HAVE_PPSAPI
45# include "ppsapi_timepps.h"
46# include "refclock_atom.h"
47#endif /* HAVE_PPSAPI */
48
49
50/*
51 * This driver supports NMEA-compatible GPS receivers
52 *
53 * Prototype was refclock_trak.c, Thanks a lot.
54 *
55 * The receiver used spits out the NMEA sentences for boat navigation.
56 * And you thought it was an information superhighway.	Try a raging river
57 * filled with rapids and whirlpools that rip away your data and warp time.
58 *
59 * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
60 * On startup if initialization of the PPSAPI fails, it will fall back
61 * to the "normal" timestamps.
62 *
63 * The PPSAPI part of the driver understands fudge flag2 and flag3. If
64 * flag2 is set, it will use the clear edge of the pulse. If flag3 is
65 * set, kernel hardpps is enabled.
66 *
67 * GPS sentences other than RMC (the default) may be enabled by setting
68 * the relevent bits of 'mode' in the server configuration line
69 * server 127.127.20.x mode X
70 *
71 * bit 0 - enables RMC (1)
72 * bit 1 - enables GGA (2)
73 * bit 2 - enables GLL (4)
74 * bit 3 - enables ZDA (8) - Standard Time & Date
75 * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
76 *			     very close to standard ZDA
77 *
78 * Multiple sentences may be selected except when ZDG/ZDA is selected.
79 *
80 * bit 4/5/6 - selects the baudrate for serial port :
81 *		0 for 4800 (default)
82 *		1 for 9600
83 *		2 for 19200
84 *		3 for 38400
85 *		4 for 57600
86 *		5 for 115200
87 */
88#define NMEA_MESSAGE_MASK	0x0000FF0FU
89#define NMEA_BAUDRATE_MASK	0x00000070U
90#define NMEA_BAUDRATE_SHIFT	4
91
92#define NMEA_DELAYMEAS_MASK	0x80
93#define NMEA_EXTLOG_MASK	0x00010000U
94#define NMEA_DATETRUST_MASK	0x02000000U
95
96#define NMEA_PROTO_IDLEN	5	/* tag name must be at least 5 chars */
97#define NMEA_PROTO_MINLEN	6	/* min chars in sentence, excluding CS */
98#define NMEA_PROTO_MAXLEN	80	/* max chars in sentence, excluding CS */
99#define NMEA_PROTO_FIELDS	32	/* not official; limit on fields per record */
100
101/*
102 * We check the timecode format and decode its contents.  We only care
103 * about a few of them, the most important being the $GPRMC format:
104 *
105 * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
106 *
107 * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
108 * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
109 * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
110 * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
111 *
112 * Defining GPZDA to support Standard Time & Date
113 * sentence. The sentence has the following format
114 *
115 *  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
116 *
117 *  Apart from the familiar fields,
118 *  'TH'    Time zone Hours
119 *  'TM'    Time zone Minutes
120 *
121 * Defining GPZDG to support Accord GPS Clock's custom NMEA
122 * sentence. The sentence has the following format
123 *
124 *  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
125 *
126 *  It contains the GPS timestamp valid for next PPS pulse.
127 *  Apart from the familiar fields,
128 *  'AA.BB' denotes the signal strength( should be < 05.00 )
129 *  'V'	    denotes the GPS sync status :
130 *	   '0' indicates INVALID time,
131 *	   '1' indicates accuracy of +/-20 ms
132 *	   '2' indicates accuracy of +/-100 ns
133 *
134 * Defining PGRMF for Garmin GPS Fix Data
135 * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
136 * WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
137 * WS  -- GPS seconds in week
138 * LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
139 * FIX -- Fix type: 0=nofix, 1=2D, 2=3D
140 * DATE/TIME are standard date/time strings in UTC time scale
141 *
142 * The GPS time can be used to get the full century for the truncated
143 * date spec.
144 */
145
146/*
147 * Definitions
148 */
149#define	DEVICE		"/dev/gps%d"	/* GPS serial device */
150#define	PPSDEV		"/dev/gpspps%d"	/* PPSAPI device override */
151#define	SPEED232	B4800	/* uart speed (4800 bps) */
152#define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
153#define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
154#define	REFID		"GPS\0"	/* reference id */
155#define	DESCRIPTION	"NMEA GPS Clock" /* who we are */
156#ifndef O_NOCTTY
157#define M_NOCTTY	0
158#else
159#define M_NOCTTY	O_NOCTTY
160#endif
161#ifndef O_NONBLOCK
162#define M_NONBLOCK	0
163#else
164#define M_NONBLOCK	O_NONBLOCK
165#endif
166#define PPSOPENMODE	(O_RDWR | M_NOCTTY | M_NONBLOCK)
167
168/* NMEA sentence array indexes for those we use */
169#define NMEA_GPRMC	0	/* recommended min. nav. */
170#define NMEA_GPGGA	1	/* fix and quality */
171#define NMEA_GPGLL	2	/* geo. lat/long */
172#define NMEA_GPZDA	3	/* date/time */
173/*
174 * $GPZDG is a proprietary sentence that violates the spec, by not
175 * using $P and an assigned company identifier to prefix the sentence
176 * identifier.	When used with this driver, the system needs to be
177 * isolated from other NTP networks, as it operates in GPS time, not
178 * UTC as is much more common.	GPS time is >15 seconds different from
179 * UTC due to not respecting leap seconds since 1970 or so.  Other
180 * than the different timebase, $GPZDG is similar to $GPZDA.
181 */
182#define NMEA_GPZDG	4
183#define NMEA_PGRMF	5
184#define NMEA_ARRAY_SIZE (NMEA_PGRMF + 1)
185
186/*
187 * Sentence selection mode bits
188 */
189#define USE_GPRMC		0x00000001u
190#define USE_GPGGA		0x00000002u
191#define USE_GPGLL		0x00000004u
192#define USE_GPZDA		0x00000008u
193#define USE_PGRMF		0x00000100u
194
195/* mapping from sentence index to controlling mode bit */
196static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
197{
198	USE_GPRMC,
199	USE_GPGGA,
200	USE_GPGLL,
201	USE_GPZDA,
202	USE_GPZDA,
203	USE_PGRMF
204};
205
206/* date formats we support */
207enum date_fmt {
208	DATE_1_DDMMYY,	/* use 1 field	with 2-digit year */
209	DATE_3_DDMMYYYY	/* use 3 fields with 4-digit year */
210};
211
212/* results for 'field_init()'
213 *
214 * Note: If a checksum is present, the checksum test must pass OK or the
215 * sentence is tagged invalid.
216 */
217#define CHECK_EMPTY  -1	/* no data			*/
218#define CHECK_INVALID 0	/* not a valid NMEA sentence	*/
219#define CHECK_VALID   1	/* valid but without checksum	*/
220#define CHECK_CSVALID 2	/* valid with checksum OK	*/
221
222/*
223 * Unit control structure
224 */
225typedef struct {
226#ifdef HAVE_PPSAPI
227	struct refclock_atom atom; /* PPSAPI structure */
228	int	ppsapi_fd;	/* fd used with PPSAPI */
229	u_char	ppsapi_tried;	/* attempt PPSAPI once */
230	u_char	ppsapi_lit;	/* time_pps_create() worked */
231	u_char	ppsapi_gate;	/* system is on PPS */
232#endif /* HAVE_PPSAPI */
233	u_char  gps_time;	/* use GPS time, not UTC */
234	u_short century_cache;	/* cached current century */
235	l_fp	last_reftime;	/* last processed reference stamp */
236	short 	epoch_warp;	/* last epoch warp, for logging */
237	/* tally stats, reset each poll cycle */
238	struct
239	{
240		u_int total;
241		u_int accepted;
242		u_int rejected;   /* GPS said not enough signal */
243		u_int malformed;  /* Bad checksum, invalid date or time */
244		u_int filtered;   /* mode bits, not GPZDG, same second */
245		u_int pps_used;
246	}
247		tally;
248	/* per sentence checksum seen flag */
249	u_char	cksum_type[NMEA_ARRAY_SIZE];
250} nmea_unit;
251
252/*
253 * helper for faster field access
254 */
255typedef struct {
256	char  *base;	/* buffer base		*/
257	char  *cptr;	/* current field ptr	*/
258	int    blen;	/* buffer length	*/
259	int    cidx;	/* current field index	*/
260} nmea_data;
261
262/*
263 * NMEA gps week/time information
264 * This record contains the number of weeks since 1980-01-06 modulo
265 * 1024, the seconds elapsed since start of the week, and the number of
266 * leap seconds that are the difference between GPS and UTC time scale.
267 */
268typedef struct {
269	u_int32 wt_time;	/* seconds since weekstart */
270	u_short wt_week;	/* week number */
271	short	wt_leap;	/* leap seconds */
272} gps_weektm;
273
274/*
275 * The GPS week time scale starts on Sunday, 1980-01-06. We need the
276 * rata die number of this day.
277 */
278#ifndef DAY_GPS_STARTS
279#define DAY_GPS_STARTS 722820
280#endif
281
282/*
283 * Function prototypes
284 */
285static	void	nmea_init	(void);
286static	int	nmea_start	(int, struct peer *);
287static	void	nmea_shutdown	(int, struct peer *);
288static	void	nmea_receive	(struct recvbuf *);
289static	void	nmea_poll	(int, struct peer *);
290#ifdef HAVE_PPSAPI
291static	void	nmea_control	(int, const struct refclockstat *,
292				 struct refclockstat *, struct peer *);
293#define		NMEA_CONTROL	nmea_control
294#else
295#define		NMEA_CONTROL	noentry
296#endif /* HAVE_PPSAPI */
297static	void	nmea_timer	(int, struct peer *);
298
299/* parsing helpers */
300static int	field_init	(nmea_data * data, char * cp, int len);
301static char *	field_parse	(nmea_data * data, int fn);
302static void	field_wipe	(nmea_data * data, ...);
303static u_char	parse_qual	(nmea_data * data, int idx,
304				 char tag, int inv);
305static int	parse_time	(struct calendar * jd, long * nsec,
306				 nmea_data *, int idx);
307static int	parse_date	(struct calendar *jd, nmea_data*,
308				 int idx, enum date_fmt fmt);
309static int	parse_weekdata	(gps_weektm *, nmea_data *,
310				 int weekidx, int timeidx, int leapidx);
311/* calendar / date helpers */
312static int	unfold_day	(struct calendar * jd, u_int32 rec_ui);
313static int	unfold_century	(struct calendar * jd, u_int32 rec_ui);
314static int	gpsfix_century	(struct calendar * jd, const gps_weektm * wd,
315				 u_short * ccentury);
316static l_fp     eval_gps_time	(struct peer * peer, const struct calendar * gpst,
317				 const struct timespec * gpso, const l_fp * xrecv);
318
319static int	nmead_open	(const char * device);
320static void     save_ltc        (struct refclockproc * const, const char * const,
321				 size_t);
322
323/*
324 * If we want the driver to ouput sentences, too: re-enable the send
325 * support functions by defining NMEA_WRITE_SUPPORT to non-zero...
326 */
327#if NMEA_WRITE_SUPPORT
328
329static	void gps_send(int, const char *, struct peer *);
330# ifdef SYS_WINNT
331#  undef write	/* ports/winnt/include/config.h: #define write _write */
332extern int async_write(int, const void *, unsigned int);
333#  define write(fd, data, octets)	async_write(fd, data, octets)
334# endif /* SYS_WINNT */
335
336#endif /* NMEA_WRITE_SUPPORT */
337
338static int32_t g_gpsMinBase;
339static int32_t g_gpsMinYear;
340
341/*
342 * -------------------------------------------------------------------
343 * Transfer vector
344 * -------------------------------------------------------------------
345 */
346struct refclock refclock_nmea = {
347	nmea_start,		/* start up driver */
348	nmea_shutdown,		/* shut down driver */
349	nmea_poll,		/* transmit poll message */
350	NMEA_CONTROL,		/* fudge control */
351	nmea_init,		/* initialize driver */
352	noentry,		/* buginfo */
353	nmea_timer		/* called once per second */
354};
355
356/*
357 * -------------------------------------------------------------------
358 * nmea_init - initialise data
359 *
360 * calculates a few runtime constants that cannot be made compile time
361 * constants.
362 * -------------------------------------------------------------------
363 */
364static void
365nmea_init(void)
366{
367	struct calendar date;
368
369	/* - calculate min. base value for GPS epoch & century unfolding
370	 * This assumes that the build system was roughly in sync with
371	 * the world, and that really synchronising to a time before the
372	 * program was created would be unsafe or insane. If the build
373	 * date cannot be stablished, at least use the start of GPS
374	 * (1980-01-06) as minimum, because GPS can surely NOT
375	 * synchronise beyond it's own big bang. We add a little safety
376	 * margin for the fuzziness of the build date, which is in an
377	 * undefined time zone. */
378	if (ntpcal_get_build_date(&date))
379		g_gpsMinBase = ntpcal_date_to_rd(&date) - 2;
380	else
381		g_gpsMinBase = 0;
382
383	if (g_gpsMinBase < DAY_GPS_STARTS)
384		g_gpsMinBase = DAY_GPS_STARTS;
385
386	ntpcal_rd_to_date(&date, g_gpsMinBase);
387	g_gpsMinYear  = date.year;
388	g_gpsMinBase -= DAY_NTP_STARTS;
389}
390
391/*
392 * -------------------------------------------------------------------
393 * nmea_start - open the GPS devices and initialize data for processing
394 *
395 * return 0 on error, 1 on success. Even on error the peer structures
396 * must be in a state that permits 'nmea_shutdown()' to clean up all
397 * resources, because it will be called immediately to do so.
398 * -------------------------------------------------------------------
399 */
400static int
401nmea_start(
402	int		unit,
403	struct peer *	peer
404	)
405{
406	struct refclockproc * const	pp = peer->procptr;
407	nmea_unit * const		up = emalloc_zero(sizeof(*up));
408	char				device[20];
409	size_t				devlen;
410	u_int32				rate;
411	int				baudrate;
412	const char *			baudtext;
413
414
415	/* Get baudrate choice from mode byte bits 4/5/6 */
416	rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
417
418	switch (rate) {
419	case 0:
420		baudrate = SPEED232;
421		baudtext = "4800";
422		break;
423	case 1:
424		baudrate = B9600;
425		baudtext = "9600";
426		break;
427	case 2:
428		baudrate = B19200;
429		baudtext = "19200";
430		break;
431	case 3:
432		baudrate = B38400;
433		baudtext = "38400";
434		break;
435#ifdef B57600
436	case 4:
437		baudrate = B57600;
438		baudtext = "57600";
439		break;
440#endif
441#ifdef B115200
442	case 5:
443		baudrate = B115200;
444		baudtext = "115200";
445		break;
446#endif
447	default:
448		baudrate = SPEED232;
449		baudtext = "4800 (fallback)";
450		break;
451	}
452
453	/* Allocate and initialize unit structure */
454	pp->unitptr = (caddr_t)up;
455	pp->io.fd = -1;
456	pp->io.clock_recv = nmea_receive;
457	pp->io.srcclock = peer;
458	pp->io.datalen = 0;
459	/* force change detection on first valid message */
460	memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
461	/* force checksum on GPRMC, see below */
462	up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
463#ifdef HAVE_PPSAPI
464	up->ppsapi_fd = -1;
465#endif
466	ZERO(up->tally);
467
468	/* Initialize miscellaneous variables */
469	peer->precision = PRECISION;
470	pp->clockdesc = DESCRIPTION;
471	memcpy(&pp->refid, REFID, 4);
472
473	/* Open serial port. Use CLK line discipline, if available. */
474	devlen = snprintf(device, sizeof(device), DEVICE, unit);
475	if (devlen >= sizeof(device)) {
476		msyslog(LOG_ERR, "%s clock device name too long",
477			refnumtoa(&peer->srcadr));
478		return FALSE; /* buffer overflow */
479	}
480	pp->io.fd = refclock_open(device, baudrate, LDISC_CLK);
481	if (0 >= pp->io.fd) {
482		pp->io.fd = nmead_open(device);
483		if (-1 == pp->io.fd)
484			return FALSE;
485	}
486	LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps",
487	      refnumtoa(&peer->srcadr), device, baudtext));
488
489	/* succeed if this clock can be added */
490	return io_addclock(&pp->io) != 0;
491}
492
493
494/*
495 * -------------------------------------------------------------------
496 * nmea_shutdown - shut down a GPS clock
497 *
498 * NOTE this routine is called after nmea_start() returns failure,
499 * as well as during a normal shutdown due to ntpq :config unpeer.
500 * -------------------------------------------------------------------
501 */
502static void
503nmea_shutdown(
504	int           unit,
505	struct peer * peer
506	)
507{
508	struct refclockproc * const pp = peer->procptr;
509	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
510
511	UNUSED_ARG(unit);
512
513	if (up != NULL) {
514#ifdef HAVE_PPSAPI
515		if (up->ppsapi_lit)
516			time_pps_destroy(up->atom.handle);
517		if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd)
518			close(up->ppsapi_fd);
519#endif
520		free(up);
521	}
522	pp->unitptr = (caddr_t)NULL;
523	if (-1 != pp->io.fd)
524		io_closeclock(&pp->io);
525	pp->io.fd = -1;
526}
527
528/*
529 * -------------------------------------------------------------------
530 * nmea_control - configure fudge params
531 * -------------------------------------------------------------------
532 */
533#ifdef HAVE_PPSAPI
534static void
535nmea_control(
536	int                         unit,
537	const struct refclockstat * in_st,
538	struct refclockstat       * out_st,
539	struct peer               * peer
540	)
541{
542	struct refclockproc * const pp = peer->procptr;
543	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
544
545	char   device[32];
546	size_t devlen;
547
548	UNUSED_ARG(in_st);
549	UNUSED_ARG(out_st);
550
551	/*
552	 * PPS control
553	 *
554	 * If /dev/gpspps$UNIT can be opened that will be used for
555	 * PPSAPI.  Otherwise, the GPS serial device /dev/gps$UNIT
556	 * already opened is used for PPSAPI as well. (This might not
557	 * work, in which case the PPS API remains unavailable...)
558	 */
559
560	/* Light up the PPSAPI interface if not yet attempted. */
561	if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
562		up->ppsapi_tried = TRUE;
563		devlen = snprintf(device, sizeof(device), PPSDEV, unit);
564		if (devlen < sizeof(device)) {
565			up->ppsapi_fd = open(device, PPSOPENMODE,
566					     S_IRUSR | S_IWUSR);
567		} else {
568			up->ppsapi_fd = -1;
569			msyslog(LOG_ERR, "%s PPS device name too long",
570				refnumtoa(&peer->srcadr));
571		}
572		if (-1 == up->ppsapi_fd)
573			up->ppsapi_fd = pp->io.fd;
574		if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
575			/* use the PPS API for our own purposes now. */
576			up->ppsapi_lit = refclock_params(
577				pp->sloppyclockflag, &up->atom);
578			if (!up->ppsapi_lit) {
579				/* failed to configure, drop PPS unit */
580				time_pps_destroy(up->atom.handle);
581				msyslog(LOG_WARNING,
582					"%s set PPSAPI params fails",
583					refnumtoa(&peer->srcadr));
584			}
585			/* note: the PPS I/O handle remains valid until
586			 * flag1 is cleared or the clock is shut down.
587			 */
588		} else {
589			msyslog(LOG_WARNING,
590				"%s flag1 1 but PPSAPI fails",
591				refnumtoa(&peer->srcadr));
592		}
593	}
594
595	/* shut down PPS API if activated */
596	if (!(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
597		/* shutdown PPS API */
598		if (up->ppsapi_lit)
599			time_pps_destroy(up->atom.handle);
600		up->atom.handle = 0;
601		/* close/drop PPS fd */
602		if (up->ppsapi_fd != pp->io.fd)
603			close(up->ppsapi_fd);
604		up->ppsapi_fd = -1;
605
606		/* clear markers and peer items */
607		up->ppsapi_gate  = FALSE;
608		up->ppsapi_lit   = FALSE;
609		up->ppsapi_tried = FALSE;
610
611		peer->flags &= ~FLAG_PPS;
612		peer->precision = PRECISION;
613	}
614}
615#endif	/* HAVE_PPSAPI */
616
617/*
618 * -------------------------------------------------------------------
619 * nmea_timer - called once per second
620 *		this only polls (older?) Oncore devices now
621 *
622 * Usually 'nmea_receive()' can get a timestamp every second, but at
623 * least one Motorola unit needs prompting each time. Doing so in
624 * 'nmea_poll()' gives only one sample per poll cycle, which actually
625 * defeats the purpose of the median filter. Polling once per second
626 * seems a much better idea.
627 * -------------------------------------------------------------------
628 */
629static void
630nmea_timer(
631	int	      unit,
632	struct peer * peer
633	)
634{
635#if NMEA_WRITE_SUPPORT
636
637	struct refclockproc * const pp = peer->procptr;
638
639	UNUSED_ARG(unit);
640
641	if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
642		gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
643#else
644
645	UNUSED_ARG(unit);
646	UNUSED_ARG(peer);
647
648#endif /* NMEA_WRITE_SUPPORT */
649}
650
651#ifdef HAVE_PPSAPI
652/*
653 * -------------------------------------------------------------------
654 * refclock_ppsrelate(...) -- correlate with PPS edge
655 *
656 * This function is used to correlate a receive time stamp and a
657 * reference time with a PPS edge time stamp. It applies the necessary
658 * fudges (fudge1 for PPS, fudge2 for receive time) and then tries to
659 * move the receive time stamp to the corresponding edge. This can warp
660 * into future, if a transmission delay of more than 500ms is not
661 * compensated with a corresponding fudge time2 value, because then the
662 * next PPS edge is nearer than the last. (Similiar to what the PPS ATOM
663 * driver does, but we deal with full time stamps here, not just phase
664 * shift information.) Likewise, a negative fudge time2 value must be
665 * used if the reference time stamp correlates with the *following* PPS
666 * pulse.
667 *
668 * Note that the receive time fudge value only needs to move the receive
669 * stamp near a PPS edge but that close proximity is not required;
670 * +/-100ms precision should be enough. But since the fudge value will
671 * probably also be used to compensate the transmission delay when no
672 * PPS edge can be related to the time stamp, it's best to get it as
673 * close as possible.
674 *
675 * It should also be noted that the typical use case is matching to the
676 * preceeding edge, as most units relate their sentences to the current
677 * second.
678 *
679 * The function returns PPS_RELATE_NONE (0) if no PPS edge correlation
680 * can be fixed; PPS_RELATE_EDGE (1) when a PPS edge could be fixed, but
681 * the distance to the reference time stamp is too big (exceeds
682 * +/-400ms) and the ATOM driver PLL cannot be used to fix the phase;
683 * and PPS_RELATE_PHASE (2) when the ATOM driver PLL code can be used.
684 *
685 * On output, the receive time stamp is replaced with the corresponding
686 * PPS edge time if a fix could be made; the PPS fudge is updated to
687 * reflect the proper fudge time to apply. (This implies that
688 * 'refclock_process_offset()' must be used!)
689 * -------------------------------------------------------------------
690 */
691#define PPS_RELATE_NONE	 0	/* no pps correlation possible	  */
692#define PPS_RELATE_EDGE	 1	/* recv time fixed, no phase lock */
693#define PPS_RELATE_PHASE 2	/* recv time fixed, phase lock ok */
694
695static int
696refclock_ppsrelate(
697	const struct refclockproc  * pp	    ,	/* for sanity	  */
698	const struct refclock_atom * ap	    ,	/* for PPS io	  */
699	const l_fp		   * reftime ,
700	l_fp			   * rd_stamp,	/* i/o read stamp */
701	double			     pp_fudge,	/* pps fudge	  */
702	double			   * rd_fudge	/* i/o read fudge */
703	)
704{
705	pps_info_t	pps_info;
706	struct timespec timeout;
707	l_fp		pp_stamp, pp_delta;
708	double		delta, idelta;
709
710	if (pp->leap == LEAP_NOTINSYNC)
711		return PPS_RELATE_NONE; /* clock is insane, no chance */
712
713	ZERO(timeout);
714	ZERO(pps_info);
715	if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC,
716			   &pps_info, &timeout) < 0)
717		return PPS_RELATE_NONE; /* can't get time stamps */
718
719	/* get last active PPS edge before receive */
720	if (ap->pps_params.mode & PPS_CAPTUREASSERT)
721		timeout = pps_info.assert_timestamp;
722	else if (ap->pps_params.mode & PPS_CAPTURECLEAR)
723		timeout = pps_info.clear_timestamp;
724	else
725		return PPS_RELATE_NONE; /* WHICH edge, please?!? */
726
727	/* get delta between receive time and PPS time */
728	pp_stamp = tspec_stamp_to_lfp(timeout);
729	pp_delta = *rd_stamp;
730	L_SUB(&pp_delta, &pp_stamp);
731	LFPTOD(&pp_delta, delta);
732	delta += pp_fudge - *rd_fudge;
733	if (fabs(delta) > 1.5)
734		return PPS_RELATE_NONE; /* PPS timeout control */
735
736	/* eventually warp edges, check phase */
737	idelta	  = floor(delta + 0.5);
738	pp_fudge -= idelta;
739	delta	 -= idelta;
740	if (fabs(delta) > 0.45)
741		return PPS_RELATE_NONE; /* dead band control */
742
743	/* we actually have a PPS edge to relate with! */
744	*rd_stamp = pp_stamp;
745	*rd_fudge = pp_fudge;
746
747	/* if whole system out-of-sync, do not try to PLL */
748	if (sys_leap == LEAP_NOTINSYNC)
749		return PPS_RELATE_EDGE; /* cannot PLL with atom code */
750
751	/* check against reftime if ATOM PLL can be used */
752	pp_delta = *reftime;
753	L_SUB(&pp_delta, &pp_stamp);
754	LFPTOD(&pp_delta, delta);
755	delta += pp_fudge;
756	if (fabs(delta) > 0.45)
757		return PPS_RELATE_EDGE; /* cannot PLL with atom code */
758
759	/* all checks passed, gets an AAA rating here! */
760	return PPS_RELATE_PHASE; /* can PLL with atom code */
761}
762#endif	/* HAVE_PPSAPI */
763
764/*
765 * -------------------------------------------------------------------
766 * nmea_receive - receive data from the serial interface
767 *
768 * This is the workhorse for NMEA data evaluation:
769 *
770 * + it checks all NMEA data, and rejects sentences that are not valid
771 *   NMEA sentences
772 * + it checks whether a sentence is known and to be used
773 * + it parses the time and date data from the NMEA data string and
774 *   augments the missing bits. (century in dat, whole date, ...)
775 * + it rejects data that is not from the first accepted sentence in a
776 *   burst
777 * + it eventually replaces the receive time with the PPS edge time.
778 * + it feeds the data to the internal processing stages.
779 * -------------------------------------------------------------------
780 */
781static void
782nmea_receive(
783	struct recvbuf * rbufp
784	)
785{
786	/* declare & init control structure ptrs */
787	struct peer	    * const peer = rbufp->recv_peer;
788	struct refclockproc * const pp = peer->procptr;
789	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
790
791	/* Use these variables to hold data until we decide its worth keeping */
792	nmea_data rdata;
793	char 	  rd_lastcode[BMAX];
794	l_fp 	  rd_timestamp, rd_reftime;
795	int	  rd_lencode;
796	double	  rd_fudge;
797
798	/* working stuff */
799	struct calendar date;	/* to keep & convert the time stamp */
800	struct timespec tofs;	/* offset to full-second reftime */
801	gps_weektm      gpsw;	/* week time storage */
802	/* results of sentence/date/time parsing */
803	u_char		sentence;	/* sentence tag */
804	int		checkres;
805	char *		cp;
806	int		rc_date;
807	int		rc_time;
808
809	/* make sure data has defined pristine state */
810	ZERO(tofs);
811	ZERO(date);
812	ZERO(gpsw);
813
814	/*
815	 * Read the timecode and timestamp, then initialise field
816	 * processing. The <CR><LF> at the NMEA line end is translated
817	 * to <LF><LF> by the terminal input routines on most systems,
818	 * and this gives us one spurious empty read per record which we
819	 * better ignore silently.
820	 */
821	rd_lencode = refclock_gtlin(rbufp, rd_lastcode,
822				    sizeof(rd_lastcode), &rd_timestamp);
823	checkres = field_init(&rdata, rd_lastcode, rd_lencode);
824	switch (checkres) {
825
826	case CHECK_INVALID:
827		DPRINTF(1, ("%s invalid data: '%s'\n",
828			refnumtoa(&peer->srcadr), rd_lastcode));
829		refclock_report(peer, CEVNT_BADREPLY);
830		return;
831
832	case CHECK_EMPTY:
833		return;
834
835	default:
836		DPRINTF(1, ("%s gpsread: %d '%s'\n",
837			refnumtoa(&peer->srcadr), rd_lencode,
838			rd_lastcode));
839		break;
840	}
841	up->tally.total++;
842
843	/*
844	 * --> below this point we have a valid NMEA sentence <--
845	 *
846	 * Check sentence name. Skip first 2 chars (talker ID) in most
847	 * cases, to allow for $GLGGA and $GPGGA etc. Since the name
848	 * field has at least 5 chars we can simply shift the field
849	 * start.
850	 */
851	cp = field_parse(&rdata, 0);
852	if      (strncmp(cp + 2, "RMC,", 4) == 0)
853		sentence = NMEA_GPRMC;
854	else if (strncmp(cp + 2, "GGA,", 4) == 0)
855		sentence = NMEA_GPGGA;
856	else if (strncmp(cp + 2, "GLL,", 4) == 0)
857		sentence = NMEA_GPGLL;
858	else if (strncmp(cp + 2, "ZDA,", 4) == 0)
859		sentence = NMEA_GPZDA;
860	else if (strncmp(cp + 2, "ZDG,", 4) == 0)
861		sentence = NMEA_GPZDG;
862	else if (strncmp(cp,   "PGRMF,", 6) == 0)
863		sentence = NMEA_PGRMF;
864	else
865		return;	/* not something we know about */
866
867	/* Eventually output delay measurement now. */
868	if (peer->ttl & NMEA_DELAYMEAS_MASK) {
869		mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
870			 ldexp(rd_timestamp.l_uf, -32),
871			 (int)(strchr(rd_lastcode, ',') - rd_lastcode),
872			 rd_lastcode);
873	}
874
875	/* See if I want to process this message type */
876	if ((peer->ttl & NMEA_MESSAGE_MASK) &&
877	    !(peer->ttl & sentence_mode[sentence])) {
878		up->tally.filtered++;
879		return;
880	}
881
882	/*
883	 * make sure it came in clean
884	 *
885	 * Apparently, older NMEA specifications (which are expensive)
886	 * did not require the checksum for all sentences.  $GPMRC is
887	 * the only one so far identified which has always been required
888	 * to include a checksum.
889	 *
890	 * Today, most NMEA GPS receivers checksum every sentence.  To
891	 * preserve its error-detection capabilities with modern GPSes
892	 * while allowing operation without checksums on all but $GPMRC,
893	 * we keep track of whether we've ever seen a valid checksum on
894	 * a given sentence, and if so, reject future instances without
895	 * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
896	 * 'nmea_start()' to enforce checksums for $GPRMC right from the
897	 * start.)
898	 */
899	if (up->cksum_type[sentence] <= (u_char)checkres) {
900		up->cksum_type[sentence] = (u_char)checkres;
901	} else {
902		DPRINTF(1, ("%s checksum missing: '%s'\n",
903			refnumtoa(&peer->srcadr), rd_lastcode));
904		refclock_report(peer, CEVNT_BADREPLY);
905		up->tally.malformed++;
906		return;
907	}
908
909	/*
910	 * $GPZDG provides GPS time not UTC, and the two mix poorly.
911	 * Once have processed a $GPZDG, do not process any further UTC
912	 * sentences (all but $GPZDG currently).
913	 */
914	if (up->gps_time && NMEA_GPZDG != sentence) {
915		up->tally.filtered++;
916		return;
917	}
918
919	DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
920		refnumtoa(&peer->srcadr), rd_lencode, rd_lastcode));
921
922	/*
923	 * Grab fields depending on clock string type and possibly wipe
924	 * sensitive data from the last timecode.
925	 */
926	switch (sentence) {
927
928	case NMEA_GPRMC:
929		/* Check quality byte, fetch data & time */
930		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
931		pp->leap = parse_qual(&rdata, 2, 'A', 0);
932		rc_date	 = parse_date(&date, &rdata, 9, DATE_1_DDMMYY)
933			&& unfold_century(&date, rd_timestamp.l_ui);
934		if (CLK_FLAG4 & pp->sloppyclockflag)
935			field_wipe(&rdata, 3, 4, 5, 6, -1);
936		break;
937
938	case NMEA_GPGGA:
939		/* Check quality byte, fetch time only */
940		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
941		pp->leap = parse_qual(&rdata, 6, '0', 1);
942		rc_date	 = unfold_day(&date, rd_timestamp.l_ui);
943		if (CLK_FLAG4 & pp->sloppyclockflag)
944			field_wipe(&rdata, 2, 4, -1);
945		break;
946
947	case NMEA_GPGLL:
948		/* Check quality byte, fetch time only */
949		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 5);
950		pp->leap = parse_qual(&rdata, 6, 'A', 0);
951		rc_date	 = unfold_day(&date, rd_timestamp.l_ui);
952		if (CLK_FLAG4 & pp->sloppyclockflag)
953			field_wipe(&rdata, 1, 3, -1);
954		break;
955
956	case NMEA_GPZDA:
957		/* No quality.	Assume best, fetch time & full date */
958		pp->leap = LEAP_NOWARNING;
959		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
960		rc_date	 = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
961		break;
962
963	case NMEA_GPZDG:
964		/* Check quality byte, fetch time & full date */
965		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
966		rc_date	 = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
967		pp->leap = parse_qual(&rdata, 4, '0', 1);
968		tofs.tv_sec = -1; /* GPZDG is following second */
969		break;
970
971	case NMEA_PGRMF:
972		/* get date, time, qualifier and GPS weektime. We need
973		 * date and time-of-day for the century fix, so we read
974		 * them first.
975		 */
976		rc_date  = parse_weekdata(&gpsw, &rdata, 1, 2, 5)
977		        && parse_date(&date, &rdata, 3, DATE_1_DDMMYY);
978		rc_time  = parse_time(&date, &tofs.tv_nsec, &rdata, 4);
979		pp->leap = parse_qual(&rdata, 11, '0', 1);
980		rc_date  = rc_date
981		        && gpsfix_century(&date, &gpsw, &up->century_cache);
982		if (CLK_FLAG4 & pp->sloppyclockflag)
983			field_wipe(&rdata, 6, 8, -1);
984		break;
985
986	default:
987		INVARIANT(0);	/* Coverity 97123 */
988		return;
989	}
990
991	/* Check sanity of time-of-day. */
992	if (rc_time == 0) {	/* no time or conversion error? */
993		checkres = CEVNT_BADTIME;
994		up->tally.malformed++;
995	}
996	/* Check sanity of date. */
997	else if (rc_date == 0) {/* no date or conversion error? */
998		checkres = CEVNT_BADDATE;
999		up->tally.malformed++;
1000	}
1001	/* check clock sanity; [bug 2143] */
1002	else if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
1003		checkres = CEVNT_BADREPLY;
1004		up->tally.rejected++;
1005	}
1006	else
1007		checkres = -1;
1008
1009	if (checkres != -1) {
1010		save_ltc(pp, rd_lastcode, rd_lencode);
1011		refclock_report(peer, checkres);
1012		return;
1013	}
1014
1015	DPRINTF(1, ("%s effective timecode: %04u-%02u-%02u %02d:%02d:%02d\n",
1016		refnumtoa(&peer->srcadr),
1017		date.year, date.month, date.monthday,
1018		date.hour, date.minute, date.second));
1019
1020	/* Check if we must enter GPS time mode; log so if we do */
1021	if (!up->gps_time && (sentence == NMEA_GPZDG)) {
1022		msyslog(LOG_INFO, "%s using GPS time as if it were UTC",
1023			refnumtoa(&peer->srcadr));
1024		up->gps_time = 1;
1025	}
1026
1027	/*
1028	 * Get the reference time stamp from the calendar buffer.
1029	 * Process the new sample in the median filter and determine the
1030	 * timecode timestamp, but only if the PPS is not in control.
1031	 * Discard sentence if reference time did not change.
1032	 */
1033	rd_reftime = eval_gps_time(peer, &date, &tofs, &rd_timestamp);
1034	if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
1035		/* Do not touch pp->a_lastcode on purpose! */
1036		up->tally.filtered++;
1037		return;
1038	}
1039	up->last_reftime = rd_reftime;
1040	rd_fudge = pp->fudgetime2;
1041
1042	DPRINTF(1, ("%s using '%s'\n",
1043		    refnumtoa(&peer->srcadr), rd_lastcode));
1044
1045	/* Data will be accepted. Update stats & log data. */
1046	up->tally.accepted++;
1047	save_ltc(pp, rd_lastcode, rd_lencode);
1048	pp->lastrec = rd_timestamp;
1049
1050#ifdef HAVE_PPSAPI
1051	/*
1052	 * If we have PPS running, we try to associate the sentence
1053	 * with the last active edge of the PPS signal.
1054	 */
1055	if (up->ppsapi_lit)
1056		switch (refclock_ppsrelate(
1057				pp, &up->atom, &rd_reftime, &rd_timestamp,
1058				pp->fudgetime1,	&rd_fudge))
1059		{
1060		case PPS_RELATE_PHASE:
1061			up->ppsapi_gate = TRUE;
1062			peer->precision = PPS_PRECISION;
1063			peer->flags |= FLAG_PPS;
1064			DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
1065				    refnumtoa(&peer->srcadr)));
1066			up->tally.pps_used++;
1067			break;
1068
1069		case PPS_RELATE_EDGE:
1070			up->ppsapi_gate = TRUE;
1071			peer->precision = PPS_PRECISION;
1072			DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
1073				    refnumtoa(&peer->srcadr)));
1074			break;
1075
1076		case PPS_RELATE_NONE:
1077		default:
1078			/*
1079			 * Resetting precision and PPS flag is done in
1080			 * 'nmea_poll', since it might be a glitch. But
1081			 * at the end of the poll cycle we know...
1082			 */
1083			DPRINTF(2, ("%s PPS_RELATE_NONE\n",
1084				    refnumtoa(&peer->srcadr)));
1085			break;
1086		}
1087#endif /* HAVE_PPSAPI */
1088
1089	refclock_process_offset(pp, rd_reftime, rd_timestamp, rd_fudge);
1090}
1091
1092
1093/*
1094 * -------------------------------------------------------------------
1095 * nmea_poll - called by the transmit procedure
1096 *
1097 * Does the necessary bookkeeping stuff to keep the reported state of
1098 * the clock in sync with reality.
1099 *
1100 * We go to great pains to avoid changing state here, since there may
1101 * be more than one eavesdropper receiving the same timecode.
1102 * -------------------------------------------------------------------
1103 */
1104static void
1105nmea_poll(
1106	int           unit,
1107	struct peer * peer
1108	)
1109{
1110	struct refclockproc * const pp = peer->procptr;
1111	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1112
1113	/*
1114	 * Process median filter samples. If none received, declare a
1115	 * timeout and keep going.
1116	 */
1117#ifdef HAVE_PPSAPI
1118	/*
1119	 * If we don't have PPS pulses and time stamps, turn PPS down
1120	 * for now.
1121	 */
1122	if (!up->ppsapi_gate) {
1123		peer->flags &= ~FLAG_PPS;
1124		peer->precision = PRECISION;
1125	} else {
1126		up->ppsapi_gate = FALSE;
1127	}
1128#endif /* HAVE_PPSAPI */
1129
1130	/*
1131	 * If the median filter is empty, claim a timeout. Else process
1132	 * the input data and keep the stats going.
1133	 */
1134	if (pp->coderecv == pp->codeproc) {
1135		refclock_report(peer, CEVNT_TIMEOUT);
1136	} else {
1137		pp->polls++;
1138		pp->lastref = pp->lastrec;
1139		refclock_receive(peer);
1140	}
1141
1142	/*
1143	 * If extended logging is required, write the tally stats to the
1144	 * clockstats file; otherwise just do a normal clock stats
1145	 * record. Clear the tally stats anyway.
1146	*/
1147	if (peer->ttl & NMEA_EXTLOG_MASK) {
1148		/* Log & reset counters with extended logging */
1149		const char *nmea = pp->a_lastcode;
1150		if (*nmea == '\0') nmea = "(none)";
1151		mprintf_clock_stats(
1152		  &peer->srcadr, "%s  %u %u %u %u %u %u",
1153		  nmea,
1154		  up->tally.total, up->tally.accepted,
1155		  up->tally.rejected, up->tally.malformed,
1156		  up->tally.filtered, up->tally.pps_used);
1157	} else {
1158		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1159	}
1160	ZERO(up->tally);
1161}
1162
1163/*
1164 * -------------------------------------------------------------------
1165 * Save the last timecode string, making sure it's properly truncated
1166 * if necessary and NUL terminated in any case.
1167 */
1168static void
1169save_ltc(
1170	struct refclockproc * const pp,
1171	const char * const          tc,
1172	size_t                      len
1173	)
1174{
1175	if (len >= sizeof(pp->a_lastcode))
1176		len = sizeof(pp->a_lastcode) - 1;
1177	pp->lencode = (u_short)len;
1178	memcpy(pp->a_lastcode, tc, len);
1179	pp->a_lastcode[len] = '\0';
1180}
1181
1182
1183#if NMEA_WRITE_SUPPORT
1184/*
1185 * -------------------------------------------------------------------
1186 *  gps_send(fd, cmd, peer)	Sends a command to the GPS receiver.
1187 *   as in gps_send(fd, "rqts,u", peer);
1188 *
1189 * If 'cmd' starts with a '$' it is assumed that this command is in raw
1190 * format, that is, starts with '$', ends with '<cr><lf>' and that any
1191 * checksum is correctly provided; the command will be send 'as is' in
1192 * that case. Otherwise the function will create the necessary frame
1193 * (start char, chksum, final CRLF) on the fly.
1194 *
1195 * We don't currently send any data, but would like to send RTCM SC104
1196 * messages for differential positioning. It should also give us better
1197 * time. Without a PPS output, we're Just fooling ourselves because of
1198 * the serial code paths
1199 * -------------------------------------------------------------------
1200 */
1201static void
1202gps_send(
1203	int           fd,
1204	const char  * cmd,
1205	struct peer * peer
1206	)
1207{
1208	/* $...*xy<CR><LF><NUL> add 7 */
1209	char	      buf[NMEA_PROTO_MAXLEN + 7];
1210	int	      len;
1211	u_char	      dcs;
1212	const u_char *beg, *end;
1213
1214	if (*cmd != '$') {
1215		/* get checksum and length */
1216		beg = end = (const u_char*)cmd;
1217		dcs = 0;
1218		while (*end >= ' ' && *end != '*')
1219			dcs ^= *end++;
1220		len = end - beg;
1221		/* format into output buffer with overflow check */
1222		len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
1223			       len, beg, dcs);
1224		if ((size_t)len >= sizeof(buf)) {
1225			DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
1226				    refnumtoa(&peer->srcadr), cmd));
1227			return;	/* game over player 1 */
1228		}
1229		cmd = buf;
1230	} else {
1231		len = strlen(cmd);
1232	}
1233
1234	DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
1235		len - 2, cmd));
1236
1237	/* send out the whole stuff */
1238	if (write(fd, cmd, len) == -1)
1239		refclock_report(peer, CEVNT_FAULT);
1240}
1241#endif /* NMEA_WRITE_SUPPORT */
1242
1243/*
1244 * -------------------------------------------------------------------
1245 * helpers for faster field splitting
1246 * -------------------------------------------------------------------
1247 *
1248 * set up a field record, check syntax and verify checksum
1249 *
1250 * format is $XXXXX,1,2,3,4*ML
1251 *
1252 * 8-bit XOR of characters between $ and * noninclusive is transmitted
1253 * in last two chars M and L holding most and least significant nibbles
1254 * in hex representation such as:
1255 *
1256 *   $GPGLL,5057.970,N,00146.110,E,142451,A*27
1257 *   $GPVTG,089.0,T,,,15.2,N,,*7F
1258 *
1259 * Some other constraints:
1260 * + The field name must at least 5 upcase characters or digits and must
1261 *   start with a character.
1262 * + The checksum (if present) must be uppercase hex digits.
1263 * + The length of a sentence is limited to 80 characters (not including
1264 *   the final CR/LF nor the checksum, but including the leading '$')
1265 *
1266 * Return values:
1267 *  + CHECK_INVALID
1268 *	The data does not form a valid NMEA sentence or a checksum error
1269 *	occurred.
1270 *  + CHECK_VALID
1271 *	The data is a valid NMEA sentence but contains no checksum.
1272 *  + CHECK_CSVALID
1273 *	The data is a valid NMEA sentence and passed the checksum test.
1274 * -------------------------------------------------------------------
1275 */
1276static int
1277field_init(
1278	nmea_data * data,	/* context structure		       */
1279	char 	  * cptr,	/* start of raw data		       */
1280	int	    dlen	/* data len, not counting trailing NUL */
1281	)
1282{
1283	u_char cs_l;	/* checksum local computed	*/
1284	u_char cs_r;	/* checksum remote given	*/
1285	char * eptr;	/* buffer end end pointer	*/
1286	char   tmp;	/* char buffer 			*/
1287
1288	cs_l = 0;
1289	cs_r = 0;
1290	/* some basic input constraints */
1291	if (dlen < 0)
1292		dlen = 0;
1293	eptr = cptr + dlen;
1294	*eptr = '\0';
1295
1296	/* load data context */
1297	data->base = cptr;
1298	data->cptr = cptr;
1299	data->cidx = 0;
1300	data->blen = dlen;
1301
1302	/* syntax check follows here. check allowed character
1303	 * sequences, updating the local computed checksum as we go.
1304	 *
1305	 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
1306	 */
1307
1308	/* -*- start character: '^\$' */
1309	if (*cptr == '\0')
1310		return CHECK_EMPTY;
1311	if (*cptr++ != '$')
1312		return CHECK_INVALID;
1313
1314	/* -*- advance context beyond start character */
1315	data->base++;
1316	data->cptr++;
1317	data->blen--;
1318
1319	/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
1320	if (*cptr < 'A' || *cptr > 'Z')
1321		return CHECK_INVALID;
1322	cs_l ^= *cptr++;
1323	while ((*cptr >= 'A' && *cptr <= 'Z') ||
1324	       (*cptr >= '0' && *cptr <= '9')  )
1325		cs_l ^= *cptr++;
1326	if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
1327		return CHECK_INVALID;
1328	cs_l ^= *cptr++;
1329
1330	/* -*- data: '[^*]*' */
1331	while (*cptr && *cptr != '*')
1332		cs_l ^= *cptr++;
1333
1334	/* -*- checksum field: (\*[0-9A-F]{2})?$ */
1335	if (*cptr == '\0')
1336		return CHECK_VALID;
1337	if (*cptr != '*' || cptr != eptr - 3 ||
1338	    (cptr - data->base) >= NMEA_PROTO_MAXLEN)
1339		return CHECK_INVALID;
1340
1341	for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
1342		if (tmp >= '0' && tmp <= '9')
1343			cs_r = (cs_r << 4) + (tmp - '0');
1344		else if (tmp >= 'A' && tmp <= 'F')
1345			cs_r = (cs_r << 4) + (tmp - 'A' + 10);
1346		else
1347			break;
1348	}
1349
1350	/* -*- make sure we are at end of string and csum matches */
1351	if (cptr != eptr || cs_l != cs_r)
1352		return CHECK_INVALID;
1353
1354	return CHECK_CSVALID;
1355}
1356
1357/*
1358 * -------------------------------------------------------------------
1359 * fetch a data field by index, zero being the name field. If this
1360 * function is called repeatedly with increasing indices, the total load
1361 * is O(n), n being the length of the string; if it is called with
1362 * decreasing indices, the total load is O(n^2). Try not to go backwards
1363 * too often.
1364 * -------------------------------------------------------------------
1365 */
1366static char *
1367field_parse(
1368	nmea_data * data,
1369	int 	    fn
1370	)
1371{
1372	char tmp;
1373
1374	if (fn < data->cidx) {
1375		data->cidx = 0;
1376		data->cptr = data->base;
1377	}
1378	while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
1379		data->cidx += (tmp == ',');
1380		data->cptr++;
1381	}
1382	return data->cptr;
1383}
1384
1385/*
1386 * -------------------------------------------------------------------
1387 * Wipe (that is, overwrite with '_') data fields and the checksum in
1388 * the last timecode.  The list of field indices is given as integers
1389 * in a varargs list, preferrably in ascending order, in any case
1390 * terminated by a negative field index.
1391 *
1392 * A maximum number of 8 fields can be overwritten at once to guard
1393 * against runaway (that is, unterminated) argument lists.
1394 *
1395 * This function affects what a remote user can see with
1396 *
1397 * ntpq -c clockvar <server>
1398 *
1399 * Note that this also removes the wiped fields from any clockstats
1400 * log.	 Some NTP operators monitor their NMEA GPS using the change in
1401 * location in clockstats over time as as a proxy for the quality of
1402 * GPS reception and thereby time reported.
1403 * -------------------------------------------------------------------
1404 */
1405static void
1406field_wipe(
1407	nmea_data * data,
1408	...
1409	)
1410{
1411	va_list	va;		/* vararg index list */
1412	int	fcnt;		/* safeguard against runaway arglist */
1413	int	fidx;		/* field to nuke, or -1 for checksum */
1414	char  * cp;		/* overwrite destination */
1415
1416	fcnt = 8;
1417	cp = NULL;
1418	va_start(va, data);
1419	do {
1420		fidx = va_arg(va, int);
1421		if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
1422			cp = field_parse(data, fidx);
1423		} else {
1424			cp = data->base + data->blen;
1425			if (data->blen >= 3 && cp[-3] == '*')
1426				cp -= 2;
1427		}
1428		for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
1429			if ('.' != *cp)
1430				*cp = '_';
1431	} while (fcnt-- && fidx >= 0);
1432	va_end(va);
1433}
1434
1435/*
1436 * -------------------------------------------------------------------
1437 * PARSING HELPERS
1438 * -------------------------------------------------------------------
1439 *
1440 * Check sync status
1441 *
1442 * If the character at the data field start matches the tag value,
1443 * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
1444 * flag is given, just the opposite value is returned. If there is no
1445 * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
1446 * -------------------------------------------------------------------
1447 */
1448static u_char
1449parse_qual(
1450	nmea_data * rd,
1451	int         idx,
1452	char        tag,
1453	int         inv
1454	)
1455{
1456	static const u_char table[2] =
1457				{ LEAP_NOTINSYNC, LEAP_NOWARNING };
1458	char * dp;
1459
1460	dp = field_parse(rd, idx);
1461
1462	return table[ *dp && ((*dp == tag) == !inv) ];
1463}
1464
1465/*
1466 * -------------------------------------------------------------------
1467 * Parse a time stamp in HHMMSS[.sss] format with error checking.
1468 *
1469 * returns 1 on success, 0 on failure
1470 * -------------------------------------------------------------------
1471 */
1472static int
1473parse_time(
1474	struct calendar * jd,	/* result calendar pointer */
1475	long		* ns,	/* storage for nsec fraction */
1476	nmea_data       * rd,
1477	int		  idx
1478	)
1479{
1480	static const unsigned long weight[4] = {
1481		0, 100000000, 10000000, 1000000
1482	};
1483
1484	int	rc;
1485	u_int	h;
1486	u_int	m;
1487	u_int	s;
1488	int	p1;
1489	int	p2;
1490	u_long	f;
1491	char  * dp;
1492
1493	dp = field_parse(rd, idx);
1494	rc = sscanf(dp, "%2u%2u%2u%n.%3lu%n", &h, &m, &s, &p1, &f, &p2);
1495	if (rc < 3 || p1 != 6) {
1496		DPRINTF(1, ("nmea: invalid time code: '%.6s'\n", dp));
1497		return FALSE;
1498	}
1499
1500	/* value sanity check */
1501	if (h > 23 || m > 59 || s > 60) {
1502		DPRINTF(1, ("nmea: invalid time spec %02u:%02u:%02u\n",
1503			    h, m, s));
1504		return FALSE;
1505	}
1506
1507	jd->hour   = (u_char)h;
1508	jd->minute = (u_char)m;
1509	jd->second = (u_char)s;
1510	/* if we have a fraction, scale it up to nanoseconds. */
1511	if (rc == 4)
1512		*ns = f * weight[p2 - p1 - 1];
1513	else
1514		*ns = 0;
1515
1516	return TRUE;
1517}
1518
1519/*
1520 * -------------------------------------------------------------------
1521 * Parse a date string from an NMEA sentence. This could either be a
1522 * partial date in DDMMYY format in one field, or DD,MM,YYYY full date
1523 * spec spanning three fields. This function does some extensive error
1524 * checking to make sure the date string was consistent.
1525 *
1526 * returns 1 on success, 0 on failure
1527 * -------------------------------------------------------------------
1528 */
1529static int
1530parse_date(
1531	struct calendar * jd,	/* result pointer */
1532	nmea_data       * rd,
1533	int		  idx,
1534	enum date_fmt	  fmt
1535	)
1536{
1537	int	rc;
1538	u_int	y;
1539	u_int	m;
1540	u_int	d;
1541	int	p;
1542	char  * dp;
1543
1544	dp = field_parse(rd, idx);
1545	switch (fmt) {
1546
1547	case DATE_1_DDMMYY:
1548		rc = sscanf(dp, "%2u%2u%2u%n", &d, &m, &y, &p);
1549		if (rc != 3 || p != 6) {
1550			DPRINTF(1, ("nmea: invalid date code: '%.6s'\n",
1551				    dp));
1552			return FALSE;
1553		}
1554		break;
1555
1556	case DATE_3_DDMMYYYY:
1557		rc = sscanf(dp, "%2u,%2u,%4u%n", &d, &m, &y, &p);
1558		if (rc != 3 || p != 10) {
1559			DPRINTF(1, ("nmea: invalid date code: '%.10s'\n",
1560				    dp));
1561			return FALSE;
1562		}
1563		break;
1564
1565	default:
1566		DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
1567		return FALSE;
1568	}
1569
1570	/* value sanity check */
1571	if (d < 1 || d > 31 || m < 1 || m > 12) {
1572		DPRINTF(1, ("nmea: invalid date spec (YMD) %04u:%02u:%02u\n",
1573			    y, m, d));
1574		return FALSE;
1575	}
1576
1577	/* store results */
1578	jd->monthday = (u_char)d;
1579	jd->month    = (u_char)m;
1580	jd->year     = (u_short)y;
1581
1582	return TRUE;
1583}
1584
1585/*
1586 * -------------------------------------------------------------------
1587 * Parse GPS week time info from an NMEA sentence. This info contains
1588 * the GPS week number, the GPS time-of-week and the leap seconds GPS
1589 * to UTC.
1590 *
1591 * returns 1 on success, 0 on failure
1592 * -------------------------------------------------------------------
1593 */
1594static int
1595parse_weekdata(
1596	gps_weektm * wd,
1597	nmea_data  * rd,
1598	int          weekidx,
1599	int          timeidx,
1600	int          leapidx
1601	)
1602{
1603	u_long secs;
1604	int    fcnt;
1605
1606	/* parse fields and count success */
1607	fcnt  = sscanf(field_parse(rd, weekidx), "%hu", &wd->wt_week);
1608	fcnt += sscanf(field_parse(rd, timeidx), "%lu", &secs);
1609	fcnt += sscanf(field_parse(rd, leapidx), "%hd", &wd->wt_leap);
1610	if (fcnt != 3 || wd->wt_week >= 1024 || secs >= 7*SECSPERDAY) {
1611		DPRINTF(1, ("nmea: parse_weekdata: invalid weektime spec\n"));
1612		return FALSE;
1613	}
1614	wd->wt_time = (u_int32)secs;
1615
1616	return TRUE;
1617}
1618
1619/*
1620 * -------------------------------------------------------------------
1621 * funny calendar-oriented stuff -- perhaps a bit hard to grok.
1622 * -------------------------------------------------------------------
1623 *
1624 * Unfold a time-of-day (seconds since midnight) around the current
1625 * system time in a manner that guarantees an absolute difference of
1626 * less than 12hrs.
1627 *
1628 * This function is used for NMEA sentences that contain no date
1629 * information. This requires the system clock to be in +/-12hrs
1630 * around the true time, or the clock will synchronize the system 1day
1631 * off if not augmented with a time sources that also provide the
1632 * necessary date information.
1633 *
1634 * The function updates the calendar structure it also uses as
1635 * input to fetch the time from.
1636 *
1637 * returns 1 on success, 0 on failure
1638 * -------------------------------------------------------------------
1639 */
1640static int
1641unfold_day(
1642	struct calendar * jd,
1643	u_int32		  rec_ui
1644	)
1645{
1646	vint64	     rec_qw;
1647	ntpcal_split rec_ds;
1648
1649	/*
1650	 * basically this is the peridiodic extension of the receive
1651	 * time - 12hrs to the time-of-day with a period of 1 day.
1652	 * But we would have to execute this in 64bit arithmetic, and we
1653	 * cannot assume we can do this; therefore this is done
1654	 * in split representation.
1655	 */
1656	rec_qw = ntpcal_ntp_to_ntp(rec_ui - SECSPERDAY/2, NULL);
1657	rec_ds = ntpcal_daysplit(&rec_qw);
1658	rec_ds.lo = ntpcal_periodic_extend(rec_ds.lo,
1659					   ntpcal_date_to_daysec(jd),
1660					   SECSPERDAY);
1661	rec_ds.hi += ntpcal_daysec_to_date(jd, rec_ds.lo);
1662	return (ntpcal_rd_to_date(jd, rec_ds.hi + DAY_NTP_STARTS) >= 0);
1663}
1664
1665/*
1666 * -------------------------------------------------------------------
1667 * A 2-digit year is expanded into full year spec around the year found
1668 * in 'jd->year'. This should be in +79/-19 years around the system time,
1669 * or the result will be off by 100 years.  The assymetric behaviour was
1670 * chosen to enable inital sync for systems that do not have a
1671 * battery-backup clock and start with a date that is typically years in
1672 * the past.
1673 *
1674 * Since the GPS epoch starts at 1980-01-06, the resulting year will be
1675 * not be before 1980 in any case.
1676 *
1677 * returns 1 on success, 0 on failure
1678 * -------------------------------------------------------------------
1679 */
1680static int
1681unfold_century(
1682	struct calendar * jd,
1683	u_int32		  rec_ui
1684	)
1685{
1686	struct calendar rec;
1687	int32		baseyear;
1688
1689	ntpcal_ntp_to_date(&rec, rec_ui, NULL);
1690	baseyear = rec.year - 20;
1691	if (baseyear < g_gpsMinYear)
1692		baseyear = g_gpsMinYear;
1693	jd->year = (u_short)ntpcal_periodic_extend(baseyear, jd->year,
1694						   100);
1695
1696	return ((baseyear <= jd->year) && (baseyear + 100 > jd->year));
1697}
1698
1699/*
1700 * -------------------------------------------------------------------
1701 * A 2-digit year is expanded into a full year spec by correlation with
1702 * a GPS week number and the current leap second count.
1703 *
1704 * The GPS week time scale counts weeks since Sunday, 1980-01-06, modulo
1705 * 1024 and seconds since start of the week. The GPS time scale is based
1706 * on international atomic time (TAI), so the leap second difference to
1707 * UTC is also needed for a proper conversion.
1708 *
1709 * A brute-force analysis (that is, test for every date) shows that a
1710 * wrong assignment of the century can not happen between the years 1900
1711 * to 2399 when comparing the week signatures for different
1712 * centuries. (I *think* that will not happen for 400*1024 years, but I
1713 * have no valid proof. -*-perlinger@ntp.org-*-)
1714 *
1715 * This function is bound to to work between years 1980 and 2399
1716 * (inclusive), which should suffice for now ;-)
1717 *
1718 * Note: This function needs a full date&time spec on input due to the
1719 * necessary leap second corrections!
1720 *
1721 * returns 1 on success, 0 on failure
1722 * -------------------------------------------------------------------
1723 */
1724static int
1725gpsfix_century(
1726	struct calendar  * jd,
1727	const gps_weektm * wd,
1728	u_short          * century
1729	)
1730{
1731	int32	days;
1732	int32	doff;
1733	u_short week;
1734	u_short year;
1735	int     loop;
1736
1737	/* Get day offset. Assumes that the input time is in range and
1738	 * that the leap seconds do not shift more than +/-1 day.
1739	 */
1740	doff = ntpcal_date_to_daysec(jd) + wd->wt_leap;
1741	doff = (doff >= SECSPERDAY) - (doff < 0);
1742
1743	/*
1744	 * Loop over centuries to get a match, starting with the last
1745	 * successful one. (Or with the 19th century if the cached value
1746	 * is out of range...)
1747	 */
1748	year = jd->year % 100;
1749	for (loop = 5; loop > 0; loop--,(*century)++) {
1750		if (*century < 19 || *century >= 24)
1751			*century = 19;
1752		/* Get days and week in GPS epoch */
1753		jd->year = year + *century * 100;
1754		days = ntpcal_date_to_rd(jd) - DAY_GPS_STARTS + doff;
1755		week = (days / 7) % 1024;
1756		if (days >= 0 && wd->wt_week == week)
1757			return TRUE; /* matched... */
1758	}
1759
1760	jd->year = year;
1761	return FALSE; /* match failed... */
1762}
1763
1764/*
1765 * -------------------------------------------------------------------
1766 * And now the final execise: Considering the fact that many (most?)
1767 * GPS receivers cannot handle a GPS epoch wrap well, we try to
1768 * compensate for that problem by unwrapping a GPS epoch around the
1769 * receive stamp. Another execise in periodic unfolding, of course,
1770 * but with enough points to take care of.
1771 *
1772 * Note: The integral part of 'tofs' is intended to handle small(!)
1773 * systematic offsets, as -1 for handling $GPZDG, which gives the
1774 * following second. (sigh...) The absolute value shall be less than a
1775 * day (86400 seconds).
1776 * -------------------------------------------------------------------
1777 */
1778static l_fp
1779eval_gps_time(
1780	struct peer           * peer, /* for logging etc */
1781	const struct calendar * gpst, /* GPS time stamp  */
1782	const struct timespec * tofs, /* GPS frac second & offset */
1783	const l_fp            * xrecv /* receive time stamp */
1784	)
1785{
1786	struct refclockproc * const pp = peer->procptr;
1787	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1788
1789	l_fp    retv;
1790
1791	/* components of calculation */
1792	int32_t rcv_sec, rcv_day; /* receive ToD and day */
1793	int32_t gps_sec, gps_day; /* GPS ToD and day in NTP epoch */
1794	int32_t adj_day, weeks;   /* adjusted GPS day and week shift */
1795
1796	/* some temporaries to shuffle data */
1797	vint64       vi64;
1798	ntpcal_split rs64;
1799
1800	/* evaluate time stamp from receiver. */
1801	gps_sec = ntpcal_date_to_daysec(gpst);
1802	gps_day = ntpcal_date_to_rd(gpst) - DAY_NTP_STARTS;
1803
1804	/* merge in fractional offset */
1805	retv = tspec_intv_to_lfp(*tofs);
1806	gps_sec += retv.l_i;
1807
1808	/* If we fully trust the GPS receiver, just combine days and
1809	 * seconds and be done. */
1810	if (peer->ttl & NMEA_DATETRUST_MASK) {
1811		retv.l_ui = ntpcal_dayjoin(gps_day, gps_sec).D_s.lo;
1812		return retv;
1813	}
1814
1815	/* So we do not trust the GPS receiver to deliver a correct date
1816	 * due to the GPS epoch changes. We map the date from the
1817	 * receiver into the +/-512 week interval around the receive
1818	 * time in that case. This would be a tad easier with 64bit
1819	 * calculations, but again, we restrict the code to 32bit ops
1820	 * when possible. */
1821
1822	/* - make sure the GPS fractional day is normalised
1823	 * Applying the offset value might have put us slightly over the
1824	 * edge of the allowed range for seconds-of-day. Doing a full
1825	 * division with floor correction is overkill here; a simple
1826	 * addition or subtraction step is sufficient. Using WHILE loops
1827	 * gives the right result even if the offset exceeds one day,
1828	 * which is NOT what it's intented for! */
1829	while (gps_sec >= SECSPERDAY) {
1830		gps_sec -= SECSPERDAY;
1831		gps_day += 1;
1832	}
1833	while (gps_sec < 0) {
1834		gps_sec += SECSPERDAY;
1835		gps_day -= 1;
1836	}
1837
1838	/* - get unfold base: day of full recv time - 512 weeks */
1839	vi64 = ntpcal_ntp_to_ntp(xrecv->l_ui, NULL);
1840	rs64 = ntpcal_daysplit(&vi64);
1841	rcv_sec = rs64.lo;
1842	rcv_day = rs64.hi - 512 * 7;
1843
1844	/* - take the fractional days into account
1845	 * If the fractional day of the GPS time is smaller than the
1846	 * fractional day of the receive time, we shift the base day for
1847	 * the unfold by 1. */
1848	if (   gps_sec  < rcv_sec
1849	   || (gps_sec == rcv_sec && retv.l_uf < xrecv->l_uf))
1850		rcv_day += 1;
1851
1852	/* - don't warp ahead of GPS invention! */
1853	if (rcv_day < g_gpsMinBase)
1854		rcv_day = g_gpsMinBase;
1855
1856	/* - let the magic happen: */
1857	adj_day = ntpcal_periodic_extend(rcv_day, gps_day, 1024*7);
1858
1859	/* - check if we should log a GPS epoch warp */
1860	weeks = (adj_day - gps_day) / 7;
1861	if (weeks != up->epoch_warp) {
1862		up->epoch_warp = weeks;
1863		LOGIF(CLOCKINFO, (LOG_INFO,
1864				  "%s Changed GPS epoch warp to %d weeks",
1865				  refnumtoa(&peer->srcadr), weeks));
1866	}
1867
1868	/* - build result and be done */
1869	retv.l_ui = ntpcal_dayjoin(adj_day, gps_sec).D_s.lo;
1870	return retv;
1871}
1872
1873/*
1874 * ===================================================================
1875 *
1876 * NMEAD support
1877 *
1878 * original nmead support added by Jon Miner (cp_n18@yahoo.com)
1879 *
1880 * See http://home.hiwaay.net/~taylorc/gps/nmea-server/
1881 * for information about nmead
1882 *
1883 * To use this, you need to create a link from /dev/gpsX to
1884 * the server:port where nmead is running.  Something like this:
1885 *
1886 * ln -s server:port /dev/gps1
1887 *
1888 * Split into separate function by Juergen Perlinger
1889 * (perlinger-at-ntp-dot-org)
1890 *
1891 * ===================================================================
1892 */
1893static int
1894nmead_open(
1895	const char * device
1896	)
1897{
1898	int	fd = -1;		/* result file descriptor */
1899
1900#ifdef HAVE_READLINK
1901	char	host[80];		/* link target buffer	*/
1902	char  * port;			/* port name or number	*/
1903	int	rc;			/* result code (several)*/
1904	int     sh;			/* socket handle	*/
1905	struct addrinfo	 ai_hint;	/* resolution hint	*/
1906	struct addrinfo	*ai_list;	/* resolution result	*/
1907	struct addrinfo *ai;		/* result scan ptr	*/
1908
1909	fd = -1;
1910
1911	/* try to read as link, make sure no overflow occurs */
1912	rc = readlink(device, host, sizeof(host));
1913	if ((size_t)rc >= sizeof(host))
1914		return fd;	/* error / overflow / truncation */
1915	host[rc] = '\0';	/* readlink does not place NUL	*/
1916
1917	/* get port */
1918	port = strchr(host, ':');
1919	if (!port)
1920		return fd; /* not 'host:port' syntax ? */
1921	*port++ = '\0';	/* put in separator */
1922
1923	/* get address infos and try to open socket
1924	 *
1925	 * This getaddrinfo() is naughty in ntpd's nonblocking main
1926	 * thread, but you have to go out of your wary to use this code
1927	 * and typically the blocking is at startup where its impact is
1928	 * reduced. The same holds for the 'connect()', as it is
1929	 * blocking, too...
1930	 */
1931	ZERO(ai_hint);
1932	ai_hint.ai_protocol = IPPROTO_TCP;
1933	ai_hint.ai_socktype = SOCK_STREAM;
1934	if (getaddrinfo(host, port, &ai_hint, &ai_list))
1935		return fd;
1936
1937	for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
1938		sh = socket(ai->ai_family, ai->ai_socktype,
1939			    ai->ai_protocol);
1940		if (INVALID_SOCKET == sh)
1941			continue;
1942		rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
1943		if (-1 != rc)
1944			fd = sh;
1945		else
1946			close(sh);
1947	}
1948	freeaddrinfo(ai_list);
1949#else
1950	fd = -1;
1951#endif
1952
1953	return fd;
1954}
1955#else
1956NONEMPTY_TRANSLATION_UNIT
1957#endif /* REFCLOCK && CLOCK_NMEA */
1958