DFAPacketizerEmitter.cpp revision 239462
1//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class parses the Schedule.td file and produces an API that can be used
11// to reason about whether an instruction can be added to a packet on a VLIW
12// architecture. The class internally generates a deterministic finite
13// automaton (DFA) that models all possible mappings of machine instructions
14// to functional units as instructions are added to a packet.
15//
16//===----------------------------------------------------------------------===//
17
18#include "CodeGenTarget.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/TableGen/Record.h"
21#include "llvm/TableGen/TableGenBackend.h"
22#include <list>
23#include <map>
24#include <string>
25using namespace llvm;
26
27//
28// class DFAPacketizerEmitter: class that generates and prints out the DFA
29// for resource tracking.
30//
31namespace {
32class DFAPacketizerEmitter {
33private:
34  std::string TargetName;
35  //
36  // allInsnClasses is the set of all possible resources consumed by an
37  // InstrStage.
38  //
39  DenseSet<unsigned> allInsnClasses;
40  RecordKeeper &Records;
41
42public:
43  DFAPacketizerEmitter(RecordKeeper &R);
44
45  //
46  // collectAllInsnClasses: Populate allInsnClasses which is a set of units
47  // used in each stage.
48  //
49  void collectAllInsnClasses(const std::string &Name,
50                             Record *ItinData,
51                             unsigned &NStages,
52                             raw_ostream &OS);
53
54  void run(raw_ostream &OS);
55};
56} // End anonymous namespace.
57
58//
59//
60// State represents the usage of machine resources if the packet contains
61// a set of instruction classes.
62//
63// Specifically, currentState is a set of bit-masks.
64// The nth bit in a bit-mask indicates whether the nth resource is being used
65// by this state. The set of bit-masks in a state represent the different
66// possible outcomes of transitioning to this state.
67// For example: consider a two resource architecture: resource L and resource M
68// with three instruction classes: L, M, and L_or_M.
69// From the initial state (currentState = 0x00), if we add instruction class
70// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
71// represents the possible resource states that can result from adding a L_or_M
72// instruction
73//
74// Another way of thinking about this transition is we are mapping a NDFA with
75// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
76//
77//
78namespace {
79class State {
80 public:
81  static int currentStateNum;
82  int stateNum;
83  bool isInitial;
84  std::set<unsigned> stateInfo;
85
86  State();
87  State(const State &S);
88
89  //
90  // canAddInsnClass - Returns true if an instruction of type InsnClass is a
91  // valid transition from this state, i.e., can an instruction of type InsnClass
92  // be added to the packet represented by this state.
93  //
94  // PossibleStates is the set of valid resource states that ensue from valid
95  // transitions.
96  //
97  bool canAddInsnClass(unsigned InsnClass) const;
98  //
99  // AddInsnClass - Return all combinations of resource reservation
100  // which are possible from this state (PossibleStates).
101  //
102  void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
103};
104} // End anonymous namespace.
105
106
107namespace {
108struct Transition {
109 public:
110  static int currentTransitionNum;
111  int transitionNum;
112  State *from;
113  unsigned input;
114  State *to;
115
116  Transition(State *from_, unsigned input_, State *to_);
117};
118} // End anonymous namespace.
119
120
121//
122// Comparators to keep set of states sorted.
123//
124namespace {
125struct ltState {
126  bool operator()(const State *s1, const State *s2) const;
127};
128
129struct ltTransition {
130  bool operator()(const Transition *s1, const Transition *s2) const;
131};
132} // End anonymous namespace.
133
134
135//
136// class DFA: deterministic finite automaton for processor resource tracking.
137//
138namespace {
139class DFA {
140public:
141  DFA();
142
143  // Set of states. Need to keep this sorted to emit the transition table.
144  std::set<State*, ltState> states;
145
146  // Map from a state to the list of transitions with that state as source.
147  std::map<State*, std::set<Transition*, ltTransition>, ltState>
148    stateTransitions;
149  State *currentState;
150
151  // Highest valued Input seen.
152  unsigned LargestInput;
153
154  //
155  // Modify the DFA.
156  //
157  void initialize();
158  void addState(State *);
159  void addTransition(Transition *);
160
161  //
162  // getTransition -  Return the state when a transition is made from
163  // State From with Input I. If a transition is not found, return NULL.
164  //
165  State *getTransition(State *, unsigned);
166
167  //
168  // isValidTransition: Predicate that checks if there is a valid transition
169  // from state From on input InsnClass.
170  //
171  bool isValidTransition(State *From, unsigned InsnClass);
172
173  //
174  // writeTable: Print out a table representing the DFA.
175  //
176  void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
177};
178} // End anonymous namespace.
179
180
181//
182// Constructors for State, Transition, and DFA
183//
184State::State() :
185  stateNum(currentStateNum++), isInitial(false) {}
186
187
188State::State(const State &S) :
189  stateNum(currentStateNum++), isInitial(S.isInitial),
190  stateInfo(S.stateInfo) {}
191
192
193Transition::Transition(State *from_, unsigned input_, State *to_) :
194  transitionNum(currentTransitionNum++), from(from_), input(input_),
195  to(to_) {}
196
197
198DFA::DFA() :
199  LargestInput(0) {}
200
201
202bool ltState::operator()(const State *s1, const State *s2) const {
203    return (s1->stateNum < s2->stateNum);
204}
205
206bool ltTransition::operator()(const Transition *s1, const Transition *s2) const {
207    return (s1->input < s2->input);
208}
209
210//
211// AddInsnClass - Return all combinations of resource reservation
212// which are possible from this state (PossibleStates).
213//
214void State::AddInsnClass(unsigned InsnClass,
215                            std::set<unsigned> &PossibleStates) {
216  //
217  // Iterate over all resource states in currentState.
218  //
219
220  for (std::set<unsigned>::iterator SI = stateInfo.begin();
221       SI != stateInfo.end(); ++SI) {
222    unsigned thisState = *SI;
223
224    //
225    // Iterate over all possible resources used in InsnClass.
226    // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
227    //
228
229    DenseSet<unsigned> VisitedResourceStates;
230    for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
231      if ((0x1 << j) & InsnClass) {
232        //
233        // For each possible resource used in InsnClass, generate the
234        // resource state if that resource was used.
235        //
236        unsigned ResultingResourceState = thisState | (0x1 << j);
237        //
238        // Check if the resulting resource state can be accommodated in this
239        // packet.
240        // We compute ResultingResourceState OR thisState.
241        // If the result of the OR is different than thisState, it implies
242        // that there is at least one resource that can be used to schedule
243        // InsnClass in the current packet.
244        // Insert ResultingResourceState into PossibleStates only if we haven't
245        // processed ResultingResourceState before.
246        //
247        if ((ResultingResourceState != thisState) &&
248            (VisitedResourceStates.count(ResultingResourceState) == 0)) {
249          VisitedResourceStates.insert(ResultingResourceState);
250          PossibleStates.insert(ResultingResourceState);
251        }
252      }
253    }
254  }
255
256}
257
258
259//
260// canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
261// valid transition from this state i.e., can an instruction of type InsnClass
262// be added to the packet represented by this state.
263//
264bool State::canAddInsnClass(unsigned InsnClass) const {
265  for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
266       SI != stateInfo.end(); ++SI) {
267    if (~*SI & InsnClass)
268      return true;
269  }
270  return false;
271}
272
273
274void DFA::initialize() {
275  currentState->isInitial = true;
276}
277
278
279void DFA::addState(State *S) {
280  assert(!states.count(S) && "State already exists");
281  states.insert(S);
282}
283
284
285void DFA::addTransition(Transition *T) {
286  // Update LargestInput.
287  if (T->input > LargestInput)
288    LargestInput = T->input;
289
290  // Add the new transition.
291  bool Added = stateTransitions[T->from].insert(T).second;
292  assert(Added && "Cannot have multiple states for the same input");
293  (void)Added;
294}
295
296
297//
298// getTransition - Return the state when a transition is made from
299// State From with Input I. If a transition is not found, return NULL.
300//
301State *DFA::getTransition(State *From, unsigned I) {
302  // Do we have a transition from state From?
303  if (!stateTransitions.count(From))
304    return NULL;
305
306  // Do we have a transition from state From with Input I?
307  Transition TVal(NULL, I, NULL);
308  // Do not count this temporal instance
309  Transition::currentTransitionNum--;
310  std::set<Transition*, ltTransition>::iterator T =
311    stateTransitions[From].find(&TVal);
312  if (T != stateTransitions[From].end())
313    return (*T)->to;
314
315  return NULL;
316}
317
318
319bool DFA::isValidTransition(State *From, unsigned InsnClass) {
320  return (getTransition(From, InsnClass) != NULL);
321}
322
323
324int State::currentStateNum = 0;
325int Transition::currentTransitionNum = 0;
326
327DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
328  TargetName(CodeGenTarget(R).getName()),
329  allInsnClasses(), Records(R) {}
330
331
332//
333// writeTableAndAPI - Print out a table representing the DFA and the
334// associated API to create a DFA packetizer.
335//
336// Format:
337// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
338//                           transitions.
339// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
340//                         the ith state.
341//
342//
343void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
344  std::set<State*, ltState>::iterator SI = states.begin();
345  // This table provides a map to the beginning of the transitions for State s
346  // in DFAStateInputTable.
347  std::vector<int> StateEntry(states.size());
348
349  OS << "namespace llvm {\n\n";
350  OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
351
352  // Tracks the total valid transitions encountered so far. It is used
353  // to construct the StateEntry table.
354  int ValidTransitions = 0;
355  for (unsigned i = 0; i < states.size(); ++i, ++SI) {
356    StateEntry[i] = ValidTransitions;
357    for (unsigned j = 0; j <= LargestInput; ++j) {
358      assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
359      State *To = getTransition(*SI, j);
360      if (To == NULL)
361        continue;
362
363      OS << "{" << j << ", "
364         << To->stateNum
365         << "},    ";
366      ++ValidTransitions;
367    }
368
369    // If there are no valid transitions from this stage, we need a sentinel
370    // transition.
371    if (ValidTransitions == StateEntry[i]) {
372      OS << "{-1, -1},";
373      ++ValidTransitions;
374    }
375
376    OS << "\n";
377  }
378  OS << "};\n\n";
379  OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
380
381  // Multiply i by 2 since each entry in DFAStateInputTable is a set of
382  // two numbers.
383  for (unsigned i = 0; i < states.size(); ++i)
384    OS << StateEntry[i] << ", ";
385
386  OS << "\n};\n";
387  OS << "} // namespace\n";
388
389
390  //
391  // Emit DFA Packetizer tables if the target is a VLIW machine.
392  //
393  std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
394  OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
395  OS << "namespace llvm {\n";
396  OS << "DFAPacketizer *" << SubTargetClassName << "::"
397     << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
398     << "   return new DFAPacketizer(IID, " << TargetName
399     << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
400  OS << "} // End llvm namespace \n";
401}
402
403
404//
405// collectAllInsnClasses - Populate allInsnClasses which is a set of units
406// used in each stage.
407//
408void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
409                                  Record *ItinData,
410                                  unsigned &NStages,
411                                  raw_ostream &OS) {
412  // Collect processor itineraries.
413  std::vector<Record*> ProcItinList =
414    Records.getAllDerivedDefinitions("ProcessorItineraries");
415
416  // If just no itinerary then don't bother.
417  if (ProcItinList.size() < 2)
418    return;
419  std::map<std::string, unsigned> NameToBitsMap;
420
421  // Parse functional units for all the itineraries.
422  for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
423    Record *Proc = ProcItinList[i];
424    std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
425
426    // Convert macros to bits for each stage.
427    for (unsigned i = 0, N = FUs.size(); i < N; ++i)
428      NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
429  }
430
431  const std::vector<Record*> &StageList =
432    ItinData->getValueAsListOfDefs("Stages");
433
434  // The number of stages.
435  NStages = StageList.size();
436
437  // For each unit.
438  unsigned UnitBitValue = 0;
439
440  // Compute the bitwise or of each unit used in this stage.
441  for (unsigned i = 0; i < NStages; ++i) {
442    const Record *Stage = StageList[i];
443
444    // Get unit list.
445    const std::vector<Record*> &UnitList =
446      Stage->getValueAsListOfDefs("Units");
447
448    for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
449      // Conduct bitwise or.
450      std::string UnitName = UnitList[j]->getName();
451      assert(NameToBitsMap.count(UnitName));
452      UnitBitValue |= NameToBitsMap[UnitName];
453    }
454
455    if (UnitBitValue != 0)
456      allInsnClasses.insert(UnitBitValue);
457  }
458}
459
460
461//
462// Run the worklist algorithm to generate the DFA.
463//
464void DFAPacketizerEmitter::run(raw_ostream &OS) {
465
466  // Collect processor iteraries.
467  std::vector<Record*> ProcItinList =
468    Records.getAllDerivedDefinitions("ProcessorItineraries");
469
470  //
471  // Collect the instruction classes.
472  //
473  for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
474    Record *Proc = ProcItinList[i];
475
476    // Get processor itinerary name.
477    const std::string &Name = Proc->getName();
478
479    // Skip default.
480    if (Name == "NoItineraries")
481      continue;
482
483    // Sanity check for at least one instruction itinerary class.
484    unsigned NItinClasses =
485      Records.getAllDerivedDefinitions("InstrItinClass").size();
486    if (NItinClasses == 0)
487      return;
488
489    // Get itinerary data list.
490    std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
491
492    // Collect instruction classes for all itinerary data.
493    for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
494      Record *ItinData = ItinDataList[j];
495      unsigned NStages;
496      collectAllInsnClasses(Name, ItinData, NStages, OS);
497    }
498  }
499
500
501  //
502  // Run a worklist algorithm to generate the DFA.
503  //
504  DFA D;
505  State *Initial = new State;
506  Initial->isInitial = true;
507  Initial->stateInfo.insert(0x0);
508  D.addState(Initial);
509  SmallVector<State*, 32> WorkList;
510  std::map<std::set<unsigned>, State*> Visited;
511
512  WorkList.push_back(Initial);
513
514  //
515  // Worklist algorithm to create a DFA for processor resource tracking.
516  // C = {set of InsnClasses}
517  // Begin with initial node in worklist. Initial node does not have
518  // any consumed resources,
519  //     ResourceState = 0x0
520  // Visited = {}
521  // While worklist != empty
522  //    S = first element of worklist
523  //    For every instruction class C
524  //      if we can accommodate C in S:
525  //          S' = state with resource states = {S Union C}
526  //          Add a new transition: S x C -> S'
527  //          If S' is not in Visited:
528  //             Add S' to worklist
529  //             Add S' to Visited
530  //
531  while (!WorkList.empty()) {
532    State *current = WorkList.pop_back_val();
533    for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
534           CE = allInsnClasses.end(); CI != CE; ++CI) {
535      unsigned InsnClass = *CI;
536
537      std::set<unsigned> NewStateResources;
538      //
539      // If we haven't already created a transition for this input
540      // and the state can accommodate this InsnClass, create a transition.
541      //
542      if (!D.getTransition(current, InsnClass) &&
543          current->canAddInsnClass(InsnClass)) {
544        State *NewState = NULL;
545        current->AddInsnClass(InsnClass, NewStateResources);
546        assert(NewStateResources.size() && "New states must be generated");
547
548        //
549        // If we have seen this state before, then do not create a new state.
550        //
551        //
552        std::map<std::set<unsigned>, State*>::iterator VI;
553        if ((VI = Visited.find(NewStateResources)) != Visited.end())
554          NewState = VI->second;
555        else {
556          NewState = new State;
557          NewState->stateInfo = NewStateResources;
558          D.addState(NewState);
559          Visited[NewStateResources] = NewState;
560          WorkList.push_back(NewState);
561        }
562
563        Transition *NewTransition = new Transition(current, InsnClass,
564                                                   NewState);
565        D.addTransition(NewTransition);
566      }
567    }
568  }
569
570  // Print out the table.
571  D.writeTableAndAPI(OS, TargetName);
572}
573
574namespace llvm {
575
576void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
577  emitSourceFileHeader("Target DFA Packetizer Tables", OS);
578  DFAPacketizerEmitter(RK).run(OS);
579}
580
581} // End llvm namespace
582