CodeGenDAGPatterns.h revision 263508
1//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef CODEGEN_DAGPATTERNS_H
16#define CODEGEN_DAGPATTERNS_H
17
18#include "CodeGenIntrinsics.h"
19#include "CodeGenTarget.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringMap.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <map>
25#include <set>
26#include <vector>
27
28namespace llvm {
29  class Record;
30  class Init;
31  class ListInit;
32  class DagInit;
33  class SDNodeInfo;
34  class TreePattern;
35  class TreePatternNode;
36  class CodeGenDAGPatterns;
37  class ComplexPattern;
38
39/// EEVT::DAGISelGenValueType - These are some extended forms of
40/// MVT::SimpleValueType that we use as lattice values during type inference.
41/// The existing MVT iAny, fAny and vAny types suffice to represent
42/// arbitrary integer, floating-point, and vector types, so only an unknown
43/// value is needed.
44namespace EEVT {
45  /// TypeSet - This is either empty if it's completely unknown, or holds a set
46  /// of types.  It is used during type inference because register classes can
47  /// have multiple possible types and we don't know which one they get until
48  /// type inference is complete.
49  ///
50  /// TypeSet can have three states:
51  ///    Vector is empty: The type is completely unknown, it can be any valid
52  ///       target type.
53  ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
54  ///       of those types only.
55  ///    Vector has one concrete type: The type is completely known.
56  ///
57  class TypeSet {
58    SmallVector<MVT::SimpleValueType, 4> TypeVec;
59  public:
60    TypeSet() {}
61    TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
62    TypeSet(ArrayRef<MVT::SimpleValueType> VTList);
63
64    bool isCompletelyUnknown() const { return TypeVec.empty(); }
65
66    bool isConcrete() const {
67      if (TypeVec.size() != 1) return false;
68      unsigned char T = TypeVec[0]; (void)T;
69      assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
70      return true;
71    }
72
73    MVT::SimpleValueType getConcrete() const {
74      assert(isConcrete() && "Type isn't concrete yet");
75      return (MVT::SimpleValueType)TypeVec[0];
76    }
77
78    bool isDynamicallyResolved() const {
79      return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
80    }
81
82    const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
83      assert(!TypeVec.empty() && "Not a type list!");
84      return TypeVec;
85    }
86
87    bool isVoid() const {
88      return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
89    }
90
91    /// hasIntegerTypes - Return true if this TypeSet contains any integer value
92    /// types.
93    bool hasIntegerTypes() const;
94
95    /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
96    /// a floating point value type.
97    bool hasFloatingPointTypes() const;
98
99    /// hasVectorTypes - Return true if this TypeSet contains a vector value
100    /// type.
101    bool hasVectorTypes() const;
102
103    /// getName() - Return this TypeSet as a string.
104    std::string getName() const;
105
106    /// MergeInTypeInfo - This merges in type information from the specified
107    /// argument.  If 'this' changes, it returns true.  If the two types are
108    /// contradictory (e.g. merge f32 into i32) then this flags an error.
109    bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
110
111    bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
112      return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
113    }
114
115    /// Force this type list to only contain integer types.
116    bool EnforceInteger(TreePattern &TP);
117
118    /// Force this type list to only contain floating point types.
119    bool EnforceFloatingPoint(TreePattern &TP);
120
121    /// EnforceScalar - Remove all vector types from this type list.
122    bool EnforceScalar(TreePattern &TP);
123
124    /// EnforceVector - Remove all non-vector types from this type list.
125    bool EnforceVector(TreePattern &TP);
126
127    /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
128    /// this an other based on this information.
129    bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
130
131    /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
132    /// whose element is VT.
133    bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
134
135    /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
136    /// be a vector type VT.
137    bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138
139    bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
140    bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
141
142  private:
143    /// FillWithPossibleTypes - Set to all legal types and return true, only
144    /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
145    /// that pass the predicate are added.
146    bool FillWithPossibleTypes(TreePattern &TP,
147                               bool (*Pred)(MVT::SimpleValueType) = 0,
148                               const char *PredicateName = 0);
149  };
150}
151
152/// Set type used to track multiply used variables in patterns
153typedef std::set<std::string> MultipleUseVarSet;
154
155/// SDTypeConstraint - This is a discriminated union of constraints,
156/// corresponding to the SDTypeConstraint tablegen class in Target.td.
157struct SDTypeConstraint {
158  SDTypeConstraint(Record *R);
159
160  unsigned OperandNo;   // The operand # this constraint applies to.
161  enum {
162    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
163    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
164    SDTCisSubVecOfVec
165  } ConstraintType;
166
167  union {   // The discriminated union.
168    struct {
169      MVT::SimpleValueType VT;
170    } SDTCisVT_Info;
171    struct {
172      unsigned OtherOperandNum;
173    } SDTCisSameAs_Info;
174    struct {
175      unsigned OtherOperandNum;
176    } SDTCisVTSmallerThanOp_Info;
177    struct {
178      unsigned BigOperandNum;
179    } SDTCisOpSmallerThanOp_Info;
180    struct {
181      unsigned OtherOperandNum;
182    } SDTCisEltOfVec_Info;
183    struct {
184      unsigned OtherOperandNum;
185    } SDTCisSubVecOfVec_Info;
186  } x;
187
188  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
189  /// constraint to the nodes operands.  This returns true if it makes a
190  /// change, false otherwise.  If a type contradiction is found, an error
191  /// is flagged.
192  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
193                           TreePattern &TP) const;
194};
195
196/// SDNodeInfo - One of these records is created for each SDNode instance in
197/// the target .td file.  This represents the various dag nodes we will be
198/// processing.
199class SDNodeInfo {
200  Record *Def;
201  std::string EnumName;
202  std::string SDClassName;
203  unsigned Properties;
204  unsigned NumResults;
205  int NumOperands;
206  std::vector<SDTypeConstraint> TypeConstraints;
207public:
208  SDNodeInfo(Record *R);  // Parse the specified record.
209
210  unsigned getNumResults() const { return NumResults; }
211
212  /// getNumOperands - This is the number of operands required or -1 if
213  /// variadic.
214  int getNumOperands() const { return NumOperands; }
215  Record *getRecord() const { return Def; }
216  const std::string &getEnumName() const { return EnumName; }
217  const std::string &getSDClassName() const { return SDClassName; }
218
219  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
220    return TypeConstraints;
221  }
222
223  /// getKnownType - If the type constraints on this node imply a fixed type
224  /// (e.g. all stores return void, etc), then return it as an
225  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
226  MVT::SimpleValueType getKnownType(unsigned ResNo) const;
227
228  /// hasProperty - Return true if this node has the specified property.
229  ///
230  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
231
232  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
233  /// constraints for this node to the operands of the node.  This returns
234  /// true if it makes a change, false otherwise.  If a type contradiction is
235  /// found, an error is flagged.
236  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
237    bool MadeChange = false;
238    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
239      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
240    return MadeChange;
241  }
242};
243
244/// TreePredicateFn - This is an abstraction that represents the predicates on
245/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
246/// provide nice accessors.
247class TreePredicateFn {
248  /// PatFragRec - This is the TreePattern for the PatFrag that we
249  /// originally came from.
250  TreePattern *PatFragRec;
251public:
252  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
253  TreePredicateFn(TreePattern *N);
254
255
256  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
257
258  /// isAlwaysTrue - Return true if this is a noop predicate.
259  bool isAlwaysTrue() const;
260
261  bool isImmediatePattern() const { return !getImmCode().empty(); }
262
263  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
264  /// this is an immediate predicate.  It is an error to call this on a
265  /// non-immediate pattern.
266  std::string getImmediatePredicateCode() const {
267    std::string Result = getImmCode();
268    assert(!Result.empty() && "Isn't an immediate pattern!");
269    return Result;
270  }
271
272
273  bool operator==(const TreePredicateFn &RHS) const {
274    return PatFragRec == RHS.PatFragRec;
275  }
276
277  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
278
279  /// Return the name to use in the generated code to reference this, this is
280  /// "Predicate_foo" if from a pattern fragment "foo".
281  std::string getFnName() const;
282
283  /// getCodeToRunOnSDNode - Return the code for the function body that
284  /// evaluates this predicate.  The argument is expected to be in "Node",
285  /// not N.  This handles casting and conversion to a concrete node type as
286  /// appropriate.
287  std::string getCodeToRunOnSDNode() const;
288
289private:
290  std::string getPredCode() const;
291  std::string getImmCode() const;
292};
293
294
295/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
296/// patterns), and as such should be ref counted.  We currently just leak all
297/// TreePatternNode objects!
298class TreePatternNode {
299  /// The type of each node result.  Before and during type inference, each
300  /// result may be a set of possible types.  After (successful) type inference,
301  /// each is a single concrete type.
302  SmallVector<EEVT::TypeSet, 1> Types;
303
304  /// Operator - The Record for the operator if this is an interior node (not
305  /// a leaf).
306  Record *Operator;
307
308  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
309  ///
310  Init *Val;
311
312  /// Name - The name given to this node with the :$foo notation.
313  ///
314  std::string Name;
315
316  /// PredicateFns - The predicate functions to execute on this node to check
317  /// for a match.  If this list is empty, no predicate is involved.
318  std::vector<TreePredicateFn> PredicateFns;
319
320  /// TransformFn - The transformation function to execute on this node before
321  /// it can be substituted into the resulting instruction on a pattern match.
322  Record *TransformFn;
323
324  std::vector<TreePatternNode*> Children;
325public:
326  TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
327                  unsigned NumResults)
328    : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
329    Types.resize(NumResults);
330  }
331  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
332    : Operator(0), Val(val), TransformFn(0) {
333    Types.resize(NumResults);
334  }
335  ~TreePatternNode();
336
337  bool hasName() const { return !Name.empty(); }
338  const std::string &getName() const { return Name; }
339  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
340
341  bool isLeaf() const { return Val != 0; }
342
343  // Type accessors.
344  unsigned getNumTypes() const { return Types.size(); }
345  MVT::SimpleValueType getType(unsigned ResNo) const {
346    return Types[ResNo].getConcrete();
347  }
348  const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
349  const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
350  EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
351  void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
352
353  bool hasTypeSet(unsigned ResNo) const {
354    return Types[ResNo].isConcrete();
355  }
356  bool isTypeCompletelyUnknown(unsigned ResNo) const {
357    return Types[ResNo].isCompletelyUnknown();
358  }
359  bool isTypeDynamicallyResolved(unsigned ResNo) const {
360    return Types[ResNo].isDynamicallyResolved();
361  }
362
363  Init *getLeafValue() const { assert(isLeaf()); return Val; }
364  Record *getOperator() const { assert(!isLeaf()); return Operator; }
365
366  unsigned getNumChildren() const { return Children.size(); }
367  TreePatternNode *getChild(unsigned N) const { return Children[N]; }
368  void setChild(unsigned i, TreePatternNode *N) {
369    Children[i] = N;
370  }
371
372  /// hasChild - Return true if N is any of our children.
373  bool hasChild(const TreePatternNode *N) const {
374    for (unsigned i = 0, e = Children.size(); i != e; ++i)
375      if (Children[i] == N) return true;
376    return false;
377  }
378
379  bool hasAnyPredicate() const { return !PredicateFns.empty(); }
380
381  const std::vector<TreePredicateFn> &getPredicateFns() const {
382    return PredicateFns;
383  }
384  void clearPredicateFns() { PredicateFns.clear(); }
385  void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
386    assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
387    PredicateFns = Fns;
388  }
389  void addPredicateFn(const TreePredicateFn &Fn) {
390    assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
391    if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
392          PredicateFns.end())
393      PredicateFns.push_back(Fn);
394  }
395
396  Record *getTransformFn() const { return TransformFn; }
397  void setTransformFn(Record *Fn) { TransformFn = Fn; }
398
399  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
400  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
401  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
402
403  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
404  /// return the ComplexPattern information, otherwise return null.
405  const ComplexPattern *
406  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
407
408  /// NodeHasProperty - Return true if this node has the specified property.
409  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
410
411  /// TreeHasProperty - Return true if any node in this tree has the specified
412  /// property.
413  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
414
415  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
416  /// marked isCommutative.
417  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
418
419  void print(raw_ostream &OS) const;
420  void dump() const;
421
422public:   // Higher level manipulation routines.
423
424  /// clone - Return a new copy of this tree.
425  ///
426  TreePatternNode *clone() const;
427
428  /// RemoveAllTypes - Recursively strip all the types of this tree.
429  void RemoveAllTypes();
430
431  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
432  /// the specified node.  For this comparison, all of the state of the node
433  /// is considered, except for the assigned name.  Nodes with differing names
434  /// that are otherwise identical are considered isomorphic.
435  bool isIsomorphicTo(const TreePatternNode *N,
436                      const MultipleUseVarSet &DepVars) const;
437
438  /// SubstituteFormalArguments - Replace the formal arguments in this tree
439  /// with actual values specified by ArgMap.
440  void SubstituteFormalArguments(std::map<std::string,
441                                          TreePatternNode*> &ArgMap);
442
443  /// InlinePatternFragments - If this pattern refers to any pattern
444  /// fragments, inline them into place, giving us a pattern without any
445  /// PatFrag references.
446  TreePatternNode *InlinePatternFragments(TreePattern &TP);
447
448  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
449  /// this node and its children in the tree.  This returns true if it makes a
450  /// change, false otherwise.  If a type contradiction is found, flag an error.
451  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
452
453  /// UpdateNodeType - Set the node type of N to VT if VT contains
454  /// information.  If N already contains a conflicting type, then flag an
455  /// error.  This returns true if any information was updated.
456  ///
457  bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
458                      TreePattern &TP) {
459    return Types[ResNo].MergeInTypeInfo(InTy, TP);
460  }
461
462  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
463                      TreePattern &TP) {
464    return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
465  }
466
467  // Update node type with types inferred from an instruction operand or result
468  // def from the ins/outs lists.
469  // Return true if the type changed.
470  bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
471
472  /// ContainsUnresolvedType - Return true if this tree contains any
473  /// unresolved types.
474  bool ContainsUnresolvedType() const {
475    for (unsigned i = 0, e = Types.size(); i != e; ++i)
476      if (!Types[i].isConcrete()) return true;
477
478    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
479      if (getChild(i)->ContainsUnresolvedType()) return true;
480    return false;
481  }
482
483  /// canPatternMatch - If it is impossible for this pattern to match on this
484  /// target, fill in Reason and return false.  Otherwise, return true.
485  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
486};
487
488inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
489  TPN.print(OS);
490  return OS;
491}
492
493
494/// TreePattern - Represent a pattern, used for instructions, pattern
495/// fragments, etc.
496///
497class TreePattern {
498  /// Trees - The list of pattern trees which corresponds to this pattern.
499  /// Note that PatFrag's only have a single tree.
500  ///
501  std::vector<TreePatternNode*> Trees;
502
503  /// NamedNodes - This is all of the nodes that have names in the trees in this
504  /// pattern.
505  StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
506
507  /// TheRecord - The actual TableGen record corresponding to this pattern.
508  ///
509  Record *TheRecord;
510
511  /// Args - This is a list of all of the arguments to this pattern (for
512  /// PatFrag patterns), which are the 'node' markers in this pattern.
513  std::vector<std::string> Args;
514
515  /// CDP - the top-level object coordinating this madness.
516  ///
517  CodeGenDAGPatterns &CDP;
518
519  /// isInputPattern - True if this is an input pattern, something to match.
520  /// False if this is an output pattern, something to emit.
521  bool isInputPattern;
522
523  /// hasError - True if the currently processed nodes have unresolvable types
524  /// or other non-fatal errors
525  bool HasError;
526public:
527
528  /// TreePattern constructor - Parse the specified DagInits into the
529  /// current record.
530  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
531              CodeGenDAGPatterns &ise);
532  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
533              CodeGenDAGPatterns &ise);
534  TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
535              CodeGenDAGPatterns &ise);
536
537  /// getTrees - Return the tree patterns which corresponds to this pattern.
538  ///
539  const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
540  unsigned getNumTrees() const { return Trees.size(); }
541  TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
542  TreePatternNode *getOnlyTree() const {
543    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
544    return Trees[0];
545  }
546
547  const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
548    if (NamedNodes.empty())
549      ComputeNamedNodes();
550    return NamedNodes;
551  }
552
553  /// getRecord - Return the actual TableGen record corresponding to this
554  /// pattern.
555  ///
556  Record *getRecord() const { return TheRecord; }
557
558  unsigned getNumArgs() const { return Args.size(); }
559  const std::string &getArgName(unsigned i) const {
560    assert(i < Args.size() && "Argument reference out of range!");
561    return Args[i];
562  }
563  std::vector<std::string> &getArgList() { return Args; }
564
565  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
566
567  /// InlinePatternFragments - If this pattern refers to any pattern
568  /// fragments, inline them into place, giving us a pattern without any
569  /// PatFrag references.
570  void InlinePatternFragments() {
571    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
572      Trees[i] = Trees[i]->InlinePatternFragments(*this);
573  }
574
575  /// InferAllTypes - Infer/propagate as many types throughout the expression
576  /// patterns as possible.  Return true if all types are inferred, false
577  /// otherwise.  Bail out if a type contradiction is found.
578  bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
579                          *NamedTypes=0);
580
581  /// error - If this is the first error in the current resolution step,
582  /// print it and set the error flag.  Otherwise, continue silently.
583  void error(const std::string &Msg);
584  bool hasError() const {
585    return HasError;
586  }
587  void resetError() {
588    HasError = false;
589  }
590
591  void print(raw_ostream &OS) const;
592  void dump() const;
593
594private:
595  TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
596  void ComputeNamedNodes();
597  void ComputeNamedNodes(TreePatternNode *N);
598};
599
600/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
601/// that has a set ExecuteAlways / DefaultOps field.
602struct DAGDefaultOperand {
603  std::vector<TreePatternNode*> DefaultOps;
604};
605
606class DAGInstruction {
607  TreePattern *Pattern;
608  std::vector<Record*> Results;
609  std::vector<Record*> Operands;
610  std::vector<Record*> ImpResults;
611  TreePatternNode *ResultPattern;
612public:
613  DAGInstruction(TreePattern *TP,
614                 const std::vector<Record*> &results,
615                 const std::vector<Record*> &operands,
616                 const std::vector<Record*> &impresults)
617    : Pattern(TP), Results(results), Operands(operands),
618      ImpResults(impresults), ResultPattern(0) {}
619
620  TreePattern *getPattern() const { return Pattern; }
621  unsigned getNumResults() const { return Results.size(); }
622  unsigned getNumOperands() const { return Operands.size(); }
623  unsigned getNumImpResults() const { return ImpResults.size(); }
624  const std::vector<Record*>& getImpResults() const { return ImpResults; }
625
626  void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
627
628  Record *getResult(unsigned RN) const {
629    assert(RN < Results.size());
630    return Results[RN];
631  }
632
633  Record *getOperand(unsigned ON) const {
634    assert(ON < Operands.size());
635    return Operands[ON];
636  }
637
638  Record *getImpResult(unsigned RN) const {
639    assert(RN < ImpResults.size());
640    return ImpResults[RN];
641  }
642
643  TreePatternNode *getResultPattern() const { return ResultPattern; }
644};
645
646/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
647/// processed to produce isel.
648class PatternToMatch {
649public:
650  PatternToMatch(Record *srcrecord, ListInit *preds,
651                 TreePatternNode *src, TreePatternNode *dst,
652                 const std::vector<Record*> &dstregs,
653                 unsigned complexity, unsigned uid)
654    : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
655      Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
656
657  Record          *SrcRecord;   // Originating Record for the pattern.
658  ListInit        *Predicates;  // Top level predicate conditions to match.
659  TreePatternNode *SrcPattern;  // Source pattern to match.
660  TreePatternNode *DstPattern;  // Resulting pattern.
661  std::vector<Record*> Dstregs; // Physical register defs being matched.
662  unsigned         AddedComplexity; // Add to matching pattern complexity.
663  unsigned         ID;          // Unique ID for the record.
664
665  Record          *getSrcRecord()  const { return SrcRecord; }
666  ListInit        *getPredicates() const { return Predicates; }
667  TreePatternNode *getSrcPattern() const { return SrcPattern; }
668  TreePatternNode *getDstPattern() const { return DstPattern; }
669  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
670  unsigned         getAddedComplexity() const { return AddedComplexity; }
671
672  std::string getPredicateCheck() const;
673
674  /// Compute the complexity metric for the input pattern.  This roughly
675  /// corresponds to the number of nodes that are covered.
676  unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
677};
678
679class CodeGenDAGPatterns {
680  RecordKeeper &Records;
681  CodeGenTarget Target;
682  std::vector<CodeGenIntrinsic> Intrinsics;
683  std::vector<CodeGenIntrinsic> TgtIntrinsics;
684
685  std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
686  std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms;
687  std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
688  std::map<Record*, TreePattern*, LessRecordByID> PatternFragments;
689  std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
690  std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
691
692  // Specific SDNode definitions:
693  Record *intrinsic_void_sdnode;
694  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
695
696  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
697  /// value is the pattern to match, the second pattern is the result to
698  /// emit.
699  std::vector<PatternToMatch> PatternsToMatch;
700public:
701  CodeGenDAGPatterns(RecordKeeper &R);
702  ~CodeGenDAGPatterns();
703
704  CodeGenTarget &getTargetInfo() { return Target; }
705  const CodeGenTarget &getTargetInfo() const { return Target; }
706
707  Record *getSDNodeNamed(const std::string &Name) const;
708
709  const SDNodeInfo &getSDNodeInfo(Record *R) const {
710    assert(SDNodes.count(R) && "Unknown node!");
711    return SDNodes.find(R)->second;
712  }
713
714  // Node transformation lookups.
715  typedef std::pair<Record*, std::string> NodeXForm;
716  const NodeXForm &getSDNodeTransform(Record *R) const {
717    assert(SDNodeXForms.count(R) && "Invalid transform!");
718    return SDNodeXForms.find(R)->second;
719  }
720
721  typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
722          nx_iterator;
723  nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
724  nx_iterator nx_end() const { return SDNodeXForms.end(); }
725
726
727  const ComplexPattern &getComplexPattern(Record *R) const {
728    assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
729    return ComplexPatterns.find(R)->second;
730  }
731
732  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
733    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
734      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
735    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
736      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
737    llvm_unreachable("Unknown intrinsic!");
738  }
739
740  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
741    if (IID-1 < Intrinsics.size())
742      return Intrinsics[IID-1];
743    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
744      return TgtIntrinsics[IID-Intrinsics.size()-1];
745    llvm_unreachable("Bad intrinsic ID!");
746  }
747
748  unsigned getIntrinsicID(Record *R) const {
749    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
750      if (Intrinsics[i].TheDef == R) return i;
751    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
752      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
753    llvm_unreachable("Unknown intrinsic!");
754  }
755
756  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
757    assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
758    return DefaultOperands.find(R)->second;
759  }
760
761  // Pattern Fragment information.
762  TreePattern *getPatternFragment(Record *R) const {
763    assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
764    return PatternFragments.find(R)->second;
765  }
766  TreePattern *getPatternFragmentIfRead(Record *R) const {
767    if (!PatternFragments.count(R)) return 0;
768    return PatternFragments.find(R)->second;
769  }
770
771  typedef std::map<Record*, TreePattern*, LessRecordByID>::const_iterator
772          pf_iterator;
773  pf_iterator pf_begin() const { return PatternFragments.begin(); }
774  pf_iterator pf_end() const { return PatternFragments.end(); }
775
776  // Patterns to match information.
777  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
778  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
779  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
780
781  /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
782  typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
783  const DAGInstruction &parseInstructionPattern(
784      CodeGenInstruction &CGI, ListInit *Pattern,
785      DAGInstMap &DAGInsts);
786
787  const DAGInstruction &getInstruction(Record *R) const {
788    assert(Instructions.count(R) && "Unknown instruction!");
789    return Instructions.find(R)->second;
790  }
791
792  Record *get_intrinsic_void_sdnode() const {
793    return intrinsic_void_sdnode;
794  }
795  Record *get_intrinsic_w_chain_sdnode() const {
796    return intrinsic_w_chain_sdnode;
797  }
798  Record *get_intrinsic_wo_chain_sdnode() const {
799    return intrinsic_wo_chain_sdnode;
800  }
801
802  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
803
804private:
805  void ParseNodeInfo();
806  void ParseNodeTransforms();
807  void ParseComplexPatterns();
808  void ParsePatternFragments();
809  void ParseDefaultOperands();
810  void ParseInstructions();
811  void ParsePatterns();
812  void InferInstructionFlags();
813  void GenerateVariants();
814  void VerifyInstructionFlags();
815
816  void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM);
817  void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
818                                   std::map<std::string,
819                                   TreePatternNode*> &InstInputs,
820                                   std::map<std::string,
821                                   TreePatternNode*> &InstResults,
822                                   std::vector<Record*> &InstImpResults);
823};
824} // end namespace llvm
825
826#endif
827