SemaInit.cpp revision 263508
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             InitListExpr *StructuredList,
249                             bool TopLevelObject = false);
250  void CheckListElementTypes(const InitializedEntity &Entity,
251                             InitListExpr *IList, QualType &DeclType,
252                             bool SubobjectIsDesignatorContext,
253                             unsigned &Index,
254                             InitListExpr *StructuredList,
255                             unsigned &StructuredIndex,
256                             bool TopLevelObject = false);
257  void CheckSubElementType(const InitializedEntity &Entity,
258                           InitListExpr *IList, QualType ElemType,
259                           unsigned &Index,
260                           InitListExpr *StructuredList,
261                           unsigned &StructuredIndex);
262  void CheckComplexType(const InitializedEntity &Entity,
263                        InitListExpr *IList, QualType DeclType,
264                        unsigned &Index,
265                        InitListExpr *StructuredList,
266                        unsigned &StructuredIndex);
267  void CheckScalarType(const InitializedEntity &Entity,
268                       InitListExpr *IList, QualType DeclType,
269                       unsigned &Index,
270                       InitListExpr *StructuredList,
271                       unsigned &StructuredIndex);
272  void CheckReferenceType(const InitializedEntity &Entity,
273                          InitListExpr *IList, QualType DeclType,
274                          unsigned &Index,
275                          InitListExpr *StructuredList,
276                          unsigned &StructuredIndex);
277  void CheckVectorType(const InitializedEntity &Entity,
278                       InitListExpr *IList, QualType DeclType, unsigned &Index,
279                       InitListExpr *StructuredList,
280                       unsigned &StructuredIndex);
281  void CheckStructUnionTypes(const InitializedEntity &Entity,
282                             InitListExpr *IList, QualType DeclType,
283                             RecordDecl::field_iterator Field,
284                             bool SubobjectIsDesignatorContext, unsigned &Index,
285                             InitListExpr *StructuredList,
286                             unsigned &StructuredIndex,
287                             bool TopLevelObject = false);
288  void CheckArrayType(const InitializedEntity &Entity,
289                      InitListExpr *IList, QualType &DeclType,
290                      llvm::APSInt elementIndex,
291                      bool SubobjectIsDesignatorContext, unsigned &Index,
292                      InitListExpr *StructuredList,
293                      unsigned &StructuredIndex);
294  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                  InitListExpr *IList, DesignatedInitExpr *DIE,
296                                  unsigned DesigIdx,
297                                  QualType &CurrentObjectType,
298                                  RecordDecl::field_iterator *NextField,
299                                  llvm::APSInt *NextElementIndex,
300                                  unsigned &Index,
301                                  InitListExpr *StructuredList,
302                                  unsigned &StructuredIndex,
303                                  bool FinishSubobjectInit,
304                                  bool TopLevelObject);
305  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                           QualType CurrentObjectType,
307                                           InitListExpr *StructuredList,
308                                           unsigned StructuredIndex,
309                                           SourceRange InitRange);
310  void UpdateStructuredListElement(InitListExpr *StructuredList,
311                                   unsigned &StructuredIndex,
312                                   Expr *expr);
313  int numArrayElements(QualType DeclType);
314  int numStructUnionElements(QualType DeclType);
315
316  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
317                               const InitializedEntity &ParentEntity,
318                               InitListExpr *ILE, bool &RequiresSecondPass);
319  void FillInValueInitializations(const InitializedEntity &Entity,
320                                  InitListExpr *ILE, bool &RequiresSecondPass);
321  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
322                              Expr *InitExpr, FieldDecl *Field,
323                              bool TopLevelObject);
324  void CheckValueInitializable(const InitializedEntity &Entity);
325
326public:
327  InitListChecker(Sema &S, const InitializedEntity &Entity,
328                  InitListExpr *IL, QualType &T, bool VerifyOnly);
329  bool HadError() { return hadError; }
330
331  // @brief Retrieves the fully-structured initializer list used for
332  // semantic analysis and code generation.
333  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
334};
335} // end anonymous namespace
336
337void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
338  assert(VerifyOnly &&
339         "CheckValueInitializable is only inteded for verification mode.");
340
341  SourceLocation Loc;
342  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
343                                                            true);
344  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
345  if (InitSeq.Failed())
346    hadError = true;
347}
348
349void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
350                                        const InitializedEntity &ParentEntity,
351                                              InitListExpr *ILE,
352                                              bool &RequiresSecondPass) {
353  SourceLocation Loc = ILE->getLocStart();
354  unsigned NumInits = ILE->getNumInits();
355  InitializedEntity MemberEntity
356    = InitializedEntity::InitializeMember(Field, &ParentEntity);
357  if (Init >= NumInits || !ILE->getInit(Init)) {
358    // If there's no explicit initializer but we have a default initializer, use
359    // that. This only happens in C++1y, since classes with default
360    // initializers are not aggregates in C++11.
361    if (Field->hasInClassInitializer()) {
362      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
363                                             ILE->getRBraceLoc(), Field);
364      if (Init < NumInits)
365        ILE->setInit(Init, DIE);
366      else {
367        ILE->updateInit(SemaRef.Context, Init, DIE);
368        RequiresSecondPass = true;
369      }
370      return;
371    }
372
373    // FIXME: We probably don't need to handle references
374    // specially here, since value-initialization of references is
375    // handled in InitializationSequence.
376    if (Field->getType()->isReferenceType()) {
377      // C++ [dcl.init.aggr]p9:
378      //   If an incomplete or empty initializer-list leaves a
379      //   member of reference type uninitialized, the program is
380      //   ill-formed.
381      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
382        << Field->getType()
383        << ILE->getSyntacticForm()->getSourceRange();
384      SemaRef.Diag(Field->getLocation(),
385                   diag::note_uninit_reference_member);
386      hadError = true;
387      return;
388    }
389
390    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
391                                                              true);
392    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
393    if (!InitSeq) {
394      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
395      hadError = true;
396      return;
397    }
398
399    ExprResult MemberInit
400      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
401    if (MemberInit.isInvalid()) {
402      hadError = true;
403      return;
404    }
405
406    if (hadError) {
407      // Do nothing
408    } else if (Init < NumInits) {
409      ILE->setInit(Init, MemberInit.takeAs<Expr>());
410    } else if (InitSeq.isConstructorInitialization()) {
411      // Value-initialization requires a constructor call, so
412      // extend the initializer list to include the constructor
413      // call and make a note that we'll need to take another pass
414      // through the initializer list.
415      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
416      RequiresSecondPass = true;
417    }
418  } else if (InitListExpr *InnerILE
419               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
420    FillInValueInitializations(MemberEntity, InnerILE,
421                               RequiresSecondPass);
422}
423
424/// Recursively replaces NULL values within the given initializer list
425/// with expressions that perform value-initialization of the
426/// appropriate type.
427void
428InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
429                                            InitListExpr *ILE,
430                                            bool &RequiresSecondPass) {
431  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
432         "Should not have void type");
433  SourceLocation Loc = ILE->getLocStart();
434  if (ILE->getSyntacticForm())
435    Loc = ILE->getSyntacticForm()->getLocStart();
436
437  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
438    const RecordDecl *RDecl = RType->getDecl();
439    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
440      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
441                              Entity, ILE, RequiresSecondPass);
442    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
443             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
444      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
445                                      FieldEnd = RDecl->field_end();
446           Field != FieldEnd; ++Field) {
447        if (Field->hasInClassInitializer()) {
448          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
449          break;
450        }
451      }
452    } else {
453      unsigned Init = 0;
454      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
455                                      FieldEnd = RDecl->field_end();
456           Field != FieldEnd; ++Field) {
457        if (Field->isUnnamedBitfield())
458          continue;
459
460        if (hadError)
461          return;
462
463        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
464        if (hadError)
465          return;
466
467        ++Init;
468
469        // Only look at the first initialization of a union.
470        if (RDecl->isUnion())
471          break;
472      }
473    }
474
475    return;
476  }
477
478  QualType ElementType;
479
480  InitializedEntity ElementEntity = Entity;
481  unsigned NumInits = ILE->getNumInits();
482  unsigned NumElements = NumInits;
483  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
484    ElementType = AType->getElementType();
485    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
486      NumElements = CAType->getSize().getZExtValue();
487    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
488                                                         0, Entity);
489  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
490    ElementType = VType->getElementType();
491    NumElements = VType->getNumElements();
492    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
493                                                         0, Entity);
494  } else
495    ElementType = ILE->getType();
496
497
498  for (unsigned Init = 0; Init != NumElements; ++Init) {
499    if (hadError)
500      return;
501
502    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
503        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
504      ElementEntity.setElementIndex(Init);
505
506    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
507    if (!InitExpr && !ILE->hasArrayFiller()) {
508      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
509                                                                true);
510      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
511      if (!InitSeq) {
512        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
513        hadError = true;
514        return;
515      }
516
517      ExprResult ElementInit
518        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
519      if (ElementInit.isInvalid()) {
520        hadError = true;
521        return;
522      }
523
524      if (hadError) {
525        // Do nothing
526      } else if (Init < NumInits) {
527        // For arrays, just set the expression used for value-initialization
528        // of the "holes" in the array.
529        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
530          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
531        else
532          ILE->setInit(Init, ElementInit.takeAs<Expr>());
533      } else {
534        // For arrays, just set the expression used for value-initialization
535        // of the rest of elements and exit.
536        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
537          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
538          return;
539        }
540
541        if (InitSeq.isConstructorInitialization()) {
542          // Value-initialization requires a constructor call, so
543          // extend the initializer list to include the constructor
544          // call and make a note that we'll need to take another pass
545          // through the initializer list.
546          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
547          RequiresSecondPass = true;
548        }
549      }
550    } else if (InitListExpr *InnerILE
551                 = dyn_cast_or_null<InitListExpr>(InitExpr))
552      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
553  }
554}
555
556
557InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
558                                 InitListExpr *IL, QualType &T,
559                                 bool VerifyOnly)
560  : SemaRef(S), VerifyOnly(VerifyOnly) {
561  hadError = false;
562
563  FullyStructuredList =
564      getStructuredSubobjectInit(IL, 0, T, 0, 0, IL->getSourceRange());
565  CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
566                        /*TopLevelObject=*/true);
567
568  if (!hadError && !VerifyOnly) {
569    bool RequiresSecondPass = false;
570    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
571    if (RequiresSecondPass && !hadError)
572      FillInValueInitializations(Entity, FullyStructuredList,
573                                 RequiresSecondPass);
574  }
575}
576
577int InitListChecker::numArrayElements(QualType DeclType) {
578  // FIXME: use a proper constant
579  int maxElements = 0x7FFFFFFF;
580  if (const ConstantArrayType *CAT =
581        SemaRef.Context.getAsConstantArrayType(DeclType)) {
582    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
583  }
584  return maxElements;
585}
586
587int InitListChecker::numStructUnionElements(QualType DeclType) {
588  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
589  int InitializableMembers = 0;
590  for (RecordDecl::field_iterator
591         Field = structDecl->field_begin(),
592         FieldEnd = structDecl->field_end();
593       Field != FieldEnd; ++Field) {
594    if (!Field->isUnnamedBitfield())
595      ++InitializableMembers;
596  }
597  if (structDecl->isUnion())
598    return std::min(InitializableMembers, 1);
599  return InitializableMembers - structDecl->hasFlexibleArrayMember();
600}
601
602/// Check whether the range of the initializer \p ParentIList from element
603/// \p Index onwards can be used to initialize an object of type \p T. Update
604/// \p Index to indicate how many elements of the list were consumed.
605///
606/// This also fills in \p StructuredList, from element \p StructuredIndex
607/// onwards, with the fully-braced, desugared form of the initialization.
608void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
609                                            InitListExpr *ParentIList,
610                                            QualType T, unsigned &Index,
611                                            InitListExpr *StructuredList,
612                                            unsigned &StructuredIndex) {
613  int maxElements = 0;
614
615  if (T->isArrayType())
616    maxElements = numArrayElements(T);
617  else if (T->isRecordType())
618    maxElements = numStructUnionElements(T);
619  else if (T->isVectorType())
620    maxElements = T->getAs<VectorType>()->getNumElements();
621  else
622    llvm_unreachable("CheckImplicitInitList(): Illegal type");
623
624  if (maxElements == 0) {
625    if (!VerifyOnly)
626      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
627                   diag::err_implicit_empty_initializer);
628    ++Index;
629    hadError = true;
630    return;
631  }
632
633  // Build a structured initializer list corresponding to this subobject.
634  InitListExpr *StructuredSubobjectInitList
635    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
636                                 StructuredIndex,
637          SourceRange(ParentIList->getInit(Index)->getLocStart(),
638                      ParentIList->getSourceRange().getEnd()));
639  unsigned StructuredSubobjectInitIndex = 0;
640
641  // Check the element types and build the structural subobject.
642  unsigned StartIndex = Index;
643  CheckListElementTypes(Entity, ParentIList, T,
644                        /*SubobjectIsDesignatorContext=*/false, Index,
645                        StructuredSubobjectInitList,
646                        StructuredSubobjectInitIndex);
647
648  if (!VerifyOnly) {
649    StructuredSubobjectInitList->setType(T);
650
651    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
652    // Update the structured sub-object initializer so that it's ending
653    // range corresponds with the end of the last initializer it used.
654    if (EndIndex < ParentIList->getNumInits()) {
655      SourceLocation EndLoc
656        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
657      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
658    }
659
660    // Complain about missing braces.
661    if (T->isArrayType() || T->isRecordType()) {
662      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
663                   diag::warn_missing_braces)
664        << StructuredSubobjectInitList->getSourceRange()
665        << FixItHint::CreateInsertion(
666              StructuredSubobjectInitList->getLocStart(), "{")
667        << FixItHint::CreateInsertion(
668              SemaRef.PP.getLocForEndOfToken(
669                                      StructuredSubobjectInitList->getLocEnd()),
670              "}");
671    }
672  }
673}
674
675/// Check whether the initializer \p IList (that was written with explicit
676/// braces) can be used to initialize an object of type \p T.
677///
678/// This also fills in \p StructuredList with the fully-braced, desugared
679/// form of the initialization.
680void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
681                                            InitListExpr *IList, QualType &T,
682                                            InitListExpr *StructuredList,
683                                            bool TopLevelObject) {
684  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
685  if (!VerifyOnly) {
686    SyntacticToSemantic[IList] = StructuredList;
687    StructuredList->setSyntacticForm(IList);
688  }
689
690  unsigned Index = 0, StructuredIndex = 0;
691  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
692                        Index, StructuredList, StructuredIndex, TopLevelObject);
693  if (!VerifyOnly) {
694    QualType ExprTy = T;
695    if (!ExprTy->isArrayType())
696      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
697    IList->setType(ExprTy);
698    StructuredList->setType(ExprTy);
699  }
700  if (hadError)
701    return;
702
703  if (Index < IList->getNumInits()) {
704    // We have leftover initializers
705    if (VerifyOnly) {
706      if (SemaRef.getLangOpts().CPlusPlus ||
707          (SemaRef.getLangOpts().OpenCL &&
708           IList->getType()->isVectorType())) {
709        hadError = true;
710      }
711      return;
712    }
713
714    if (StructuredIndex == 1 &&
715        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
716            SIF_None) {
717      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
718      if (SemaRef.getLangOpts().CPlusPlus) {
719        DK = diag::err_excess_initializers_in_char_array_initializer;
720        hadError = true;
721      }
722      // Special-case
723      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
724        << IList->getInit(Index)->getSourceRange();
725    } else if (!T->isIncompleteType()) {
726      // Don't complain for incomplete types, since we'll get an error
727      // elsewhere
728      QualType CurrentObjectType = StructuredList->getType();
729      int initKind =
730        CurrentObjectType->isArrayType()? 0 :
731        CurrentObjectType->isVectorType()? 1 :
732        CurrentObjectType->isScalarType()? 2 :
733        CurrentObjectType->isUnionType()? 3 :
734        4;
735
736      unsigned DK = diag::warn_excess_initializers;
737      if (SemaRef.getLangOpts().CPlusPlus) {
738        DK = diag::err_excess_initializers;
739        hadError = true;
740      }
741      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
742        DK = diag::err_excess_initializers;
743        hadError = true;
744      }
745
746      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
747        << initKind << IList->getInit(Index)->getSourceRange();
748    }
749  }
750
751  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
752      !TopLevelObject)
753    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
754      << IList->getSourceRange()
755      << FixItHint::CreateRemoval(IList->getLocStart())
756      << FixItHint::CreateRemoval(IList->getLocEnd());
757}
758
759void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
760                                            InitListExpr *IList,
761                                            QualType &DeclType,
762                                            bool SubobjectIsDesignatorContext,
763                                            unsigned &Index,
764                                            InitListExpr *StructuredList,
765                                            unsigned &StructuredIndex,
766                                            bool TopLevelObject) {
767  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
768    // Explicitly braced initializer for complex type can be real+imaginary
769    // parts.
770    CheckComplexType(Entity, IList, DeclType, Index,
771                     StructuredList, StructuredIndex);
772  } else if (DeclType->isScalarType()) {
773    CheckScalarType(Entity, IList, DeclType, Index,
774                    StructuredList, StructuredIndex);
775  } else if (DeclType->isVectorType()) {
776    CheckVectorType(Entity, IList, DeclType, Index,
777                    StructuredList, StructuredIndex);
778  } else if (DeclType->isRecordType()) {
779    assert(DeclType->isAggregateType() &&
780           "non-aggregate records should be handed in CheckSubElementType");
781    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
782    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
783                          SubobjectIsDesignatorContext, Index,
784                          StructuredList, StructuredIndex,
785                          TopLevelObject);
786  } else if (DeclType->isArrayType()) {
787    llvm::APSInt Zero(
788                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
789                    false);
790    CheckArrayType(Entity, IList, DeclType, Zero,
791                   SubobjectIsDesignatorContext, Index,
792                   StructuredList, StructuredIndex);
793  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
794    // This type is invalid, issue a diagnostic.
795    ++Index;
796    if (!VerifyOnly)
797      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
798        << DeclType;
799    hadError = true;
800  } else if (DeclType->isReferenceType()) {
801    CheckReferenceType(Entity, IList, DeclType, Index,
802                       StructuredList, StructuredIndex);
803  } else if (DeclType->isObjCObjectType()) {
804    if (!VerifyOnly)
805      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
806        << DeclType;
807    hadError = true;
808  } else {
809    if (!VerifyOnly)
810      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
811        << DeclType;
812    hadError = true;
813  }
814}
815
816void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
817                                          InitListExpr *IList,
818                                          QualType ElemType,
819                                          unsigned &Index,
820                                          InitListExpr *StructuredList,
821                                          unsigned &StructuredIndex) {
822  Expr *expr = IList->getInit(Index);
823
824  if (ElemType->isReferenceType())
825    return CheckReferenceType(Entity, IList, ElemType, Index,
826                              StructuredList, StructuredIndex);
827
828  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
829    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
830      InitListExpr *InnerStructuredList
831        = getStructuredSubobjectInit(IList, Index, ElemType,
832                                     StructuredList, StructuredIndex,
833                                     SubInitList->getSourceRange());
834      CheckExplicitInitList(Entity, SubInitList, ElemType,
835                            InnerStructuredList);
836      ++StructuredIndex;
837      ++Index;
838      return;
839    }
840    assert(SemaRef.getLangOpts().CPlusPlus &&
841           "non-aggregate records are only possible in C++");
842    // C++ initialization is handled later.
843  }
844
845  // FIXME: Need to handle atomic aggregate types with implicit init lists.
846  if (ElemType->isScalarType() || ElemType->isAtomicType())
847    return CheckScalarType(Entity, IList, ElemType, Index,
848                           StructuredList, StructuredIndex);
849
850  assert((ElemType->isRecordType() || ElemType->isVectorType() ||
851          ElemType->isArrayType()) && "Unexpected type");
852
853  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
854    // arrayType can be incomplete if we're initializing a flexible
855    // array member.  There's nothing we can do with the completed
856    // type here, though.
857
858    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
859      if (!VerifyOnly) {
860        CheckStringInit(expr, ElemType, arrayType, SemaRef);
861        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
862      }
863      ++Index;
864      return;
865    }
866
867    // Fall through for subaggregate initialization.
868
869  } else if (SemaRef.getLangOpts().CPlusPlus) {
870    // C++ [dcl.init.aggr]p12:
871    //   All implicit type conversions (clause 4) are considered when
872    //   initializing the aggregate member with an initializer from
873    //   an initializer-list. If the initializer can initialize a
874    //   member, the member is initialized. [...]
875
876    // FIXME: Better EqualLoc?
877    InitializationKind Kind =
878      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
879    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
880
881    if (Seq) {
882      if (!VerifyOnly) {
883        ExprResult Result =
884          Seq.Perform(SemaRef, Entity, Kind, expr);
885        if (Result.isInvalid())
886          hadError = true;
887
888        UpdateStructuredListElement(StructuredList, StructuredIndex,
889                                    Result.takeAs<Expr>());
890      }
891      ++Index;
892      return;
893    }
894
895    // Fall through for subaggregate initialization
896  } else {
897    // C99 6.7.8p13:
898    //
899    //   The initializer for a structure or union object that has
900    //   automatic storage duration shall be either an initializer
901    //   list as described below, or a single expression that has
902    //   compatible structure or union type. In the latter case, the
903    //   initial value of the object, including unnamed members, is
904    //   that of the expression.
905    ExprResult ExprRes = SemaRef.Owned(expr);
906    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
907        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
908                                                 !VerifyOnly)
909          != Sema::Incompatible) {
910      if (ExprRes.isInvalid())
911        hadError = true;
912      else {
913        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
914          if (ExprRes.isInvalid())
915            hadError = true;
916      }
917      UpdateStructuredListElement(StructuredList, StructuredIndex,
918                                  ExprRes.takeAs<Expr>());
919      ++Index;
920      return;
921    }
922    ExprRes.release();
923    // Fall through for subaggregate initialization
924  }
925
926  // C++ [dcl.init.aggr]p12:
927  //
928  //   [...] Otherwise, if the member is itself a non-empty
929  //   subaggregate, brace elision is assumed and the initializer is
930  //   considered for the initialization of the first member of
931  //   the subaggregate.
932  if (!SemaRef.getLangOpts().OpenCL &&
933      (ElemType->isAggregateType() || ElemType->isVectorType())) {
934    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
935                          StructuredIndex);
936    ++StructuredIndex;
937  } else {
938    if (!VerifyOnly) {
939      // We cannot initialize this element, so let
940      // PerformCopyInitialization produce the appropriate diagnostic.
941      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
942                                        SemaRef.Owned(expr),
943                                        /*TopLevelOfInitList=*/true);
944    }
945    hadError = true;
946    ++Index;
947    ++StructuredIndex;
948  }
949}
950
951void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
952                                       InitListExpr *IList, QualType DeclType,
953                                       unsigned &Index,
954                                       InitListExpr *StructuredList,
955                                       unsigned &StructuredIndex) {
956  assert(Index == 0 && "Index in explicit init list must be zero");
957
958  // As an extension, clang supports complex initializers, which initialize
959  // a complex number component-wise.  When an explicit initializer list for
960  // a complex number contains two two initializers, this extension kicks in:
961  // it exepcts the initializer list to contain two elements convertible to
962  // the element type of the complex type. The first element initializes
963  // the real part, and the second element intitializes the imaginary part.
964
965  if (IList->getNumInits() != 2)
966    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
967                           StructuredIndex);
968
969  // This is an extension in C.  (The builtin _Complex type does not exist
970  // in the C++ standard.)
971  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
972    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
973      << IList->getSourceRange();
974
975  // Initialize the complex number.
976  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
977  InitializedEntity ElementEntity =
978    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
979
980  for (unsigned i = 0; i < 2; ++i) {
981    ElementEntity.setElementIndex(Index);
982    CheckSubElementType(ElementEntity, IList, elementType, Index,
983                        StructuredList, StructuredIndex);
984  }
985}
986
987
988void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
989                                      InitListExpr *IList, QualType DeclType,
990                                      unsigned &Index,
991                                      InitListExpr *StructuredList,
992                                      unsigned &StructuredIndex) {
993  if (Index >= IList->getNumInits()) {
994    if (!VerifyOnly)
995      SemaRef.Diag(IList->getLocStart(),
996                   SemaRef.getLangOpts().CPlusPlus11 ?
997                     diag::warn_cxx98_compat_empty_scalar_initializer :
998                     diag::err_empty_scalar_initializer)
999        << IList->getSourceRange();
1000    hadError = !SemaRef.getLangOpts().CPlusPlus11;
1001    ++Index;
1002    ++StructuredIndex;
1003    return;
1004  }
1005
1006  Expr *expr = IList->getInit(Index);
1007  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1008    if (!VerifyOnly)
1009      SemaRef.Diag(SubIList->getLocStart(),
1010                   diag::warn_many_braces_around_scalar_init)
1011        << SubIList->getSourceRange();
1012
1013    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1014                    StructuredIndex);
1015    return;
1016  } else if (isa<DesignatedInitExpr>(expr)) {
1017    if (!VerifyOnly)
1018      SemaRef.Diag(expr->getLocStart(),
1019                   diag::err_designator_for_scalar_init)
1020        << DeclType << expr->getSourceRange();
1021    hadError = true;
1022    ++Index;
1023    ++StructuredIndex;
1024    return;
1025  }
1026
1027  if (VerifyOnly) {
1028    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1029      hadError = true;
1030    ++Index;
1031    return;
1032  }
1033
1034  ExprResult Result =
1035    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1036                                      SemaRef.Owned(expr),
1037                                      /*TopLevelOfInitList=*/true);
1038
1039  Expr *ResultExpr = 0;
1040
1041  if (Result.isInvalid())
1042    hadError = true; // types weren't compatible.
1043  else {
1044    ResultExpr = Result.takeAs<Expr>();
1045
1046    if (ResultExpr != expr) {
1047      // The type was promoted, update initializer list.
1048      IList->setInit(Index, ResultExpr);
1049    }
1050  }
1051  if (hadError)
1052    ++StructuredIndex;
1053  else
1054    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1055  ++Index;
1056}
1057
1058void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1059                                         InitListExpr *IList, QualType DeclType,
1060                                         unsigned &Index,
1061                                         InitListExpr *StructuredList,
1062                                         unsigned &StructuredIndex) {
1063  if (Index >= IList->getNumInits()) {
1064    // FIXME: It would be wonderful if we could point at the actual member. In
1065    // general, it would be useful to pass location information down the stack,
1066    // so that we know the location (or decl) of the "current object" being
1067    // initialized.
1068    if (!VerifyOnly)
1069      SemaRef.Diag(IList->getLocStart(),
1070                    diag::err_init_reference_member_uninitialized)
1071        << DeclType
1072        << IList->getSourceRange();
1073    hadError = true;
1074    ++Index;
1075    ++StructuredIndex;
1076    return;
1077  }
1078
1079  Expr *expr = IList->getInit(Index);
1080  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1081    if (!VerifyOnly)
1082      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1083        << DeclType << IList->getSourceRange();
1084    hadError = true;
1085    ++Index;
1086    ++StructuredIndex;
1087    return;
1088  }
1089
1090  if (VerifyOnly) {
1091    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1092      hadError = true;
1093    ++Index;
1094    return;
1095  }
1096
1097  ExprResult Result =
1098    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1099                                      SemaRef.Owned(expr),
1100                                      /*TopLevelOfInitList=*/true);
1101
1102  if (Result.isInvalid())
1103    hadError = true;
1104
1105  expr = Result.takeAs<Expr>();
1106  IList->setInit(Index, expr);
1107
1108  if (hadError)
1109    ++StructuredIndex;
1110  else
1111    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1112  ++Index;
1113}
1114
1115void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1116                                      InitListExpr *IList, QualType DeclType,
1117                                      unsigned &Index,
1118                                      InitListExpr *StructuredList,
1119                                      unsigned &StructuredIndex) {
1120  const VectorType *VT = DeclType->getAs<VectorType>();
1121  unsigned maxElements = VT->getNumElements();
1122  unsigned numEltsInit = 0;
1123  QualType elementType = VT->getElementType();
1124
1125  if (Index >= IList->getNumInits()) {
1126    // Make sure the element type can be value-initialized.
1127    if (VerifyOnly)
1128      CheckValueInitializable(
1129          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1130    return;
1131  }
1132
1133  if (!SemaRef.getLangOpts().OpenCL) {
1134    // If the initializing element is a vector, try to copy-initialize
1135    // instead of breaking it apart (which is doomed to failure anyway).
1136    Expr *Init = IList->getInit(Index);
1137    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1138      if (VerifyOnly) {
1139        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1140          hadError = true;
1141        ++Index;
1142        return;
1143      }
1144
1145      ExprResult Result =
1146        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1147                                          SemaRef.Owned(Init),
1148                                          /*TopLevelOfInitList=*/true);
1149
1150      Expr *ResultExpr = 0;
1151      if (Result.isInvalid())
1152        hadError = true; // types weren't compatible.
1153      else {
1154        ResultExpr = Result.takeAs<Expr>();
1155
1156        if (ResultExpr != Init) {
1157          // The type was promoted, update initializer list.
1158          IList->setInit(Index, ResultExpr);
1159        }
1160      }
1161      if (hadError)
1162        ++StructuredIndex;
1163      else
1164        UpdateStructuredListElement(StructuredList, StructuredIndex,
1165                                    ResultExpr);
1166      ++Index;
1167      return;
1168    }
1169
1170    InitializedEntity ElementEntity =
1171      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1172
1173    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1174      // Don't attempt to go past the end of the init list
1175      if (Index >= IList->getNumInits()) {
1176        if (VerifyOnly)
1177          CheckValueInitializable(ElementEntity);
1178        break;
1179      }
1180
1181      ElementEntity.setElementIndex(Index);
1182      CheckSubElementType(ElementEntity, IList, elementType, Index,
1183                          StructuredList, StructuredIndex);
1184    }
1185    return;
1186  }
1187
1188  InitializedEntity ElementEntity =
1189    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1190
1191  // OpenCL initializers allows vectors to be constructed from vectors.
1192  for (unsigned i = 0; i < maxElements; ++i) {
1193    // Don't attempt to go past the end of the init list
1194    if (Index >= IList->getNumInits())
1195      break;
1196
1197    ElementEntity.setElementIndex(Index);
1198
1199    QualType IType = IList->getInit(Index)->getType();
1200    if (!IType->isVectorType()) {
1201      CheckSubElementType(ElementEntity, IList, elementType, Index,
1202                          StructuredList, StructuredIndex);
1203      ++numEltsInit;
1204    } else {
1205      QualType VecType;
1206      const VectorType *IVT = IType->getAs<VectorType>();
1207      unsigned numIElts = IVT->getNumElements();
1208
1209      if (IType->isExtVectorType())
1210        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1211      else
1212        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1213                                                IVT->getVectorKind());
1214      CheckSubElementType(ElementEntity, IList, VecType, Index,
1215                          StructuredList, StructuredIndex);
1216      numEltsInit += numIElts;
1217    }
1218  }
1219
1220  // OpenCL requires all elements to be initialized.
1221  if (numEltsInit != maxElements) {
1222    if (!VerifyOnly)
1223      SemaRef.Diag(IList->getLocStart(),
1224                   diag::err_vector_incorrect_num_initializers)
1225        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1226    hadError = true;
1227  }
1228}
1229
1230void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1231                                     InitListExpr *IList, QualType &DeclType,
1232                                     llvm::APSInt elementIndex,
1233                                     bool SubobjectIsDesignatorContext,
1234                                     unsigned &Index,
1235                                     InitListExpr *StructuredList,
1236                                     unsigned &StructuredIndex) {
1237  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1238
1239  // Check for the special-case of initializing an array with a string.
1240  if (Index < IList->getNumInits()) {
1241    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1242        SIF_None) {
1243      // We place the string literal directly into the resulting
1244      // initializer list. This is the only place where the structure
1245      // of the structured initializer list doesn't match exactly,
1246      // because doing so would involve allocating one character
1247      // constant for each string.
1248      if (!VerifyOnly) {
1249        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1250        UpdateStructuredListElement(StructuredList, StructuredIndex,
1251                                    IList->getInit(Index));
1252        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1253      }
1254      ++Index;
1255      return;
1256    }
1257  }
1258  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1259    // Check for VLAs; in standard C it would be possible to check this
1260    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1261    // them in all sorts of strange places).
1262    if (!VerifyOnly)
1263      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1264                    diag::err_variable_object_no_init)
1265        << VAT->getSizeExpr()->getSourceRange();
1266    hadError = true;
1267    ++Index;
1268    ++StructuredIndex;
1269    return;
1270  }
1271
1272  // We might know the maximum number of elements in advance.
1273  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1274                           elementIndex.isUnsigned());
1275  bool maxElementsKnown = false;
1276  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1277    maxElements = CAT->getSize();
1278    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1279    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1280    maxElementsKnown = true;
1281  }
1282
1283  QualType elementType = arrayType->getElementType();
1284  while (Index < IList->getNumInits()) {
1285    Expr *Init = IList->getInit(Index);
1286    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1287      // If we're not the subobject that matches up with the '{' for
1288      // the designator, we shouldn't be handling the
1289      // designator. Return immediately.
1290      if (!SubobjectIsDesignatorContext)
1291        return;
1292
1293      // Handle this designated initializer. elementIndex will be
1294      // updated to be the next array element we'll initialize.
1295      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1296                                     DeclType, 0, &elementIndex, Index,
1297                                     StructuredList, StructuredIndex, true,
1298                                     false)) {
1299        hadError = true;
1300        continue;
1301      }
1302
1303      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1304        maxElements = maxElements.extend(elementIndex.getBitWidth());
1305      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1306        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1307      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1308
1309      // If the array is of incomplete type, keep track of the number of
1310      // elements in the initializer.
1311      if (!maxElementsKnown && elementIndex > maxElements)
1312        maxElements = elementIndex;
1313
1314      continue;
1315    }
1316
1317    // If we know the maximum number of elements, and we've already
1318    // hit it, stop consuming elements in the initializer list.
1319    if (maxElementsKnown && elementIndex == maxElements)
1320      break;
1321
1322    InitializedEntity ElementEntity =
1323      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1324                                           Entity);
1325    // Check this element.
1326    CheckSubElementType(ElementEntity, IList, elementType, Index,
1327                        StructuredList, StructuredIndex);
1328    ++elementIndex;
1329
1330    // If the array is of incomplete type, keep track of the number of
1331    // elements in the initializer.
1332    if (!maxElementsKnown && elementIndex > maxElements)
1333      maxElements = elementIndex;
1334  }
1335  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1336    // If this is an incomplete array type, the actual type needs to
1337    // be calculated here.
1338    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1339    if (maxElements == Zero) {
1340      // Sizing an array implicitly to zero is not allowed by ISO C,
1341      // but is supported by GNU.
1342      SemaRef.Diag(IList->getLocStart(),
1343                    diag::ext_typecheck_zero_array_size);
1344    }
1345
1346    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1347                                                     ArrayType::Normal, 0);
1348  }
1349  if (!hadError && VerifyOnly) {
1350    // Check if there are any members of the array that get value-initialized.
1351    // If so, check if doing that is possible.
1352    // FIXME: This needs to detect holes left by designated initializers too.
1353    if (maxElementsKnown && elementIndex < maxElements)
1354      CheckValueInitializable(InitializedEntity::InitializeElement(
1355                                                  SemaRef.Context, 0, Entity));
1356  }
1357}
1358
1359bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1360                                             Expr *InitExpr,
1361                                             FieldDecl *Field,
1362                                             bool TopLevelObject) {
1363  // Handle GNU flexible array initializers.
1364  unsigned FlexArrayDiag;
1365  if (isa<InitListExpr>(InitExpr) &&
1366      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1367    // Empty flexible array init always allowed as an extension
1368    FlexArrayDiag = diag::ext_flexible_array_init;
1369  } else if (SemaRef.getLangOpts().CPlusPlus) {
1370    // Disallow flexible array init in C++; it is not required for gcc
1371    // compatibility, and it needs work to IRGen correctly in general.
1372    FlexArrayDiag = diag::err_flexible_array_init;
1373  } else if (!TopLevelObject) {
1374    // Disallow flexible array init on non-top-level object
1375    FlexArrayDiag = diag::err_flexible_array_init;
1376  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1377    // Disallow flexible array init on anything which is not a variable.
1378    FlexArrayDiag = diag::err_flexible_array_init;
1379  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1380    // Disallow flexible array init on local variables.
1381    FlexArrayDiag = diag::err_flexible_array_init;
1382  } else {
1383    // Allow other cases.
1384    FlexArrayDiag = diag::ext_flexible_array_init;
1385  }
1386
1387  if (!VerifyOnly) {
1388    SemaRef.Diag(InitExpr->getLocStart(),
1389                 FlexArrayDiag)
1390      << InitExpr->getLocStart();
1391    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1392      << Field;
1393  }
1394
1395  return FlexArrayDiag != diag::ext_flexible_array_init;
1396}
1397
1398void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1399                                            InitListExpr *IList,
1400                                            QualType DeclType,
1401                                            RecordDecl::field_iterator Field,
1402                                            bool SubobjectIsDesignatorContext,
1403                                            unsigned &Index,
1404                                            InitListExpr *StructuredList,
1405                                            unsigned &StructuredIndex,
1406                                            bool TopLevelObject) {
1407  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1408
1409  // If the record is invalid, some of it's members are invalid. To avoid
1410  // confusion, we forgo checking the intializer for the entire record.
1411  if (structDecl->isInvalidDecl()) {
1412    // Assume it was supposed to consume a single initializer.
1413    ++Index;
1414    hadError = true;
1415    return;
1416  }
1417
1418  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1419    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1420
1421    // If there's a default initializer, use it.
1422    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1423      if (VerifyOnly)
1424        return;
1425      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1426           Field != FieldEnd; ++Field) {
1427        if (Field->hasInClassInitializer()) {
1428          StructuredList->setInitializedFieldInUnion(*Field);
1429          // FIXME: Actually build a CXXDefaultInitExpr?
1430          return;
1431        }
1432      }
1433    }
1434
1435    // Value-initialize the first named member of the union.
1436    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1437         Field != FieldEnd; ++Field) {
1438      if (Field->getDeclName()) {
1439        if (VerifyOnly)
1440          CheckValueInitializable(
1441              InitializedEntity::InitializeMember(*Field, &Entity));
1442        else
1443          StructuredList->setInitializedFieldInUnion(*Field);
1444        break;
1445      }
1446    }
1447    return;
1448  }
1449
1450  // If structDecl is a forward declaration, this loop won't do
1451  // anything except look at designated initializers; That's okay,
1452  // because an error should get printed out elsewhere. It might be
1453  // worthwhile to skip over the rest of the initializer, though.
1454  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1455  RecordDecl::field_iterator FieldEnd = RD->field_end();
1456  bool InitializedSomething = false;
1457  bool CheckForMissingFields = true;
1458  while (Index < IList->getNumInits()) {
1459    Expr *Init = IList->getInit(Index);
1460
1461    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1462      // If we're not the subobject that matches up with the '{' for
1463      // the designator, we shouldn't be handling the
1464      // designator. Return immediately.
1465      if (!SubobjectIsDesignatorContext)
1466        return;
1467
1468      // Handle this designated initializer. Field will be updated to
1469      // the next field that we'll be initializing.
1470      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1471                                     DeclType, &Field, 0, Index,
1472                                     StructuredList, StructuredIndex,
1473                                     true, TopLevelObject))
1474        hadError = true;
1475
1476      InitializedSomething = true;
1477
1478      // Disable check for missing fields when designators are used.
1479      // This matches gcc behaviour.
1480      CheckForMissingFields = false;
1481      continue;
1482    }
1483
1484    if (Field == FieldEnd) {
1485      // We've run out of fields. We're done.
1486      break;
1487    }
1488
1489    // We've already initialized a member of a union. We're done.
1490    if (InitializedSomething && DeclType->isUnionType())
1491      break;
1492
1493    // If we've hit the flexible array member at the end, we're done.
1494    if (Field->getType()->isIncompleteArrayType())
1495      break;
1496
1497    if (Field->isUnnamedBitfield()) {
1498      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1499      ++Field;
1500      continue;
1501    }
1502
1503    // Make sure we can use this declaration.
1504    bool InvalidUse;
1505    if (VerifyOnly)
1506      InvalidUse = !SemaRef.CanUseDecl(*Field);
1507    else
1508      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1509                                          IList->getInit(Index)->getLocStart());
1510    if (InvalidUse) {
1511      ++Index;
1512      ++Field;
1513      hadError = true;
1514      continue;
1515    }
1516
1517    InitializedEntity MemberEntity =
1518      InitializedEntity::InitializeMember(*Field, &Entity);
1519    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1520                        StructuredList, StructuredIndex);
1521    InitializedSomething = true;
1522
1523    if (DeclType->isUnionType() && !VerifyOnly) {
1524      // Initialize the first field within the union.
1525      StructuredList->setInitializedFieldInUnion(*Field);
1526    }
1527
1528    ++Field;
1529  }
1530
1531  // Emit warnings for missing struct field initializers.
1532  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1533      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1534      !DeclType->isUnionType()) {
1535    // It is possible we have one or more unnamed bitfields remaining.
1536    // Find first (if any) named field and emit warning.
1537    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1538         it != end; ++it) {
1539      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1540        SemaRef.Diag(IList->getSourceRange().getEnd(),
1541                     diag::warn_missing_field_initializers) << it->getName();
1542        break;
1543      }
1544    }
1545  }
1546
1547  // Check that any remaining fields can be value-initialized.
1548  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1549      !Field->getType()->isIncompleteArrayType()) {
1550    // FIXME: Should check for holes left by designated initializers too.
1551    for (; Field != FieldEnd && !hadError; ++Field) {
1552      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1553        CheckValueInitializable(
1554            InitializedEntity::InitializeMember(*Field, &Entity));
1555    }
1556  }
1557
1558  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1559      Index >= IList->getNumInits())
1560    return;
1561
1562  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1563                             TopLevelObject)) {
1564    hadError = true;
1565    ++Index;
1566    return;
1567  }
1568
1569  InitializedEntity MemberEntity =
1570    InitializedEntity::InitializeMember(*Field, &Entity);
1571
1572  if (isa<InitListExpr>(IList->getInit(Index)))
1573    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1574                        StructuredList, StructuredIndex);
1575  else
1576    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1577                          StructuredList, StructuredIndex);
1578}
1579
1580/// \brief Expand a field designator that refers to a member of an
1581/// anonymous struct or union into a series of field designators that
1582/// refers to the field within the appropriate subobject.
1583///
1584static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1585                                           DesignatedInitExpr *DIE,
1586                                           unsigned DesigIdx,
1587                                           IndirectFieldDecl *IndirectField) {
1588  typedef DesignatedInitExpr::Designator Designator;
1589
1590  // Build the replacement designators.
1591  SmallVector<Designator, 4> Replacements;
1592  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1593       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1594    if (PI + 1 == PE)
1595      Replacements.push_back(Designator((IdentifierInfo *)0,
1596                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1597                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1598    else
1599      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1600                                        SourceLocation()));
1601    assert(isa<FieldDecl>(*PI));
1602    Replacements.back().setField(cast<FieldDecl>(*PI));
1603  }
1604
1605  // Expand the current designator into the set of replacement
1606  // designators, so we have a full subobject path down to where the
1607  // member of the anonymous struct/union is actually stored.
1608  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1609                        &Replacements[0] + Replacements.size());
1610}
1611
1612/// \brief Given an implicit anonymous field, search the IndirectField that
1613///  corresponds to FieldName.
1614static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1615                                                 IdentifierInfo *FieldName) {
1616  if (!FieldName)
1617    return 0;
1618
1619  assert(AnonField->isAnonymousStructOrUnion());
1620  Decl *NextDecl = AnonField->getNextDeclInContext();
1621  while (IndirectFieldDecl *IF =
1622          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1623    if (FieldName == IF->getAnonField()->getIdentifier())
1624      return IF;
1625    NextDecl = NextDecl->getNextDeclInContext();
1626  }
1627  return 0;
1628}
1629
1630static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1631                                                   DesignatedInitExpr *DIE) {
1632  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1633  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1634  for (unsigned I = 0; I < NumIndexExprs; ++I)
1635    IndexExprs[I] = DIE->getSubExpr(I + 1);
1636  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1637                                    DIE->size(), IndexExprs,
1638                                    DIE->getEqualOrColonLoc(),
1639                                    DIE->usesGNUSyntax(), DIE->getInit());
1640}
1641
1642namespace {
1643
1644// Callback to only accept typo corrections that are for field members of
1645// the given struct or union.
1646class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1647 public:
1648  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1649      : Record(RD) {}
1650
1651  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1652    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1653    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1654  }
1655
1656 private:
1657  RecordDecl *Record;
1658};
1659
1660}
1661
1662/// @brief Check the well-formedness of a C99 designated initializer.
1663///
1664/// Determines whether the designated initializer @p DIE, which
1665/// resides at the given @p Index within the initializer list @p
1666/// IList, is well-formed for a current object of type @p DeclType
1667/// (C99 6.7.8). The actual subobject that this designator refers to
1668/// within the current subobject is returned in either
1669/// @p NextField or @p NextElementIndex (whichever is appropriate).
1670///
1671/// @param IList  The initializer list in which this designated
1672/// initializer occurs.
1673///
1674/// @param DIE The designated initializer expression.
1675///
1676/// @param DesigIdx  The index of the current designator.
1677///
1678/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1679/// into which the designation in @p DIE should refer.
1680///
1681/// @param NextField  If non-NULL and the first designator in @p DIE is
1682/// a field, this will be set to the field declaration corresponding
1683/// to the field named by the designator.
1684///
1685/// @param NextElementIndex  If non-NULL and the first designator in @p
1686/// DIE is an array designator or GNU array-range designator, this
1687/// will be set to the last index initialized by this designator.
1688///
1689/// @param Index  Index into @p IList where the designated initializer
1690/// @p DIE occurs.
1691///
1692/// @param StructuredList  The initializer list expression that
1693/// describes all of the subobject initializers in the order they'll
1694/// actually be initialized.
1695///
1696/// @returns true if there was an error, false otherwise.
1697bool
1698InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1699                                            InitListExpr *IList,
1700                                            DesignatedInitExpr *DIE,
1701                                            unsigned DesigIdx,
1702                                            QualType &CurrentObjectType,
1703                                          RecordDecl::field_iterator *NextField,
1704                                            llvm::APSInt *NextElementIndex,
1705                                            unsigned &Index,
1706                                            InitListExpr *StructuredList,
1707                                            unsigned &StructuredIndex,
1708                                            bool FinishSubobjectInit,
1709                                            bool TopLevelObject) {
1710  if (DesigIdx == DIE->size()) {
1711    // Check the actual initialization for the designated object type.
1712    bool prevHadError = hadError;
1713
1714    // Temporarily remove the designator expression from the
1715    // initializer list that the child calls see, so that we don't try
1716    // to re-process the designator.
1717    unsigned OldIndex = Index;
1718    IList->setInit(OldIndex, DIE->getInit());
1719
1720    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1721                        StructuredList, StructuredIndex);
1722
1723    // Restore the designated initializer expression in the syntactic
1724    // form of the initializer list.
1725    if (IList->getInit(OldIndex) != DIE->getInit())
1726      DIE->setInit(IList->getInit(OldIndex));
1727    IList->setInit(OldIndex, DIE);
1728
1729    return hadError && !prevHadError;
1730  }
1731
1732  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1733  bool IsFirstDesignator = (DesigIdx == 0);
1734  if (!VerifyOnly) {
1735    assert((IsFirstDesignator || StructuredList) &&
1736           "Need a non-designated initializer list to start from");
1737
1738    // Determine the structural initializer list that corresponds to the
1739    // current subobject.
1740    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1741      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1742                                   StructuredList, StructuredIndex,
1743                                   SourceRange(D->getLocStart(),
1744                                               DIE->getLocEnd()));
1745    assert(StructuredList && "Expected a structured initializer list");
1746  }
1747
1748  if (D->isFieldDesignator()) {
1749    // C99 6.7.8p7:
1750    //
1751    //   If a designator has the form
1752    //
1753    //      . identifier
1754    //
1755    //   then the current object (defined below) shall have
1756    //   structure or union type and the identifier shall be the
1757    //   name of a member of that type.
1758    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1759    if (!RT) {
1760      SourceLocation Loc = D->getDotLoc();
1761      if (Loc.isInvalid())
1762        Loc = D->getFieldLoc();
1763      if (!VerifyOnly)
1764        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1765          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1766      ++Index;
1767      return true;
1768    }
1769
1770    // Note: we perform a linear search of the fields here, despite
1771    // the fact that we have a faster lookup method, because we always
1772    // need to compute the field's index.
1773    FieldDecl *KnownField = D->getField();
1774    IdentifierInfo *FieldName = D->getFieldName();
1775    unsigned FieldIndex = 0;
1776    RecordDecl::field_iterator
1777      Field = RT->getDecl()->field_begin(),
1778      FieldEnd = RT->getDecl()->field_end();
1779    for (; Field != FieldEnd; ++Field) {
1780      if (Field->isUnnamedBitfield())
1781        continue;
1782
1783      // If we find a field representing an anonymous field, look in the
1784      // IndirectFieldDecl that follow for the designated initializer.
1785      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1786        if (IndirectFieldDecl *IF =
1787            FindIndirectFieldDesignator(*Field, FieldName)) {
1788          // In verify mode, don't modify the original.
1789          if (VerifyOnly)
1790            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1791          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1792          D = DIE->getDesignator(DesigIdx);
1793          break;
1794        }
1795      }
1796      if (KnownField && KnownField == *Field)
1797        break;
1798      if (FieldName && FieldName == Field->getIdentifier())
1799        break;
1800
1801      ++FieldIndex;
1802    }
1803
1804    if (Field == FieldEnd) {
1805      if (VerifyOnly) {
1806        ++Index;
1807        return true; // No typo correction when just trying this out.
1808      }
1809
1810      // There was no normal field in the struct with the designated
1811      // name. Perform another lookup for this name, which may find
1812      // something that we can't designate (e.g., a member function),
1813      // may find nothing, or may find a member of an anonymous
1814      // struct/union.
1815      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1816      FieldDecl *ReplacementField = 0;
1817      if (Lookup.empty()) {
1818        // Name lookup didn't find anything. Determine whether this
1819        // was a typo for another field name.
1820        FieldInitializerValidatorCCC Validator(RT->getDecl());
1821        if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1822                DeclarationNameInfo(FieldName, D->getFieldLoc()),
1823                Sema::LookupMemberName, /*Scope=*/ 0, /*SS=*/ 0, Validator,
1824                RT->getDecl())) {
1825          SemaRef.diagnoseTypo(
1826              Corrected,
1827              SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1828                  << FieldName << CurrentObjectType);
1829          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1830          hadError = true;
1831        } else {
1832          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1833            << FieldName << CurrentObjectType;
1834          ++Index;
1835          return true;
1836        }
1837      }
1838
1839      if (!ReplacementField) {
1840        // Name lookup found something, but it wasn't a field.
1841        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1842          << FieldName;
1843        SemaRef.Diag(Lookup.front()->getLocation(),
1844                      diag::note_field_designator_found);
1845        ++Index;
1846        return true;
1847      }
1848
1849      if (!KnownField) {
1850        // The replacement field comes from typo correction; find it
1851        // in the list of fields.
1852        FieldIndex = 0;
1853        Field = RT->getDecl()->field_begin();
1854        for (; Field != FieldEnd; ++Field) {
1855          if (Field->isUnnamedBitfield())
1856            continue;
1857
1858          if (ReplacementField == *Field ||
1859              Field->getIdentifier() == ReplacementField->getIdentifier())
1860            break;
1861
1862          ++FieldIndex;
1863        }
1864      }
1865    }
1866
1867    // All of the fields of a union are located at the same place in
1868    // the initializer list.
1869    if (RT->getDecl()->isUnion()) {
1870      FieldIndex = 0;
1871      if (!VerifyOnly) {
1872        FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
1873        if (CurrentField && CurrentField != *Field) {
1874          assert(StructuredList->getNumInits() == 1
1875                 && "A union should never have more than one initializer!");
1876
1877          // we're about to throw away an initializer, emit warning
1878          SemaRef.Diag(D->getFieldLoc(),
1879                       diag::warn_initializer_overrides)
1880            << D->getSourceRange();
1881          Expr *ExistingInit = StructuredList->getInit(0);
1882          SemaRef.Diag(ExistingInit->getLocStart(),
1883                       diag::note_previous_initializer)
1884            << /*FIXME:has side effects=*/0
1885            << ExistingInit->getSourceRange();
1886
1887          // remove existing initializer
1888          StructuredList->resizeInits(SemaRef.Context, 0);
1889          StructuredList->setInitializedFieldInUnion(0);
1890        }
1891
1892        StructuredList->setInitializedFieldInUnion(*Field);
1893      }
1894    }
1895
1896    // Make sure we can use this declaration.
1897    bool InvalidUse;
1898    if (VerifyOnly)
1899      InvalidUse = !SemaRef.CanUseDecl(*Field);
1900    else
1901      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1902    if (InvalidUse) {
1903      ++Index;
1904      return true;
1905    }
1906
1907    if (!VerifyOnly) {
1908      // Update the designator with the field declaration.
1909      D->setField(*Field);
1910
1911      // Make sure that our non-designated initializer list has space
1912      // for a subobject corresponding to this field.
1913      if (FieldIndex >= StructuredList->getNumInits())
1914        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1915    }
1916
1917    // This designator names a flexible array member.
1918    if (Field->getType()->isIncompleteArrayType()) {
1919      bool Invalid = false;
1920      if ((DesigIdx + 1) != DIE->size()) {
1921        // We can't designate an object within the flexible array
1922        // member (because GCC doesn't allow it).
1923        if (!VerifyOnly) {
1924          DesignatedInitExpr::Designator *NextD
1925            = DIE->getDesignator(DesigIdx + 1);
1926          SemaRef.Diag(NextD->getLocStart(),
1927                        diag::err_designator_into_flexible_array_member)
1928            << SourceRange(NextD->getLocStart(),
1929                           DIE->getLocEnd());
1930          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1931            << *Field;
1932        }
1933        Invalid = true;
1934      }
1935
1936      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1937          !isa<StringLiteral>(DIE->getInit())) {
1938        // The initializer is not an initializer list.
1939        if (!VerifyOnly) {
1940          SemaRef.Diag(DIE->getInit()->getLocStart(),
1941                        diag::err_flexible_array_init_needs_braces)
1942            << DIE->getInit()->getSourceRange();
1943          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1944            << *Field;
1945        }
1946        Invalid = true;
1947      }
1948
1949      // Check GNU flexible array initializer.
1950      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1951                                             TopLevelObject))
1952        Invalid = true;
1953
1954      if (Invalid) {
1955        ++Index;
1956        return true;
1957      }
1958
1959      // Initialize the array.
1960      bool prevHadError = hadError;
1961      unsigned newStructuredIndex = FieldIndex;
1962      unsigned OldIndex = Index;
1963      IList->setInit(Index, DIE->getInit());
1964
1965      InitializedEntity MemberEntity =
1966        InitializedEntity::InitializeMember(*Field, &Entity);
1967      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1968                          StructuredList, newStructuredIndex);
1969
1970      IList->setInit(OldIndex, DIE);
1971      if (hadError && !prevHadError) {
1972        ++Field;
1973        ++FieldIndex;
1974        if (NextField)
1975          *NextField = Field;
1976        StructuredIndex = FieldIndex;
1977        return true;
1978      }
1979    } else {
1980      // Recurse to check later designated subobjects.
1981      QualType FieldType = Field->getType();
1982      unsigned newStructuredIndex = FieldIndex;
1983
1984      InitializedEntity MemberEntity =
1985        InitializedEntity::InitializeMember(*Field, &Entity);
1986      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1987                                     FieldType, 0, 0, Index,
1988                                     StructuredList, newStructuredIndex,
1989                                     true, false))
1990        return true;
1991    }
1992
1993    // Find the position of the next field to be initialized in this
1994    // subobject.
1995    ++Field;
1996    ++FieldIndex;
1997
1998    // If this the first designator, our caller will continue checking
1999    // the rest of this struct/class/union subobject.
2000    if (IsFirstDesignator) {
2001      if (NextField)
2002        *NextField = Field;
2003      StructuredIndex = FieldIndex;
2004      return false;
2005    }
2006
2007    if (!FinishSubobjectInit)
2008      return false;
2009
2010    // We've already initialized something in the union; we're done.
2011    if (RT->getDecl()->isUnion())
2012      return hadError;
2013
2014    // Check the remaining fields within this class/struct/union subobject.
2015    bool prevHadError = hadError;
2016
2017    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2018                          StructuredList, FieldIndex);
2019    return hadError && !prevHadError;
2020  }
2021
2022  // C99 6.7.8p6:
2023  //
2024  //   If a designator has the form
2025  //
2026  //      [ constant-expression ]
2027  //
2028  //   then the current object (defined below) shall have array
2029  //   type and the expression shall be an integer constant
2030  //   expression. If the array is of unknown size, any
2031  //   nonnegative value is valid.
2032  //
2033  // Additionally, cope with the GNU extension that permits
2034  // designators of the form
2035  //
2036  //      [ constant-expression ... constant-expression ]
2037  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2038  if (!AT) {
2039    if (!VerifyOnly)
2040      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2041        << CurrentObjectType;
2042    ++Index;
2043    return true;
2044  }
2045
2046  Expr *IndexExpr = 0;
2047  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2048  if (D->isArrayDesignator()) {
2049    IndexExpr = DIE->getArrayIndex(*D);
2050    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2051    DesignatedEndIndex = DesignatedStartIndex;
2052  } else {
2053    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2054
2055    DesignatedStartIndex =
2056      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2057    DesignatedEndIndex =
2058      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2059    IndexExpr = DIE->getArrayRangeEnd(*D);
2060
2061    // Codegen can't handle evaluating array range designators that have side
2062    // effects, because we replicate the AST value for each initialized element.
2063    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2064    // elements with something that has a side effect, so codegen can emit an
2065    // "error unsupported" error instead of miscompiling the app.
2066    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2067        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2068      FullyStructuredList->sawArrayRangeDesignator();
2069  }
2070
2071  if (isa<ConstantArrayType>(AT)) {
2072    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2073    DesignatedStartIndex
2074      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2075    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2076    DesignatedEndIndex
2077      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2078    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2079    if (DesignatedEndIndex >= MaxElements) {
2080      if (!VerifyOnly)
2081        SemaRef.Diag(IndexExpr->getLocStart(),
2082                      diag::err_array_designator_too_large)
2083          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2084          << IndexExpr->getSourceRange();
2085      ++Index;
2086      return true;
2087    }
2088  } else {
2089    // Make sure the bit-widths and signedness match.
2090    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2091      DesignatedEndIndex
2092        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2093    else if (DesignatedStartIndex.getBitWidth() <
2094             DesignatedEndIndex.getBitWidth())
2095      DesignatedStartIndex
2096        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2097    DesignatedStartIndex.setIsUnsigned(true);
2098    DesignatedEndIndex.setIsUnsigned(true);
2099  }
2100
2101  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2102    // We're modifying a string literal init; we have to decompose the string
2103    // so we can modify the individual characters.
2104    ASTContext &Context = SemaRef.Context;
2105    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2106
2107    // Compute the character type
2108    QualType CharTy = AT->getElementType();
2109
2110    // Compute the type of the integer literals.
2111    QualType PromotedCharTy = CharTy;
2112    if (CharTy->isPromotableIntegerType())
2113      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2114    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2115
2116    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2117      // Get the length of the string.
2118      uint64_t StrLen = SL->getLength();
2119      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2120        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2121      StructuredList->resizeInits(Context, StrLen);
2122
2123      // Build a literal for each character in the string, and put them into
2124      // the init list.
2125      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2126        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2127        Expr *Init = new (Context) IntegerLiteral(
2128            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2129        if (CharTy != PromotedCharTy)
2130          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2131                                          Init, 0, VK_RValue);
2132        StructuredList->updateInit(Context, i, Init);
2133      }
2134    } else {
2135      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2136      std::string Str;
2137      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2138
2139      // Get the length of the string.
2140      uint64_t StrLen = Str.size();
2141      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2142        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2143      StructuredList->resizeInits(Context, StrLen);
2144
2145      // Build a literal for each character in the string, and put them into
2146      // the init list.
2147      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2148        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2149        Expr *Init = new (Context) IntegerLiteral(
2150            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2151        if (CharTy != PromotedCharTy)
2152          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2153                                          Init, 0, VK_RValue);
2154        StructuredList->updateInit(Context, i, Init);
2155      }
2156    }
2157  }
2158
2159  // Make sure that our non-designated initializer list has space
2160  // for a subobject corresponding to this array element.
2161  if (!VerifyOnly &&
2162      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2163    StructuredList->resizeInits(SemaRef.Context,
2164                                DesignatedEndIndex.getZExtValue() + 1);
2165
2166  // Repeatedly perform subobject initializations in the range
2167  // [DesignatedStartIndex, DesignatedEndIndex].
2168
2169  // Move to the next designator
2170  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2171  unsigned OldIndex = Index;
2172
2173  InitializedEntity ElementEntity =
2174    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2175
2176  while (DesignatedStartIndex <= DesignatedEndIndex) {
2177    // Recurse to check later designated subobjects.
2178    QualType ElementType = AT->getElementType();
2179    Index = OldIndex;
2180
2181    ElementEntity.setElementIndex(ElementIndex);
2182    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2183                                   ElementType, 0, 0, Index,
2184                                   StructuredList, ElementIndex,
2185                                   (DesignatedStartIndex == DesignatedEndIndex),
2186                                   false))
2187      return true;
2188
2189    // Move to the next index in the array that we'll be initializing.
2190    ++DesignatedStartIndex;
2191    ElementIndex = DesignatedStartIndex.getZExtValue();
2192  }
2193
2194  // If this the first designator, our caller will continue checking
2195  // the rest of this array subobject.
2196  if (IsFirstDesignator) {
2197    if (NextElementIndex)
2198      *NextElementIndex = DesignatedStartIndex;
2199    StructuredIndex = ElementIndex;
2200    return false;
2201  }
2202
2203  if (!FinishSubobjectInit)
2204    return false;
2205
2206  // Check the remaining elements within this array subobject.
2207  bool prevHadError = hadError;
2208  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2209                 /*SubobjectIsDesignatorContext=*/false, Index,
2210                 StructuredList, ElementIndex);
2211  return hadError && !prevHadError;
2212}
2213
2214// Get the structured initializer list for a subobject of type
2215// @p CurrentObjectType.
2216InitListExpr *
2217InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2218                                            QualType CurrentObjectType,
2219                                            InitListExpr *StructuredList,
2220                                            unsigned StructuredIndex,
2221                                            SourceRange InitRange) {
2222  if (VerifyOnly)
2223    return 0; // No structured list in verification-only mode.
2224  Expr *ExistingInit = 0;
2225  if (!StructuredList)
2226    ExistingInit = SyntacticToSemantic.lookup(IList);
2227  else if (StructuredIndex < StructuredList->getNumInits())
2228    ExistingInit = StructuredList->getInit(StructuredIndex);
2229
2230  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2231    return Result;
2232
2233  if (ExistingInit) {
2234    // We are creating an initializer list that initializes the
2235    // subobjects of the current object, but there was already an
2236    // initialization that completely initialized the current
2237    // subobject, e.g., by a compound literal:
2238    //
2239    // struct X { int a, b; };
2240    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2241    //
2242    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2243    // designated initializer re-initializes the whole
2244    // subobject [0], overwriting previous initializers.
2245    SemaRef.Diag(InitRange.getBegin(),
2246                 diag::warn_subobject_initializer_overrides)
2247      << InitRange;
2248    SemaRef.Diag(ExistingInit->getLocStart(),
2249                  diag::note_previous_initializer)
2250      << /*FIXME:has side effects=*/0
2251      << ExistingInit->getSourceRange();
2252  }
2253
2254  InitListExpr *Result
2255    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2256                                         InitRange.getBegin(), None,
2257                                         InitRange.getEnd());
2258
2259  QualType ResultType = CurrentObjectType;
2260  if (!ResultType->isArrayType())
2261    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2262  Result->setType(ResultType);
2263
2264  // Pre-allocate storage for the structured initializer list.
2265  unsigned NumElements = 0;
2266  unsigned NumInits = 0;
2267  bool GotNumInits = false;
2268  if (!StructuredList) {
2269    NumInits = IList->getNumInits();
2270    GotNumInits = true;
2271  } else if (Index < IList->getNumInits()) {
2272    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2273      NumInits = SubList->getNumInits();
2274      GotNumInits = true;
2275    }
2276  }
2277
2278  if (const ArrayType *AType
2279      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2280    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2281      NumElements = CAType->getSize().getZExtValue();
2282      // Simple heuristic so that we don't allocate a very large
2283      // initializer with many empty entries at the end.
2284      if (GotNumInits && NumElements > NumInits)
2285        NumElements = 0;
2286    }
2287  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2288    NumElements = VType->getNumElements();
2289  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2290    RecordDecl *RDecl = RType->getDecl();
2291    if (RDecl->isUnion())
2292      NumElements = 1;
2293    else
2294      NumElements = std::distance(RDecl->field_begin(),
2295                                  RDecl->field_end());
2296  }
2297
2298  Result->reserveInits(SemaRef.Context, NumElements);
2299
2300  // Link this new initializer list into the structured initializer
2301  // lists.
2302  if (StructuredList)
2303    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2304  else {
2305    Result->setSyntacticForm(IList);
2306    SyntacticToSemantic[IList] = Result;
2307  }
2308
2309  return Result;
2310}
2311
2312/// Update the initializer at index @p StructuredIndex within the
2313/// structured initializer list to the value @p expr.
2314void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2315                                                  unsigned &StructuredIndex,
2316                                                  Expr *expr) {
2317  // No structured initializer list to update
2318  if (!StructuredList)
2319    return;
2320
2321  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2322                                                  StructuredIndex, expr)) {
2323    // This initializer overwrites a previous initializer. Warn.
2324    SemaRef.Diag(expr->getLocStart(),
2325                  diag::warn_initializer_overrides)
2326      << expr->getSourceRange();
2327    SemaRef.Diag(PrevInit->getLocStart(),
2328                  diag::note_previous_initializer)
2329      << /*FIXME:has side effects=*/0
2330      << PrevInit->getSourceRange();
2331  }
2332
2333  ++StructuredIndex;
2334}
2335
2336/// Check that the given Index expression is a valid array designator
2337/// value. This is essentially just a wrapper around
2338/// VerifyIntegerConstantExpression that also checks for negative values
2339/// and produces a reasonable diagnostic if there is a
2340/// failure. Returns the index expression, possibly with an implicit cast
2341/// added, on success.  If everything went okay, Value will receive the
2342/// value of the constant expression.
2343static ExprResult
2344CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2345  SourceLocation Loc = Index->getLocStart();
2346
2347  // Make sure this is an integer constant expression.
2348  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2349  if (Result.isInvalid())
2350    return Result;
2351
2352  if (Value.isSigned() && Value.isNegative())
2353    return S.Diag(Loc, diag::err_array_designator_negative)
2354      << Value.toString(10) << Index->getSourceRange();
2355
2356  Value.setIsUnsigned(true);
2357  return Result;
2358}
2359
2360ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2361                                            SourceLocation Loc,
2362                                            bool GNUSyntax,
2363                                            ExprResult Init) {
2364  typedef DesignatedInitExpr::Designator ASTDesignator;
2365
2366  bool Invalid = false;
2367  SmallVector<ASTDesignator, 32> Designators;
2368  SmallVector<Expr *, 32> InitExpressions;
2369
2370  // Build designators and check array designator expressions.
2371  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2372    const Designator &D = Desig.getDesignator(Idx);
2373    switch (D.getKind()) {
2374    case Designator::FieldDesignator:
2375      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2376                                          D.getFieldLoc()));
2377      break;
2378
2379    case Designator::ArrayDesignator: {
2380      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2381      llvm::APSInt IndexValue;
2382      if (!Index->isTypeDependent() && !Index->isValueDependent())
2383        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2384      if (!Index)
2385        Invalid = true;
2386      else {
2387        Designators.push_back(ASTDesignator(InitExpressions.size(),
2388                                            D.getLBracketLoc(),
2389                                            D.getRBracketLoc()));
2390        InitExpressions.push_back(Index);
2391      }
2392      break;
2393    }
2394
2395    case Designator::ArrayRangeDesignator: {
2396      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2397      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2398      llvm::APSInt StartValue;
2399      llvm::APSInt EndValue;
2400      bool StartDependent = StartIndex->isTypeDependent() ||
2401                            StartIndex->isValueDependent();
2402      bool EndDependent = EndIndex->isTypeDependent() ||
2403                          EndIndex->isValueDependent();
2404      if (!StartDependent)
2405        StartIndex =
2406            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2407      if (!EndDependent)
2408        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2409
2410      if (!StartIndex || !EndIndex)
2411        Invalid = true;
2412      else {
2413        // Make sure we're comparing values with the same bit width.
2414        if (StartDependent || EndDependent) {
2415          // Nothing to compute.
2416        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2417          EndValue = EndValue.extend(StartValue.getBitWidth());
2418        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2419          StartValue = StartValue.extend(EndValue.getBitWidth());
2420
2421        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2422          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2423            << StartValue.toString(10) << EndValue.toString(10)
2424            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2425          Invalid = true;
2426        } else {
2427          Designators.push_back(ASTDesignator(InitExpressions.size(),
2428                                              D.getLBracketLoc(),
2429                                              D.getEllipsisLoc(),
2430                                              D.getRBracketLoc()));
2431          InitExpressions.push_back(StartIndex);
2432          InitExpressions.push_back(EndIndex);
2433        }
2434      }
2435      break;
2436    }
2437    }
2438  }
2439
2440  if (Invalid || Init.isInvalid())
2441    return ExprError();
2442
2443  // Clear out the expressions within the designation.
2444  Desig.ClearExprs(*this);
2445
2446  DesignatedInitExpr *DIE
2447    = DesignatedInitExpr::Create(Context,
2448                                 Designators.data(), Designators.size(),
2449                                 InitExpressions, Loc, GNUSyntax,
2450                                 Init.takeAs<Expr>());
2451
2452  if (!getLangOpts().C99)
2453    Diag(DIE->getLocStart(), diag::ext_designated_init)
2454      << DIE->getSourceRange();
2455
2456  return Owned(DIE);
2457}
2458
2459//===----------------------------------------------------------------------===//
2460// Initialization entity
2461//===----------------------------------------------------------------------===//
2462
2463InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2464                                     const InitializedEntity &Parent)
2465  : Parent(&Parent), Index(Index)
2466{
2467  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2468    Kind = EK_ArrayElement;
2469    Type = AT->getElementType();
2470  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2471    Kind = EK_VectorElement;
2472    Type = VT->getElementType();
2473  } else {
2474    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2475    assert(CT && "Unexpected type");
2476    Kind = EK_ComplexElement;
2477    Type = CT->getElementType();
2478  }
2479}
2480
2481InitializedEntity
2482InitializedEntity::InitializeBase(ASTContext &Context,
2483                                  const CXXBaseSpecifier *Base,
2484                                  bool IsInheritedVirtualBase) {
2485  InitializedEntity Result;
2486  Result.Kind = EK_Base;
2487  Result.Parent = 0;
2488  Result.Base = reinterpret_cast<uintptr_t>(Base);
2489  if (IsInheritedVirtualBase)
2490    Result.Base |= 0x01;
2491
2492  Result.Type = Base->getType();
2493  return Result;
2494}
2495
2496DeclarationName InitializedEntity::getName() const {
2497  switch (getKind()) {
2498  case EK_Parameter:
2499  case EK_Parameter_CF_Audited: {
2500    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2501    return (D ? D->getDeclName() : DeclarationName());
2502  }
2503
2504  case EK_Variable:
2505  case EK_Member:
2506    return VariableOrMember->getDeclName();
2507
2508  case EK_LambdaCapture:
2509    return DeclarationName(Capture.VarID);
2510
2511  case EK_Result:
2512  case EK_Exception:
2513  case EK_New:
2514  case EK_Temporary:
2515  case EK_Base:
2516  case EK_Delegating:
2517  case EK_ArrayElement:
2518  case EK_VectorElement:
2519  case EK_ComplexElement:
2520  case EK_BlockElement:
2521  case EK_CompoundLiteralInit:
2522  case EK_RelatedResult:
2523    return DeclarationName();
2524  }
2525
2526  llvm_unreachable("Invalid EntityKind!");
2527}
2528
2529DeclaratorDecl *InitializedEntity::getDecl() const {
2530  switch (getKind()) {
2531  case EK_Variable:
2532  case EK_Member:
2533    return VariableOrMember;
2534
2535  case EK_Parameter:
2536  case EK_Parameter_CF_Audited:
2537    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2538
2539  case EK_Result:
2540  case EK_Exception:
2541  case EK_New:
2542  case EK_Temporary:
2543  case EK_Base:
2544  case EK_Delegating:
2545  case EK_ArrayElement:
2546  case EK_VectorElement:
2547  case EK_ComplexElement:
2548  case EK_BlockElement:
2549  case EK_LambdaCapture:
2550  case EK_CompoundLiteralInit:
2551  case EK_RelatedResult:
2552    return 0;
2553  }
2554
2555  llvm_unreachable("Invalid EntityKind!");
2556}
2557
2558bool InitializedEntity::allowsNRVO() const {
2559  switch (getKind()) {
2560  case EK_Result:
2561  case EK_Exception:
2562    return LocAndNRVO.NRVO;
2563
2564  case EK_Variable:
2565  case EK_Parameter:
2566  case EK_Parameter_CF_Audited:
2567  case EK_Member:
2568  case EK_New:
2569  case EK_Temporary:
2570  case EK_CompoundLiteralInit:
2571  case EK_Base:
2572  case EK_Delegating:
2573  case EK_ArrayElement:
2574  case EK_VectorElement:
2575  case EK_ComplexElement:
2576  case EK_BlockElement:
2577  case EK_LambdaCapture:
2578  case EK_RelatedResult:
2579    break;
2580  }
2581
2582  return false;
2583}
2584
2585unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2586  assert(getParent() != this);
2587  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2588  for (unsigned I = 0; I != Depth; ++I)
2589    OS << "`-";
2590
2591  switch (getKind()) {
2592  case EK_Variable: OS << "Variable"; break;
2593  case EK_Parameter: OS << "Parameter"; break;
2594  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2595    break;
2596  case EK_Result: OS << "Result"; break;
2597  case EK_Exception: OS << "Exception"; break;
2598  case EK_Member: OS << "Member"; break;
2599  case EK_New: OS << "New"; break;
2600  case EK_Temporary: OS << "Temporary"; break;
2601  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2602  case EK_RelatedResult: OS << "RelatedResult"; break;
2603  case EK_Base: OS << "Base"; break;
2604  case EK_Delegating: OS << "Delegating"; break;
2605  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2606  case EK_VectorElement: OS << "VectorElement " << Index; break;
2607  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2608  case EK_BlockElement: OS << "Block"; break;
2609  case EK_LambdaCapture:
2610    OS << "LambdaCapture ";
2611    OS << DeclarationName(Capture.VarID);
2612    break;
2613  }
2614
2615  if (Decl *D = getDecl()) {
2616    OS << " ";
2617    cast<NamedDecl>(D)->printQualifiedName(OS);
2618  }
2619
2620  OS << " '" << getType().getAsString() << "'\n";
2621
2622  return Depth + 1;
2623}
2624
2625void InitializedEntity::dump() const {
2626  dumpImpl(llvm::errs());
2627}
2628
2629//===----------------------------------------------------------------------===//
2630// Initialization sequence
2631//===----------------------------------------------------------------------===//
2632
2633void InitializationSequence::Step::Destroy() {
2634  switch (Kind) {
2635  case SK_ResolveAddressOfOverloadedFunction:
2636  case SK_CastDerivedToBaseRValue:
2637  case SK_CastDerivedToBaseXValue:
2638  case SK_CastDerivedToBaseLValue:
2639  case SK_BindReference:
2640  case SK_BindReferenceToTemporary:
2641  case SK_ExtraneousCopyToTemporary:
2642  case SK_UserConversion:
2643  case SK_QualificationConversionRValue:
2644  case SK_QualificationConversionXValue:
2645  case SK_QualificationConversionLValue:
2646  case SK_LValueToRValue:
2647  case SK_ListInitialization:
2648  case SK_ListConstructorCall:
2649  case SK_UnwrapInitList:
2650  case SK_RewrapInitList:
2651  case SK_ConstructorInitialization:
2652  case SK_ZeroInitialization:
2653  case SK_CAssignment:
2654  case SK_StringInit:
2655  case SK_ObjCObjectConversion:
2656  case SK_ArrayInit:
2657  case SK_ParenthesizedArrayInit:
2658  case SK_PassByIndirectCopyRestore:
2659  case SK_PassByIndirectRestore:
2660  case SK_ProduceObjCObject:
2661  case SK_StdInitializerList:
2662  case SK_OCLSamplerInit:
2663  case SK_OCLZeroEvent:
2664    break;
2665
2666  case SK_ConversionSequence:
2667  case SK_ConversionSequenceNoNarrowing:
2668    delete ICS;
2669  }
2670}
2671
2672bool InitializationSequence::isDirectReferenceBinding() const {
2673  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2674}
2675
2676bool InitializationSequence::isAmbiguous() const {
2677  if (!Failed())
2678    return false;
2679
2680  switch (getFailureKind()) {
2681  case FK_TooManyInitsForReference:
2682  case FK_ArrayNeedsInitList:
2683  case FK_ArrayNeedsInitListOrStringLiteral:
2684  case FK_ArrayNeedsInitListOrWideStringLiteral:
2685  case FK_NarrowStringIntoWideCharArray:
2686  case FK_WideStringIntoCharArray:
2687  case FK_IncompatWideStringIntoWideChar:
2688  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2689  case FK_NonConstLValueReferenceBindingToTemporary:
2690  case FK_NonConstLValueReferenceBindingToUnrelated:
2691  case FK_RValueReferenceBindingToLValue:
2692  case FK_ReferenceInitDropsQualifiers:
2693  case FK_ReferenceInitFailed:
2694  case FK_ConversionFailed:
2695  case FK_ConversionFromPropertyFailed:
2696  case FK_TooManyInitsForScalar:
2697  case FK_ReferenceBindingToInitList:
2698  case FK_InitListBadDestinationType:
2699  case FK_DefaultInitOfConst:
2700  case FK_Incomplete:
2701  case FK_ArrayTypeMismatch:
2702  case FK_NonConstantArrayInit:
2703  case FK_ListInitializationFailed:
2704  case FK_VariableLengthArrayHasInitializer:
2705  case FK_PlaceholderType:
2706  case FK_ExplicitConstructor:
2707    return false;
2708
2709  case FK_ReferenceInitOverloadFailed:
2710  case FK_UserConversionOverloadFailed:
2711  case FK_ConstructorOverloadFailed:
2712  case FK_ListConstructorOverloadFailed:
2713    return FailedOverloadResult == OR_Ambiguous;
2714  }
2715
2716  llvm_unreachable("Invalid EntityKind!");
2717}
2718
2719bool InitializationSequence::isConstructorInitialization() const {
2720  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2721}
2722
2723void
2724InitializationSequence
2725::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2726                                   DeclAccessPair Found,
2727                                   bool HadMultipleCandidates) {
2728  Step S;
2729  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2730  S.Type = Function->getType();
2731  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2732  S.Function.Function = Function;
2733  S.Function.FoundDecl = Found;
2734  Steps.push_back(S);
2735}
2736
2737void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2738                                                      ExprValueKind VK) {
2739  Step S;
2740  switch (VK) {
2741  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2742  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2743  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2744  }
2745  S.Type = BaseType;
2746  Steps.push_back(S);
2747}
2748
2749void InitializationSequence::AddReferenceBindingStep(QualType T,
2750                                                     bool BindingTemporary) {
2751  Step S;
2752  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2753  S.Type = T;
2754  Steps.push_back(S);
2755}
2756
2757void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2758  Step S;
2759  S.Kind = SK_ExtraneousCopyToTemporary;
2760  S.Type = T;
2761  Steps.push_back(S);
2762}
2763
2764void
2765InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2766                                              DeclAccessPair FoundDecl,
2767                                              QualType T,
2768                                              bool HadMultipleCandidates) {
2769  Step S;
2770  S.Kind = SK_UserConversion;
2771  S.Type = T;
2772  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2773  S.Function.Function = Function;
2774  S.Function.FoundDecl = FoundDecl;
2775  Steps.push_back(S);
2776}
2777
2778void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2779                                                            ExprValueKind VK) {
2780  Step S;
2781  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2782  switch (VK) {
2783  case VK_RValue:
2784    S.Kind = SK_QualificationConversionRValue;
2785    break;
2786  case VK_XValue:
2787    S.Kind = SK_QualificationConversionXValue;
2788    break;
2789  case VK_LValue:
2790    S.Kind = SK_QualificationConversionLValue;
2791    break;
2792  }
2793  S.Type = Ty;
2794  Steps.push_back(S);
2795}
2796
2797void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2798  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2799
2800  Step S;
2801  S.Kind = SK_LValueToRValue;
2802  S.Type = Ty;
2803  Steps.push_back(S);
2804}
2805
2806void InitializationSequence::AddConversionSequenceStep(
2807    const ImplicitConversionSequence &ICS, QualType T,
2808    bool TopLevelOfInitList) {
2809  Step S;
2810  S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
2811                              : SK_ConversionSequence;
2812  S.Type = T;
2813  S.ICS = new ImplicitConversionSequence(ICS);
2814  Steps.push_back(S);
2815}
2816
2817void InitializationSequence::AddListInitializationStep(QualType T) {
2818  Step S;
2819  S.Kind = SK_ListInitialization;
2820  S.Type = T;
2821  Steps.push_back(S);
2822}
2823
2824void
2825InitializationSequence
2826::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2827                                   AccessSpecifier Access,
2828                                   QualType T,
2829                                   bool HadMultipleCandidates,
2830                                   bool FromInitList, bool AsInitList) {
2831  Step S;
2832  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2833                                       : SK_ConstructorInitialization;
2834  S.Type = T;
2835  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2836  S.Function.Function = Constructor;
2837  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2838  Steps.push_back(S);
2839}
2840
2841void InitializationSequence::AddZeroInitializationStep(QualType T) {
2842  Step S;
2843  S.Kind = SK_ZeroInitialization;
2844  S.Type = T;
2845  Steps.push_back(S);
2846}
2847
2848void InitializationSequence::AddCAssignmentStep(QualType T) {
2849  Step S;
2850  S.Kind = SK_CAssignment;
2851  S.Type = T;
2852  Steps.push_back(S);
2853}
2854
2855void InitializationSequence::AddStringInitStep(QualType T) {
2856  Step S;
2857  S.Kind = SK_StringInit;
2858  S.Type = T;
2859  Steps.push_back(S);
2860}
2861
2862void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2863  Step S;
2864  S.Kind = SK_ObjCObjectConversion;
2865  S.Type = T;
2866  Steps.push_back(S);
2867}
2868
2869void InitializationSequence::AddArrayInitStep(QualType T) {
2870  Step S;
2871  S.Kind = SK_ArrayInit;
2872  S.Type = T;
2873  Steps.push_back(S);
2874}
2875
2876void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2877  Step S;
2878  S.Kind = SK_ParenthesizedArrayInit;
2879  S.Type = T;
2880  Steps.push_back(S);
2881}
2882
2883void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2884                                                              bool shouldCopy) {
2885  Step s;
2886  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2887                       : SK_PassByIndirectRestore);
2888  s.Type = type;
2889  Steps.push_back(s);
2890}
2891
2892void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2893  Step S;
2894  S.Kind = SK_ProduceObjCObject;
2895  S.Type = T;
2896  Steps.push_back(S);
2897}
2898
2899void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2900  Step S;
2901  S.Kind = SK_StdInitializerList;
2902  S.Type = T;
2903  Steps.push_back(S);
2904}
2905
2906void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2907  Step S;
2908  S.Kind = SK_OCLSamplerInit;
2909  S.Type = T;
2910  Steps.push_back(S);
2911}
2912
2913void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2914  Step S;
2915  S.Kind = SK_OCLZeroEvent;
2916  S.Type = T;
2917  Steps.push_back(S);
2918}
2919
2920void InitializationSequence::RewrapReferenceInitList(QualType T,
2921                                                     InitListExpr *Syntactic) {
2922  assert(Syntactic->getNumInits() == 1 &&
2923         "Can only rewrap trivial init lists.");
2924  Step S;
2925  S.Kind = SK_UnwrapInitList;
2926  S.Type = Syntactic->getInit(0)->getType();
2927  Steps.insert(Steps.begin(), S);
2928
2929  S.Kind = SK_RewrapInitList;
2930  S.Type = T;
2931  S.WrappingSyntacticList = Syntactic;
2932  Steps.push_back(S);
2933}
2934
2935void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2936                                                OverloadingResult Result) {
2937  setSequenceKind(FailedSequence);
2938  this->Failure = Failure;
2939  this->FailedOverloadResult = Result;
2940}
2941
2942//===----------------------------------------------------------------------===//
2943// Attempt initialization
2944//===----------------------------------------------------------------------===//
2945
2946static void MaybeProduceObjCObject(Sema &S,
2947                                   InitializationSequence &Sequence,
2948                                   const InitializedEntity &Entity) {
2949  if (!S.getLangOpts().ObjCAutoRefCount) return;
2950
2951  /// When initializing a parameter, produce the value if it's marked
2952  /// __attribute__((ns_consumed)).
2953  if (Entity.isParameterKind()) {
2954    if (!Entity.isParameterConsumed())
2955      return;
2956
2957    assert(Entity.getType()->isObjCRetainableType() &&
2958           "consuming an object of unretainable type?");
2959    Sequence.AddProduceObjCObjectStep(Entity.getType());
2960
2961  /// When initializing a return value, if the return type is a
2962  /// retainable type, then returns need to immediately retain the
2963  /// object.  If an autorelease is required, it will be done at the
2964  /// last instant.
2965  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2966    if (!Entity.getType()->isObjCRetainableType())
2967      return;
2968
2969    Sequence.AddProduceObjCObjectStep(Entity.getType());
2970  }
2971}
2972
2973static void TryListInitialization(Sema &S,
2974                                  const InitializedEntity &Entity,
2975                                  const InitializationKind &Kind,
2976                                  InitListExpr *InitList,
2977                                  InitializationSequence &Sequence);
2978
2979/// \brief When initializing from init list via constructor, handle
2980/// initialization of an object of type std::initializer_list<T>.
2981///
2982/// \return true if we have handled initialization of an object of type
2983/// std::initializer_list<T>, false otherwise.
2984static bool TryInitializerListConstruction(Sema &S,
2985                                           InitListExpr *List,
2986                                           QualType DestType,
2987                                           InitializationSequence &Sequence) {
2988  QualType E;
2989  if (!S.isStdInitializerList(DestType, &E))
2990    return false;
2991
2992  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2993    Sequence.setIncompleteTypeFailure(E);
2994    return true;
2995  }
2996
2997  // Try initializing a temporary array from the init list.
2998  QualType ArrayType = S.Context.getConstantArrayType(
2999      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3000                                 List->getNumInits()),
3001      clang::ArrayType::Normal, 0);
3002  InitializedEntity HiddenArray =
3003      InitializedEntity::InitializeTemporary(ArrayType);
3004  InitializationKind Kind =
3005      InitializationKind::CreateDirectList(List->getExprLoc());
3006  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3007  if (Sequence)
3008    Sequence.AddStdInitializerListConstructionStep(DestType);
3009  return true;
3010}
3011
3012static OverloadingResult
3013ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3014                           MultiExprArg Args,
3015                           OverloadCandidateSet &CandidateSet,
3016                           ArrayRef<NamedDecl *> Ctors,
3017                           OverloadCandidateSet::iterator &Best,
3018                           bool CopyInitializing, bool AllowExplicit,
3019                           bool OnlyListConstructors, bool InitListSyntax) {
3020  CandidateSet.clear();
3021
3022  for (ArrayRef<NamedDecl *>::iterator
3023         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
3024    NamedDecl *D = *Con;
3025    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3026    bool SuppressUserConversions = false;
3027
3028    // Find the constructor (which may be a template).
3029    CXXConstructorDecl *Constructor = 0;
3030    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3031    if (ConstructorTmpl)
3032      Constructor = cast<CXXConstructorDecl>(
3033                                           ConstructorTmpl->getTemplatedDecl());
3034    else {
3035      Constructor = cast<CXXConstructorDecl>(D);
3036
3037      // C++11 [over.best.ics]p4:
3038      //   However, when considering the argument of a constructor or
3039      //   user-defined conversion function that is a candidate:
3040      //    -- by 13.3.1.3 when invoked for the copying/moving of a temporary
3041      //       in the second step of a class copy-initialization,
3042      //    -- by 13.3.1.7 when passing the initializer list as a single
3043      //       argument or when the initializer list has exactly one elementand
3044      //       a conversion to some class X or reference to (possibly
3045      //       cv-qualified) X is considered for the first parameter of a
3046      //       constructor of X, or
3047      //    -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases,
3048      //   only standard conversion sequences and ellipsis conversion sequences
3049      //   are considered.
3050      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3051          Constructor->isCopyOrMoveConstructor())
3052        SuppressUserConversions = true;
3053    }
3054
3055    if (!Constructor->isInvalidDecl() &&
3056        (AllowExplicit || !Constructor->isExplicit()) &&
3057        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3058      if (ConstructorTmpl)
3059        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3060                                       /*ExplicitArgs*/ 0, Args,
3061                                       CandidateSet, SuppressUserConversions);
3062      else {
3063        // C++ [over.match.copy]p1:
3064        //   - When initializing a temporary to be bound to the first parameter
3065        //     of a constructor that takes a reference to possibly cv-qualified
3066        //     T as its first argument, called with a single argument in the
3067        //     context of direct-initialization, explicit conversion functions
3068        //     are also considered.
3069        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3070                                 Args.size() == 1 &&
3071                                 Constructor->isCopyOrMoveConstructor();
3072        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3073                               SuppressUserConversions,
3074                               /*PartialOverloading=*/false,
3075                               /*AllowExplicit=*/AllowExplicitConv);
3076      }
3077    }
3078  }
3079
3080  // Perform overload resolution and return the result.
3081  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3082}
3083
3084/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3085/// enumerates the constructors of the initialized entity and performs overload
3086/// resolution to select the best.
3087/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3088/// class type.
3089static void TryConstructorInitialization(Sema &S,
3090                                         const InitializedEntity &Entity,
3091                                         const InitializationKind &Kind,
3092                                         MultiExprArg Args, QualType DestType,
3093                                         InitializationSequence &Sequence,
3094                                         bool InitListSyntax = false) {
3095  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3096         "InitListSyntax must come with a single initializer list argument.");
3097
3098  // The type we're constructing needs to be complete.
3099  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3100    Sequence.setIncompleteTypeFailure(DestType);
3101    return;
3102  }
3103
3104  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3105  assert(DestRecordType && "Constructor initialization requires record type");
3106  CXXRecordDecl *DestRecordDecl
3107    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3108
3109  // Build the candidate set directly in the initialization sequence
3110  // structure, so that it will persist if we fail.
3111  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3112
3113  // Determine whether we are allowed to call explicit constructors or
3114  // explicit conversion operators.
3115  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3116  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3117
3118  //   - Otherwise, if T is a class type, constructors are considered. The
3119  //     applicable constructors are enumerated, and the best one is chosen
3120  //     through overload resolution.
3121  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3122  // The container holding the constructors can under certain conditions
3123  // be changed while iterating (e.g. because of deserialization).
3124  // To be safe we copy the lookup results to a new container.
3125  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3126
3127  OverloadingResult Result = OR_No_Viable_Function;
3128  OverloadCandidateSet::iterator Best;
3129  bool AsInitializerList = false;
3130
3131  // C++11 [over.match.list]p1:
3132  //   When objects of non-aggregate type T are list-initialized, overload
3133  //   resolution selects the constructor in two phases:
3134  //   - Initially, the candidate functions are the initializer-list
3135  //     constructors of the class T and the argument list consists of the
3136  //     initializer list as a single argument.
3137  if (InitListSyntax) {
3138    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3139    AsInitializerList = true;
3140
3141    // If the initializer list has no elements and T has a default constructor,
3142    // the first phase is omitted.
3143    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3144      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3145                                          CandidateSet, Ctors, Best,
3146                                          CopyInitialization, AllowExplicit,
3147                                          /*OnlyListConstructor=*/true,
3148                                          InitListSyntax);
3149
3150    // Time to unwrap the init list.
3151    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3152  }
3153
3154  // C++11 [over.match.list]p1:
3155  //   - If no viable initializer-list constructor is found, overload resolution
3156  //     is performed again, where the candidate functions are all the
3157  //     constructors of the class T and the argument list consists of the
3158  //     elements of the initializer list.
3159  if (Result == OR_No_Viable_Function) {
3160    AsInitializerList = false;
3161    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3162                                        CandidateSet, Ctors, Best,
3163                                        CopyInitialization, AllowExplicit,
3164                                        /*OnlyListConstructors=*/false,
3165                                        InitListSyntax);
3166  }
3167  if (Result) {
3168    Sequence.SetOverloadFailure(InitListSyntax ?
3169                      InitializationSequence::FK_ListConstructorOverloadFailed :
3170                      InitializationSequence::FK_ConstructorOverloadFailed,
3171                                Result);
3172    return;
3173  }
3174
3175  // C++11 [dcl.init]p6:
3176  //   If a program calls for the default initialization of an object
3177  //   of a const-qualified type T, T shall be a class type with a
3178  //   user-provided default constructor.
3179  if (Kind.getKind() == InitializationKind::IK_Default &&
3180      Entity.getType().isConstQualified() &&
3181      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3182    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3183    return;
3184  }
3185
3186  // C++11 [over.match.list]p1:
3187  //   In copy-list-initialization, if an explicit constructor is chosen, the
3188  //   initializer is ill-formed.
3189  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3190  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3191    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3192    return;
3193  }
3194
3195  // Add the constructor initialization step. Any cv-qualification conversion is
3196  // subsumed by the initialization.
3197  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3198  Sequence.AddConstructorInitializationStep(CtorDecl,
3199                                            Best->FoundDecl.getAccess(),
3200                                            DestType, HadMultipleCandidates,
3201                                            InitListSyntax, AsInitializerList);
3202}
3203
3204static bool
3205ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3206                                             Expr *Initializer,
3207                                             QualType &SourceType,
3208                                             QualType &UnqualifiedSourceType,
3209                                             QualType UnqualifiedTargetType,
3210                                             InitializationSequence &Sequence) {
3211  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3212        S.Context.OverloadTy) {
3213    DeclAccessPair Found;
3214    bool HadMultipleCandidates = false;
3215    if (FunctionDecl *Fn
3216        = S.ResolveAddressOfOverloadedFunction(Initializer,
3217                                               UnqualifiedTargetType,
3218                                               false, Found,
3219                                               &HadMultipleCandidates)) {
3220      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3221                                                HadMultipleCandidates);
3222      SourceType = Fn->getType();
3223      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3224    } else if (!UnqualifiedTargetType->isRecordType()) {
3225      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3226      return true;
3227    }
3228  }
3229  return false;
3230}
3231
3232static void TryReferenceInitializationCore(Sema &S,
3233                                           const InitializedEntity &Entity,
3234                                           const InitializationKind &Kind,
3235                                           Expr *Initializer,
3236                                           QualType cv1T1, QualType T1,
3237                                           Qualifiers T1Quals,
3238                                           QualType cv2T2, QualType T2,
3239                                           Qualifiers T2Quals,
3240                                           InitializationSequence &Sequence);
3241
3242static void TryValueInitialization(Sema &S,
3243                                   const InitializedEntity &Entity,
3244                                   const InitializationKind &Kind,
3245                                   InitializationSequence &Sequence,
3246                                   InitListExpr *InitList = 0);
3247
3248/// \brief Attempt list initialization of a reference.
3249static void TryReferenceListInitialization(Sema &S,
3250                                           const InitializedEntity &Entity,
3251                                           const InitializationKind &Kind,
3252                                           InitListExpr *InitList,
3253                                           InitializationSequence &Sequence) {
3254  // First, catch C++03 where this isn't possible.
3255  if (!S.getLangOpts().CPlusPlus11) {
3256    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3257    return;
3258  }
3259
3260  QualType DestType = Entity.getType();
3261  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3262  Qualifiers T1Quals;
3263  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3264
3265  // Reference initialization via an initializer list works thus:
3266  // If the initializer list consists of a single element that is
3267  // reference-related to the referenced type, bind directly to that element
3268  // (possibly creating temporaries).
3269  // Otherwise, initialize a temporary with the initializer list and
3270  // bind to that.
3271  if (InitList->getNumInits() == 1) {
3272    Expr *Initializer = InitList->getInit(0);
3273    QualType cv2T2 = Initializer->getType();
3274    Qualifiers T2Quals;
3275    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3276
3277    // If this fails, creating a temporary wouldn't work either.
3278    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3279                                                     T1, Sequence))
3280      return;
3281
3282    SourceLocation DeclLoc = Initializer->getLocStart();
3283    bool dummy1, dummy2, dummy3;
3284    Sema::ReferenceCompareResult RefRelationship
3285      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3286                                       dummy2, dummy3);
3287    if (RefRelationship >= Sema::Ref_Related) {
3288      // Try to bind the reference here.
3289      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3290                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3291      if (Sequence)
3292        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3293      return;
3294    }
3295
3296    // Update the initializer if we've resolved an overloaded function.
3297    if (Sequence.step_begin() != Sequence.step_end())
3298      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3299  }
3300
3301  // Not reference-related. Create a temporary and bind to that.
3302  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3303
3304  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3305  if (Sequence) {
3306    if (DestType->isRValueReferenceType() ||
3307        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3308      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3309    else
3310      Sequence.SetFailed(
3311          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3312  }
3313}
3314
3315/// \brief Attempt list initialization (C++0x [dcl.init.list])
3316static void TryListInitialization(Sema &S,
3317                                  const InitializedEntity &Entity,
3318                                  const InitializationKind &Kind,
3319                                  InitListExpr *InitList,
3320                                  InitializationSequence &Sequence) {
3321  QualType DestType = Entity.getType();
3322
3323  // C++ doesn't allow scalar initialization with more than one argument.
3324  // But C99 complex numbers are scalars and it makes sense there.
3325  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3326      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3327    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3328    return;
3329  }
3330  if (DestType->isReferenceType()) {
3331    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3332    return;
3333  }
3334  if (DestType->isRecordType()) {
3335    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3336      Sequence.setIncompleteTypeFailure(DestType);
3337      return;
3338    }
3339
3340    // C++11 [dcl.init.list]p3:
3341    //   - If T is an aggregate, aggregate initialization is performed.
3342    if (!DestType->isAggregateType()) {
3343      if (S.getLangOpts().CPlusPlus11) {
3344        //   - Otherwise, if the initializer list has no elements and T is a
3345        //     class type with a default constructor, the object is
3346        //     value-initialized.
3347        if (InitList->getNumInits() == 0) {
3348          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3349          if (RD->hasDefaultConstructor()) {
3350            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3351            return;
3352          }
3353        }
3354
3355        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3356        //     an initializer_list object constructed [...]
3357        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3358          return;
3359
3360        //   - Otherwise, if T is a class type, constructors are considered.
3361        Expr *InitListAsExpr = InitList;
3362        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3363                                     Sequence, /*InitListSyntax*/true);
3364      } else
3365        Sequence.SetFailed(
3366            InitializationSequence::FK_InitListBadDestinationType);
3367      return;
3368    }
3369  }
3370  if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3371      InitList->getNumInits() == 1 &&
3372      InitList->getInit(0)->getType()->isRecordType()) {
3373    //   - Otherwise, if the initializer list has a single element of type E
3374    //     [...references are handled above...], the object or reference is
3375    //     initialized from that element; if a narrowing conversion is required
3376    //     to convert the element to T, the program is ill-formed.
3377    //
3378    // Per core-24034, this is direct-initialization if we were performing
3379    // direct-list-initialization and copy-initialization otherwise.
3380    // We can't use InitListChecker for this, because it always performs
3381    // copy-initialization. This only matters if we might use an 'explicit'
3382    // conversion operator, so we only need to handle the cases where the source
3383    // is of record type.
3384    InitializationKind SubKind =
3385        Kind.getKind() == InitializationKind::IK_DirectList
3386            ? InitializationKind::CreateDirect(Kind.getLocation(),
3387                                               InitList->getLBraceLoc(),
3388                                               InitList->getRBraceLoc())
3389            : Kind;
3390    Expr *SubInit[1] = { InitList->getInit(0) };
3391    Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3392                            /*TopLevelOfInitList*/true);
3393    if (Sequence)
3394      Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3395    return;
3396  }
3397
3398  InitListChecker CheckInitList(S, Entity, InitList,
3399          DestType, /*VerifyOnly=*/true);
3400  if (CheckInitList.HadError()) {
3401    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3402    return;
3403  }
3404
3405  // Add the list initialization step with the built init list.
3406  Sequence.AddListInitializationStep(DestType);
3407}
3408
3409/// \brief Try a reference initialization that involves calling a conversion
3410/// function.
3411static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3412                                             const InitializedEntity &Entity,
3413                                             const InitializationKind &Kind,
3414                                             Expr *Initializer,
3415                                             bool AllowRValues,
3416                                             InitializationSequence &Sequence) {
3417  QualType DestType = Entity.getType();
3418  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3419  QualType T1 = cv1T1.getUnqualifiedType();
3420  QualType cv2T2 = Initializer->getType();
3421  QualType T2 = cv2T2.getUnqualifiedType();
3422
3423  bool DerivedToBase;
3424  bool ObjCConversion;
3425  bool ObjCLifetimeConversion;
3426  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3427                                         T1, T2, DerivedToBase,
3428                                         ObjCConversion,
3429                                         ObjCLifetimeConversion) &&
3430         "Must have incompatible references when binding via conversion");
3431  (void)DerivedToBase;
3432  (void)ObjCConversion;
3433  (void)ObjCLifetimeConversion;
3434
3435  // Build the candidate set directly in the initialization sequence
3436  // structure, so that it will persist if we fail.
3437  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3438  CandidateSet.clear();
3439
3440  // Determine whether we are allowed to call explicit constructors or
3441  // explicit conversion operators.
3442  bool AllowExplicit = Kind.AllowExplicit();
3443  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3444
3445  const RecordType *T1RecordType = 0;
3446  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3447      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3448    // The type we're converting to is a class type. Enumerate its constructors
3449    // to see if there is a suitable conversion.
3450    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3451
3452    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3453    // The container holding the constructors can under certain conditions
3454    // be changed while iterating (e.g. because of deserialization).
3455    // To be safe we copy the lookup results to a new container.
3456    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3457    for (SmallVectorImpl<NamedDecl *>::iterator
3458           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3459      NamedDecl *D = *CI;
3460      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3461
3462      // Find the constructor (which may be a template).
3463      CXXConstructorDecl *Constructor = 0;
3464      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3465      if (ConstructorTmpl)
3466        Constructor = cast<CXXConstructorDecl>(
3467                                         ConstructorTmpl->getTemplatedDecl());
3468      else
3469        Constructor = cast<CXXConstructorDecl>(D);
3470
3471      if (!Constructor->isInvalidDecl() &&
3472          Constructor->isConvertingConstructor(AllowExplicit)) {
3473        if (ConstructorTmpl)
3474          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3475                                         /*ExplicitArgs*/ 0,
3476                                         Initializer, CandidateSet,
3477                                         /*SuppressUserConversions=*/true);
3478        else
3479          S.AddOverloadCandidate(Constructor, FoundDecl,
3480                                 Initializer, CandidateSet,
3481                                 /*SuppressUserConversions=*/true);
3482      }
3483    }
3484  }
3485  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3486    return OR_No_Viable_Function;
3487
3488  const RecordType *T2RecordType = 0;
3489  if ((T2RecordType = T2->getAs<RecordType>()) &&
3490      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3491    // The type we're converting from is a class type, enumerate its conversion
3492    // functions.
3493    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3494
3495    std::pair<CXXRecordDecl::conversion_iterator,
3496              CXXRecordDecl::conversion_iterator>
3497      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3498    for (CXXRecordDecl::conversion_iterator
3499           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3500      NamedDecl *D = *I;
3501      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3502      if (isa<UsingShadowDecl>(D))
3503        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3504
3505      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3506      CXXConversionDecl *Conv;
3507      if (ConvTemplate)
3508        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3509      else
3510        Conv = cast<CXXConversionDecl>(D);
3511
3512      // If the conversion function doesn't return a reference type,
3513      // it can't be considered for this conversion unless we're allowed to
3514      // consider rvalues.
3515      // FIXME: Do we need to make sure that we only consider conversion
3516      // candidates with reference-compatible results? That might be needed to
3517      // break recursion.
3518      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3519          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3520        if (ConvTemplate)
3521          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3522                                           ActingDC, Initializer,
3523                                           DestType, CandidateSet);
3524        else
3525          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3526                                   Initializer, DestType, CandidateSet);
3527      }
3528    }
3529  }
3530  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3531    return OR_No_Viable_Function;
3532
3533  SourceLocation DeclLoc = Initializer->getLocStart();
3534
3535  // Perform overload resolution. If it fails, return the failed result.
3536  OverloadCandidateSet::iterator Best;
3537  if (OverloadingResult Result
3538        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3539    return Result;
3540
3541  FunctionDecl *Function = Best->Function;
3542  // This is the overload that will be used for this initialization step if we
3543  // use this initialization. Mark it as referenced.
3544  Function->setReferenced();
3545
3546  // Compute the returned type of the conversion.
3547  if (isa<CXXConversionDecl>(Function))
3548    T2 = Function->getResultType();
3549  else
3550    T2 = cv1T1;
3551
3552  // Add the user-defined conversion step.
3553  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3554  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3555                                 T2.getNonLValueExprType(S.Context),
3556                                 HadMultipleCandidates);
3557
3558  // Determine whether we need to perform derived-to-base or
3559  // cv-qualification adjustments.
3560  ExprValueKind VK = VK_RValue;
3561  if (T2->isLValueReferenceType())
3562    VK = VK_LValue;
3563  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3564    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3565
3566  bool NewDerivedToBase = false;
3567  bool NewObjCConversion = false;
3568  bool NewObjCLifetimeConversion = false;
3569  Sema::ReferenceCompareResult NewRefRelationship
3570    = S.CompareReferenceRelationship(DeclLoc, T1,
3571                                     T2.getNonLValueExprType(S.Context),
3572                                     NewDerivedToBase, NewObjCConversion,
3573                                     NewObjCLifetimeConversion);
3574  if (NewRefRelationship == Sema::Ref_Incompatible) {
3575    // If the type we've converted to is not reference-related to the
3576    // type we're looking for, then there is another conversion step
3577    // we need to perform to produce a temporary of the right type
3578    // that we'll be binding to.
3579    ImplicitConversionSequence ICS;
3580    ICS.setStandard();
3581    ICS.Standard = Best->FinalConversion;
3582    T2 = ICS.Standard.getToType(2);
3583    Sequence.AddConversionSequenceStep(ICS, T2);
3584  } else if (NewDerivedToBase)
3585    Sequence.AddDerivedToBaseCastStep(
3586                                S.Context.getQualifiedType(T1,
3587                                  T2.getNonReferenceType().getQualifiers()),
3588                                      VK);
3589  else if (NewObjCConversion)
3590    Sequence.AddObjCObjectConversionStep(
3591                                S.Context.getQualifiedType(T1,
3592                                  T2.getNonReferenceType().getQualifiers()));
3593
3594  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3595    Sequence.AddQualificationConversionStep(cv1T1, VK);
3596
3597  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3598  return OR_Success;
3599}
3600
3601static void CheckCXX98CompatAccessibleCopy(Sema &S,
3602                                           const InitializedEntity &Entity,
3603                                           Expr *CurInitExpr);
3604
3605/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3606static void TryReferenceInitialization(Sema &S,
3607                                       const InitializedEntity &Entity,
3608                                       const InitializationKind &Kind,
3609                                       Expr *Initializer,
3610                                       InitializationSequence &Sequence) {
3611  QualType DestType = Entity.getType();
3612  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3613  Qualifiers T1Quals;
3614  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3615  QualType cv2T2 = Initializer->getType();
3616  Qualifiers T2Quals;
3617  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3618
3619  // If the initializer is the address of an overloaded function, try
3620  // to resolve the overloaded function. If all goes well, T2 is the
3621  // type of the resulting function.
3622  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3623                                                   T1, Sequence))
3624    return;
3625
3626  // Delegate everything else to a subfunction.
3627  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3628                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3629}
3630
3631/// Converts the target of reference initialization so that it has the
3632/// appropriate qualifiers and value kind.
3633///
3634/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3635/// \code
3636///   int x;
3637///   const int &r = x;
3638/// \endcode
3639///
3640/// In this case the reference is binding to a bitfield lvalue, which isn't
3641/// valid. Perform a load to create a lifetime-extended temporary instead.
3642/// \code
3643///   const int &r = someStruct.bitfield;
3644/// \endcode
3645static ExprValueKind
3646convertQualifiersAndValueKindIfNecessary(Sema &S,
3647                                         InitializationSequence &Sequence,
3648                                         Expr *Initializer,
3649                                         QualType cv1T1,
3650                                         Qualifiers T1Quals,
3651                                         Qualifiers T2Quals,
3652                                         bool IsLValueRef) {
3653  bool IsNonAddressableType = Initializer->refersToBitField() ||
3654                              Initializer->refersToVectorElement();
3655
3656  if (IsNonAddressableType) {
3657    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3658    // lvalue reference to a non-volatile const type, or the reference shall be
3659    // an rvalue reference.
3660    //
3661    // If not, we can't make a temporary and bind to that. Give up and allow the
3662    // error to be diagnosed later.
3663    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3664      assert(Initializer->isGLValue());
3665      return Initializer->getValueKind();
3666    }
3667
3668    // Force a load so we can materialize a temporary.
3669    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3670    return VK_RValue;
3671  }
3672
3673  if (T1Quals != T2Quals) {
3674    Sequence.AddQualificationConversionStep(cv1T1,
3675                                            Initializer->getValueKind());
3676  }
3677
3678  return Initializer->getValueKind();
3679}
3680
3681
3682/// \brief Reference initialization without resolving overloaded functions.
3683static void TryReferenceInitializationCore(Sema &S,
3684                                           const InitializedEntity &Entity,
3685                                           const InitializationKind &Kind,
3686                                           Expr *Initializer,
3687                                           QualType cv1T1, QualType T1,
3688                                           Qualifiers T1Quals,
3689                                           QualType cv2T2, QualType T2,
3690                                           Qualifiers T2Quals,
3691                                           InitializationSequence &Sequence) {
3692  QualType DestType = Entity.getType();
3693  SourceLocation DeclLoc = Initializer->getLocStart();
3694  // Compute some basic properties of the types and the initializer.
3695  bool isLValueRef = DestType->isLValueReferenceType();
3696  bool isRValueRef = !isLValueRef;
3697  bool DerivedToBase = false;
3698  bool ObjCConversion = false;
3699  bool ObjCLifetimeConversion = false;
3700  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3701  Sema::ReferenceCompareResult RefRelationship
3702    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3703                                     ObjCConversion, ObjCLifetimeConversion);
3704
3705  // C++0x [dcl.init.ref]p5:
3706  //   A reference to type "cv1 T1" is initialized by an expression of type
3707  //   "cv2 T2" as follows:
3708  //
3709  //     - If the reference is an lvalue reference and the initializer
3710  //       expression
3711  // Note the analogous bullet points for rvalue refs to functions. Because
3712  // there are no function rvalues in C++, rvalue refs to functions are treated
3713  // like lvalue refs.
3714  OverloadingResult ConvOvlResult = OR_Success;
3715  bool T1Function = T1->isFunctionType();
3716  if (isLValueRef || T1Function) {
3717    if (InitCategory.isLValue() &&
3718        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3719         (Kind.isCStyleOrFunctionalCast() &&
3720          RefRelationship == Sema::Ref_Related))) {
3721      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3722      //     reference-compatible with "cv2 T2," or
3723      //
3724      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3725      // bit-field when we're determining whether the reference initialization
3726      // can occur. However, we do pay attention to whether it is a bit-field
3727      // to decide whether we're actually binding to a temporary created from
3728      // the bit-field.
3729      if (DerivedToBase)
3730        Sequence.AddDerivedToBaseCastStep(
3731                         S.Context.getQualifiedType(T1, T2Quals),
3732                         VK_LValue);
3733      else if (ObjCConversion)
3734        Sequence.AddObjCObjectConversionStep(
3735                                     S.Context.getQualifiedType(T1, T2Quals));
3736
3737      ExprValueKind ValueKind =
3738        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3739                                                 cv1T1, T1Quals, T2Quals,
3740                                                 isLValueRef);
3741      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3742      return;
3743    }
3744
3745    //     - has a class type (i.e., T2 is a class type), where T1 is not
3746    //       reference-related to T2, and can be implicitly converted to an
3747    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3748    //       with "cv3 T3" (this conversion is selected by enumerating the
3749    //       applicable conversion functions (13.3.1.6) and choosing the best
3750    //       one through overload resolution (13.3)),
3751    // If we have an rvalue ref to function type here, the rhs must be
3752    // an rvalue. DR1287 removed the "implicitly" here.
3753    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3754        (isLValueRef || InitCategory.isRValue())) {
3755      ConvOvlResult = TryRefInitWithConversionFunction(
3756          S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
3757      if (ConvOvlResult == OR_Success)
3758        return;
3759      if (ConvOvlResult != OR_No_Viable_Function)
3760        Sequence.SetOverloadFailure(
3761            InitializationSequence::FK_ReferenceInitOverloadFailed,
3762            ConvOvlResult);
3763    }
3764  }
3765
3766  //     - Otherwise, the reference shall be an lvalue reference to a
3767  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3768  //       shall be an rvalue reference.
3769  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3770    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3771      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3772    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3773      Sequence.SetOverloadFailure(
3774                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3775                                  ConvOvlResult);
3776    else
3777      Sequence.SetFailed(InitCategory.isLValue()
3778        ? (RefRelationship == Sema::Ref_Related
3779             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3780             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3781        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3782
3783    return;
3784  }
3785
3786  //    - If the initializer expression
3787  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3788  //        "cv1 T1" is reference-compatible with "cv2 T2"
3789  // Note: functions are handled below.
3790  if (!T1Function &&
3791      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3792       (Kind.isCStyleOrFunctionalCast() &&
3793        RefRelationship == Sema::Ref_Related)) &&
3794      (InitCategory.isXValue() ||
3795       (InitCategory.isPRValue() && T2->isRecordType()) ||
3796       (InitCategory.isPRValue() && T2->isArrayType()))) {
3797    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3798    if (InitCategory.isPRValue() && T2->isRecordType()) {
3799      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3800      // compiler the freedom to perform a copy here or bind to the
3801      // object, while C++0x requires that we bind directly to the
3802      // object. Hence, we always bind to the object without making an
3803      // extra copy. However, in C++03 requires that we check for the
3804      // presence of a suitable copy constructor:
3805      //
3806      //   The constructor that would be used to make the copy shall
3807      //   be callable whether or not the copy is actually done.
3808      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3809        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3810      else if (S.getLangOpts().CPlusPlus11)
3811        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3812    }
3813
3814    if (DerivedToBase)
3815      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3816                                        ValueKind);
3817    else if (ObjCConversion)
3818      Sequence.AddObjCObjectConversionStep(
3819                                       S.Context.getQualifiedType(T1, T2Quals));
3820
3821    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3822                                                         Initializer, cv1T1,
3823                                                         T1Quals, T2Quals,
3824                                                         isLValueRef);
3825
3826    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3827    return;
3828  }
3829
3830  //       - has a class type (i.e., T2 is a class type), where T1 is not
3831  //         reference-related to T2, and can be implicitly converted to an
3832  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3833  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3834  //
3835  // DR1287 removes the "implicitly" here.
3836  if (T2->isRecordType()) {
3837    if (RefRelationship == Sema::Ref_Incompatible) {
3838      ConvOvlResult = TryRefInitWithConversionFunction(
3839          S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
3840      if (ConvOvlResult)
3841        Sequence.SetOverloadFailure(
3842            InitializationSequence::FK_ReferenceInitOverloadFailed,
3843            ConvOvlResult);
3844
3845      return;
3846    }
3847
3848    if ((RefRelationship == Sema::Ref_Compatible ||
3849         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3850        isRValueRef && InitCategory.isLValue()) {
3851      Sequence.SetFailed(
3852        InitializationSequence::FK_RValueReferenceBindingToLValue);
3853      return;
3854    }
3855
3856    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3857    return;
3858  }
3859
3860  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3861  //        from the initializer expression using the rules for a non-reference
3862  //        copy-initialization (8.5). The reference is then bound to the
3863  //        temporary. [...]
3864
3865  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3866
3867  // FIXME: Why do we use an implicit conversion here rather than trying
3868  // copy-initialization?
3869  ImplicitConversionSequence ICS
3870    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3871                              /*SuppressUserConversions=*/false,
3872                              /*AllowExplicit=*/false,
3873                              /*FIXME:InOverloadResolution=*/false,
3874                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3875                              /*AllowObjCWritebackConversion=*/false);
3876
3877  if (ICS.isBad()) {
3878    // FIXME: Use the conversion function set stored in ICS to turn
3879    // this into an overloading ambiguity diagnostic. However, we need
3880    // to keep that set as an OverloadCandidateSet rather than as some
3881    // other kind of set.
3882    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3883      Sequence.SetOverloadFailure(
3884                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3885                                  ConvOvlResult);
3886    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3887      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3888    else
3889      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3890    return;
3891  } else {
3892    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3893  }
3894
3895  //        [...] If T1 is reference-related to T2, cv1 must be the
3896  //        same cv-qualification as, or greater cv-qualification
3897  //        than, cv2; otherwise, the program is ill-formed.
3898  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3899  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3900  if (RefRelationship == Sema::Ref_Related &&
3901      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3902    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3903    return;
3904  }
3905
3906  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3907  //   reference, the initializer expression shall not be an lvalue.
3908  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3909      InitCategory.isLValue()) {
3910    Sequence.SetFailed(
3911                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3912    return;
3913  }
3914
3915  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3916  return;
3917}
3918
3919/// \brief Attempt character array initialization from a string literal
3920/// (C++ [dcl.init.string], C99 6.7.8).
3921static void TryStringLiteralInitialization(Sema &S,
3922                                           const InitializedEntity &Entity,
3923                                           const InitializationKind &Kind,
3924                                           Expr *Initializer,
3925                                       InitializationSequence &Sequence) {
3926  Sequence.AddStringInitStep(Entity.getType());
3927}
3928
3929/// \brief Attempt value initialization (C++ [dcl.init]p7).
3930static void TryValueInitialization(Sema &S,
3931                                   const InitializedEntity &Entity,
3932                                   const InitializationKind &Kind,
3933                                   InitializationSequence &Sequence,
3934                                   InitListExpr *InitList) {
3935  assert((!InitList || InitList->getNumInits() == 0) &&
3936         "Shouldn't use value-init for non-empty init lists");
3937
3938  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3939  //
3940  //   To value-initialize an object of type T means:
3941  QualType T = Entity.getType();
3942
3943  //     -- if T is an array type, then each element is value-initialized;
3944  T = S.Context.getBaseElementType(T);
3945
3946  if (const RecordType *RT = T->getAs<RecordType>()) {
3947    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3948      bool NeedZeroInitialization = true;
3949      if (!S.getLangOpts().CPlusPlus11) {
3950        // C++98:
3951        // -- if T is a class type (clause 9) with a user-declared constructor
3952        //    (12.1), then the default constructor for T is called (and the
3953        //    initialization is ill-formed if T has no accessible default
3954        //    constructor);
3955        if (ClassDecl->hasUserDeclaredConstructor())
3956          NeedZeroInitialization = false;
3957      } else {
3958        // C++11:
3959        // -- if T is a class type (clause 9) with either no default constructor
3960        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3961        //    or deleted, then the object is default-initialized;
3962        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3963        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3964          NeedZeroInitialization = false;
3965      }
3966
3967      // -- if T is a (possibly cv-qualified) non-union class type without a
3968      //    user-provided or deleted default constructor, then the object is
3969      //    zero-initialized and, if T has a non-trivial default constructor,
3970      //    default-initialized;
3971      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3972      // constructor' part was removed by DR1507.
3973      if (NeedZeroInitialization)
3974        Sequence.AddZeroInitializationStep(Entity.getType());
3975
3976      // C++03:
3977      // -- if T is a non-union class type without a user-declared constructor,
3978      //    then every non-static data member and base class component of T is
3979      //    value-initialized;
3980      // [...] A program that calls for [...] value-initialization of an
3981      // entity of reference type is ill-formed.
3982      //
3983      // C++11 doesn't need this handling, because value-initialization does not
3984      // occur recursively there, and the implicit default constructor is
3985      // defined as deleted in the problematic cases.
3986      if (!S.getLangOpts().CPlusPlus11 &&
3987          ClassDecl->hasUninitializedReferenceMember()) {
3988        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3989        return;
3990      }
3991
3992      // If this is list-value-initialization, pass the empty init list on when
3993      // building the constructor call. This affects the semantics of a few
3994      // things (such as whether an explicit default constructor can be called).
3995      Expr *InitListAsExpr = InitList;
3996      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3997      bool InitListSyntax = InitList;
3998
3999      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4000                                          InitListSyntax);
4001    }
4002  }
4003
4004  Sequence.AddZeroInitializationStep(Entity.getType());
4005}
4006
4007/// \brief Attempt default initialization (C++ [dcl.init]p6).
4008static void TryDefaultInitialization(Sema &S,
4009                                     const InitializedEntity &Entity,
4010                                     const InitializationKind &Kind,
4011                                     InitializationSequence &Sequence) {
4012  assert(Kind.getKind() == InitializationKind::IK_Default);
4013
4014  // C++ [dcl.init]p6:
4015  //   To default-initialize an object of type T means:
4016  //     - if T is an array type, each element is default-initialized;
4017  QualType DestType = S.Context.getBaseElementType(Entity.getType());
4018
4019  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4020  //       constructor for T is called (and the initialization is ill-formed if
4021  //       T has no accessible default constructor);
4022  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4023    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4024    return;
4025  }
4026
4027  //     - otherwise, no initialization is performed.
4028
4029  //   If a program calls for the default initialization of an object of
4030  //   a const-qualified type T, T shall be a class type with a user-provided
4031  //   default constructor.
4032  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4033    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4034    return;
4035  }
4036
4037  // If the destination type has a lifetime property, zero-initialize it.
4038  if (DestType.getQualifiers().hasObjCLifetime()) {
4039    Sequence.AddZeroInitializationStep(Entity.getType());
4040    return;
4041  }
4042}
4043
4044/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4045/// which enumerates all conversion functions and performs overload resolution
4046/// to select the best.
4047static void TryUserDefinedConversion(Sema &S,
4048                                     const InitializedEntity &Entity,
4049                                     const InitializationKind &Kind,
4050                                     Expr *Initializer,
4051                                     InitializationSequence &Sequence,
4052                                     bool TopLevelOfInitList) {
4053  QualType DestType = Entity.getType();
4054  assert(!DestType->isReferenceType() && "References are handled elsewhere");
4055  QualType SourceType = Initializer->getType();
4056  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4057         "Must have a class type to perform a user-defined conversion");
4058
4059  // Build the candidate set directly in the initialization sequence
4060  // structure, so that it will persist if we fail.
4061  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4062  CandidateSet.clear();
4063
4064  // Determine whether we are allowed to call explicit constructors or
4065  // explicit conversion operators.
4066  bool AllowExplicit = Kind.AllowExplicit();
4067
4068  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4069    // The type we're converting to is a class type. Enumerate its constructors
4070    // to see if there is a suitable conversion.
4071    CXXRecordDecl *DestRecordDecl
4072      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4073
4074    // Try to complete the type we're converting to.
4075    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4076      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4077      // The container holding the constructors can under certain conditions
4078      // be changed while iterating. To be safe we copy the lookup results
4079      // to a new container.
4080      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4081      for (SmallVectorImpl<NamedDecl *>::iterator
4082             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4083           Con != ConEnd; ++Con) {
4084        NamedDecl *D = *Con;
4085        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4086
4087        // Find the constructor (which may be a template).
4088        CXXConstructorDecl *Constructor = 0;
4089        FunctionTemplateDecl *ConstructorTmpl
4090          = dyn_cast<FunctionTemplateDecl>(D);
4091        if (ConstructorTmpl)
4092          Constructor = cast<CXXConstructorDecl>(
4093                                           ConstructorTmpl->getTemplatedDecl());
4094        else
4095          Constructor = cast<CXXConstructorDecl>(D);
4096
4097        if (!Constructor->isInvalidDecl() &&
4098            Constructor->isConvertingConstructor(AllowExplicit)) {
4099          if (ConstructorTmpl)
4100            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4101                                           /*ExplicitArgs*/ 0,
4102                                           Initializer, CandidateSet,
4103                                           /*SuppressUserConversions=*/true);
4104          else
4105            S.AddOverloadCandidate(Constructor, FoundDecl,
4106                                   Initializer, CandidateSet,
4107                                   /*SuppressUserConversions=*/true);
4108        }
4109      }
4110    }
4111  }
4112
4113  SourceLocation DeclLoc = Initializer->getLocStart();
4114
4115  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4116    // The type we're converting from is a class type, enumerate its conversion
4117    // functions.
4118
4119    // We can only enumerate the conversion functions for a complete type; if
4120    // the type isn't complete, simply skip this step.
4121    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4122      CXXRecordDecl *SourceRecordDecl
4123        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4124
4125      std::pair<CXXRecordDecl::conversion_iterator,
4126                CXXRecordDecl::conversion_iterator>
4127        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4128      for (CXXRecordDecl::conversion_iterator
4129             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4130        NamedDecl *D = *I;
4131        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4132        if (isa<UsingShadowDecl>(D))
4133          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4134
4135        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4136        CXXConversionDecl *Conv;
4137        if (ConvTemplate)
4138          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4139        else
4140          Conv = cast<CXXConversionDecl>(D);
4141
4142        if (AllowExplicit || !Conv->isExplicit()) {
4143          if (ConvTemplate)
4144            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4145                                             ActingDC, Initializer, DestType,
4146                                             CandidateSet);
4147          else
4148            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4149                                     Initializer, DestType, CandidateSet);
4150        }
4151      }
4152    }
4153  }
4154
4155  // Perform overload resolution. If it fails, return the failed result.
4156  OverloadCandidateSet::iterator Best;
4157  if (OverloadingResult Result
4158        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4159    Sequence.SetOverloadFailure(
4160                        InitializationSequence::FK_UserConversionOverloadFailed,
4161                                Result);
4162    return;
4163  }
4164
4165  FunctionDecl *Function = Best->Function;
4166  Function->setReferenced();
4167  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4168
4169  if (isa<CXXConstructorDecl>(Function)) {
4170    // Add the user-defined conversion step. Any cv-qualification conversion is
4171    // subsumed by the initialization. Per DR5, the created temporary is of the
4172    // cv-unqualified type of the destination.
4173    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4174                                   DestType.getUnqualifiedType(),
4175                                   HadMultipleCandidates);
4176    return;
4177  }
4178
4179  // Add the user-defined conversion step that calls the conversion function.
4180  QualType ConvType = Function->getCallResultType();
4181  if (ConvType->getAs<RecordType>()) {
4182    // If we're converting to a class type, there may be an copy of
4183    // the resulting temporary object (possible to create an object of
4184    // a base class type). That copy is not a separate conversion, so
4185    // we just make a note of the actual destination type (possibly a
4186    // base class of the type returned by the conversion function) and
4187    // let the user-defined conversion step handle the conversion.
4188    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4189                                   HadMultipleCandidates);
4190    return;
4191  }
4192
4193  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4194                                 HadMultipleCandidates);
4195
4196  // If the conversion following the call to the conversion function
4197  // is interesting, add it as a separate step.
4198  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4199      Best->FinalConversion.Third) {
4200    ImplicitConversionSequence ICS;
4201    ICS.setStandard();
4202    ICS.Standard = Best->FinalConversion;
4203    Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4204  }
4205}
4206
4207/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4208/// a function with a pointer return type contains a 'return false;' statement.
4209/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4210/// code using that header.
4211///
4212/// Work around this by treating 'return false;' as zero-initializing the result
4213/// if it's used in a pointer-returning function in a system header.
4214static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4215                                              const InitializedEntity &Entity,
4216                                              const Expr *Init) {
4217  return S.getLangOpts().CPlusPlus11 &&
4218         Entity.getKind() == InitializedEntity::EK_Result &&
4219         Entity.getType()->isPointerType() &&
4220         isa<CXXBoolLiteralExpr>(Init) &&
4221         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4222         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4223}
4224
4225/// The non-zero enum values here are indexes into diagnostic alternatives.
4226enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4227
4228/// Determines whether this expression is an acceptable ICR source.
4229static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4230                                         bool isAddressOf, bool &isWeakAccess) {
4231  // Skip parens.
4232  e = e->IgnoreParens();
4233
4234  // Skip address-of nodes.
4235  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4236    if (op->getOpcode() == UO_AddrOf)
4237      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4238                                isWeakAccess);
4239
4240  // Skip certain casts.
4241  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4242    switch (ce->getCastKind()) {
4243    case CK_Dependent:
4244    case CK_BitCast:
4245    case CK_LValueBitCast:
4246    case CK_NoOp:
4247      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4248
4249    case CK_ArrayToPointerDecay:
4250      return IIK_nonscalar;
4251
4252    case CK_NullToPointer:
4253      return IIK_okay;
4254
4255    default:
4256      break;
4257    }
4258
4259  // If we have a declaration reference, it had better be a local variable.
4260  } else if (isa<DeclRefExpr>(e)) {
4261    // set isWeakAccess to true, to mean that there will be an implicit
4262    // load which requires a cleanup.
4263    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4264      isWeakAccess = true;
4265
4266    if (!isAddressOf) return IIK_nonlocal;
4267
4268    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4269    if (!var) return IIK_nonlocal;
4270
4271    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4272
4273  // If we have a conditional operator, check both sides.
4274  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4275    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4276                                                isWeakAccess))
4277      return iik;
4278
4279    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4280
4281  // These are never scalar.
4282  } else if (isa<ArraySubscriptExpr>(e)) {
4283    return IIK_nonscalar;
4284
4285  // Otherwise, it needs to be a null pointer constant.
4286  } else {
4287    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4288            ? IIK_okay : IIK_nonlocal);
4289  }
4290
4291  return IIK_nonlocal;
4292}
4293
4294/// Check whether the given expression is a valid operand for an
4295/// indirect copy/restore.
4296static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4297  assert(src->isRValue());
4298  bool isWeakAccess = false;
4299  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4300  // If isWeakAccess to true, there will be an implicit
4301  // load which requires a cleanup.
4302  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4303    S.ExprNeedsCleanups = true;
4304
4305  if (iik == IIK_okay) return;
4306
4307  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4308    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4309    << src->getSourceRange();
4310}
4311
4312/// \brief Determine whether we have compatible array types for the
4313/// purposes of GNU by-copy array initialization.
4314static bool hasCompatibleArrayTypes(ASTContext &Context,
4315                                    const ArrayType *Dest,
4316                                    const ArrayType *Source) {
4317  // If the source and destination array types are equivalent, we're
4318  // done.
4319  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4320    return true;
4321
4322  // Make sure that the element types are the same.
4323  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4324    return false;
4325
4326  // The only mismatch we allow is when the destination is an
4327  // incomplete array type and the source is a constant array type.
4328  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4329}
4330
4331static bool tryObjCWritebackConversion(Sema &S,
4332                                       InitializationSequence &Sequence,
4333                                       const InitializedEntity &Entity,
4334                                       Expr *Initializer) {
4335  bool ArrayDecay = false;
4336  QualType ArgType = Initializer->getType();
4337  QualType ArgPointee;
4338  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4339    ArrayDecay = true;
4340    ArgPointee = ArgArrayType->getElementType();
4341    ArgType = S.Context.getPointerType(ArgPointee);
4342  }
4343
4344  // Handle write-back conversion.
4345  QualType ConvertedArgType;
4346  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4347                                   ConvertedArgType))
4348    return false;
4349
4350  // We should copy unless we're passing to an argument explicitly
4351  // marked 'out'.
4352  bool ShouldCopy = true;
4353  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4354    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4355
4356  // Do we need an lvalue conversion?
4357  if (ArrayDecay || Initializer->isGLValue()) {
4358    ImplicitConversionSequence ICS;
4359    ICS.setStandard();
4360    ICS.Standard.setAsIdentityConversion();
4361
4362    QualType ResultType;
4363    if (ArrayDecay) {
4364      ICS.Standard.First = ICK_Array_To_Pointer;
4365      ResultType = S.Context.getPointerType(ArgPointee);
4366    } else {
4367      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4368      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4369    }
4370
4371    Sequence.AddConversionSequenceStep(ICS, ResultType);
4372  }
4373
4374  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4375  return true;
4376}
4377
4378static bool TryOCLSamplerInitialization(Sema &S,
4379                                        InitializationSequence &Sequence,
4380                                        QualType DestType,
4381                                        Expr *Initializer) {
4382  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4383    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4384    return false;
4385
4386  Sequence.AddOCLSamplerInitStep(DestType);
4387  return true;
4388}
4389
4390//
4391// OpenCL 1.2 spec, s6.12.10
4392//
4393// The event argument can also be used to associate the
4394// async_work_group_copy with a previous async copy allowing
4395// an event to be shared by multiple async copies; otherwise
4396// event should be zero.
4397//
4398static bool TryOCLZeroEventInitialization(Sema &S,
4399                                          InitializationSequence &Sequence,
4400                                          QualType DestType,
4401                                          Expr *Initializer) {
4402  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4403      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4404      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4405    return false;
4406
4407  Sequence.AddOCLZeroEventStep(DestType);
4408  return true;
4409}
4410
4411InitializationSequence::InitializationSequence(Sema &S,
4412                                               const InitializedEntity &Entity,
4413                                               const InitializationKind &Kind,
4414                                               MultiExprArg Args,
4415                                               bool TopLevelOfInitList)
4416    : FailedCandidateSet(Kind.getLocation()) {
4417  InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4418}
4419
4420void InitializationSequence::InitializeFrom(Sema &S,
4421                                            const InitializedEntity &Entity,
4422                                            const InitializationKind &Kind,
4423                                            MultiExprArg Args,
4424                                            bool TopLevelOfInitList) {
4425  ASTContext &Context = S.Context;
4426
4427  // Eliminate non-overload placeholder types in the arguments.  We
4428  // need to do this before checking whether types are dependent
4429  // because lowering a pseudo-object expression might well give us
4430  // something of dependent type.
4431  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4432    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4433      // FIXME: should we be doing this here?
4434      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4435      if (result.isInvalid()) {
4436        SetFailed(FK_PlaceholderType);
4437        return;
4438      }
4439      Args[I] = result.take();
4440    }
4441
4442  // C++0x [dcl.init]p16:
4443  //   The semantics of initializers are as follows. The destination type is
4444  //   the type of the object or reference being initialized and the source
4445  //   type is the type of the initializer expression. The source type is not
4446  //   defined when the initializer is a braced-init-list or when it is a
4447  //   parenthesized list of expressions.
4448  QualType DestType = Entity.getType();
4449
4450  if (DestType->isDependentType() ||
4451      Expr::hasAnyTypeDependentArguments(Args)) {
4452    SequenceKind = DependentSequence;
4453    return;
4454  }
4455
4456  // Almost everything is a normal sequence.
4457  setSequenceKind(NormalSequence);
4458
4459  QualType SourceType;
4460  Expr *Initializer = 0;
4461  if (Args.size() == 1) {
4462    Initializer = Args[0];
4463    if (!isa<InitListExpr>(Initializer))
4464      SourceType = Initializer->getType();
4465  }
4466
4467  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4468  //       object is list-initialized (8.5.4).
4469  if (Kind.getKind() != InitializationKind::IK_Direct) {
4470    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4471      TryListInitialization(S, Entity, Kind, InitList, *this);
4472      return;
4473    }
4474  }
4475
4476  //     - If the destination type is a reference type, see 8.5.3.
4477  if (DestType->isReferenceType()) {
4478    // C++0x [dcl.init.ref]p1:
4479    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4480    //   (8.3.2), shall be initialized by an object, or function, of type T or
4481    //   by an object that can be converted into a T.
4482    // (Therefore, multiple arguments are not permitted.)
4483    if (Args.size() != 1)
4484      SetFailed(FK_TooManyInitsForReference);
4485    else
4486      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4487    return;
4488  }
4489
4490  //     - If the initializer is (), the object is value-initialized.
4491  if (Kind.getKind() == InitializationKind::IK_Value ||
4492      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4493    TryValueInitialization(S, Entity, Kind, *this);
4494    return;
4495  }
4496
4497  // Handle default initialization.
4498  if (Kind.getKind() == InitializationKind::IK_Default) {
4499    TryDefaultInitialization(S, Entity, Kind, *this);
4500    return;
4501  }
4502
4503  //     - If the destination type is an array of characters, an array of
4504  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4505  //       initializer is a string literal, see 8.5.2.
4506  //     - Otherwise, if the destination type is an array, the program is
4507  //       ill-formed.
4508  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4509    if (Initializer && isa<VariableArrayType>(DestAT)) {
4510      SetFailed(FK_VariableLengthArrayHasInitializer);
4511      return;
4512    }
4513
4514    if (Initializer) {
4515      switch (IsStringInit(Initializer, DestAT, Context)) {
4516      case SIF_None:
4517        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4518        return;
4519      case SIF_NarrowStringIntoWideChar:
4520        SetFailed(FK_NarrowStringIntoWideCharArray);
4521        return;
4522      case SIF_WideStringIntoChar:
4523        SetFailed(FK_WideStringIntoCharArray);
4524        return;
4525      case SIF_IncompatWideStringIntoWideChar:
4526        SetFailed(FK_IncompatWideStringIntoWideChar);
4527        return;
4528      case SIF_Other:
4529        break;
4530      }
4531    }
4532
4533    // Note: as an GNU C extension, we allow initialization of an
4534    // array from a compound literal that creates an array of the same
4535    // type, so long as the initializer has no side effects.
4536    if (!S.getLangOpts().CPlusPlus && Initializer &&
4537        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4538        Initializer->getType()->isArrayType()) {
4539      const ArrayType *SourceAT
4540        = Context.getAsArrayType(Initializer->getType());
4541      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4542        SetFailed(FK_ArrayTypeMismatch);
4543      else if (Initializer->HasSideEffects(S.Context))
4544        SetFailed(FK_NonConstantArrayInit);
4545      else {
4546        AddArrayInitStep(DestType);
4547      }
4548    }
4549    // Note: as a GNU C++ extension, we allow list-initialization of a
4550    // class member of array type from a parenthesized initializer list.
4551    else if (S.getLangOpts().CPlusPlus &&
4552             Entity.getKind() == InitializedEntity::EK_Member &&
4553             Initializer && isa<InitListExpr>(Initializer)) {
4554      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4555                            *this);
4556      AddParenthesizedArrayInitStep(DestType);
4557    } else if (DestAT->getElementType()->isCharType())
4558      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4559    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4560      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4561    else
4562      SetFailed(FK_ArrayNeedsInitList);
4563
4564    return;
4565  }
4566
4567  // Determine whether we should consider writeback conversions for
4568  // Objective-C ARC.
4569  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4570         Entity.isParameterKind();
4571
4572  // We're at the end of the line for C: it's either a write-back conversion
4573  // or it's a C assignment. There's no need to check anything else.
4574  if (!S.getLangOpts().CPlusPlus) {
4575    // If allowed, check whether this is an Objective-C writeback conversion.
4576    if (allowObjCWritebackConversion &&
4577        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4578      return;
4579    }
4580
4581    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4582      return;
4583
4584    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4585      return;
4586
4587    // Handle initialization in C
4588    AddCAssignmentStep(DestType);
4589    MaybeProduceObjCObject(S, *this, Entity);
4590    return;
4591  }
4592
4593  assert(S.getLangOpts().CPlusPlus);
4594
4595  //     - If the destination type is a (possibly cv-qualified) class type:
4596  if (DestType->isRecordType()) {
4597    //     - If the initialization is direct-initialization, or if it is
4598    //       copy-initialization where the cv-unqualified version of the
4599    //       source type is the same class as, or a derived class of, the
4600    //       class of the destination, constructors are considered. [...]
4601    if (Kind.getKind() == InitializationKind::IK_Direct ||
4602        (Kind.getKind() == InitializationKind::IK_Copy &&
4603         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4604          S.IsDerivedFrom(SourceType, DestType))))
4605      TryConstructorInitialization(S, Entity, Kind, Args,
4606                                   Entity.getType(), *this);
4607    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4608    //       user-defined conversion sequences that can convert from the source
4609    //       type to the destination type or (when a conversion function is
4610    //       used) to a derived class thereof are enumerated as described in
4611    //       13.3.1.4, and the best one is chosen through overload resolution
4612    //       (13.3).
4613    else
4614      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4615                               TopLevelOfInitList);
4616    return;
4617  }
4618
4619  if (Args.size() > 1) {
4620    SetFailed(FK_TooManyInitsForScalar);
4621    return;
4622  }
4623  assert(Args.size() == 1 && "Zero-argument case handled above");
4624
4625  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4626  //      type, conversion functions are considered.
4627  if (!SourceType.isNull() && SourceType->isRecordType()) {
4628    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4629                             TopLevelOfInitList);
4630    MaybeProduceObjCObject(S, *this, Entity);
4631    return;
4632  }
4633
4634  //    - Otherwise, the initial value of the object being initialized is the
4635  //      (possibly converted) value of the initializer expression. Standard
4636  //      conversions (Clause 4) will be used, if necessary, to convert the
4637  //      initializer expression to the cv-unqualified version of the
4638  //      destination type; no user-defined conversions are considered.
4639
4640  ImplicitConversionSequence ICS
4641    = S.TryImplicitConversion(Initializer, Entity.getType(),
4642                              /*SuppressUserConversions*/true,
4643                              /*AllowExplicitConversions*/ false,
4644                              /*InOverloadResolution*/ false,
4645                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4646                              allowObjCWritebackConversion);
4647
4648  if (ICS.isStandard() &&
4649      ICS.Standard.Second == ICK_Writeback_Conversion) {
4650    // Objective-C ARC writeback conversion.
4651
4652    // We should copy unless we're passing to an argument explicitly
4653    // marked 'out'.
4654    bool ShouldCopy = true;
4655    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4656      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4657
4658    // If there was an lvalue adjustment, add it as a separate conversion.
4659    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4660        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4661      ImplicitConversionSequence LvalueICS;
4662      LvalueICS.setStandard();
4663      LvalueICS.Standard.setAsIdentityConversion();
4664      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4665      LvalueICS.Standard.First = ICS.Standard.First;
4666      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4667    }
4668
4669    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4670  } else if (ICS.isBad()) {
4671    DeclAccessPair dap;
4672    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4673      AddZeroInitializationStep(Entity.getType());
4674    } else if (Initializer->getType() == Context.OverloadTy &&
4675               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4676                                                     false, dap))
4677      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4678    else
4679      SetFailed(InitializationSequence::FK_ConversionFailed);
4680  } else {
4681    AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList);
4682
4683    MaybeProduceObjCObject(S, *this, Entity);
4684  }
4685}
4686
4687InitializationSequence::~InitializationSequence() {
4688  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4689                                          StepEnd = Steps.end();
4690       Step != StepEnd; ++Step)
4691    Step->Destroy();
4692}
4693
4694//===----------------------------------------------------------------------===//
4695// Perform initialization
4696//===----------------------------------------------------------------------===//
4697static Sema::AssignmentAction
4698getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4699  switch(Entity.getKind()) {
4700  case InitializedEntity::EK_Variable:
4701  case InitializedEntity::EK_New:
4702  case InitializedEntity::EK_Exception:
4703  case InitializedEntity::EK_Base:
4704  case InitializedEntity::EK_Delegating:
4705    return Sema::AA_Initializing;
4706
4707  case InitializedEntity::EK_Parameter:
4708    if (Entity.getDecl() &&
4709        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4710      return Sema::AA_Sending;
4711
4712    return Sema::AA_Passing;
4713
4714  case InitializedEntity::EK_Parameter_CF_Audited:
4715    if (Entity.getDecl() &&
4716      isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4717      return Sema::AA_Sending;
4718
4719    return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4720
4721  case InitializedEntity::EK_Result:
4722    return Sema::AA_Returning;
4723
4724  case InitializedEntity::EK_Temporary:
4725  case InitializedEntity::EK_RelatedResult:
4726    // FIXME: Can we tell apart casting vs. converting?
4727    return Sema::AA_Casting;
4728
4729  case InitializedEntity::EK_Member:
4730  case InitializedEntity::EK_ArrayElement:
4731  case InitializedEntity::EK_VectorElement:
4732  case InitializedEntity::EK_ComplexElement:
4733  case InitializedEntity::EK_BlockElement:
4734  case InitializedEntity::EK_LambdaCapture:
4735  case InitializedEntity::EK_CompoundLiteralInit:
4736    return Sema::AA_Initializing;
4737  }
4738
4739  llvm_unreachable("Invalid EntityKind!");
4740}
4741
4742/// \brief Whether we should bind a created object as a temporary when
4743/// initializing the given entity.
4744static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4745  switch (Entity.getKind()) {
4746  case InitializedEntity::EK_ArrayElement:
4747  case InitializedEntity::EK_Member:
4748  case InitializedEntity::EK_Result:
4749  case InitializedEntity::EK_New:
4750  case InitializedEntity::EK_Variable:
4751  case InitializedEntity::EK_Base:
4752  case InitializedEntity::EK_Delegating:
4753  case InitializedEntity::EK_VectorElement:
4754  case InitializedEntity::EK_ComplexElement:
4755  case InitializedEntity::EK_Exception:
4756  case InitializedEntity::EK_BlockElement:
4757  case InitializedEntity::EK_LambdaCapture:
4758  case InitializedEntity::EK_CompoundLiteralInit:
4759    return false;
4760
4761  case InitializedEntity::EK_Parameter:
4762  case InitializedEntity::EK_Parameter_CF_Audited:
4763  case InitializedEntity::EK_Temporary:
4764  case InitializedEntity::EK_RelatedResult:
4765    return true;
4766  }
4767
4768  llvm_unreachable("missed an InitializedEntity kind?");
4769}
4770
4771/// \brief Whether the given entity, when initialized with an object
4772/// created for that initialization, requires destruction.
4773static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4774  switch (Entity.getKind()) {
4775    case InitializedEntity::EK_Result:
4776    case InitializedEntity::EK_New:
4777    case InitializedEntity::EK_Base:
4778    case InitializedEntity::EK_Delegating:
4779    case InitializedEntity::EK_VectorElement:
4780    case InitializedEntity::EK_ComplexElement:
4781    case InitializedEntity::EK_BlockElement:
4782    case InitializedEntity::EK_LambdaCapture:
4783      return false;
4784
4785    case InitializedEntity::EK_Member:
4786    case InitializedEntity::EK_Variable:
4787    case InitializedEntity::EK_Parameter:
4788    case InitializedEntity::EK_Parameter_CF_Audited:
4789    case InitializedEntity::EK_Temporary:
4790    case InitializedEntity::EK_ArrayElement:
4791    case InitializedEntity::EK_Exception:
4792    case InitializedEntity::EK_CompoundLiteralInit:
4793    case InitializedEntity::EK_RelatedResult:
4794      return true;
4795  }
4796
4797  llvm_unreachable("missed an InitializedEntity kind?");
4798}
4799
4800/// \brief Look for copy and move constructors and constructor templates, for
4801/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4802static void LookupCopyAndMoveConstructors(Sema &S,
4803                                          OverloadCandidateSet &CandidateSet,
4804                                          CXXRecordDecl *Class,
4805                                          Expr *CurInitExpr) {
4806  DeclContext::lookup_result R = S.LookupConstructors(Class);
4807  // The container holding the constructors can under certain conditions
4808  // be changed while iterating (e.g. because of deserialization).
4809  // To be safe we copy the lookup results to a new container.
4810  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4811  for (SmallVectorImpl<NamedDecl *>::iterator
4812         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4813    NamedDecl *D = *CI;
4814    CXXConstructorDecl *Constructor = 0;
4815
4816    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4817      // Handle copy/moveconstructors, only.
4818      if (!Constructor || Constructor->isInvalidDecl() ||
4819          !Constructor->isCopyOrMoveConstructor() ||
4820          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4821        continue;
4822
4823      DeclAccessPair FoundDecl
4824        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4825      S.AddOverloadCandidate(Constructor, FoundDecl,
4826                             CurInitExpr, CandidateSet);
4827      continue;
4828    }
4829
4830    // Handle constructor templates.
4831    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4832    if (ConstructorTmpl->isInvalidDecl())
4833      continue;
4834
4835    Constructor = cast<CXXConstructorDecl>(
4836                                         ConstructorTmpl->getTemplatedDecl());
4837    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4838      continue;
4839
4840    // FIXME: Do we need to limit this to copy-constructor-like
4841    // candidates?
4842    DeclAccessPair FoundDecl
4843      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4844    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4845                                   CurInitExpr, CandidateSet, true);
4846  }
4847}
4848
4849/// \brief Get the location at which initialization diagnostics should appear.
4850static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4851                                           Expr *Initializer) {
4852  switch (Entity.getKind()) {
4853  case InitializedEntity::EK_Result:
4854    return Entity.getReturnLoc();
4855
4856  case InitializedEntity::EK_Exception:
4857    return Entity.getThrowLoc();
4858
4859  case InitializedEntity::EK_Variable:
4860    return Entity.getDecl()->getLocation();
4861
4862  case InitializedEntity::EK_LambdaCapture:
4863    return Entity.getCaptureLoc();
4864
4865  case InitializedEntity::EK_ArrayElement:
4866  case InitializedEntity::EK_Member:
4867  case InitializedEntity::EK_Parameter:
4868  case InitializedEntity::EK_Parameter_CF_Audited:
4869  case InitializedEntity::EK_Temporary:
4870  case InitializedEntity::EK_New:
4871  case InitializedEntity::EK_Base:
4872  case InitializedEntity::EK_Delegating:
4873  case InitializedEntity::EK_VectorElement:
4874  case InitializedEntity::EK_ComplexElement:
4875  case InitializedEntity::EK_BlockElement:
4876  case InitializedEntity::EK_CompoundLiteralInit:
4877  case InitializedEntity::EK_RelatedResult:
4878    return Initializer->getLocStart();
4879  }
4880  llvm_unreachable("missed an InitializedEntity kind?");
4881}
4882
4883/// \brief Make a (potentially elidable) temporary copy of the object
4884/// provided by the given initializer by calling the appropriate copy
4885/// constructor.
4886///
4887/// \param S The Sema object used for type-checking.
4888///
4889/// \param T The type of the temporary object, which must either be
4890/// the type of the initializer expression or a superclass thereof.
4891///
4892/// \param Entity The entity being initialized.
4893///
4894/// \param CurInit The initializer expression.
4895///
4896/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4897/// is permitted in C++03 (but not C++0x) when binding a reference to
4898/// an rvalue.
4899///
4900/// \returns An expression that copies the initializer expression into
4901/// a temporary object, or an error expression if a copy could not be
4902/// created.
4903static ExprResult CopyObject(Sema &S,
4904                             QualType T,
4905                             const InitializedEntity &Entity,
4906                             ExprResult CurInit,
4907                             bool IsExtraneousCopy) {
4908  // Determine which class type we're copying to.
4909  Expr *CurInitExpr = (Expr *)CurInit.get();
4910  CXXRecordDecl *Class = 0;
4911  if (const RecordType *Record = T->getAs<RecordType>())
4912    Class = cast<CXXRecordDecl>(Record->getDecl());
4913  if (!Class)
4914    return CurInit;
4915
4916  // C++0x [class.copy]p32:
4917  //   When certain criteria are met, an implementation is allowed to
4918  //   omit the copy/move construction of a class object, even if the
4919  //   copy/move constructor and/or destructor for the object have
4920  //   side effects. [...]
4921  //     - when a temporary class object that has not been bound to a
4922  //       reference (12.2) would be copied/moved to a class object
4923  //       with the same cv-unqualified type, the copy/move operation
4924  //       can be omitted by constructing the temporary object
4925  //       directly into the target of the omitted copy/move
4926  //
4927  // Note that the other three bullets are handled elsewhere. Copy
4928  // elision for return statements and throw expressions are handled as part
4929  // of constructor initialization, while copy elision for exception handlers
4930  // is handled by the run-time.
4931  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4932  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4933
4934  // Make sure that the type we are copying is complete.
4935  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4936    return CurInit;
4937
4938  // Perform overload resolution using the class's copy/move constructors.
4939  // Only consider constructors and constructor templates. Per
4940  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4941  // is direct-initialization.
4942  OverloadCandidateSet CandidateSet(Loc);
4943  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4944
4945  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4946
4947  OverloadCandidateSet::iterator Best;
4948  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4949  case OR_Success:
4950    break;
4951
4952  case OR_No_Viable_Function:
4953    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4954           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4955           : diag::err_temp_copy_no_viable)
4956      << (int)Entity.getKind() << CurInitExpr->getType()
4957      << CurInitExpr->getSourceRange();
4958    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4959    if (!IsExtraneousCopy || S.isSFINAEContext())
4960      return ExprError();
4961    return CurInit;
4962
4963  case OR_Ambiguous:
4964    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4965      << (int)Entity.getKind() << CurInitExpr->getType()
4966      << CurInitExpr->getSourceRange();
4967    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4968    return ExprError();
4969
4970  case OR_Deleted:
4971    S.Diag(Loc, diag::err_temp_copy_deleted)
4972      << (int)Entity.getKind() << CurInitExpr->getType()
4973      << CurInitExpr->getSourceRange();
4974    S.NoteDeletedFunction(Best->Function);
4975    return ExprError();
4976  }
4977
4978  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4979  SmallVector<Expr*, 8> ConstructorArgs;
4980  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4981
4982  S.CheckConstructorAccess(Loc, Constructor, Entity,
4983                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4984
4985  if (IsExtraneousCopy) {
4986    // If this is a totally extraneous copy for C++03 reference
4987    // binding purposes, just return the original initialization
4988    // expression. We don't generate an (elided) copy operation here
4989    // because doing so would require us to pass down a flag to avoid
4990    // infinite recursion, where each step adds another extraneous,
4991    // elidable copy.
4992
4993    // Instantiate the default arguments of any extra parameters in
4994    // the selected copy constructor, as if we were going to create a
4995    // proper call to the copy constructor.
4996    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4997      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4998      if (S.RequireCompleteType(Loc, Parm->getType(),
4999                                diag::err_call_incomplete_argument))
5000        break;
5001
5002      // Build the default argument expression; we don't actually care
5003      // if this succeeds or not, because this routine will complain
5004      // if there was a problem.
5005      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5006    }
5007
5008    return S.Owned(CurInitExpr);
5009  }
5010
5011  // Determine the arguments required to actually perform the
5012  // constructor call (we might have derived-to-base conversions, or
5013  // the copy constructor may have default arguments).
5014  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5015    return ExprError();
5016
5017  // Actually perform the constructor call.
5018  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5019                                    ConstructorArgs,
5020                                    HadMultipleCandidates,
5021                                    /*ListInit*/ false,
5022                                    /*ZeroInit*/ false,
5023                                    CXXConstructExpr::CK_Complete,
5024                                    SourceRange());
5025
5026  // If we're supposed to bind temporaries, do so.
5027  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5028    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5029  return CurInit;
5030}
5031
5032/// \brief Check whether elidable copy construction for binding a reference to
5033/// a temporary would have succeeded if we were building in C++98 mode, for
5034/// -Wc++98-compat.
5035static void CheckCXX98CompatAccessibleCopy(Sema &S,
5036                                           const InitializedEntity &Entity,
5037                                           Expr *CurInitExpr) {
5038  assert(S.getLangOpts().CPlusPlus11);
5039
5040  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5041  if (!Record)
5042    return;
5043
5044  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5045  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
5046        == DiagnosticsEngine::Ignored)
5047    return;
5048
5049  // Find constructors which would have been considered.
5050  OverloadCandidateSet CandidateSet(Loc);
5051  LookupCopyAndMoveConstructors(
5052      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5053
5054  // Perform overload resolution.
5055  OverloadCandidateSet::iterator Best;
5056  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5057
5058  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5059    << OR << (int)Entity.getKind() << CurInitExpr->getType()
5060    << CurInitExpr->getSourceRange();
5061
5062  switch (OR) {
5063  case OR_Success:
5064    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5065                             Entity, Best->FoundDecl.getAccess(), Diag);
5066    // FIXME: Check default arguments as far as that's possible.
5067    break;
5068
5069  case OR_No_Viable_Function:
5070    S.Diag(Loc, Diag);
5071    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5072    break;
5073
5074  case OR_Ambiguous:
5075    S.Diag(Loc, Diag);
5076    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5077    break;
5078
5079  case OR_Deleted:
5080    S.Diag(Loc, Diag);
5081    S.NoteDeletedFunction(Best->Function);
5082    break;
5083  }
5084}
5085
5086void InitializationSequence::PrintInitLocationNote(Sema &S,
5087                                              const InitializedEntity &Entity) {
5088  if (Entity.isParameterKind() && Entity.getDecl()) {
5089    if (Entity.getDecl()->getLocation().isInvalid())
5090      return;
5091
5092    if (Entity.getDecl()->getDeclName())
5093      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5094        << Entity.getDecl()->getDeclName();
5095    else
5096      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5097  }
5098  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5099           Entity.getMethodDecl())
5100    S.Diag(Entity.getMethodDecl()->getLocation(),
5101           diag::note_method_return_type_change)
5102      << Entity.getMethodDecl()->getDeclName();
5103}
5104
5105static bool isReferenceBinding(const InitializationSequence::Step &s) {
5106  return s.Kind == InitializationSequence::SK_BindReference ||
5107         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5108}
5109
5110/// Returns true if the parameters describe a constructor initialization of
5111/// an explicit temporary object, e.g. "Point(x, y)".
5112static bool isExplicitTemporary(const InitializedEntity &Entity,
5113                                const InitializationKind &Kind,
5114                                unsigned NumArgs) {
5115  switch (Entity.getKind()) {
5116  case InitializedEntity::EK_Temporary:
5117  case InitializedEntity::EK_CompoundLiteralInit:
5118  case InitializedEntity::EK_RelatedResult:
5119    break;
5120  default:
5121    return false;
5122  }
5123
5124  switch (Kind.getKind()) {
5125  case InitializationKind::IK_DirectList:
5126    return true;
5127  // FIXME: Hack to work around cast weirdness.
5128  case InitializationKind::IK_Direct:
5129  case InitializationKind::IK_Value:
5130    return NumArgs != 1;
5131  default:
5132    return false;
5133  }
5134}
5135
5136static ExprResult
5137PerformConstructorInitialization(Sema &S,
5138                                 const InitializedEntity &Entity,
5139                                 const InitializationKind &Kind,
5140                                 MultiExprArg Args,
5141                                 const InitializationSequence::Step& Step,
5142                                 bool &ConstructorInitRequiresZeroInit,
5143                                 bool IsListInitialization,
5144                                 SourceLocation LBraceLoc,
5145                                 SourceLocation RBraceLoc) {
5146  unsigned NumArgs = Args.size();
5147  CXXConstructorDecl *Constructor
5148    = cast<CXXConstructorDecl>(Step.Function.Function);
5149  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5150
5151  // Build a call to the selected constructor.
5152  SmallVector<Expr*, 8> ConstructorArgs;
5153  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5154                         ? Kind.getEqualLoc()
5155                         : Kind.getLocation();
5156
5157  if (Kind.getKind() == InitializationKind::IK_Default) {
5158    // Force even a trivial, implicit default constructor to be
5159    // semantically checked. We do this explicitly because we don't build
5160    // the definition for completely trivial constructors.
5161    assert(Constructor->getParent() && "No parent class for constructor.");
5162    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5163        Constructor->isTrivial() && !Constructor->isUsed(false))
5164      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5165  }
5166
5167  ExprResult CurInit = S.Owned((Expr *)0);
5168
5169  // C++ [over.match.copy]p1:
5170  //   - When initializing a temporary to be bound to the first parameter
5171  //     of a constructor that takes a reference to possibly cv-qualified
5172  //     T as its first argument, called with a single argument in the
5173  //     context of direct-initialization, explicit conversion functions
5174  //     are also considered.
5175  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5176                           Args.size() == 1 &&
5177                           Constructor->isCopyOrMoveConstructor();
5178
5179  // Determine the arguments required to actually perform the constructor
5180  // call.
5181  if (S.CompleteConstructorCall(Constructor, Args,
5182                                Loc, ConstructorArgs,
5183                                AllowExplicitConv,
5184                                IsListInitialization))
5185    return ExprError();
5186
5187
5188  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5189    // An explicitly-constructed temporary, e.g., X(1, 2).
5190    S.MarkFunctionReferenced(Loc, Constructor);
5191    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5192      return ExprError();
5193
5194    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5195    if (!TSInfo)
5196      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5197    SourceRange ParenOrBraceRange =
5198      (Kind.getKind() == InitializationKind::IK_DirectList)
5199      ? SourceRange(LBraceLoc, RBraceLoc)
5200      : Kind.getParenRange();
5201
5202    CurInit = S.Owned(
5203      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5204                                             TSInfo, ConstructorArgs,
5205                                             ParenOrBraceRange,
5206                                             HadMultipleCandidates,
5207                                             IsListInitialization,
5208                                             ConstructorInitRequiresZeroInit));
5209  } else {
5210    CXXConstructExpr::ConstructionKind ConstructKind =
5211      CXXConstructExpr::CK_Complete;
5212
5213    if (Entity.getKind() == InitializedEntity::EK_Base) {
5214      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5215        CXXConstructExpr::CK_VirtualBase :
5216        CXXConstructExpr::CK_NonVirtualBase;
5217    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5218      ConstructKind = CXXConstructExpr::CK_Delegating;
5219    }
5220
5221    // Only get the parenthesis range if it is a direct construction.
5222    SourceRange parenRange =
5223        Kind.getKind() == InitializationKind::IK_Direct ?
5224        Kind.getParenRange() : SourceRange();
5225
5226    // If the entity allows NRVO, mark the construction as elidable
5227    // unconditionally.
5228    if (Entity.allowsNRVO())
5229      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5230                                        Constructor, /*Elidable=*/true,
5231                                        ConstructorArgs,
5232                                        HadMultipleCandidates,
5233                                        IsListInitialization,
5234                                        ConstructorInitRequiresZeroInit,
5235                                        ConstructKind,
5236                                        parenRange);
5237    else
5238      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5239                                        Constructor,
5240                                        ConstructorArgs,
5241                                        HadMultipleCandidates,
5242                                        IsListInitialization,
5243                                        ConstructorInitRequiresZeroInit,
5244                                        ConstructKind,
5245                                        parenRange);
5246  }
5247  if (CurInit.isInvalid())
5248    return ExprError();
5249
5250  // Only check access if all of that succeeded.
5251  S.CheckConstructorAccess(Loc, Constructor, Entity,
5252                           Step.Function.FoundDecl.getAccess());
5253  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5254    return ExprError();
5255
5256  if (shouldBindAsTemporary(Entity))
5257    CurInit = S.MaybeBindToTemporary(CurInit.take());
5258
5259  return CurInit;
5260}
5261
5262/// Determine whether the specified InitializedEntity definitely has a lifetime
5263/// longer than the current full-expression. Conservatively returns false if
5264/// it's unclear.
5265static bool
5266InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5267  const InitializedEntity *Top = &Entity;
5268  while (Top->getParent())
5269    Top = Top->getParent();
5270
5271  switch (Top->getKind()) {
5272  case InitializedEntity::EK_Variable:
5273  case InitializedEntity::EK_Result:
5274  case InitializedEntity::EK_Exception:
5275  case InitializedEntity::EK_Member:
5276  case InitializedEntity::EK_New:
5277  case InitializedEntity::EK_Base:
5278  case InitializedEntity::EK_Delegating:
5279    return true;
5280
5281  case InitializedEntity::EK_ArrayElement:
5282  case InitializedEntity::EK_VectorElement:
5283  case InitializedEntity::EK_BlockElement:
5284  case InitializedEntity::EK_ComplexElement:
5285    // Could not determine what the full initialization is. Assume it might not
5286    // outlive the full-expression.
5287    return false;
5288
5289  case InitializedEntity::EK_Parameter:
5290  case InitializedEntity::EK_Parameter_CF_Audited:
5291  case InitializedEntity::EK_Temporary:
5292  case InitializedEntity::EK_LambdaCapture:
5293  case InitializedEntity::EK_CompoundLiteralInit:
5294  case InitializedEntity::EK_RelatedResult:
5295    // The entity being initialized might not outlive the full-expression.
5296    return false;
5297  }
5298
5299  llvm_unreachable("unknown entity kind");
5300}
5301
5302/// Determine the declaration which an initialized entity ultimately refers to,
5303/// for the purpose of lifetime-extending a temporary bound to a reference in
5304/// the initialization of \p Entity.
5305static const ValueDecl *
5306getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5307                                     const ValueDecl *FallbackDecl = 0) {
5308  // C++11 [class.temporary]p5:
5309  switch (Entity.getKind()) {
5310  case InitializedEntity::EK_Variable:
5311    //   The temporary [...] persists for the lifetime of the reference
5312    return Entity.getDecl();
5313
5314  case InitializedEntity::EK_Member:
5315    // For subobjects, we look at the complete object.
5316    if (Entity.getParent())
5317      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5318                                                  Entity.getDecl());
5319
5320    //   except:
5321    //   -- A temporary bound to a reference member in a constructor's
5322    //      ctor-initializer persists until the constructor exits.
5323    return Entity.getDecl();
5324
5325  case InitializedEntity::EK_Parameter:
5326  case InitializedEntity::EK_Parameter_CF_Audited:
5327    //   -- A temporary bound to a reference parameter in a function call
5328    //      persists until the completion of the full-expression containing
5329    //      the call.
5330  case InitializedEntity::EK_Result:
5331    //   -- The lifetime of a temporary bound to the returned value in a
5332    //      function return statement is not extended; the temporary is
5333    //      destroyed at the end of the full-expression in the return statement.
5334  case InitializedEntity::EK_New:
5335    //   -- A temporary bound to a reference in a new-initializer persists
5336    //      until the completion of the full-expression containing the
5337    //      new-initializer.
5338    return 0;
5339
5340  case InitializedEntity::EK_Temporary:
5341  case InitializedEntity::EK_CompoundLiteralInit:
5342  case InitializedEntity::EK_RelatedResult:
5343    // We don't yet know the storage duration of the surrounding temporary.
5344    // Assume it's got full-expression duration for now, it will patch up our
5345    // storage duration if that's not correct.
5346    return 0;
5347
5348  case InitializedEntity::EK_ArrayElement:
5349    // For subobjects, we look at the complete object.
5350    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5351                                                FallbackDecl);
5352
5353  case InitializedEntity::EK_Base:
5354  case InitializedEntity::EK_Delegating:
5355    // We can reach this case for aggregate initialization in a constructor:
5356    //   struct A { int &&r; };
5357    //   struct B : A { B() : A{0} {} };
5358    // In this case, use the innermost field decl as the context.
5359    return FallbackDecl;
5360
5361  case InitializedEntity::EK_BlockElement:
5362  case InitializedEntity::EK_LambdaCapture:
5363  case InitializedEntity::EK_Exception:
5364  case InitializedEntity::EK_VectorElement:
5365  case InitializedEntity::EK_ComplexElement:
5366    return 0;
5367  }
5368  llvm_unreachable("unknown entity kind");
5369}
5370
5371static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5372
5373/// Update a glvalue expression that is used as the initializer of a reference
5374/// to note that its lifetime is extended.
5375/// \return \c true if any temporary had its lifetime extended.
5376static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5377  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5378    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5379      // This is just redundant braces around an initializer. Step over it.
5380      Init = ILE->getInit(0);
5381    }
5382  }
5383
5384  // Walk past any constructs which we can lifetime-extend across.
5385  Expr *Old;
5386  do {
5387    Old = Init;
5388
5389    // Step over any subobject adjustments; we may have a materialized
5390    // temporary inside them.
5391    SmallVector<const Expr *, 2> CommaLHSs;
5392    SmallVector<SubobjectAdjustment, 2> Adjustments;
5393    Init = const_cast<Expr *>(
5394        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5395
5396    // Per current approach for DR1376, look through casts to reference type
5397    // when performing lifetime extension.
5398    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5399      if (CE->getSubExpr()->isGLValue())
5400        Init = CE->getSubExpr();
5401
5402    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5403    // It's unclear if binding a reference to that xvalue extends the array
5404    // temporary.
5405  } while (Init != Old);
5406
5407  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5408    // Update the storage duration of the materialized temporary.
5409    // FIXME: Rebuild the expression instead of mutating it.
5410    ME->setExtendingDecl(ExtendingD);
5411    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5412    return true;
5413  }
5414
5415  return false;
5416}
5417
5418/// Update a prvalue expression that is going to be materialized as a
5419/// lifetime-extended temporary.
5420static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5421  // Dig out the expression which constructs the extended temporary.
5422  SmallVector<const Expr *, 2> CommaLHSs;
5423  SmallVector<SubobjectAdjustment, 2> Adjustments;
5424  Init = const_cast<Expr *>(
5425      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5426
5427  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5428    Init = BTE->getSubExpr();
5429
5430  if (CXXStdInitializerListExpr *ILE =
5431          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5432    performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5433    return;
5434  }
5435
5436  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5437    if (ILE->getType()->isArrayType()) {
5438      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5439        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5440      return;
5441    }
5442
5443    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5444      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5445
5446      // If we lifetime-extend a braced initializer which is initializing an
5447      // aggregate, and that aggregate contains reference members which are
5448      // bound to temporaries, those temporaries are also lifetime-extended.
5449      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5450          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5451        performReferenceExtension(ILE->getInit(0), ExtendingD);
5452      else {
5453        unsigned Index = 0;
5454        for (RecordDecl::field_iterator I = RD->field_begin(),
5455                                        E = RD->field_end();
5456             I != E; ++I) {
5457          if (Index >= ILE->getNumInits())
5458            break;
5459          if (I->isUnnamedBitfield())
5460            continue;
5461          Expr *SubInit = ILE->getInit(Index);
5462          if (I->getType()->isReferenceType())
5463            performReferenceExtension(SubInit, ExtendingD);
5464          else if (isa<InitListExpr>(SubInit) ||
5465                   isa<CXXStdInitializerListExpr>(SubInit))
5466            // This may be either aggregate-initialization of a member or
5467            // initialization of a std::initializer_list object. Either way,
5468            // we should recursively lifetime-extend that initializer.
5469            performLifetimeExtension(SubInit, ExtendingD);
5470          ++Index;
5471        }
5472      }
5473    }
5474  }
5475}
5476
5477static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5478                                    const Expr *Init, bool IsInitializerList,
5479                                    const ValueDecl *ExtendingDecl) {
5480  // Warn if a field lifetime-extends a temporary.
5481  if (isa<FieldDecl>(ExtendingDecl)) {
5482    if (IsInitializerList) {
5483      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5484        << /*at end of constructor*/true;
5485      return;
5486    }
5487
5488    bool IsSubobjectMember = false;
5489    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5490         Ent = Ent->getParent()) {
5491      if (Ent->getKind() != InitializedEntity::EK_Base) {
5492        IsSubobjectMember = true;
5493        break;
5494      }
5495    }
5496    S.Diag(Init->getExprLoc(),
5497           diag::warn_bind_ref_member_to_temporary)
5498      << ExtendingDecl << Init->getSourceRange()
5499      << IsSubobjectMember << IsInitializerList;
5500    if (IsSubobjectMember)
5501      S.Diag(ExtendingDecl->getLocation(),
5502             diag::note_ref_subobject_of_member_declared_here);
5503    else
5504      S.Diag(ExtendingDecl->getLocation(),
5505             diag::note_ref_or_ptr_member_declared_here)
5506        << /*is pointer*/false;
5507  }
5508}
5509
5510static void DiagnoseNarrowingInInitList(Sema &S,
5511                                        const ImplicitConversionSequence &ICS,
5512                                        QualType PreNarrowingType,
5513                                        QualType EntityType,
5514                                        const Expr *PostInit);
5515
5516ExprResult
5517InitializationSequence::Perform(Sema &S,
5518                                const InitializedEntity &Entity,
5519                                const InitializationKind &Kind,
5520                                MultiExprArg Args,
5521                                QualType *ResultType) {
5522  if (Failed()) {
5523    Diagnose(S, Entity, Kind, Args);
5524    return ExprError();
5525  }
5526
5527  if (getKind() == DependentSequence) {
5528    // If the declaration is a non-dependent, incomplete array type
5529    // that has an initializer, then its type will be completed once
5530    // the initializer is instantiated.
5531    if (ResultType && !Entity.getType()->isDependentType() &&
5532        Args.size() == 1) {
5533      QualType DeclType = Entity.getType();
5534      if (const IncompleteArrayType *ArrayT
5535                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5536        // FIXME: We don't currently have the ability to accurately
5537        // compute the length of an initializer list without
5538        // performing full type-checking of the initializer list
5539        // (since we have to determine where braces are implicitly
5540        // introduced and such).  So, we fall back to making the array
5541        // type a dependently-sized array type with no specified
5542        // bound.
5543        if (isa<InitListExpr>((Expr *)Args[0])) {
5544          SourceRange Brackets;
5545
5546          // Scavange the location of the brackets from the entity, if we can.
5547          if (DeclaratorDecl *DD = Entity.getDecl()) {
5548            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5549              TypeLoc TL = TInfo->getTypeLoc();
5550              if (IncompleteArrayTypeLoc ArrayLoc =
5551                      TL.getAs<IncompleteArrayTypeLoc>())
5552                Brackets = ArrayLoc.getBracketsRange();
5553            }
5554          }
5555
5556          *ResultType
5557            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5558                                                   /*NumElts=*/0,
5559                                                   ArrayT->getSizeModifier(),
5560                                       ArrayT->getIndexTypeCVRQualifiers(),
5561                                                   Brackets);
5562        }
5563
5564      }
5565    }
5566    if (Kind.getKind() == InitializationKind::IK_Direct &&
5567        !Kind.isExplicitCast()) {
5568      // Rebuild the ParenListExpr.
5569      SourceRange ParenRange = Kind.getParenRange();
5570      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5571                                  Args);
5572    }
5573    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5574           Kind.isExplicitCast() ||
5575           Kind.getKind() == InitializationKind::IK_DirectList);
5576    return ExprResult(Args[0]);
5577  }
5578
5579  // No steps means no initialization.
5580  if (Steps.empty())
5581    return S.Owned((Expr *)0);
5582
5583  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5584      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5585      !Entity.isParameterKind()) {
5586    // Produce a C++98 compatibility warning if we are initializing a reference
5587    // from an initializer list. For parameters, we produce a better warning
5588    // elsewhere.
5589    Expr *Init = Args[0];
5590    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5591      << Init->getSourceRange();
5592  }
5593
5594  // Diagnose cases where we initialize a pointer to an array temporary, and the
5595  // pointer obviously outlives the temporary.
5596  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5597      Entity.getType()->isPointerType() &&
5598      InitializedEntityOutlivesFullExpression(Entity)) {
5599    Expr *Init = Args[0];
5600    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5601    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5602      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5603        << Init->getSourceRange();
5604  }
5605
5606  QualType DestType = Entity.getType().getNonReferenceType();
5607  // FIXME: Ugly hack around the fact that Entity.getType() is not
5608  // the same as Entity.getDecl()->getType() in cases involving type merging,
5609  //  and we want latter when it makes sense.
5610  if (ResultType)
5611    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5612                                     Entity.getType();
5613
5614  ExprResult CurInit = S.Owned((Expr *)0);
5615
5616  // For initialization steps that start with a single initializer,
5617  // grab the only argument out the Args and place it into the "current"
5618  // initializer.
5619  switch (Steps.front().Kind) {
5620  case SK_ResolveAddressOfOverloadedFunction:
5621  case SK_CastDerivedToBaseRValue:
5622  case SK_CastDerivedToBaseXValue:
5623  case SK_CastDerivedToBaseLValue:
5624  case SK_BindReference:
5625  case SK_BindReferenceToTemporary:
5626  case SK_ExtraneousCopyToTemporary:
5627  case SK_UserConversion:
5628  case SK_QualificationConversionLValue:
5629  case SK_QualificationConversionXValue:
5630  case SK_QualificationConversionRValue:
5631  case SK_LValueToRValue:
5632  case SK_ConversionSequence:
5633  case SK_ConversionSequenceNoNarrowing:
5634  case SK_ListInitialization:
5635  case SK_UnwrapInitList:
5636  case SK_RewrapInitList:
5637  case SK_CAssignment:
5638  case SK_StringInit:
5639  case SK_ObjCObjectConversion:
5640  case SK_ArrayInit:
5641  case SK_ParenthesizedArrayInit:
5642  case SK_PassByIndirectCopyRestore:
5643  case SK_PassByIndirectRestore:
5644  case SK_ProduceObjCObject:
5645  case SK_StdInitializerList:
5646  case SK_OCLSamplerInit:
5647  case SK_OCLZeroEvent: {
5648    assert(Args.size() == 1);
5649    CurInit = Args[0];
5650    if (!CurInit.get()) return ExprError();
5651    break;
5652  }
5653
5654  case SK_ConstructorInitialization:
5655  case SK_ListConstructorCall:
5656  case SK_ZeroInitialization:
5657    break;
5658  }
5659
5660  // Walk through the computed steps for the initialization sequence,
5661  // performing the specified conversions along the way.
5662  bool ConstructorInitRequiresZeroInit = false;
5663  for (step_iterator Step = step_begin(), StepEnd = step_end();
5664       Step != StepEnd; ++Step) {
5665    if (CurInit.isInvalid())
5666      return ExprError();
5667
5668    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5669
5670    switch (Step->Kind) {
5671    case SK_ResolveAddressOfOverloadedFunction:
5672      // Overload resolution determined which function invoke; update the
5673      // initializer to reflect that choice.
5674      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5675      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5676        return ExprError();
5677      CurInit = S.FixOverloadedFunctionReference(CurInit,
5678                                                 Step->Function.FoundDecl,
5679                                                 Step->Function.Function);
5680      break;
5681
5682    case SK_CastDerivedToBaseRValue:
5683    case SK_CastDerivedToBaseXValue:
5684    case SK_CastDerivedToBaseLValue: {
5685      // We have a derived-to-base cast that produces either an rvalue or an
5686      // lvalue. Perform that cast.
5687
5688      CXXCastPath BasePath;
5689
5690      // Casts to inaccessible base classes are allowed with C-style casts.
5691      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5692      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5693                                         CurInit.get()->getLocStart(),
5694                                         CurInit.get()->getSourceRange(),
5695                                         &BasePath, IgnoreBaseAccess))
5696        return ExprError();
5697
5698      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5699        QualType T = SourceType;
5700        if (const PointerType *Pointer = T->getAs<PointerType>())
5701          T = Pointer->getPointeeType();
5702        if (const RecordType *RecordTy = T->getAs<RecordType>())
5703          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5704                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5705      }
5706
5707      ExprValueKind VK =
5708          Step->Kind == SK_CastDerivedToBaseLValue ?
5709              VK_LValue :
5710              (Step->Kind == SK_CastDerivedToBaseXValue ?
5711                   VK_XValue :
5712                   VK_RValue);
5713      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5714                                                 Step->Type,
5715                                                 CK_DerivedToBase,
5716                                                 CurInit.get(),
5717                                                 &BasePath, VK));
5718      break;
5719    }
5720
5721    case SK_BindReference:
5722      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5723      if (CurInit.get()->refersToBitField()) {
5724        // We don't necessarily have an unambiguous source bit-field.
5725        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5726        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5727          << Entity.getType().isVolatileQualified()
5728          << (BitField ? BitField->getDeclName() : DeclarationName())
5729          << (BitField != NULL)
5730          << CurInit.get()->getSourceRange();
5731        if (BitField)
5732          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5733
5734        return ExprError();
5735      }
5736
5737      if (CurInit.get()->refersToVectorElement()) {
5738        // References cannot bind to vector elements.
5739        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5740          << Entity.getType().isVolatileQualified()
5741          << CurInit.get()->getSourceRange();
5742        PrintInitLocationNote(S, Entity);
5743        return ExprError();
5744      }
5745
5746      // Reference binding does not have any corresponding ASTs.
5747
5748      // Check exception specifications
5749      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5750        return ExprError();
5751
5752      // Even though we didn't materialize a temporary, the binding may still
5753      // extend the lifetime of a temporary. This happens if we bind a reference
5754      // to the result of a cast to reference type.
5755      if (const ValueDecl *ExtendingDecl =
5756              getDeclForTemporaryLifetimeExtension(Entity)) {
5757        if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5758          warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5759                                  ExtendingDecl);
5760      }
5761
5762      break;
5763
5764    case SK_BindReferenceToTemporary: {
5765      // Make sure the "temporary" is actually an rvalue.
5766      assert(CurInit.get()->isRValue() && "not a temporary");
5767
5768      // Check exception specifications
5769      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5770        return ExprError();
5771
5772      // Maybe lifetime-extend the temporary's subobjects to match the
5773      // entity's lifetime.
5774      const ValueDecl *ExtendingDecl =
5775          getDeclForTemporaryLifetimeExtension(Entity);
5776      if (ExtendingDecl) {
5777        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5778        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5779      }
5780
5781      // Materialize the temporary into memory.
5782      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5783          Entity.getType().getNonReferenceType(), CurInit.get(),
5784          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5785
5786      // If we're binding to an Objective-C object that has lifetime, we
5787      // need cleanups. Likewise if we're extending this temporary to automatic
5788      // storage duration -- we need to register its cleanup during the
5789      // full-expression's cleanups.
5790      if ((S.getLangOpts().ObjCAutoRefCount &&
5791           MTE->getType()->isObjCLifetimeType()) ||
5792          (MTE->getStorageDuration() == SD_Automatic &&
5793           MTE->getType().isDestructedType()))
5794        S.ExprNeedsCleanups = true;
5795
5796      CurInit = S.Owned(MTE);
5797      break;
5798    }
5799
5800    case SK_ExtraneousCopyToTemporary:
5801      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5802                           /*IsExtraneousCopy=*/true);
5803      break;
5804
5805    case SK_UserConversion: {
5806      // We have a user-defined conversion that invokes either a constructor
5807      // or a conversion function.
5808      CastKind CastKind;
5809      bool IsCopy = false;
5810      FunctionDecl *Fn = Step->Function.Function;
5811      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5812      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5813      bool CreatedObject = false;
5814      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5815        // Build a call to the selected constructor.
5816        SmallVector<Expr*, 8> ConstructorArgs;
5817        SourceLocation Loc = CurInit.get()->getLocStart();
5818        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5819
5820        // Determine the arguments required to actually perform the constructor
5821        // call.
5822        Expr *Arg = CurInit.get();
5823        if (S.CompleteConstructorCall(Constructor,
5824                                      MultiExprArg(&Arg, 1),
5825                                      Loc, ConstructorArgs))
5826          return ExprError();
5827
5828        // Build an expression that constructs a temporary.
5829        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5830                                          ConstructorArgs,
5831                                          HadMultipleCandidates,
5832                                          /*ListInit*/ false,
5833                                          /*ZeroInit*/ false,
5834                                          CXXConstructExpr::CK_Complete,
5835                                          SourceRange());
5836        if (CurInit.isInvalid())
5837          return ExprError();
5838
5839        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5840                                 FoundFn.getAccess());
5841        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5842          return ExprError();
5843
5844        CastKind = CK_ConstructorConversion;
5845        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5846        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5847            S.IsDerivedFrom(SourceType, Class))
5848          IsCopy = true;
5849
5850        CreatedObject = true;
5851      } else {
5852        // Build a call to the conversion function.
5853        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5854        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5855                                    FoundFn);
5856        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5857          return ExprError();
5858
5859        // FIXME: Should we move this initialization into a separate
5860        // derived-to-base conversion? I believe the answer is "no", because
5861        // we don't want to turn off access control here for c-style casts.
5862        ExprResult CurInitExprRes =
5863          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5864                                                FoundFn, Conversion);
5865        if(CurInitExprRes.isInvalid())
5866          return ExprError();
5867        CurInit = CurInitExprRes;
5868
5869        // Build the actual call to the conversion function.
5870        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5871                                           HadMultipleCandidates);
5872        if (CurInit.isInvalid() || !CurInit.get())
5873          return ExprError();
5874
5875        CastKind = CK_UserDefinedConversion;
5876
5877        CreatedObject = Conversion->getResultType()->isRecordType();
5878      }
5879
5880      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5881      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5882
5883      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5884        QualType T = CurInit.get()->getType();
5885        if (const RecordType *Record = T->getAs<RecordType>()) {
5886          CXXDestructorDecl *Destructor
5887            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5888          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5889                                  S.PDiag(diag::err_access_dtor_temp) << T);
5890          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5891          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5892            return ExprError();
5893        }
5894      }
5895
5896      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5897                                                 CurInit.get()->getType(),
5898                                                 CastKind, CurInit.get(), 0,
5899                                                CurInit.get()->getValueKind()));
5900      if (MaybeBindToTemp)
5901        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5902      if (RequiresCopy)
5903        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5904                             CurInit, /*IsExtraneousCopy=*/false);
5905      break;
5906    }
5907
5908    case SK_QualificationConversionLValue:
5909    case SK_QualificationConversionXValue:
5910    case SK_QualificationConversionRValue: {
5911      // Perform a qualification conversion; these can never go wrong.
5912      ExprValueKind VK =
5913          Step->Kind == SK_QualificationConversionLValue ?
5914              VK_LValue :
5915              (Step->Kind == SK_QualificationConversionXValue ?
5916                   VK_XValue :
5917                   VK_RValue);
5918      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5919      break;
5920    }
5921
5922    case SK_LValueToRValue: {
5923      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5924      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5925                                                 CK_LValueToRValue,
5926                                                 CurInit.take(),
5927                                                 /*BasePath=*/0,
5928                                                 VK_RValue));
5929      break;
5930    }
5931
5932    case SK_ConversionSequence:
5933    case SK_ConversionSequenceNoNarrowing: {
5934      Sema::CheckedConversionKind CCK
5935        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5936        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5937        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5938        : Sema::CCK_ImplicitConversion;
5939      ExprResult CurInitExprRes =
5940        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5941                                    getAssignmentAction(Entity), CCK);
5942      if (CurInitExprRes.isInvalid())
5943        return ExprError();
5944      CurInit = CurInitExprRes;
5945
5946      if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
5947          S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
5948        DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
5949                                    CurInit.get());
5950      break;
5951    }
5952
5953    case SK_ListInitialization: {
5954      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5955      // If we're not initializing the top-level entity, we need to create an
5956      // InitializeTemporary entity for our target type.
5957      QualType Ty = Step->Type;
5958      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5959      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5960      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5961      InitListChecker PerformInitList(S, InitEntity,
5962          InitList, Ty, /*VerifyOnly=*/false);
5963      if (PerformInitList.HadError())
5964        return ExprError();
5965
5966      // Hack: We must update *ResultType if available in order to set the
5967      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5968      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5969      if (ResultType &&
5970          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5971        if ((*ResultType)->isRValueReferenceType())
5972          Ty = S.Context.getRValueReferenceType(Ty);
5973        else if ((*ResultType)->isLValueReferenceType())
5974          Ty = S.Context.getLValueReferenceType(Ty,
5975            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5976        *ResultType = Ty;
5977      }
5978
5979      InitListExpr *StructuredInitList =
5980          PerformInitList.getFullyStructuredList();
5981      CurInit.release();
5982      CurInit = shouldBindAsTemporary(InitEntity)
5983          ? S.MaybeBindToTemporary(StructuredInitList)
5984          : S.Owned(StructuredInitList);
5985      break;
5986    }
5987
5988    case SK_ListConstructorCall: {
5989      // When an initializer list is passed for a parameter of type "reference
5990      // to object", we don't get an EK_Temporary entity, but instead an
5991      // EK_Parameter entity with reference type.
5992      // FIXME: This is a hack. What we really should do is create a user
5993      // conversion step for this case, but this makes it considerably more
5994      // complicated. For now, this will do.
5995      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5996                                        Entity.getType().getNonReferenceType());
5997      bool UseTemporary = Entity.getType()->isReferenceType();
5998      assert(Args.size() == 1 && "expected a single argument for list init");
5999      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6000      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6001        << InitList->getSourceRange();
6002      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6003      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6004                                                                   Entity,
6005                                                 Kind, Arg, *Step,
6006                                               ConstructorInitRequiresZeroInit,
6007                                               /*IsListInitialization*/ true,
6008                                               InitList->getLBraceLoc(),
6009                                               InitList->getRBraceLoc());
6010      break;
6011    }
6012
6013    case SK_UnwrapInitList:
6014      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
6015      break;
6016
6017    case SK_RewrapInitList: {
6018      Expr *E = CurInit.take();
6019      InitListExpr *Syntactic = Step->WrappingSyntacticList;
6020      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6021          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6022      ILE->setSyntacticForm(Syntactic);
6023      ILE->setType(E->getType());
6024      ILE->setValueKind(E->getValueKind());
6025      CurInit = S.Owned(ILE);
6026      break;
6027    }
6028
6029    case SK_ConstructorInitialization: {
6030      // When an initializer list is passed for a parameter of type "reference
6031      // to object", we don't get an EK_Temporary entity, but instead an
6032      // EK_Parameter entity with reference type.
6033      // FIXME: This is a hack. What we really should do is create a user
6034      // conversion step for this case, but this makes it considerably more
6035      // complicated. For now, this will do.
6036      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6037                                        Entity.getType().getNonReferenceType());
6038      bool UseTemporary = Entity.getType()->isReferenceType();
6039      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
6040                                                                 : Entity,
6041                                                 Kind, Args, *Step,
6042                                               ConstructorInitRequiresZeroInit,
6043                                               /*IsListInitialization*/ false,
6044                                               /*LBraceLoc*/ SourceLocation(),
6045                                               /*RBraceLoc*/ SourceLocation());
6046      break;
6047    }
6048
6049    case SK_ZeroInitialization: {
6050      step_iterator NextStep = Step;
6051      ++NextStep;
6052      if (NextStep != StepEnd &&
6053          (NextStep->Kind == SK_ConstructorInitialization ||
6054           NextStep->Kind == SK_ListConstructorCall)) {
6055        // The need for zero-initialization is recorded directly into
6056        // the call to the object's constructor within the next step.
6057        ConstructorInitRequiresZeroInit = true;
6058      } else if (Kind.getKind() == InitializationKind::IK_Value &&
6059                 S.getLangOpts().CPlusPlus &&
6060                 !Kind.isImplicitValueInit()) {
6061        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6062        if (!TSInfo)
6063          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6064                                                    Kind.getRange().getBegin());
6065
6066        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
6067                              TSInfo->getType().getNonLValueExprType(S.Context),
6068                                                                 TSInfo,
6069                                                    Kind.getRange().getEnd()));
6070      } else {
6071        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
6072      }
6073      break;
6074    }
6075
6076    case SK_CAssignment: {
6077      QualType SourceType = CurInit.get()->getType();
6078      ExprResult Result = CurInit;
6079      Sema::AssignConvertType ConvTy =
6080        S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6081            Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6082      if (Result.isInvalid())
6083        return ExprError();
6084      CurInit = Result;
6085
6086      // If this is a call, allow conversion to a transparent union.
6087      ExprResult CurInitExprRes = CurInit;
6088      if (ConvTy != Sema::Compatible &&
6089          Entity.isParameterKind() &&
6090          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6091            == Sema::Compatible)
6092        ConvTy = Sema::Compatible;
6093      if (CurInitExprRes.isInvalid())
6094        return ExprError();
6095      CurInit = CurInitExprRes;
6096
6097      bool Complained;
6098      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6099                                     Step->Type, SourceType,
6100                                     CurInit.get(),
6101                                     getAssignmentAction(Entity, true),
6102                                     &Complained)) {
6103        PrintInitLocationNote(S, Entity);
6104        return ExprError();
6105      } else if (Complained)
6106        PrintInitLocationNote(S, Entity);
6107      break;
6108    }
6109
6110    case SK_StringInit: {
6111      QualType Ty = Step->Type;
6112      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6113                      S.Context.getAsArrayType(Ty), S);
6114      break;
6115    }
6116
6117    case SK_ObjCObjectConversion:
6118      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6119                          CK_ObjCObjectLValueCast,
6120                          CurInit.get()->getValueKind());
6121      break;
6122
6123    case SK_ArrayInit:
6124      // Okay: we checked everything before creating this step. Note that
6125      // this is a GNU extension.
6126      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6127        << Step->Type << CurInit.get()->getType()
6128        << CurInit.get()->getSourceRange();
6129
6130      // If the destination type is an incomplete array type, update the
6131      // type accordingly.
6132      if (ResultType) {
6133        if (const IncompleteArrayType *IncompleteDest
6134                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6135          if (const ConstantArrayType *ConstantSource
6136                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6137            *ResultType = S.Context.getConstantArrayType(
6138                                             IncompleteDest->getElementType(),
6139                                             ConstantSource->getSize(),
6140                                             ArrayType::Normal, 0);
6141          }
6142        }
6143      }
6144      break;
6145
6146    case SK_ParenthesizedArrayInit:
6147      // Okay: we checked everything before creating this step. Note that
6148      // this is a GNU extension.
6149      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6150        << CurInit.get()->getSourceRange();
6151      break;
6152
6153    case SK_PassByIndirectCopyRestore:
6154    case SK_PassByIndirectRestore:
6155      checkIndirectCopyRestoreSource(S, CurInit.get());
6156      CurInit = S.Owned(new (S.Context)
6157                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6158                                Step->Kind == SK_PassByIndirectCopyRestore));
6159      break;
6160
6161    case SK_ProduceObjCObject:
6162      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6163                                                 CK_ARCProduceObject,
6164                                                 CurInit.take(), 0, VK_RValue));
6165      break;
6166
6167    case SK_StdInitializerList: {
6168      S.Diag(CurInit.get()->getExprLoc(),
6169             diag::warn_cxx98_compat_initializer_list_init)
6170        << CurInit.get()->getSourceRange();
6171
6172      // Maybe lifetime-extend the array temporary's subobjects to match the
6173      // entity's lifetime.
6174      const ValueDecl *ExtendingDecl =
6175          getDeclForTemporaryLifetimeExtension(Entity);
6176      if (ExtendingDecl) {
6177        performLifetimeExtension(CurInit.get(), ExtendingDecl);
6178        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6179      }
6180
6181      // Materialize the temporary into memory.
6182      MaterializeTemporaryExpr *MTE = new (S.Context)
6183          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6184                                   /*lvalue reference*/ false, ExtendingDecl);
6185
6186      // Wrap it in a construction of a std::initializer_list<T>.
6187      CurInit = S.Owned(
6188          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6189
6190      // Bind the result, in case the library has given initializer_list a
6191      // non-trivial destructor.
6192      if (shouldBindAsTemporary(Entity))
6193        CurInit = S.MaybeBindToTemporary(CurInit.take());
6194      break;
6195    }
6196
6197    case SK_OCLSamplerInit: {
6198      assert(Step->Type->isSamplerT() &&
6199             "Sampler initialization on non sampler type.");
6200
6201      QualType SourceType = CurInit.get()->getType();
6202
6203      if (Entity.isParameterKind()) {
6204        if (!SourceType->isSamplerT())
6205          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6206            << SourceType;
6207      } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6208        llvm_unreachable("Invalid EntityKind!");
6209      }
6210
6211      break;
6212    }
6213    case SK_OCLZeroEvent: {
6214      assert(Step->Type->isEventT() &&
6215             "Event initialization on non event type.");
6216
6217      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6218                                    CK_ZeroToOCLEvent,
6219                                    CurInit.get()->getValueKind());
6220      break;
6221    }
6222    }
6223  }
6224
6225  // Diagnose non-fatal problems with the completed initialization.
6226  if (Entity.getKind() == InitializedEntity::EK_Member &&
6227      cast<FieldDecl>(Entity.getDecl())->isBitField())
6228    S.CheckBitFieldInitialization(Kind.getLocation(),
6229                                  cast<FieldDecl>(Entity.getDecl()),
6230                                  CurInit.get());
6231
6232  return CurInit;
6233}
6234
6235/// Somewhere within T there is an uninitialized reference subobject.
6236/// Dig it out and diagnose it.
6237static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6238                                           QualType T) {
6239  if (T->isReferenceType()) {
6240    S.Diag(Loc, diag::err_reference_without_init)
6241      << T.getNonReferenceType();
6242    return true;
6243  }
6244
6245  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6246  if (!RD || !RD->hasUninitializedReferenceMember())
6247    return false;
6248
6249  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6250                                     FE = RD->field_end(); FI != FE; ++FI) {
6251    if (FI->isUnnamedBitfield())
6252      continue;
6253
6254    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6255      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6256      return true;
6257    }
6258  }
6259
6260  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6261                                          BE = RD->bases_end();
6262       BI != BE; ++BI) {
6263    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6264      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6265      return true;
6266    }
6267  }
6268
6269  return false;
6270}
6271
6272
6273//===----------------------------------------------------------------------===//
6274// Diagnose initialization failures
6275//===----------------------------------------------------------------------===//
6276
6277/// Emit notes associated with an initialization that failed due to a
6278/// "simple" conversion failure.
6279static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6280                                   Expr *op) {
6281  QualType destType = entity.getType();
6282  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6283      op->getType()->isObjCObjectPointerType()) {
6284
6285    // Emit a possible note about the conversion failing because the
6286    // operand is a message send with a related result type.
6287    S.EmitRelatedResultTypeNote(op);
6288
6289    // Emit a possible note about a return failing because we're
6290    // expecting a related result type.
6291    if (entity.getKind() == InitializedEntity::EK_Result)
6292      S.EmitRelatedResultTypeNoteForReturn(destType);
6293  }
6294}
6295
6296static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6297                             InitListExpr *InitList) {
6298  QualType DestType = Entity.getType();
6299
6300  QualType E;
6301  if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6302    QualType ArrayType = S.Context.getConstantArrayType(
6303        E.withConst(),
6304        llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6305                    InitList->getNumInits()),
6306        clang::ArrayType::Normal, 0);
6307    InitializedEntity HiddenArray =
6308        InitializedEntity::InitializeTemporary(ArrayType);
6309    return diagnoseListInit(S, HiddenArray, InitList);
6310  }
6311
6312  InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6313                                   /*VerifyOnly=*/false);
6314  assert(DiagnoseInitList.HadError() &&
6315         "Inconsistent init list check result.");
6316}
6317
6318bool InitializationSequence::Diagnose(Sema &S,
6319                                      const InitializedEntity &Entity,
6320                                      const InitializationKind &Kind,
6321                                      ArrayRef<Expr *> Args) {
6322  if (!Failed())
6323    return false;
6324
6325  QualType DestType = Entity.getType();
6326  switch (Failure) {
6327  case FK_TooManyInitsForReference:
6328    // FIXME: Customize for the initialized entity?
6329    if (Args.empty()) {
6330      // Dig out the reference subobject which is uninitialized and diagnose it.
6331      // If this is value-initialization, this could be nested some way within
6332      // the target type.
6333      assert(Kind.getKind() == InitializationKind::IK_Value ||
6334             DestType->isReferenceType());
6335      bool Diagnosed =
6336        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6337      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6338      (void)Diagnosed;
6339    } else  // FIXME: diagnostic below could be better!
6340      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6341        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6342    break;
6343
6344  case FK_ArrayNeedsInitList:
6345    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6346    break;
6347  case FK_ArrayNeedsInitListOrStringLiteral:
6348    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6349    break;
6350  case FK_ArrayNeedsInitListOrWideStringLiteral:
6351    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6352    break;
6353  case FK_NarrowStringIntoWideCharArray:
6354    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6355    break;
6356  case FK_WideStringIntoCharArray:
6357    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6358    break;
6359  case FK_IncompatWideStringIntoWideChar:
6360    S.Diag(Kind.getLocation(),
6361           diag::err_array_init_incompat_wide_string_into_wchar);
6362    break;
6363  case FK_ArrayTypeMismatch:
6364  case FK_NonConstantArrayInit:
6365    S.Diag(Kind.getLocation(),
6366           (Failure == FK_ArrayTypeMismatch
6367              ? diag::err_array_init_different_type
6368              : diag::err_array_init_non_constant_array))
6369      << DestType.getNonReferenceType()
6370      << Args[0]->getType()
6371      << Args[0]->getSourceRange();
6372    break;
6373
6374  case FK_VariableLengthArrayHasInitializer:
6375    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6376      << Args[0]->getSourceRange();
6377    break;
6378
6379  case FK_AddressOfOverloadFailed: {
6380    DeclAccessPair Found;
6381    S.ResolveAddressOfOverloadedFunction(Args[0],
6382                                         DestType.getNonReferenceType(),
6383                                         true,
6384                                         Found);
6385    break;
6386  }
6387
6388  case FK_ReferenceInitOverloadFailed:
6389  case FK_UserConversionOverloadFailed:
6390    switch (FailedOverloadResult) {
6391    case OR_Ambiguous:
6392      if (Failure == FK_UserConversionOverloadFailed)
6393        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6394          << Args[0]->getType() << DestType
6395          << Args[0]->getSourceRange();
6396      else
6397        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6398          << DestType << Args[0]->getType()
6399          << Args[0]->getSourceRange();
6400
6401      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6402      break;
6403
6404    case OR_No_Viable_Function:
6405      if (!S.RequireCompleteType(Kind.getLocation(),
6406                                 DestType.getNonReferenceType(),
6407                          diag::err_typecheck_nonviable_condition_incomplete,
6408                               Args[0]->getType(), Args[0]->getSourceRange()))
6409        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6410          << Args[0]->getType() << Args[0]->getSourceRange()
6411          << DestType.getNonReferenceType();
6412
6413      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6414      break;
6415
6416    case OR_Deleted: {
6417      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6418        << Args[0]->getType() << DestType.getNonReferenceType()
6419        << Args[0]->getSourceRange();
6420      OverloadCandidateSet::iterator Best;
6421      OverloadingResult Ovl
6422        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6423                                                true);
6424      if (Ovl == OR_Deleted) {
6425        S.NoteDeletedFunction(Best->Function);
6426      } else {
6427        llvm_unreachable("Inconsistent overload resolution?");
6428      }
6429      break;
6430    }
6431
6432    case OR_Success:
6433      llvm_unreachable("Conversion did not fail!");
6434    }
6435    break;
6436
6437  case FK_NonConstLValueReferenceBindingToTemporary:
6438    if (isa<InitListExpr>(Args[0])) {
6439      S.Diag(Kind.getLocation(),
6440             diag::err_lvalue_reference_bind_to_initlist)
6441      << DestType.getNonReferenceType().isVolatileQualified()
6442      << DestType.getNonReferenceType()
6443      << Args[0]->getSourceRange();
6444      break;
6445    }
6446    // Intentional fallthrough
6447
6448  case FK_NonConstLValueReferenceBindingToUnrelated:
6449    S.Diag(Kind.getLocation(),
6450           Failure == FK_NonConstLValueReferenceBindingToTemporary
6451             ? diag::err_lvalue_reference_bind_to_temporary
6452             : diag::err_lvalue_reference_bind_to_unrelated)
6453      << DestType.getNonReferenceType().isVolatileQualified()
6454      << DestType.getNonReferenceType()
6455      << Args[0]->getType()
6456      << Args[0]->getSourceRange();
6457    break;
6458
6459  case FK_RValueReferenceBindingToLValue:
6460    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6461      << DestType.getNonReferenceType() << Args[0]->getType()
6462      << Args[0]->getSourceRange();
6463    break;
6464
6465  case FK_ReferenceInitDropsQualifiers:
6466    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6467      << DestType.getNonReferenceType()
6468      << Args[0]->getType()
6469      << Args[0]->getSourceRange();
6470    break;
6471
6472  case FK_ReferenceInitFailed:
6473    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6474      << DestType.getNonReferenceType()
6475      << Args[0]->isLValue()
6476      << Args[0]->getType()
6477      << Args[0]->getSourceRange();
6478    emitBadConversionNotes(S, Entity, Args[0]);
6479    break;
6480
6481  case FK_ConversionFailed: {
6482    QualType FromType = Args[0]->getType();
6483    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6484      << (int)Entity.getKind()
6485      << DestType
6486      << Args[0]->isLValue()
6487      << FromType
6488      << Args[0]->getSourceRange();
6489    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6490    S.Diag(Kind.getLocation(), PDiag);
6491    emitBadConversionNotes(S, Entity, Args[0]);
6492    break;
6493  }
6494
6495  case FK_ConversionFromPropertyFailed:
6496    // No-op. This error has already been reported.
6497    break;
6498
6499  case FK_TooManyInitsForScalar: {
6500    SourceRange R;
6501
6502    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6503      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6504                      InitList->getLocEnd());
6505    else
6506      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6507
6508    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6509    if (Kind.isCStyleOrFunctionalCast())
6510      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6511        << R;
6512    else
6513      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6514        << /*scalar=*/2 << R;
6515    break;
6516  }
6517
6518  case FK_ReferenceBindingToInitList:
6519    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6520      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6521    break;
6522
6523  case FK_InitListBadDestinationType:
6524    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6525      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6526    break;
6527
6528  case FK_ListConstructorOverloadFailed:
6529  case FK_ConstructorOverloadFailed: {
6530    SourceRange ArgsRange;
6531    if (Args.size())
6532      ArgsRange = SourceRange(Args.front()->getLocStart(),
6533                              Args.back()->getLocEnd());
6534
6535    if (Failure == FK_ListConstructorOverloadFailed) {
6536      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6537      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6538      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6539    }
6540
6541    // FIXME: Using "DestType" for the entity we're printing is probably
6542    // bad.
6543    switch (FailedOverloadResult) {
6544      case OR_Ambiguous:
6545        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6546          << DestType << ArgsRange;
6547        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6548        break;
6549
6550      case OR_No_Viable_Function:
6551        if (Kind.getKind() == InitializationKind::IK_Default &&
6552            (Entity.getKind() == InitializedEntity::EK_Base ||
6553             Entity.getKind() == InitializedEntity::EK_Member) &&
6554            isa<CXXConstructorDecl>(S.CurContext)) {
6555          // This is implicit default initialization of a member or
6556          // base within a constructor. If no viable function was
6557          // found, notify the user that she needs to explicitly
6558          // initialize this base/member.
6559          CXXConstructorDecl *Constructor
6560            = cast<CXXConstructorDecl>(S.CurContext);
6561          if (Entity.getKind() == InitializedEntity::EK_Base) {
6562            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6563              << (Constructor->getInheritedConstructor() ? 2 :
6564                  Constructor->isImplicit() ? 1 : 0)
6565              << S.Context.getTypeDeclType(Constructor->getParent())
6566              << /*base=*/0
6567              << Entity.getType();
6568
6569            RecordDecl *BaseDecl
6570              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6571                                                                  ->getDecl();
6572            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6573              << S.Context.getTagDeclType(BaseDecl);
6574          } else {
6575            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6576              << (Constructor->getInheritedConstructor() ? 2 :
6577                  Constructor->isImplicit() ? 1 : 0)
6578              << S.Context.getTypeDeclType(Constructor->getParent())
6579              << /*member=*/1
6580              << Entity.getName();
6581            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6582
6583            if (const RecordType *Record
6584                                 = Entity.getType()->getAs<RecordType>())
6585              S.Diag(Record->getDecl()->getLocation(),
6586                     diag::note_previous_decl)
6587                << S.Context.getTagDeclType(Record->getDecl());
6588          }
6589          break;
6590        }
6591
6592        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6593          << DestType << ArgsRange;
6594        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6595        break;
6596
6597      case OR_Deleted: {
6598        OverloadCandidateSet::iterator Best;
6599        OverloadingResult Ovl
6600          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6601        if (Ovl != OR_Deleted) {
6602          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6603            << true << DestType << ArgsRange;
6604          llvm_unreachable("Inconsistent overload resolution?");
6605          break;
6606        }
6607
6608        // If this is a defaulted or implicitly-declared function, then
6609        // it was implicitly deleted. Make it clear that the deletion was
6610        // implicit.
6611        if (S.isImplicitlyDeleted(Best->Function))
6612          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6613            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6614            << DestType << ArgsRange;
6615        else
6616          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6617            << true << DestType << ArgsRange;
6618
6619        S.NoteDeletedFunction(Best->Function);
6620        break;
6621      }
6622
6623      case OR_Success:
6624        llvm_unreachable("Conversion did not fail!");
6625    }
6626  }
6627  break;
6628
6629  case FK_DefaultInitOfConst:
6630    if (Entity.getKind() == InitializedEntity::EK_Member &&
6631        isa<CXXConstructorDecl>(S.CurContext)) {
6632      // This is implicit default-initialization of a const member in
6633      // a constructor. Complain that it needs to be explicitly
6634      // initialized.
6635      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6636      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6637        << (Constructor->getInheritedConstructor() ? 2 :
6638            Constructor->isImplicit() ? 1 : 0)
6639        << S.Context.getTypeDeclType(Constructor->getParent())
6640        << /*const=*/1
6641        << Entity.getName();
6642      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6643        << Entity.getName();
6644    } else {
6645      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6646        << DestType << (bool)DestType->getAs<RecordType>();
6647    }
6648    break;
6649
6650  case FK_Incomplete:
6651    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6652                          diag::err_init_incomplete_type);
6653    break;
6654
6655  case FK_ListInitializationFailed: {
6656    // Run the init list checker again to emit diagnostics.
6657    InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6658    diagnoseListInit(S, Entity, InitList);
6659    break;
6660  }
6661
6662  case FK_PlaceholderType: {
6663    // FIXME: Already diagnosed!
6664    break;
6665  }
6666
6667  case FK_ExplicitConstructor: {
6668    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6669      << Args[0]->getSourceRange();
6670    OverloadCandidateSet::iterator Best;
6671    OverloadingResult Ovl
6672      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6673    (void)Ovl;
6674    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6675    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6676    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6677    break;
6678  }
6679  }
6680
6681  PrintInitLocationNote(S, Entity);
6682  return true;
6683}
6684
6685void InitializationSequence::dump(raw_ostream &OS) const {
6686  switch (SequenceKind) {
6687  case FailedSequence: {
6688    OS << "Failed sequence: ";
6689    switch (Failure) {
6690    case FK_TooManyInitsForReference:
6691      OS << "too many initializers for reference";
6692      break;
6693
6694    case FK_ArrayNeedsInitList:
6695      OS << "array requires initializer list";
6696      break;
6697
6698    case FK_ArrayNeedsInitListOrStringLiteral:
6699      OS << "array requires initializer list or string literal";
6700      break;
6701
6702    case FK_ArrayNeedsInitListOrWideStringLiteral:
6703      OS << "array requires initializer list or wide string literal";
6704      break;
6705
6706    case FK_NarrowStringIntoWideCharArray:
6707      OS << "narrow string into wide char array";
6708      break;
6709
6710    case FK_WideStringIntoCharArray:
6711      OS << "wide string into char array";
6712      break;
6713
6714    case FK_IncompatWideStringIntoWideChar:
6715      OS << "incompatible wide string into wide char array";
6716      break;
6717
6718    case FK_ArrayTypeMismatch:
6719      OS << "array type mismatch";
6720      break;
6721
6722    case FK_NonConstantArrayInit:
6723      OS << "non-constant array initializer";
6724      break;
6725
6726    case FK_AddressOfOverloadFailed:
6727      OS << "address of overloaded function failed";
6728      break;
6729
6730    case FK_ReferenceInitOverloadFailed:
6731      OS << "overload resolution for reference initialization failed";
6732      break;
6733
6734    case FK_NonConstLValueReferenceBindingToTemporary:
6735      OS << "non-const lvalue reference bound to temporary";
6736      break;
6737
6738    case FK_NonConstLValueReferenceBindingToUnrelated:
6739      OS << "non-const lvalue reference bound to unrelated type";
6740      break;
6741
6742    case FK_RValueReferenceBindingToLValue:
6743      OS << "rvalue reference bound to an lvalue";
6744      break;
6745
6746    case FK_ReferenceInitDropsQualifiers:
6747      OS << "reference initialization drops qualifiers";
6748      break;
6749
6750    case FK_ReferenceInitFailed:
6751      OS << "reference initialization failed";
6752      break;
6753
6754    case FK_ConversionFailed:
6755      OS << "conversion failed";
6756      break;
6757
6758    case FK_ConversionFromPropertyFailed:
6759      OS << "conversion from property failed";
6760      break;
6761
6762    case FK_TooManyInitsForScalar:
6763      OS << "too many initializers for scalar";
6764      break;
6765
6766    case FK_ReferenceBindingToInitList:
6767      OS << "referencing binding to initializer list";
6768      break;
6769
6770    case FK_InitListBadDestinationType:
6771      OS << "initializer list for non-aggregate, non-scalar type";
6772      break;
6773
6774    case FK_UserConversionOverloadFailed:
6775      OS << "overloading failed for user-defined conversion";
6776      break;
6777
6778    case FK_ConstructorOverloadFailed:
6779      OS << "constructor overloading failed";
6780      break;
6781
6782    case FK_DefaultInitOfConst:
6783      OS << "default initialization of a const variable";
6784      break;
6785
6786    case FK_Incomplete:
6787      OS << "initialization of incomplete type";
6788      break;
6789
6790    case FK_ListInitializationFailed:
6791      OS << "list initialization checker failure";
6792      break;
6793
6794    case FK_VariableLengthArrayHasInitializer:
6795      OS << "variable length array has an initializer";
6796      break;
6797
6798    case FK_PlaceholderType:
6799      OS << "initializer expression isn't contextually valid";
6800      break;
6801
6802    case FK_ListConstructorOverloadFailed:
6803      OS << "list constructor overloading failed";
6804      break;
6805
6806    case FK_ExplicitConstructor:
6807      OS << "list copy initialization chose explicit constructor";
6808      break;
6809    }
6810    OS << '\n';
6811    return;
6812  }
6813
6814  case DependentSequence:
6815    OS << "Dependent sequence\n";
6816    return;
6817
6818  case NormalSequence:
6819    OS << "Normal sequence: ";
6820    break;
6821  }
6822
6823  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6824    if (S != step_begin()) {
6825      OS << " -> ";
6826    }
6827
6828    switch (S->Kind) {
6829    case SK_ResolveAddressOfOverloadedFunction:
6830      OS << "resolve address of overloaded function";
6831      break;
6832
6833    case SK_CastDerivedToBaseRValue:
6834      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6835      break;
6836
6837    case SK_CastDerivedToBaseXValue:
6838      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6839      break;
6840
6841    case SK_CastDerivedToBaseLValue:
6842      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6843      break;
6844
6845    case SK_BindReference:
6846      OS << "bind reference to lvalue";
6847      break;
6848
6849    case SK_BindReferenceToTemporary:
6850      OS << "bind reference to a temporary";
6851      break;
6852
6853    case SK_ExtraneousCopyToTemporary:
6854      OS << "extraneous C++03 copy to temporary";
6855      break;
6856
6857    case SK_UserConversion:
6858      OS << "user-defined conversion via " << *S->Function.Function;
6859      break;
6860
6861    case SK_QualificationConversionRValue:
6862      OS << "qualification conversion (rvalue)";
6863      break;
6864
6865    case SK_QualificationConversionXValue:
6866      OS << "qualification conversion (xvalue)";
6867      break;
6868
6869    case SK_QualificationConversionLValue:
6870      OS << "qualification conversion (lvalue)";
6871      break;
6872
6873    case SK_LValueToRValue:
6874      OS << "load (lvalue to rvalue)";
6875      break;
6876
6877    case SK_ConversionSequence:
6878      OS << "implicit conversion sequence (";
6879      S->ICS->dump(); // FIXME: use OS
6880      OS << ")";
6881      break;
6882
6883    case SK_ConversionSequenceNoNarrowing:
6884      OS << "implicit conversion sequence with narrowing prohibited (";
6885      S->ICS->dump(); // FIXME: use OS
6886      OS << ")";
6887      break;
6888
6889    case SK_ListInitialization:
6890      OS << "list aggregate initialization";
6891      break;
6892
6893    case SK_ListConstructorCall:
6894      OS << "list initialization via constructor";
6895      break;
6896
6897    case SK_UnwrapInitList:
6898      OS << "unwrap reference initializer list";
6899      break;
6900
6901    case SK_RewrapInitList:
6902      OS << "rewrap reference initializer list";
6903      break;
6904
6905    case SK_ConstructorInitialization:
6906      OS << "constructor initialization";
6907      break;
6908
6909    case SK_ZeroInitialization:
6910      OS << "zero initialization";
6911      break;
6912
6913    case SK_CAssignment:
6914      OS << "C assignment";
6915      break;
6916
6917    case SK_StringInit:
6918      OS << "string initialization";
6919      break;
6920
6921    case SK_ObjCObjectConversion:
6922      OS << "Objective-C object conversion";
6923      break;
6924
6925    case SK_ArrayInit:
6926      OS << "array initialization";
6927      break;
6928
6929    case SK_ParenthesizedArrayInit:
6930      OS << "parenthesized array initialization";
6931      break;
6932
6933    case SK_PassByIndirectCopyRestore:
6934      OS << "pass by indirect copy and restore";
6935      break;
6936
6937    case SK_PassByIndirectRestore:
6938      OS << "pass by indirect restore";
6939      break;
6940
6941    case SK_ProduceObjCObject:
6942      OS << "Objective-C object retension";
6943      break;
6944
6945    case SK_StdInitializerList:
6946      OS << "std::initializer_list from initializer list";
6947      break;
6948
6949    case SK_OCLSamplerInit:
6950      OS << "OpenCL sampler_t from integer constant";
6951      break;
6952
6953    case SK_OCLZeroEvent:
6954      OS << "OpenCL event_t from zero";
6955      break;
6956    }
6957
6958    OS << " [" << S->Type.getAsString() << ']';
6959  }
6960
6961  OS << '\n';
6962}
6963
6964void InitializationSequence::dump() const {
6965  dump(llvm::errs());
6966}
6967
6968static void DiagnoseNarrowingInInitList(Sema &S,
6969                                        const ImplicitConversionSequence &ICS,
6970                                        QualType PreNarrowingType,
6971                                        QualType EntityType,
6972                                        const Expr *PostInit) {
6973  const StandardConversionSequence *SCS = 0;
6974  switch (ICS.getKind()) {
6975  case ImplicitConversionSequence::StandardConversion:
6976    SCS = &ICS.Standard;
6977    break;
6978  case ImplicitConversionSequence::UserDefinedConversion:
6979    SCS = &ICS.UserDefined.After;
6980    break;
6981  case ImplicitConversionSequence::AmbiguousConversion:
6982  case ImplicitConversionSequence::EllipsisConversion:
6983  case ImplicitConversionSequence::BadConversion:
6984    return;
6985  }
6986
6987  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6988  APValue ConstantValue;
6989  QualType ConstantType;
6990  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6991                                ConstantType)) {
6992  case NK_Not_Narrowing:
6993    // No narrowing occurred.
6994    return;
6995
6996  case NK_Type_Narrowing:
6997    // This was a floating-to-integer conversion, which is always considered a
6998    // narrowing conversion even if the value is a constant and can be
6999    // represented exactly as an integer.
7000    S.Diag(PostInit->getLocStart(),
7001           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7002               ? diag::warn_init_list_type_narrowing
7003               : diag::ext_init_list_type_narrowing)
7004      << PostInit->getSourceRange()
7005      << PreNarrowingType.getLocalUnqualifiedType()
7006      << EntityType.getLocalUnqualifiedType();
7007    break;
7008
7009  case NK_Constant_Narrowing:
7010    // A constant value was narrowed.
7011    S.Diag(PostInit->getLocStart(),
7012           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7013               ? diag::warn_init_list_constant_narrowing
7014               : diag::ext_init_list_constant_narrowing)
7015      << PostInit->getSourceRange()
7016      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7017      << EntityType.getLocalUnqualifiedType();
7018    break;
7019
7020  case NK_Variable_Narrowing:
7021    // A variable's value may have been narrowed.
7022    S.Diag(PostInit->getLocStart(),
7023           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7024               ? diag::warn_init_list_variable_narrowing
7025               : diag::ext_init_list_variable_narrowing)
7026      << PostInit->getSourceRange()
7027      << PreNarrowingType.getLocalUnqualifiedType()
7028      << EntityType.getLocalUnqualifiedType();
7029    break;
7030  }
7031
7032  SmallString<128> StaticCast;
7033  llvm::raw_svector_ostream OS(StaticCast);
7034  OS << "static_cast<";
7035  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7036    // It's important to use the typedef's name if there is one so that the
7037    // fixit doesn't break code using types like int64_t.
7038    //
7039    // FIXME: This will break if the typedef requires qualification.  But
7040    // getQualifiedNameAsString() includes non-machine-parsable components.
7041    OS << *TT->getDecl();
7042  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7043    OS << BT->getName(S.getLangOpts());
7044  else {
7045    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7046    // with a broken cast.
7047    return;
7048  }
7049  OS << ">(";
7050  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
7051    << PostInit->getSourceRange()
7052    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7053    << FixItHint::CreateInsertion(
7054      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
7055}
7056
7057//===----------------------------------------------------------------------===//
7058// Initialization helper functions
7059//===----------------------------------------------------------------------===//
7060bool
7061Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7062                                   ExprResult Init) {
7063  if (Init.isInvalid())
7064    return false;
7065
7066  Expr *InitE = Init.get();
7067  assert(InitE && "No initialization expression");
7068
7069  InitializationKind Kind
7070    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7071  InitializationSequence Seq(*this, Entity, Kind, InitE);
7072  return !Seq.Failed();
7073}
7074
7075ExprResult
7076Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7077                                SourceLocation EqualLoc,
7078                                ExprResult Init,
7079                                bool TopLevelOfInitList,
7080                                bool AllowExplicit) {
7081  if (Init.isInvalid())
7082    return ExprError();
7083
7084  Expr *InitE = Init.get();
7085  assert(InitE && "No initialization expression?");
7086
7087  if (EqualLoc.isInvalid())
7088    EqualLoc = InitE->getLocStart();
7089
7090  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7091                                                           EqualLoc,
7092                                                           AllowExplicit);
7093  InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7094  Init.release();
7095
7096  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7097
7098  return Result;
7099}
7100