SemaDeclObjC.cpp revision 263508
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_family)
155        << /*overridden method*/ 0
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233                                                     Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                      Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286/// has explicit ownership attribute; false otherwise.
287static bool
288HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289  QualType T = Param->getType();
290
291  if (const PointerType *PT = T->getAs<PointerType>()) {
292    T = PT->getPointeeType();
293  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294    T = RT->getPointeeType();
295  } else {
296    return true;
297  }
298
299  // If we have a lifetime qualifier, but it's local, we must have
300  // inferred it. So, it is implicit.
301  return !T.getLocalQualifiers().hasObjCLifetime();
302}
303
304/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305/// and user declared, in the method definition's AST.
306void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310  // If we don't have a valid method decl, simply return.
311  if (!MDecl)
312    return;
313
314  // Allow all of Sema to see that we are entering a method definition.
315  PushDeclContext(FnBodyScope, MDecl);
316  PushFunctionScope();
317
318  // Create Decl objects for each parameter, entrring them in the scope for
319  // binding to their use.
320
321  // Insert the invisible arguments, self and _cmd!
322  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327  // The ObjC parser requires parameter names so there's no need to check.
328  CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
329                           /*CheckParameterNames=*/false);
330
331  // Introduce all of the other parameters into this scope.
332  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
333       E = MDecl->param_end(); PI != E; ++PI) {
334    ParmVarDecl *Param = (*PI);
335    if (!Param->isInvalidDecl() &&
336        getLangOpts().ObjCAutoRefCount &&
337        !HasExplicitOwnershipAttr(*this, Param))
338      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339            Param->getType();
340
341    if ((*PI)->getIdentifier())
342      PushOnScopeChains(*PI, FnBodyScope);
343  }
344
345  // In ARC, disallow definition of retain/release/autorelease/retainCount
346  if (getLangOpts().ObjCAutoRefCount) {
347    switch (MDecl->getMethodFamily()) {
348    case OMF_retain:
349    case OMF_retainCount:
350    case OMF_release:
351    case OMF_autorelease:
352      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353        << 0 << MDecl->getSelector();
354      break;
355
356    case OMF_None:
357    case OMF_dealloc:
358    case OMF_finalize:
359    case OMF_alloc:
360    case OMF_init:
361    case OMF_mutableCopy:
362    case OMF_copy:
363    case OMF_new:
364    case OMF_self:
365    case OMF_performSelector:
366      break;
367    }
368  }
369
370  // Warn on deprecated methods under -Wdeprecated-implementations,
371  // and prepare for warning on missing super calls.
372  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373    ObjCMethodDecl *IMD =
374      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376    if (IMD) {
377      ObjCImplDecl *ImplDeclOfMethodDef =
378        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379      ObjCContainerDecl *ContDeclOfMethodDecl =
380        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381      ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383        ImplDeclOfMethodDecl = OID->getImplementation();
384      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385        ImplDeclOfMethodDecl = CD->getImplementation();
386      // No need to issue deprecated warning if deprecated mehod in class/category
387      // is being implemented in its own implementation (no overriding is involved).
388      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389        DiagnoseObjCImplementedDeprecations(*this,
390                                          dyn_cast<NamedDecl>(IMD),
391                                          MDecl->getLocation(), 0);
392    }
393
394    // If this is "dealloc" or "finalize", set some bit here.
395    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397    // Only do this if the current class actually has a superclass.
398    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399      ObjCMethodFamily Family = MDecl->getMethodFamily();
400      if (Family == OMF_dealloc) {
401        if (!(getLangOpts().ObjCAutoRefCount ||
402              getLangOpts().getGC() == LangOptions::GCOnly))
403          getCurFunction()->ObjCShouldCallSuper = true;
404
405      } else if (Family == OMF_finalize) {
406        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407          getCurFunction()->ObjCShouldCallSuper = true;
408
409      } else {
410        const ObjCMethodDecl *SuperMethod =
411          SuperClass->lookupMethod(MDecl->getSelector(),
412                                   MDecl->isInstanceMethod());
413        getCurFunction()->ObjCShouldCallSuper =
414          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
415      }
416    }
417  }
418}
419
420namespace {
421
422// Callback to only accept typo corrections that are Objective-C classes.
423// If an ObjCInterfaceDecl* is given to the constructor, then the validation
424// function will reject corrections to that class.
425class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
426 public:
427  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
428  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
429      : CurrentIDecl(IDecl) {}
430
431  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
432    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
433    return ID && !declaresSameEntity(ID, CurrentIDecl);
434  }
435
436 private:
437  ObjCInterfaceDecl *CurrentIDecl;
438};
439
440}
441
442Decl *Sema::
443ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
444                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
445                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
446                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
447                         const SourceLocation *ProtoLocs,
448                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
449  assert(ClassName && "Missing class identifier");
450
451  // Check for another declaration kind with the same name.
452  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
453                                         LookupOrdinaryName, ForRedeclaration);
454
455  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
456    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
457    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
458  }
459
460  // Create a declaration to describe this @interface.
461  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
462
463  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
464    // A previous decl with a different name is because of
465    // @compatibility_alias, for example:
466    // \code
467    //   @class NewImage;
468    //   @compatibility_alias OldImage NewImage;
469    // \endcode
470    // A lookup for 'OldImage' will return the 'NewImage' decl.
471    //
472    // In such a case use the real declaration name, instead of the alias one,
473    // otherwise we will break IdentifierResolver and redecls-chain invariants.
474    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
475    // has been aliased.
476    ClassName = PrevIDecl->getIdentifier();
477  }
478
479  ObjCInterfaceDecl *IDecl
480    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
481                                PrevIDecl, ClassLoc);
482
483  if (PrevIDecl) {
484    // Class already seen. Was it a definition?
485    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
486      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
487        << PrevIDecl->getDeclName();
488      Diag(Def->getLocation(), diag::note_previous_definition);
489      IDecl->setInvalidDecl();
490    }
491  }
492
493  if (AttrList)
494    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
495  PushOnScopeChains(IDecl, TUScope);
496
497  // Start the definition of this class. If we're in a redefinition case, there
498  // may already be a definition, so we'll end up adding to it.
499  if (!IDecl->hasDefinition())
500    IDecl->startDefinition();
501
502  if (SuperName) {
503    // Check if a different kind of symbol declared in this scope.
504    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
505                                LookupOrdinaryName);
506
507    if (!PrevDecl) {
508      // Try to correct for a typo in the superclass name without correcting
509      // to the class we're defining.
510      ObjCInterfaceValidatorCCC Validator(IDecl);
511      if (TypoCorrection Corrected = CorrectTypo(
512          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
513          NULL, Validator)) {
514        diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
515                                    << SuperName << ClassName);
516        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
517      }
518    }
519
520    if (declaresSameEntity(PrevDecl, IDecl)) {
521      Diag(SuperLoc, diag::err_recursive_superclass)
522        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
523      IDecl->setEndOfDefinitionLoc(ClassLoc);
524    } else {
525      ObjCInterfaceDecl *SuperClassDecl =
526                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
527
528      // Diagnose classes that inherit from deprecated classes.
529      if (SuperClassDecl)
530        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
531
532      if (PrevDecl && SuperClassDecl == 0) {
533        // The previous declaration was not a class decl. Check if we have a
534        // typedef. If we do, get the underlying class type.
535        if (const TypedefNameDecl *TDecl =
536              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
537          QualType T = TDecl->getUnderlyingType();
538          if (T->isObjCObjectType()) {
539            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
540              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
541              // This handles the following case:
542              // @interface NewI @end
543              // typedef NewI DeprI __attribute__((deprecated("blah")))
544              // @interface SI : DeprI /* warn here */ @end
545              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
546            }
547          }
548        }
549
550        // This handles the following case:
551        //
552        // typedef int SuperClass;
553        // @interface MyClass : SuperClass {} @end
554        //
555        if (!SuperClassDecl) {
556          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
557          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
558        }
559      }
560
561      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
562        if (!SuperClassDecl)
563          Diag(SuperLoc, diag::err_undef_superclass)
564            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
565        else if (RequireCompleteType(SuperLoc,
566                                  Context.getObjCInterfaceType(SuperClassDecl),
567                                     diag::err_forward_superclass,
568                                     SuperClassDecl->getDeclName(),
569                                     ClassName,
570                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
571          SuperClassDecl = 0;
572        }
573      }
574      IDecl->setSuperClass(SuperClassDecl);
575      IDecl->setSuperClassLoc(SuperLoc);
576      IDecl->setEndOfDefinitionLoc(SuperLoc);
577    }
578  } else { // we have a root class.
579    IDecl->setEndOfDefinitionLoc(ClassLoc);
580  }
581
582  // Check then save referenced protocols.
583  if (NumProtoRefs) {
584    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
585                           ProtoLocs, Context);
586    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
587  }
588
589  CheckObjCDeclScope(IDecl);
590  return ActOnObjCContainerStartDefinition(IDecl);
591}
592
593/// ActOnTypedefedProtocols - this action finds protocol list as part of the
594/// typedef'ed use for a qualified super class and adds them to the list
595/// of the protocols.
596void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
597                                   IdentifierInfo *SuperName,
598                                   SourceLocation SuperLoc) {
599  if (!SuperName)
600    return;
601  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
602                                      LookupOrdinaryName);
603  if (!IDecl)
604    return;
605
606  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
607    QualType T = TDecl->getUnderlyingType();
608    if (T->isObjCObjectType())
609      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
610        for (ObjCObjectType::qual_iterator I = OPT->qual_begin(),
611             E = OPT->qual_end(); I != E; ++I)
612          ProtocolRefs.push_back(*I);
613  }
614}
615
616/// ActOnCompatibilityAlias - this action is called after complete parsing of
617/// a \@compatibility_alias declaration. It sets up the alias relationships.
618Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
619                                    IdentifierInfo *AliasName,
620                                    SourceLocation AliasLocation,
621                                    IdentifierInfo *ClassName,
622                                    SourceLocation ClassLocation) {
623  // Look for previous declaration of alias name
624  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
625                                      LookupOrdinaryName, ForRedeclaration);
626  if (ADecl) {
627    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
628    Diag(ADecl->getLocation(), diag::note_previous_declaration);
629    return 0;
630  }
631  // Check for class declaration
632  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
633                                       LookupOrdinaryName, ForRedeclaration);
634  if (const TypedefNameDecl *TDecl =
635        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
636    QualType T = TDecl->getUnderlyingType();
637    if (T->isObjCObjectType()) {
638      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
639        ClassName = IDecl->getIdentifier();
640        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
641                                  LookupOrdinaryName, ForRedeclaration);
642      }
643    }
644  }
645  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
646  if (CDecl == 0) {
647    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
648    if (CDeclU)
649      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
650    return 0;
651  }
652
653  // Everything checked out, instantiate a new alias declaration AST.
654  ObjCCompatibleAliasDecl *AliasDecl =
655    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
656
657  if (!CheckObjCDeclScope(AliasDecl))
658    PushOnScopeChains(AliasDecl, TUScope);
659
660  return AliasDecl;
661}
662
663bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
664  IdentifierInfo *PName,
665  SourceLocation &Ploc, SourceLocation PrevLoc,
666  const ObjCList<ObjCProtocolDecl> &PList) {
667
668  bool res = false;
669  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
670       E = PList.end(); I != E; ++I) {
671    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
672                                                 Ploc)) {
673      if (PDecl->getIdentifier() == PName) {
674        Diag(Ploc, diag::err_protocol_has_circular_dependency);
675        Diag(PrevLoc, diag::note_previous_definition);
676        res = true;
677      }
678
679      if (!PDecl->hasDefinition())
680        continue;
681
682      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
683            PDecl->getLocation(), PDecl->getReferencedProtocols()))
684        res = true;
685    }
686  }
687  return res;
688}
689
690Decl *
691Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
692                                  IdentifierInfo *ProtocolName,
693                                  SourceLocation ProtocolLoc,
694                                  Decl * const *ProtoRefs,
695                                  unsigned NumProtoRefs,
696                                  const SourceLocation *ProtoLocs,
697                                  SourceLocation EndProtoLoc,
698                                  AttributeList *AttrList) {
699  bool err = false;
700  // FIXME: Deal with AttrList.
701  assert(ProtocolName && "Missing protocol identifier");
702  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
703                                              ForRedeclaration);
704  ObjCProtocolDecl *PDecl = 0;
705  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
706    // If we already have a definition, complain.
707    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
708    Diag(Def->getLocation(), diag::note_previous_definition);
709
710    // Create a new protocol that is completely distinct from previous
711    // declarations, and do not make this protocol available for name lookup.
712    // That way, we'll end up completely ignoring the duplicate.
713    // FIXME: Can we turn this into an error?
714    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
715                                     ProtocolLoc, AtProtoInterfaceLoc,
716                                     /*PrevDecl=*/0);
717    PDecl->startDefinition();
718  } else {
719    if (PrevDecl) {
720      // Check for circular dependencies among protocol declarations. This can
721      // only happen if this protocol was forward-declared.
722      ObjCList<ObjCProtocolDecl> PList;
723      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
724      err = CheckForwardProtocolDeclarationForCircularDependency(
725              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
726    }
727
728    // Create the new declaration.
729    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
730                                     ProtocolLoc, AtProtoInterfaceLoc,
731                                     /*PrevDecl=*/PrevDecl);
732
733    PushOnScopeChains(PDecl, TUScope);
734    PDecl->startDefinition();
735  }
736
737  if (AttrList)
738    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
739
740  // Merge attributes from previous declarations.
741  if (PrevDecl)
742    mergeDeclAttributes(PDecl, PrevDecl);
743
744  if (!err && NumProtoRefs ) {
745    /// Check then save referenced protocols.
746    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
747                           ProtoLocs, Context);
748  }
749
750  CheckObjCDeclScope(PDecl);
751  return ActOnObjCContainerStartDefinition(PDecl);
752}
753
754/// FindProtocolDeclaration - This routine looks up protocols and
755/// issues an error if they are not declared. It returns list of
756/// protocol declarations in its 'Protocols' argument.
757void
758Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
759                              const IdentifierLocPair *ProtocolId,
760                              unsigned NumProtocols,
761                              SmallVectorImpl<Decl *> &Protocols) {
762  for (unsigned i = 0; i != NumProtocols; ++i) {
763    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
764                                             ProtocolId[i].second);
765    if (!PDecl) {
766      DeclFilterCCC<ObjCProtocolDecl> Validator;
767      TypoCorrection Corrected = CorrectTypo(
768          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
769          LookupObjCProtocolName, TUScope, NULL, Validator);
770      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
771        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
772                                    << ProtocolId[i].first);
773    }
774
775    if (!PDecl) {
776      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
777        << ProtocolId[i].first;
778      continue;
779    }
780    // If this is a forward protocol declaration, get its definition.
781    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
782      PDecl = PDecl->getDefinition();
783
784    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
785
786    // If this is a forward declaration and we are supposed to warn in this
787    // case, do it.
788    // FIXME: Recover nicely in the hidden case.
789    if (WarnOnDeclarations &&
790        (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
791      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
792        << ProtocolId[i].first;
793    Protocols.push_back(PDecl);
794  }
795}
796
797/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
798/// a class method in its extension.
799///
800void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
801                                            ObjCInterfaceDecl *ID) {
802  if (!ID)
803    return;  // Possibly due to previous error
804
805  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
806  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
807       e =  ID->meth_end(); i != e; ++i) {
808    ObjCMethodDecl *MD = *i;
809    MethodMap[MD->getSelector()] = MD;
810  }
811
812  if (MethodMap.empty())
813    return;
814  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
815       e =  CAT->meth_end(); i != e; ++i) {
816    ObjCMethodDecl *Method = *i;
817    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
818    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
819      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
820            << Method->getDeclName();
821      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
822    }
823  }
824}
825
826/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
827Sema::DeclGroupPtrTy
828Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
829                                      const IdentifierLocPair *IdentList,
830                                      unsigned NumElts,
831                                      AttributeList *attrList) {
832  SmallVector<Decl *, 8> DeclsInGroup;
833  for (unsigned i = 0; i != NumElts; ++i) {
834    IdentifierInfo *Ident = IdentList[i].first;
835    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
836                                                ForRedeclaration);
837    ObjCProtocolDecl *PDecl
838      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
839                                 IdentList[i].second, AtProtocolLoc,
840                                 PrevDecl);
841
842    PushOnScopeChains(PDecl, TUScope);
843    CheckObjCDeclScope(PDecl);
844
845    if (attrList)
846      ProcessDeclAttributeList(TUScope, PDecl, attrList);
847
848    if (PrevDecl)
849      mergeDeclAttributes(PDecl, PrevDecl);
850
851    DeclsInGroup.push_back(PDecl);
852  }
853
854  return BuildDeclaratorGroup(DeclsInGroup, false);
855}
856
857Decl *Sema::
858ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
859                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
860                            IdentifierInfo *CategoryName,
861                            SourceLocation CategoryLoc,
862                            Decl * const *ProtoRefs,
863                            unsigned NumProtoRefs,
864                            const SourceLocation *ProtoLocs,
865                            SourceLocation EndProtoLoc) {
866  ObjCCategoryDecl *CDecl;
867  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
868
869  /// Check that class of this category is already completely declared.
870
871  if (!IDecl
872      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
873                             diag::err_category_forward_interface,
874                             CategoryName == 0)) {
875    // Create an invalid ObjCCategoryDecl to serve as context for
876    // the enclosing method declarations.  We mark the decl invalid
877    // to make it clear that this isn't a valid AST.
878    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
879                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
880    CDecl->setInvalidDecl();
881    CurContext->addDecl(CDecl);
882
883    if (!IDecl)
884      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
885    return ActOnObjCContainerStartDefinition(CDecl);
886  }
887
888  if (!CategoryName && IDecl->getImplementation()) {
889    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
890    Diag(IDecl->getImplementation()->getLocation(),
891          diag::note_implementation_declared);
892  }
893
894  if (CategoryName) {
895    /// Check for duplicate interface declaration for this category
896    if (ObjCCategoryDecl *Previous
897          = IDecl->FindCategoryDeclaration(CategoryName)) {
898      // Class extensions can be declared multiple times, categories cannot.
899      Diag(CategoryLoc, diag::warn_dup_category_def)
900        << ClassName << CategoryName;
901      Diag(Previous->getLocation(), diag::note_previous_definition);
902    }
903  }
904
905  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
906                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
907  // FIXME: PushOnScopeChains?
908  CurContext->addDecl(CDecl);
909
910  if (NumProtoRefs) {
911    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
912                           ProtoLocs, Context);
913    // Protocols in the class extension belong to the class.
914    if (CDecl->IsClassExtension())
915     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
916                                            NumProtoRefs, Context);
917  }
918
919  CheckObjCDeclScope(CDecl);
920  return ActOnObjCContainerStartDefinition(CDecl);
921}
922
923/// ActOnStartCategoryImplementation - Perform semantic checks on the
924/// category implementation declaration and build an ObjCCategoryImplDecl
925/// object.
926Decl *Sema::ActOnStartCategoryImplementation(
927                      SourceLocation AtCatImplLoc,
928                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
929                      IdentifierInfo *CatName, SourceLocation CatLoc) {
930  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
931  ObjCCategoryDecl *CatIDecl = 0;
932  if (IDecl && IDecl->hasDefinition()) {
933    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
934    if (!CatIDecl) {
935      // Category @implementation with no corresponding @interface.
936      // Create and install one.
937      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
938                                          ClassLoc, CatLoc,
939                                          CatName, IDecl);
940      CatIDecl->setImplicit();
941    }
942  }
943
944  ObjCCategoryImplDecl *CDecl =
945    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
946                                 ClassLoc, AtCatImplLoc, CatLoc);
947  /// Check that class of this category is already completely declared.
948  if (!IDecl) {
949    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
950    CDecl->setInvalidDecl();
951  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
952                                 diag::err_undef_interface)) {
953    CDecl->setInvalidDecl();
954  }
955
956  // FIXME: PushOnScopeChains?
957  CurContext->addDecl(CDecl);
958
959  // If the interface is deprecated/unavailable, warn/error about it.
960  if (IDecl)
961    DiagnoseUseOfDecl(IDecl, ClassLoc);
962
963  /// Check that CatName, category name, is not used in another implementation.
964  if (CatIDecl) {
965    if (CatIDecl->getImplementation()) {
966      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
967        << CatName;
968      Diag(CatIDecl->getImplementation()->getLocation(),
969           diag::note_previous_definition);
970      CDecl->setInvalidDecl();
971    } else {
972      CatIDecl->setImplementation(CDecl);
973      // Warn on implementating category of deprecated class under
974      // -Wdeprecated-implementations flag.
975      DiagnoseObjCImplementedDeprecations(*this,
976                                          dyn_cast<NamedDecl>(IDecl),
977                                          CDecl->getLocation(), 2);
978    }
979  }
980
981  CheckObjCDeclScope(CDecl);
982  return ActOnObjCContainerStartDefinition(CDecl);
983}
984
985Decl *Sema::ActOnStartClassImplementation(
986                      SourceLocation AtClassImplLoc,
987                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
988                      IdentifierInfo *SuperClassname,
989                      SourceLocation SuperClassLoc) {
990  ObjCInterfaceDecl *IDecl = 0;
991  // Check for another declaration kind with the same name.
992  NamedDecl *PrevDecl
993    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
994                       ForRedeclaration);
995  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
996    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
997    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
998  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
999    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1000                        diag::warn_undef_interface);
1001  } else {
1002    // We did not find anything with the name ClassName; try to correct for
1003    // typos in the class name.
1004    ObjCInterfaceValidatorCCC Validator;
1005    TypoCorrection Corrected =
1006            CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1007                        LookupOrdinaryName, TUScope, NULL, Validator);
1008    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1009      // Suggest the (potentially) correct interface name. Don't provide a
1010      // code-modification hint or use the typo name for recovery, because
1011      // this is just a warning. The program may actually be correct.
1012      diagnoseTypo(Corrected,
1013                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1014                   /*ErrorRecovery*/false);
1015    } else {
1016      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1017    }
1018  }
1019
1020  // Check that super class name is valid class name
1021  ObjCInterfaceDecl* SDecl = 0;
1022  if (SuperClassname) {
1023    // Check if a different kind of symbol declared in this scope.
1024    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1025                                LookupOrdinaryName);
1026    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1027      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1028        << SuperClassname;
1029      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1030    } else {
1031      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1032      if (SDecl && !SDecl->hasDefinition())
1033        SDecl = 0;
1034      if (!SDecl)
1035        Diag(SuperClassLoc, diag::err_undef_superclass)
1036          << SuperClassname << ClassName;
1037      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1038        // This implementation and its interface do not have the same
1039        // super class.
1040        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1041          << SDecl->getDeclName();
1042        Diag(SDecl->getLocation(), diag::note_previous_definition);
1043      }
1044    }
1045  }
1046
1047  if (!IDecl) {
1048    // Legacy case of @implementation with no corresponding @interface.
1049    // Build, chain & install the interface decl into the identifier.
1050
1051    // FIXME: Do we support attributes on the @implementation? If so we should
1052    // copy them over.
1053    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1054                                      ClassName, /*PrevDecl=*/0, ClassLoc,
1055                                      true);
1056    IDecl->startDefinition();
1057    if (SDecl) {
1058      IDecl->setSuperClass(SDecl);
1059      IDecl->setSuperClassLoc(SuperClassLoc);
1060      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1061    } else {
1062      IDecl->setEndOfDefinitionLoc(ClassLoc);
1063    }
1064
1065    PushOnScopeChains(IDecl, TUScope);
1066  } else {
1067    // Mark the interface as being completed, even if it was just as
1068    //   @class ....;
1069    // declaration; the user cannot reopen it.
1070    if (!IDecl->hasDefinition())
1071      IDecl->startDefinition();
1072  }
1073
1074  ObjCImplementationDecl* IMPDecl =
1075    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1076                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1077
1078  if (CheckObjCDeclScope(IMPDecl))
1079    return ActOnObjCContainerStartDefinition(IMPDecl);
1080
1081  // Check that there is no duplicate implementation of this class.
1082  if (IDecl->getImplementation()) {
1083    // FIXME: Don't leak everything!
1084    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1085    Diag(IDecl->getImplementation()->getLocation(),
1086         diag::note_previous_definition);
1087    IMPDecl->setInvalidDecl();
1088  } else { // add it to the list.
1089    IDecl->setImplementation(IMPDecl);
1090    PushOnScopeChains(IMPDecl, TUScope);
1091    // Warn on implementating deprecated class under
1092    // -Wdeprecated-implementations flag.
1093    DiagnoseObjCImplementedDeprecations(*this,
1094                                        dyn_cast<NamedDecl>(IDecl),
1095                                        IMPDecl->getLocation(), 1);
1096  }
1097  return ActOnObjCContainerStartDefinition(IMPDecl);
1098}
1099
1100Sema::DeclGroupPtrTy
1101Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1102  SmallVector<Decl *, 64> DeclsInGroup;
1103  DeclsInGroup.reserve(Decls.size() + 1);
1104
1105  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1106    Decl *Dcl = Decls[i];
1107    if (!Dcl)
1108      continue;
1109    if (Dcl->getDeclContext()->isFileContext())
1110      Dcl->setTopLevelDeclInObjCContainer();
1111    DeclsInGroup.push_back(Dcl);
1112  }
1113
1114  DeclsInGroup.push_back(ObjCImpDecl);
1115
1116  return BuildDeclaratorGroup(DeclsInGroup, false);
1117}
1118
1119void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1120                                    ObjCIvarDecl **ivars, unsigned numIvars,
1121                                    SourceLocation RBrace) {
1122  assert(ImpDecl && "missing implementation decl");
1123  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1124  if (!IDecl)
1125    return;
1126  /// Check case of non-existing \@interface decl.
1127  /// (legacy objective-c \@implementation decl without an \@interface decl).
1128  /// Add implementations's ivar to the synthesize class's ivar list.
1129  if (IDecl->isImplicitInterfaceDecl()) {
1130    IDecl->setEndOfDefinitionLoc(RBrace);
1131    // Add ivar's to class's DeclContext.
1132    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1133      ivars[i]->setLexicalDeclContext(ImpDecl);
1134      IDecl->makeDeclVisibleInContext(ivars[i]);
1135      ImpDecl->addDecl(ivars[i]);
1136    }
1137
1138    return;
1139  }
1140  // If implementation has empty ivar list, just return.
1141  if (numIvars == 0)
1142    return;
1143
1144  assert(ivars && "missing @implementation ivars");
1145  if (LangOpts.ObjCRuntime.isNonFragile()) {
1146    if (ImpDecl->getSuperClass())
1147      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1148    for (unsigned i = 0; i < numIvars; i++) {
1149      ObjCIvarDecl* ImplIvar = ivars[i];
1150      if (const ObjCIvarDecl *ClsIvar =
1151            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1152        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1153        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1154        continue;
1155      }
1156      // Check class extensions (unnamed categories) for duplicate ivars.
1157      for (ObjCInterfaceDecl::visible_extensions_iterator
1158           Ext = IDecl->visible_extensions_begin(),
1159           ExtEnd = IDecl->visible_extensions_end();
1160         Ext != ExtEnd; ++Ext) {
1161        ObjCCategoryDecl *CDecl = *Ext;
1162        if (const ObjCIvarDecl *ClsExtIvar =
1163            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1164          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1165          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1166          continue;
1167        }
1168      }
1169      // Instance ivar to Implementation's DeclContext.
1170      ImplIvar->setLexicalDeclContext(ImpDecl);
1171      IDecl->makeDeclVisibleInContext(ImplIvar);
1172      ImpDecl->addDecl(ImplIvar);
1173    }
1174    return;
1175  }
1176  // Check interface's Ivar list against those in the implementation.
1177  // names and types must match.
1178  //
1179  unsigned j = 0;
1180  ObjCInterfaceDecl::ivar_iterator
1181    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1182  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1183    ObjCIvarDecl* ImplIvar = ivars[j++];
1184    ObjCIvarDecl* ClsIvar = *IVI;
1185    assert (ImplIvar && "missing implementation ivar");
1186    assert (ClsIvar && "missing class ivar");
1187
1188    // First, make sure the types match.
1189    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1190      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1191        << ImplIvar->getIdentifier()
1192        << ImplIvar->getType() << ClsIvar->getType();
1193      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1194    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1195               ImplIvar->getBitWidthValue(Context) !=
1196               ClsIvar->getBitWidthValue(Context)) {
1197      Diag(ImplIvar->getBitWidth()->getLocStart(),
1198           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1199      Diag(ClsIvar->getBitWidth()->getLocStart(),
1200           diag::note_previous_definition);
1201    }
1202    // Make sure the names are identical.
1203    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1204      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1205        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1206      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1207    }
1208    --numIvars;
1209  }
1210
1211  if (numIvars > 0)
1212    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1213  else if (IVI != IVE)
1214    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1215}
1216
1217void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1218                               bool &IncompleteImpl, unsigned DiagID) {
1219  // No point warning no definition of method which is 'unavailable'.
1220  switch (method->getAvailability()) {
1221  case AR_Available:
1222  case AR_Deprecated:
1223    break;
1224
1225      // Don't warn about unavailable or not-yet-introduced methods.
1226  case AR_NotYetIntroduced:
1227  case AR_Unavailable:
1228    return;
1229  }
1230
1231  // FIXME: For now ignore 'IncompleteImpl'.
1232  // Previously we grouped all unimplemented methods under a single
1233  // warning, but some users strongly voiced that they would prefer
1234  // separate warnings.  We will give that approach a try, as that
1235  // matches what we do with protocols.
1236
1237  Diag(ImpLoc, DiagID) << method->getDeclName();
1238
1239  // Issue a note to the original declaration.
1240  SourceLocation MethodLoc = method->getLocStart();
1241  if (MethodLoc.isValid())
1242    Diag(MethodLoc, diag::note_method_declared_at) << method;
1243}
1244
1245/// Determines if type B can be substituted for type A.  Returns true if we can
1246/// guarantee that anything that the user will do to an object of type A can
1247/// also be done to an object of type B.  This is trivially true if the two
1248/// types are the same, or if B is a subclass of A.  It becomes more complex
1249/// in cases where protocols are involved.
1250///
1251/// Object types in Objective-C describe the minimum requirements for an
1252/// object, rather than providing a complete description of a type.  For
1253/// example, if A is a subclass of B, then B* may refer to an instance of A.
1254/// The principle of substitutability means that we may use an instance of A
1255/// anywhere that we may use an instance of B - it will implement all of the
1256/// ivars of B and all of the methods of B.
1257///
1258/// This substitutability is important when type checking methods, because
1259/// the implementation may have stricter type definitions than the interface.
1260/// The interface specifies minimum requirements, but the implementation may
1261/// have more accurate ones.  For example, a method may privately accept
1262/// instances of B, but only publish that it accepts instances of A.  Any
1263/// object passed to it will be type checked against B, and so will implicitly
1264/// by a valid A*.  Similarly, a method may return a subclass of the class that
1265/// it is declared as returning.
1266///
1267/// This is most important when considering subclassing.  A method in a
1268/// subclass must accept any object as an argument that its superclass's
1269/// implementation accepts.  It may, however, accept a more general type
1270/// without breaking substitutability (i.e. you can still use the subclass
1271/// anywhere that you can use the superclass, but not vice versa).  The
1272/// converse requirement applies to return types: the return type for a
1273/// subclass method must be a valid object of the kind that the superclass
1274/// advertises, but it may be specified more accurately.  This avoids the need
1275/// for explicit down-casting by callers.
1276///
1277/// Note: This is a stricter requirement than for assignment.
1278static bool isObjCTypeSubstitutable(ASTContext &Context,
1279                                    const ObjCObjectPointerType *A,
1280                                    const ObjCObjectPointerType *B,
1281                                    bool rejectId) {
1282  // Reject a protocol-unqualified id.
1283  if (rejectId && B->isObjCIdType()) return false;
1284
1285  // If B is a qualified id, then A must also be a qualified id and it must
1286  // implement all of the protocols in B.  It may not be a qualified class.
1287  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1288  // stricter definition so it is not substitutable for id<A>.
1289  if (B->isObjCQualifiedIdType()) {
1290    return A->isObjCQualifiedIdType() &&
1291           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1292                                                     QualType(B,0),
1293                                                     false);
1294  }
1295
1296  /*
1297  // id is a special type that bypasses type checking completely.  We want a
1298  // warning when it is used in one place but not another.
1299  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1300
1301
1302  // If B is a qualified id, then A must also be a qualified id (which it isn't
1303  // if we've got this far)
1304  if (B->isObjCQualifiedIdType()) return false;
1305  */
1306
1307  // Now we know that A and B are (potentially-qualified) class types.  The
1308  // normal rules for assignment apply.
1309  return Context.canAssignObjCInterfaces(A, B);
1310}
1311
1312static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1313  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1314}
1315
1316static bool CheckMethodOverrideReturn(Sema &S,
1317                                      ObjCMethodDecl *MethodImpl,
1318                                      ObjCMethodDecl *MethodDecl,
1319                                      bool IsProtocolMethodDecl,
1320                                      bool IsOverridingMode,
1321                                      bool Warn) {
1322  if (IsProtocolMethodDecl &&
1323      (MethodDecl->getObjCDeclQualifier() !=
1324       MethodImpl->getObjCDeclQualifier())) {
1325    if (Warn) {
1326        S.Diag(MethodImpl->getLocation(),
1327               (IsOverridingMode ?
1328                 diag::warn_conflicting_overriding_ret_type_modifiers
1329                 : diag::warn_conflicting_ret_type_modifiers))
1330          << MethodImpl->getDeclName()
1331          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1332        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1333          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1334    }
1335    else
1336      return false;
1337  }
1338
1339  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1340                                       MethodDecl->getResultType()))
1341    return true;
1342  if (!Warn)
1343    return false;
1344
1345  unsigned DiagID =
1346    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1347                     : diag::warn_conflicting_ret_types;
1348
1349  // Mismatches between ObjC pointers go into a different warning
1350  // category, and sometimes they're even completely whitelisted.
1351  if (const ObjCObjectPointerType *ImplPtrTy =
1352        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1353    if (const ObjCObjectPointerType *IfacePtrTy =
1354          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1355      // Allow non-matching return types as long as they don't violate
1356      // the principle of substitutability.  Specifically, we permit
1357      // return types that are subclasses of the declared return type,
1358      // or that are more-qualified versions of the declared type.
1359      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1360        return false;
1361
1362      DiagID =
1363        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1364                          : diag::warn_non_covariant_ret_types;
1365    }
1366  }
1367
1368  S.Diag(MethodImpl->getLocation(), DiagID)
1369    << MethodImpl->getDeclName()
1370    << MethodDecl->getResultType()
1371    << MethodImpl->getResultType()
1372    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1373  S.Diag(MethodDecl->getLocation(),
1374         IsOverridingMode ? diag::note_previous_declaration
1375                          : diag::note_previous_definition)
1376    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1377  return false;
1378}
1379
1380static bool CheckMethodOverrideParam(Sema &S,
1381                                     ObjCMethodDecl *MethodImpl,
1382                                     ObjCMethodDecl *MethodDecl,
1383                                     ParmVarDecl *ImplVar,
1384                                     ParmVarDecl *IfaceVar,
1385                                     bool IsProtocolMethodDecl,
1386                                     bool IsOverridingMode,
1387                                     bool Warn) {
1388  if (IsProtocolMethodDecl &&
1389      (ImplVar->getObjCDeclQualifier() !=
1390       IfaceVar->getObjCDeclQualifier())) {
1391    if (Warn) {
1392      if (IsOverridingMode)
1393        S.Diag(ImplVar->getLocation(),
1394               diag::warn_conflicting_overriding_param_modifiers)
1395            << getTypeRange(ImplVar->getTypeSourceInfo())
1396            << MethodImpl->getDeclName();
1397      else S.Diag(ImplVar->getLocation(),
1398             diag::warn_conflicting_param_modifiers)
1399          << getTypeRange(ImplVar->getTypeSourceInfo())
1400          << MethodImpl->getDeclName();
1401      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1402          << getTypeRange(IfaceVar->getTypeSourceInfo());
1403    }
1404    else
1405      return false;
1406  }
1407
1408  QualType ImplTy = ImplVar->getType();
1409  QualType IfaceTy = IfaceVar->getType();
1410
1411  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1412    return true;
1413
1414  if (!Warn)
1415    return false;
1416  unsigned DiagID =
1417    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1418                     : diag::warn_conflicting_param_types;
1419
1420  // Mismatches between ObjC pointers go into a different warning
1421  // category, and sometimes they're even completely whitelisted.
1422  if (const ObjCObjectPointerType *ImplPtrTy =
1423        ImplTy->getAs<ObjCObjectPointerType>()) {
1424    if (const ObjCObjectPointerType *IfacePtrTy =
1425          IfaceTy->getAs<ObjCObjectPointerType>()) {
1426      // Allow non-matching argument types as long as they don't
1427      // violate the principle of substitutability.  Specifically, the
1428      // implementation must accept any objects that the superclass
1429      // accepts, however it may also accept others.
1430      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1431        return false;
1432
1433      DiagID =
1434      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1435                       :  diag::warn_non_contravariant_param_types;
1436    }
1437  }
1438
1439  S.Diag(ImplVar->getLocation(), DiagID)
1440    << getTypeRange(ImplVar->getTypeSourceInfo())
1441    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1442  S.Diag(IfaceVar->getLocation(),
1443         (IsOverridingMode ? diag::note_previous_declaration
1444                        : diag::note_previous_definition))
1445    << getTypeRange(IfaceVar->getTypeSourceInfo());
1446  return false;
1447}
1448
1449/// In ARC, check whether the conventional meanings of the two methods
1450/// match.  If they don't, it's a hard error.
1451static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1452                                      ObjCMethodDecl *decl) {
1453  ObjCMethodFamily implFamily = impl->getMethodFamily();
1454  ObjCMethodFamily declFamily = decl->getMethodFamily();
1455  if (implFamily == declFamily) return false;
1456
1457  // Since conventions are sorted by selector, the only possibility is
1458  // that the types differ enough to cause one selector or the other
1459  // to fall out of the family.
1460  assert(implFamily == OMF_None || declFamily == OMF_None);
1461
1462  // No further diagnostics required on invalid declarations.
1463  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1464
1465  const ObjCMethodDecl *unmatched = impl;
1466  ObjCMethodFamily family = declFamily;
1467  unsigned errorID = diag::err_arc_lost_method_convention;
1468  unsigned noteID = diag::note_arc_lost_method_convention;
1469  if (declFamily == OMF_None) {
1470    unmatched = decl;
1471    family = implFamily;
1472    errorID = diag::err_arc_gained_method_convention;
1473    noteID = diag::note_arc_gained_method_convention;
1474  }
1475
1476  // Indexes into a %select clause in the diagnostic.
1477  enum FamilySelector {
1478    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1479  };
1480  FamilySelector familySelector = FamilySelector();
1481
1482  switch (family) {
1483  case OMF_None: llvm_unreachable("logic error, no method convention");
1484  case OMF_retain:
1485  case OMF_release:
1486  case OMF_autorelease:
1487  case OMF_dealloc:
1488  case OMF_finalize:
1489  case OMF_retainCount:
1490  case OMF_self:
1491  case OMF_performSelector:
1492    // Mismatches for these methods don't change ownership
1493    // conventions, so we don't care.
1494    return false;
1495
1496  case OMF_init: familySelector = F_init; break;
1497  case OMF_alloc: familySelector = F_alloc; break;
1498  case OMF_copy: familySelector = F_copy; break;
1499  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1500  case OMF_new: familySelector = F_new; break;
1501  }
1502
1503  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1504  ReasonSelector reasonSelector;
1505
1506  // The only reason these methods don't fall within their families is
1507  // due to unusual result types.
1508  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1509    reasonSelector = R_UnrelatedReturn;
1510  } else {
1511    reasonSelector = R_NonObjectReturn;
1512  }
1513
1514  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1515  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1516
1517  return true;
1518}
1519
1520void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1521                                       ObjCMethodDecl *MethodDecl,
1522                                       bool IsProtocolMethodDecl) {
1523  if (getLangOpts().ObjCAutoRefCount &&
1524      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1525    return;
1526
1527  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1528                            IsProtocolMethodDecl, false,
1529                            true);
1530
1531  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1532       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1533       EF = MethodDecl->param_end();
1534       IM != EM && IF != EF; ++IM, ++IF) {
1535    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1536                             IsProtocolMethodDecl, false, true);
1537  }
1538
1539  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1540    Diag(ImpMethodDecl->getLocation(),
1541         diag::warn_conflicting_variadic);
1542    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1543  }
1544}
1545
1546void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1547                                       ObjCMethodDecl *Overridden,
1548                                       bool IsProtocolMethodDecl) {
1549
1550  CheckMethodOverrideReturn(*this, Method, Overridden,
1551                            IsProtocolMethodDecl, true,
1552                            true);
1553
1554  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1555       IF = Overridden->param_begin(), EM = Method->param_end(),
1556       EF = Overridden->param_end();
1557       IM != EM && IF != EF; ++IM, ++IF) {
1558    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1559                             IsProtocolMethodDecl, true, true);
1560  }
1561
1562  if (Method->isVariadic() != Overridden->isVariadic()) {
1563    Diag(Method->getLocation(),
1564         diag::warn_conflicting_overriding_variadic);
1565    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1566  }
1567}
1568
1569/// WarnExactTypedMethods - This routine issues a warning if method
1570/// implementation declaration matches exactly that of its declaration.
1571void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1572                                 ObjCMethodDecl *MethodDecl,
1573                                 bool IsProtocolMethodDecl) {
1574  // don't issue warning when protocol method is optional because primary
1575  // class is not required to implement it and it is safe for protocol
1576  // to implement it.
1577  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1578    return;
1579  // don't issue warning when primary class's method is
1580  // depecated/unavailable.
1581  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1582      MethodDecl->hasAttr<DeprecatedAttr>())
1583    return;
1584
1585  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1586                                      IsProtocolMethodDecl, false, false);
1587  if (match)
1588    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1589         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1590         EF = MethodDecl->param_end();
1591         IM != EM && IF != EF; ++IM, ++IF) {
1592      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1593                                       *IM, *IF,
1594                                       IsProtocolMethodDecl, false, false);
1595      if (!match)
1596        break;
1597    }
1598  if (match)
1599    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1600  if (match)
1601    match = !(MethodDecl->isClassMethod() &&
1602              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1603
1604  if (match) {
1605    Diag(ImpMethodDecl->getLocation(),
1606         diag::warn_category_method_impl_match);
1607    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1608      << MethodDecl->getDeclName();
1609  }
1610}
1611
1612/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1613/// improve the efficiency of selector lookups and type checking by associating
1614/// with each protocol / interface / category the flattened instance tables. If
1615/// we used an immutable set to keep the table then it wouldn't add significant
1616/// memory cost and it would be handy for lookups.
1617
1618/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1619/// Declared in protocol, and those referenced by it.
1620void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1621                                   ObjCProtocolDecl *PDecl,
1622                                   bool& IncompleteImpl,
1623                                   const SelectorSet &InsMap,
1624                                   const SelectorSet &ClsMap,
1625                                   ObjCContainerDecl *CDecl) {
1626  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1627  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1628                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1629  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1630
1631  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1632  ObjCInterfaceDecl *NSIDecl = 0;
1633  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1634    // check to see if class implements forwardInvocation method and objects
1635    // of this class are derived from 'NSProxy' so that to forward requests
1636    // from one object to another.
1637    // Under such conditions, which means that every method possible is
1638    // implemented in the class, we should not issue "Method definition not
1639    // found" warnings.
1640    // FIXME: Use a general GetUnarySelector method for this.
1641    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1642    Selector fISelector = Context.Selectors.getSelector(1, &II);
1643    if (InsMap.count(fISelector))
1644      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1645      // need be implemented in the implementation.
1646      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1647  }
1648
1649  // If this is a forward protocol declaration, get its definition.
1650  if (!PDecl->isThisDeclarationADefinition() &&
1651      PDecl->getDefinition())
1652    PDecl = PDecl->getDefinition();
1653
1654  // If a method lookup fails locally we still need to look and see if
1655  // the method was implemented by a base class or an inherited
1656  // protocol. This lookup is slow, but occurs rarely in correct code
1657  // and otherwise would terminate in a warning.
1658
1659  // check unimplemented instance methods.
1660  if (!NSIDecl)
1661    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1662         E = PDecl->instmeth_end(); I != E; ++I) {
1663      ObjCMethodDecl *method = *I;
1664      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1665          !method->isPropertyAccessor() &&
1666          !InsMap.count(method->getSelector()) &&
1667          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1668            // If a method is not implemented in the category implementation but
1669            // has been declared in its primary class, superclass,
1670            // or in one of their protocols, no need to issue the warning.
1671            // This is because method will be implemented in the primary class
1672            // or one of its super class implementation.
1673
1674            // Ugly, but necessary. Method declared in protcol might have
1675            // have been synthesized due to a property declared in the class which
1676            // uses the protocol.
1677            if (ObjCMethodDecl *MethodInClass =
1678                  IDecl->lookupInstanceMethod(method->getSelector(),
1679                                              true /*shallowCategoryLookup*/))
1680              if (C || MethodInClass->isPropertyAccessor())
1681                continue;
1682            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1683            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1684                != DiagnosticsEngine::Ignored) {
1685              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1686              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1687                << PDecl->getDeclName();
1688            }
1689          }
1690    }
1691  // check unimplemented class methods
1692  for (ObjCProtocolDecl::classmeth_iterator
1693         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1694       I != E; ++I) {
1695    ObjCMethodDecl *method = *I;
1696    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1697        !ClsMap.count(method->getSelector()) &&
1698        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1699      // See above comment for instance method lookups.
1700      if (C && IDecl->lookupClassMethod(method->getSelector(),
1701                                        true /*shallowCategoryLookup*/))
1702        continue;
1703      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1704      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1705            DiagnosticsEngine::Ignored) {
1706        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1707        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1708          PDecl->getDeclName();
1709      }
1710    }
1711  }
1712  // Check on this protocols's referenced protocols, recursively.
1713  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1714       E = PDecl->protocol_end(); PI != E; ++PI)
1715    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1716}
1717
1718/// MatchAllMethodDeclarations - Check methods declared in interface
1719/// or protocol against those declared in their implementations.
1720///
1721void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1722                                      const SelectorSet &ClsMap,
1723                                      SelectorSet &InsMapSeen,
1724                                      SelectorSet &ClsMapSeen,
1725                                      ObjCImplDecl* IMPDecl,
1726                                      ObjCContainerDecl* CDecl,
1727                                      bool &IncompleteImpl,
1728                                      bool ImmediateClass,
1729                                      bool WarnCategoryMethodImpl) {
1730  // Check and see if instance methods in class interface have been
1731  // implemented in the implementation class. If so, their types match.
1732  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1733       E = CDecl->instmeth_end(); I != E; ++I) {
1734    if (!InsMapSeen.insert((*I)->getSelector()))
1735      continue;
1736    if (!(*I)->isPropertyAccessor() &&
1737        !InsMap.count((*I)->getSelector())) {
1738      if (ImmediateClass)
1739        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1740                            diag::warn_undef_method_impl);
1741      continue;
1742    } else {
1743      ObjCMethodDecl *ImpMethodDecl =
1744        IMPDecl->getInstanceMethod((*I)->getSelector());
1745      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1746             "Expected to find the method through lookup as well");
1747      ObjCMethodDecl *MethodDecl = *I;
1748      // ImpMethodDecl may be null as in a @dynamic property.
1749      if (ImpMethodDecl) {
1750        if (!WarnCategoryMethodImpl)
1751          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1752                                      isa<ObjCProtocolDecl>(CDecl));
1753        else if (!MethodDecl->isPropertyAccessor())
1754          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1755                                isa<ObjCProtocolDecl>(CDecl));
1756      }
1757    }
1758  }
1759
1760  // Check and see if class methods in class interface have been
1761  // implemented in the implementation class. If so, their types match.
1762  for (ObjCInterfaceDecl::classmeth_iterator I = CDecl->classmeth_begin(),
1763                                             E = CDecl->classmeth_end();
1764       I != E; ++I) {
1765    if (!ClsMapSeen.insert((*I)->getSelector()))
1766      continue;
1767    if (!ClsMap.count((*I)->getSelector())) {
1768      if (ImmediateClass)
1769        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1770                            diag::warn_undef_method_impl);
1771    } else {
1772      ObjCMethodDecl *ImpMethodDecl =
1773        IMPDecl->getClassMethod((*I)->getSelector());
1774      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1775             "Expected to find the method through lookup as well");
1776      ObjCMethodDecl *MethodDecl = *I;
1777      if (!WarnCategoryMethodImpl)
1778        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1779                                    isa<ObjCProtocolDecl>(CDecl));
1780      else
1781        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1782                              isa<ObjCProtocolDecl>(CDecl));
1783    }
1784  }
1785
1786  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
1787    // Also, check for methods declared in protocols inherited by
1788    // this protocol.
1789    for (ObjCProtocolDecl::protocol_iterator
1790          PI = PD->protocol_begin(), E = PD->protocol_end(); PI != E; ++PI)
1791      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1792                                 IMPDecl, (*PI), IncompleteImpl, false,
1793                                 WarnCategoryMethodImpl);
1794  }
1795
1796  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1797    // when checking that methods in implementation match their declaration,
1798    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1799    // extension; as well as those in categories.
1800    if (!WarnCategoryMethodImpl) {
1801      for (ObjCInterfaceDecl::visible_categories_iterator
1802             Cat = I->visible_categories_begin(),
1803           CatEnd = I->visible_categories_end();
1804           Cat != CatEnd; ++Cat) {
1805        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1806                                   IMPDecl, *Cat, IncompleteImpl, false,
1807                                   WarnCategoryMethodImpl);
1808      }
1809    } else {
1810      // Also methods in class extensions need be looked at next.
1811      for (ObjCInterfaceDecl::visible_extensions_iterator
1812             Ext = I->visible_extensions_begin(),
1813             ExtEnd = I->visible_extensions_end();
1814           Ext != ExtEnd; ++Ext) {
1815        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1816                                   IMPDecl, *Ext, IncompleteImpl, false,
1817                                   WarnCategoryMethodImpl);
1818      }
1819    }
1820
1821    // Check for any implementation of a methods declared in protocol.
1822    for (ObjCInterfaceDecl::all_protocol_iterator
1823          PI = I->all_referenced_protocol_begin(),
1824          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1825      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1826                                 IMPDecl,
1827                                 (*PI), IncompleteImpl, false,
1828                                 WarnCategoryMethodImpl);
1829
1830    // FIXME. For now, we are not checking for extact match of methods
1831    // in category implementation and its primary class's super class.
1832    if (!WarnCategoryMethodImpl && I->getSuperClass())
1833      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1834                                 IMPDecl,
1835                                 I->getSuperClass(), IncompleteImpl, false);
1836  }
1837}
1838
1839/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1840/// category matches with those implemented in its primary class and
1841/// warns each time an exact match is found.
1842void Sema::CheckCategoryVsClassMethodMatches(
1843                                  ObjCCategoryImplDecl *CatIMPDecl) {
1844  SelectorSet InsMap, ClsMap;
1845
1846  for (ObjCImplementationDecl::instmeth_iterator
1847       I = CatIMPDecl->instmeth_begin(),
1848       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1849    InsMap.insert((*I)->getSelector());
1850
1851  for (ObjCImplementationDecl::classmeth_iterator
1852       I = CatIMPDecl->classmeth_begin(),
1853       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1854    ClsMap.insert((*I)->getSelector());
1855  if (InsMap.empty() && ClsMap.empty())
1856    return;
1857
1858  // Get category's primary class.
1859  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1860  if (!CatDecl)
1861    return;
1862  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1863  if (!IDecl)
1864    return;
1865  SelectorSet InsMapSeen, ClsMapSeen;
1866  bool IncompleteImpl = false;
1867  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1868                             CatIMPDecl, IDecl,
1869                             IncompleteImpl, false,
1870                             true /*WarnCategoryMethodImpl*/);
1871}
1872
1873void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1874                                     ObjCContainerDecl* CDecl,
1875                                     bool IncompleteImpl) {
1876  SelectorSet InsMap;
1877  // Check and see if instance methods in class interface have been
1878  // implemented in the implementation class.
1879  for (ObjCImplementationDecl::instmeth_iterator
1880         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1881    InsMap.insert((*I)->getSelector());
1882
1883  // Check and see if properties declared in the interface have either 1)
1884  // an implementation or 2) there is a @synthesize/@dynamic implementation
1885  // of the property in the @implementation.
1886  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1887    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1888           LangOpts.ObjCRuntime.isNonFragile()) ||
1889         IDecl->isObjCRequiresPropertyDefs())
1890      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1891
1892  SelectorSet ClsMap;
1893  for (ObjCImplementationDecl::classmeth_iterator
1894       I = IMPDecl->classmeth_begin(),
1895       E = IMPDecl->classmeth_end(); I != E; ++I)
1896    ClsMap.insert((*I)->getSelector());
1897
1898  // Check for type conflict of methods declared in a class/protocol and
1899  // its implementation; if any.
1900  SelectorSet InsMapSeen, ClsMapSeen;
1901  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1902                             IMPDecl, CDecl,
1903                             IncompleteImpl, true);
1904
1905  // check all methods implemented in category against those declared
1906  // in its primary class.
1907  if (ObjCCategoryImplDecl *CatDecl =
1908        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1909    CheckCategoryVsClassMethodMatches(CatDecl);
1910
1911  // Check the protocol list for unimplemented methods in the @implementation
1912  // class.
1913  // Check and see if class methods in class interface have been
1914  // implemented in the implementation class.
1915
1916  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1917    for (ObjCInterfaceDecl::all_protocol_iterator
1918          PI = I->all_referenced_protocol_begin(),
1919          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1920      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1921                              InsMap, ClsMap, I);
1922    // Check class extensions (unnamed categories)
1923    for (ObjCInterfaceDecl::visible_extensions_iterator
1924           Ext = I->visible_extensions_begin(),
1925           ExtEnd = I->visible_extensions_end();
1926         Ext != ExtEnd; ++Ext) {
1927      ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1928    }
1929  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1930    // For extended class, unimplemented methods in its protocols will
1931    // be reported in the primary class.
1932    if (!C->IsClassExtension()) {
1933      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1934           E = C->protocol_end(); PI != E; ++PI)
1935        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1936                                InsMap, ClsMap, CDecl);
1937      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1938    }
1939  } else
1940    llvm_unreachable("invalid ObjCContainerDecl type.");
1941}
1942
1943/// ActOnForwardClassDeclaration -
1944Sema::DeclGroupPtrTy
1945Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1946                                   IdentifierInfo **IdentList,
1947                                   SourceLocation *IdentLocs,
1948                                   unsigned NumElts) {
1949  SmallVector<Decl *, 8> DeclsInGroup;
1950  for (unsigned i = 0; i != NumElts; ++i) {
1951    // Check for another declaration kind with the same name.
1952    NamedDecl *PrevDecl
1953      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1954                         LookupOrdinaryName, ForRedeclaration);
1955    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1956      // GCC apparently allows the following idiom:
1957      //
1958      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1959      // @class XCElementToggler;
1960      //
1961      // Here we have chosen to ignore the forward class declaration
1962      // with a warning. Since this is the implied behavior.
1963      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1964      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1965        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1966        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1967      } else {
1968        // a forward class declaration matching a typedef name of a class refers
1969        // to the underlying class. Just ignore the forward class with a warning
1970        // as this will force the intended behavior which is to lookup the typedef
1971        // name.
1972        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1973          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1974          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1975          continue;
1976        }
1977      }
1978    }
1979
1980    // Create a declaration to describe this forward declaration.
1981    ObjCInterfaceDecl *PrevIDecl
1982      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1983
1984    IdentifierInfo *ClassName = IdentList[i];
1985    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
1986      // A previous decl with a different name is because of
1987      // @compatibility_alias, for example:
1988      // \code
1989      //   @class NewImage;
1990      //   @compatibility_alias OldImage NewImage;
1991      // \endcode
1992      // A lookup for 'OldImage' will return the 'NewImage' decl.
1993      //
1994      // In such a case use the real declaration name, instead of the alias one,
1995      // otherwise we will break IdentifierResolver and redecls-chain invariants.
1996      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1997      // has been aliased.
1998      ClassName = PrevIDecl->getIdentifier();
1999    }
2000
2001    ObjCInterfaceDecl *IDecl
2002      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
2003                                  ClassName, PrevIDecl, IdentLocs[i]);
2004    IDecl->setAtEndRange(IdentLocs[i]);
2005
2006    PushOnScopeChains(IDecl, TUScope);
2007    CheckObjCDeclScope(IDecl);
2008    DeclsInGroup.push_back(IDecl);
2009  }
2010
2011  return BuildDeclaratorGroup(DeclsInGroup, false);
2012}
2013
2014static bool tryMatchRecordTypes(ASTContext &Context,
2015                                Sema::MethodMatchStrategy strategy,
2016                                const Type *left, const Type *right);
2017
2018static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
2019                       QualType leftQT, QualType rightQT) {
2020  const Type *left =
2021    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2022  const Type *right =
2023    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2024
2025  if (left == right) return true;
2026
2027  // If we're doing a strict match, the types have to match exactly.
2028  if (strategy == Sema::MMS_strict) return false;
2029
2030  if (left->isIncompleteType() || right->isIncompleteType()) return false;
2031
2032  // Otherwise, use this absurdly complicated algorithm to try to
2033  // validate the basic, low-level compatibility of the two types.
2034
2035  // As a minimum, require the sizes and alignments to match.
2036  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2037    return false;
2038
2039  // Consider all the kinds of non-dependent canonical types:
2040  // - functions and arrays aren't possible as return and parameter types
2041
2042  // - vector types of equal size can be arbitrarily mixed
2043  if (isa<VectorType>(left)) return isa<VectorType>(right);
2044  if (isa<VectorType>(right)) return false;
2045
2046  // - references should only match references of identical type
2047  // - structs, unions, and Objective-C objects must match more-or-less
2048  //   exactly
2049  // - everything else should be a scalar
2050  if (!left->isScalarType() || !right->isScalarType())
2051    return tryMatchRecordTypes(Context, strategy, left, right);
2052
2053  // Make scalars agree in kind, except count bools as chars, and group
2054  // all non-member pointers together.
2055  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2056  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2057  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2058  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2059  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2060    leftSK = Type::STK_ObjCObjectPointer;
2061  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2062    rightSK = Type::STK_ObjCObjectPointer;
2063
2064  // Note that data member pointers and function member pointers don't
2065  // intermix because of the size differences.
2066
2067  return (leftSK == rightSK);
2068}
2069
2070static bool tryMatchRecordTypes(ASTContext &Context,
2071                                Sema::MethodMatchStrategy strategy,
2072                                const Type *lt, const Type *rt) {
2073  assert(lt && rt && lt != rt);
2074
2075  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2076  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2077  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2078
2079  // Require union-hood to match.
2080  if (left->isUnion() != right->isUnion()) return false;
2081
2082  // Require an exact match if either is non-POD.
2083  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2084      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2085    return false;
2086
2087  // Require size and alignment to match.
2088  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2089
2090  // Require fields to match.
2091  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2092  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2093  for (; li != le && ri != re; ++li, ++ri) {
2094    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2095      return false;
2096  }
2097  return (li == le && ri == re);
2098}
2099
2100/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2101/// returns true, or false, accordingly.
2102/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2103bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2104                                      const ObjCMethodDecl *right,
2105                                      MethodMatchStrategy strategy) {
2106  if (!matchTypes(Context, strategy,
2107                  left->getResultType(), right->getResultType()))
2108    return false;
2109
2110  // If either is hidden, it is not considered to match.
2111  if (left->isHidden() || right->isHidden())
2112    return false;
2113
2114  if (getLangOpts().ObjCAutoRefCount &&
2115      (left->hasAttr<NSReturnsRetainedAttr>()
2116         != right->hasAttr<NSReturnsRetainedAttr>() ||
2117       left->hasAttr<NSConsumesSelfAttr>()
2118         != right->hasAttr<NSConsumesSelfAttr>()))
2119    return false;
2120
2121  ObjCMethodDecl::param_const_iterator
2122    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2123    re = right->param_end();
2124
2125  for (; li != le && ri != re; ++li, ++ri) {
2126    assert(ri != right->param_end() && "Param mismatch");
2127    const ParmVarDecl *lparm = *li, *rparm = *ri;
2128
2129    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2130      return false;
2131
2132    if (getLangOpts().ObjCAutoRefCount &&
2133        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2134      return false;
2135  }
2136  return true;
2137}
2138
2139void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2140  // Record at the head of the list whether there were 0, 1, or >= 2 methods
2141  // inside categories.
2142  if (ObjCCategoryDecl *
2143        CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2144    if (!CD->IsClassExtension() && List->getBits() < 2)
2145        List->setBits(List->getBits()+1);
2146
2147  // If the list is empty, make it a singleton list.
2148  if (List->Method == 0) {
2149    List->Method = Method;
2150    List->setNext(0);
2151    return;
2152  }
2153
2154  // We've seen a method with this name, see if we have already seen this type
2155  // signature.
2156  ObjCMethodList *Previous = List;
2157  for (; List; Previous = List, List = List->getNext()) {
2158    // If we are building a module, keep all of the methods.
2159    if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2160      continue;
2161
2162    if (!MatchTwoMethodDeclarations(Method, List->Method))
2163      continue;
2164
2165    ObjCMethodDecl *PrevObjCMethod = List->Method;
2166
2167    // Propagate the 'defined' bit.
2168    if (Method->isDefined())
2169      PrevObjCMethod->setDefined(true);
2170
2171    // If a method is deprecated, push it in the global pool.
2172    // This is used for better diagnostics.
2173    if (Method->isDeprecated()) {
2174      if (!PrevObjCMethod->isDeprecated())
2175        List->Method = Method;
2176    }
2177    // If new method is unavailable, push it into global pool
2178    // unless previous one is deprecated.
2179    if (Method->isUnavailable()) {
2180      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2181        List->Method = Method;
2182    }
2183
2184    return;
2185  }
2186
2187  // We have a new signature for an existing method - add it.
2188  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2189  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2190  Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
2191}
2192
2193/// \brief Read the contents of the method pool for a given selector from
2194/// external storage.
2195void Sema::ReadMethodPool(Selector Sel) {
2196  assert(ExternalSource && "We need an external AST source");
2197  ExternalSource->ReadMethodPool(Sel);
2198}
2199
2200void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2201                                 bool instance) {
2202  // Ignore methods of invalid containers.
2203  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2204    return;
2205
2206  if (ExternalSource)
2207    ReadMethodPool(Method->getSelector());
2208
2209  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2210  if (Pos == MethodPool.end())
2211    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2212                                           GlobalMethods())).first;
2213
2214  Method->setDefined(impl);
2215
2216  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2217  addMethodToGlobalList(&Entry, Method);
2218}
2219
2220/// Determines if this is an "acceptable" loose mismatch in the global
2221/// method pool.  This exists mostly as a hack to get around certain
2222/// global mismatches which we can't afford to make warnings / errors.
2223/// Really, what we want is a way to take a method out of the global
2224/// method pool.
2225static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2226                                       ObjCMethodDecl *other) {
2227  if (!chosen->isInstanceMethod())
2228    return false;
2229
2230  Selector sel = chosen->getSelector();
2231  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2232    return false;
2233
2234  // Don't complain about mismatches for -length if the method we
2235  // chose has an integral result type.
2236  return (chosen->getResultType()->isIntegerType());
2237}
2238
2239ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2240                                               bool receiverIdOrClass,
2241                                               bool warn, bool instance) {
2242  if (ExternalSource)
2243    ReadMethodPool(Sel);
2244
2245  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2246  if (Pos == MethodPool.end())
2247    return 0;
2248
2249  // Gather the non-hidden methods.
2250  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2251  SmallVector<ObjCMethodDecl *, 4> Methods;
2252  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2253    if (M->Method && !M->Method->isHidden()) {
2254      // If we're not supposed to warn about mismatches, we're done.
2255      if (!warn)
2256        return M->Method;
2257
2258      Methods.push_back(M->Method);
2259    }
2260  }
2261
2262  // If there aren't any visible methods, we're done.
2263  // FIXME: Recover if there are any known-but-hidden methods?
2264  if (Methods.empty())
2265    return 0;
2266
2267  if (Methods.size() == 1)
2268    return Methods[0];
2269
2270  // We found multiple methods, so we may have to complain.
2271  bool issueDiagnostic = false, issueError = false;
2272
2273  // We support a warning which complains about *any* difference in
2274  // method signature.
2275  bool strictSelectorMatch =
2276    (receiverIdOrClass && warn &&
2277     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2278                               R.getBegin())
2279        != DiagnosticsEngine::Ignored));
2280  if (strictSelectorMatch) {
2281    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2282      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2283        issueDiagnostic = true;
2284        break;
2285      }
2286    }
2287  }
2288
2289  // If we didn't see any strict differences, we won't see any loose
2290  // differences.  In ARC, however, we also need to check for loose
2291  // mismatches, because most of them are errors.
2292  if (!strictSelectorMatch ||
2293      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2294    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2295      // This checks if the methods differ in type mismatch.
2296      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2297          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2298        issueDiagnostic = true;
2299        if (getLangOpts().ObjCAutoRefCount)
2300          issueError = true;
2301        break;
2302      }
2303    }
2304
2305  if (issueDiagnostic) {
2306    if (issueError)
2307      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2308    else if (strictSelectorMatch)
2309      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2310    else
2311      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2312
2313    Diag(Methods[0]->getLocStart(),
2314         issueError ? diag::note_possibility : diag::note_using)
2315      << Methods[0]->getSourceRange();
2316    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2317      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2318        << Methods[I]->getSourceRange();
2319  }
2320  }
2321  return Methods[0];
2322}
2323
2324ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2325  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2326  if (Pos == MethodPool.end())
2327    return 0;
2328
2329  GlobalMethods &Methods = Pos->second;
2330
2331  if (Methods.first.Method && Methods.first.Method->isDefined())
2332    return Methods.first.Method;
2333  if (Methods.second.Method && Methods.second.Method->isDefined())
2334    return Methods.second.Method;
2335  return 0;
2336}
2337
2338static void
2339HelperSelectorsForTypoCorrection(
2340                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2341                      StringRef Typo, const ObjCMethodDecl * Method) {
2342  const unsigned MaxEditDistance = 1;
2343  unsigned BestEditDistance = MaxEditDistance + 1;
2344  std::string MethodName = Method->getSelector().getAsString();
2345
2346  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2347  if (MinPossibleEditDistance > 0 &&
2348      Typo.size() / MinPossibleEditDistance < 1)
2349    return;
2350  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2351  if (EditDistance > MaxEditDistance)
2352    return;
2353  if (EditDistance == BestEditDistance)
2354    BestMethod.push_back(Method);
2355  else if (EditDistance < BestEditDistance) {
2356    BestMethod.clear();
2357    BestMethod.push_back(Method);
2358  }
2359}
2360
2361static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2362                                     QualType ObjectType) {
2363  if (ObjectType.isNull())
2364    return true;
2365  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2366    return true;
2367  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 0;
2368}
2369
2370const ObjCMethodDecl *
2371Sema::SelectorsForTypoCorrection(Selector Sel,
2372                                 QualType ObjectType) {
2373  unsigned NumArgs = Sel.getNumArgs();
2374  SmallVector<const ObjCMethodDecl *, 8> Methods;
2375  bool ObjectIsId = true, ObjectIsClass = true;
2376  if (ObjectType.isNull())
2377    ObjectIsId = ObjectIsClass = false;
2378  else if (!ObjectType->isObjCObjectPointerType())
2379    return 0;
2380  else if (const ObjCObjectPointerType *ObjCPtr =
2381           ObjectType->getAsObjCInterfacePointerType()) {
2382    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2383    ObjectIsId = ObjectIsClass = false;
2384  }
2385  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2386    ObjectIsClass = false;
2387  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2388    ObjectIsId = false;
2389  else
2390    return 0;
2391
2392  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2393       e = MethodPool.end(); b != e; b++) {
2394    // instance methods
2395    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2396      if (M->Method &&
2397          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2398          (M->Method->getSelector() != Sel)) {
2399        if (ObjectIsId)
2400          Methods.push_back(M->Method);
2401        else if (!ObjectIsClass &&
2402                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2403          Methods.push_back(M->Method);
2404      }
2405    // class methods
2406    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2407      if (M->Method &&
2408          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2409          (M->Method->getSelector() != Sel)) {
2410        if (ObjectIsClass)
2411          Methods.push_back(M->Method);
2412        else if (!ObjectIsId &&
2413                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2414          Methods.push_back(M->Method);
2415      }
2416  }
2417
2418  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2419  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2420    HelperSelectorsForTypoCorrection(SelectedMethods,
2421                                     Sel.getAsString(), Methods[i]);
2422  }
2423  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : NULL;
2424}
2425
2426static void
2427HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
2428                                              ObjCMethodList &MethList) {
2429  ObjCMethodList *M = &MethList;
2430  ObjCMethodDecl *TargetMethod = M->Method;
2431  while (TargetMethod &&
2432         isa<ObjCImplDecl>(TargetMethod->getDeclContext())) {
2433    M = M->getNext();
2434    TargetMethod = M ? M->Method : 0;
2435  }
2436  if (!TargetMethod)
2437    return;
2438  bool FirstTime = true;
2439  for (M = M->getNext(); M; M=M->getNext()) {
2440    ObjCMethodDecl *MatchingMethodDecl = M->Method;
2441    if (isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()))
2442      continue;
2443    if (!S.MatchTwoMethodDeclarations(TargetMethod,
2444                                      MatchingMethodDecl, Sema::MMS_loose)) {
2445      if (FirstTime) {
2446        FirstTime = false;
2447        S.Diag(TargetMethod->getLocation(), diag::warning_multiple_selectors)
2448        << TargetMethod->getSelector();
2449      }
2450      S.Diag(MatchingMethodDecl->getLocation(), diag::note_also_found);
2451    }
2452  }
2453}
2454
2455void Sema::DiagnoseMismatchedMethodsInGlobalPool() {
2456  unsigned DIAG = diag::warning_multiple_selectors;
2457  if (Diags.getDiagnosticLevel(DIAG, SourceLocation())
2458      == DiagnosticsEngine::Ignored)
2459    return;
2460  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2461       e = MethodPool.end(); b != e; b++) {
2462    // first, instance methods
2463    ObjCMethodList &InstMethList = b->second.first;
2464    HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, InstMethList);
2465    // second, class methods
2466    ObjCMethodList &ClsMethList = b->second.second;
2467    HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, ClsMethList);
2468  }
2469}
2470
2471/// DiagnoseDuplicateIvars -
2472/// Check for duplicate ivars in the entire class at the start of
2473/// \@implementation. This becomes necesssary because class extension can
2474/// add ivars to a class in random order which will not be known until
2475/// class's \@implementation is seen.
2476void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2477                                  ObjCInterfaceDecl *SID) {
2478  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2479       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2480    ObjCIvarDecl* Ivar = *IVI;
2481    if (Ivar->isInvalidDecl())
2482      continue;
2483    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2484      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2485      if (prevIvar) {
2486        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2487        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2488        Ivar->setInvalidDecl();
2489      }
2490    }
2491  }
2492}
2493
2494Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2495  switch (CurContext->getDeclKind()) {
2496    case Decl::ObjCInterface:
2497      return Sema::OCK_Interface;
2498    case Decl::ObjCProtocol:
2499      return Sema::OCK_Protocol;
2500    case Decl::ObjCCategory:
2501      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2502        return Sema::OCK_ClassExtension;
2503      else
2504        return Sema::OCK_Category;
2505    case Decl::ObjCImplementation:
2506      return Sema::OCK_Implementation;
2507    case Decl::ObjCCategoryImpl:
2508      return Sema::OCK_CategoryImplementation;
2509
2510    default:
2511      return Sema::OCK_None;
2512  }
2513}
2514
2515// Note: For class/category implementations, allMethods is always null.
2516Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2517                       ArrayRef<DeclGroupPtrTy> allTUVars) {
2518  if (getObjCContainerKind() == Sema::OCK_None)
2519    return 0;
2520
2521  assert(AtEnd.isValid() && "Invalid location for '@end'");
2522
2523  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2524  Decl *ClassDecl = cast<Decl>(OCD);
2525
2526  bool isInterfaceDeclKind =
2527        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2528         || isa<ObjCProtocolDecl>(ClassDecl);
2529  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2530
2531  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2532  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2533  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2534
2535  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2536    ObjCMethodDecl *Method =
2537      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2538
2539    if (!Method) continue;  // Already issued a diagnostic.
2540    if (Method->isInstanceMethod()) {
2541      /// Check for instance method of the same name with incompatible types
2542      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2543      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2544                              : false;
2545      if ((isInterfaceDeclKind && PrevMethod && !match)
2546          || (checkIdenticalMethods && match)) {
2547          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2548            << Method->getDeclName();
2549          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2550        Method->setInvalidDecl();
2551      } else {
2552        if (PrevMethod) {
2553          Method->setAsRedeclaration(PrevMethod);
2554          if (!Context.getSourceManager().isInSystemHeader(
2555                 Method->getLocation()))
2556            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2557              << Method->getDeclName();
2558          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2559        }
2560        InsMap[Method->getSelector()] = Method;
2561        /// The following allows us to typecheck messages to "id".
2562        AddInstanceMethodToGlobalPool(Method);
2563      }
2564    } else {
2565      /// Check for class method of the same name with incompatible types
2566      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2567      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2568                              : false;
2569      if ((isInterfaceDeclKind && PrevMethod && !match)
2570          || (checkIdenticalMethods && match)) {
2571        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2572          << Method->getDeclName();
2573        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2574        Method->setInvalidDecl();
2575      } else {
2576        if (PrevMethod) {
2577          Method->setAsRedeclaration(PrevMethod);
2578          if (!Context.getSourceManager().isInSystemHeader(
2579                 Method->getLocation()))
2580            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2581              << Method->getDeclName();
2582          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2583        }
2584        ClsMap[Method->getSelector()] = Method;
2585        AddFactoryMethodToGlobalPool(Method);
2586      }
2587    }
2588  }
2589  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2590    // Nothing to do here.
2591  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2592    // Categories are used to extend the class by declaring new methods.
2593    // By the same token, they are also used to add new properties. No
2594    // need to compare the added property to those in the class.
2595
2596    if (C->IsClassExtension()) {
2597      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2598      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2599    }
2600  }
2601  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2602    if (CDecl->getIdentifier())
2603      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2604      // user-defined setter/getter. It also synthesizes setter/getter methods
2605      // and adds them to the DeclContext and global method pools.
2606      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2607                                            E = CDecl->prop_end();
2608           I != E; ++I)
2609        ProcessPropertyDecl(*I, CDecl);
2610    CDecl->setAtEndRange(AtEnd);
2611  }
2612  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2613    IC->setAtEndRange(AtEnd);
2614    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2615      // Any property declared in a class extension might have user
2616      // declared setter or getter in current class extension or one
2617      // of the other class extensions. Mark them as synthesized as
2618      // property will be synthesized when property with same name is
2619      // seen in the @implementation.
2620      for (ObjCInterfaceDecl::visible_extensions_iterator
2621             Ext = IDecl->visible_extensions_begin(),
2622             ExtEnd = IDecl->visible_extensions_end();
2623           Ext != ExtEnd; ++Ext) {
2624        for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2625             E = Ext->prop_end(); I != E; ++I) {
2626          ObjCPropertyDecl *Property = *I;
2627          // Skip over properties declared @dynamic
2628          if (const ObjCPropertyImplDecl *PIDecl
2629              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2630            if (PIDecl->getPropertyImplementation()
2631                  == ObjCPropertyImplDecl::Dynamic)
2632              continue;
2633
2634          for (ObjCInterfaceDecl::visible_extensions_iterator
2635                 Ext = IDecl->visible_extensions_begin(),
2636                 ExtEnd = IDecl->visible_extensions_end();
2637               Ext != ExtEnd; ++Ext) {
2638            if (ObjCMethodDecl *GetterMethod
2639                  = Ext->getInstanceMethod(Property->getGetterName()))
2640              GetterMethod->setPropertyAccessor(true);
2641            if (!Property->isReadOnly())
2642              if (ObjCMethodDecl *SetterMethod
2643                    = Ext->getInstanceMethod(Property->getSetterName()))
2644                SetterMethod->setPropertyAccessor(true);
2645          }
2646        }
2647      }
2648      ImplMethodsVsClassMethods(S, IC, IDecl);
2649      AtomicPropertySetterGetterRules(IC, IDecl);
2650      DiagnoseOwningPropertyGetterSynthesis(IC);
2651
2652      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2653      if (IDecl->getSuperClass() == NULL) {
2654        // This class has no superclass, so check that it has been marked with
2655        // __attribute((objc_root_class)).
2656        if (!HasRootClassAttr) {
2657          SourceLocation DeclLoc(IDecl->getLocation());
2658          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2659          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2660            << IDecl->getIdentifier();
2661          // See if NSObject is in the current scope, and if it is, suggest
2662          // adding " : NSObject " to the class declaration.
2663          NamedDecl *IF = LookupSingleName(TUScope,
2664                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2665                                           DeclLoc, LookupOrdinaryName);
2666          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2667          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2668            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2669              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2670          } else {
2671            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2672          }
2673        }
2674      } else if (HasRootClassAttr) {
2675        // Complain that only root classes may have this attribute.
2676        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2677      }
2678
2679      if (LangOpts.ObjCRuntime.isNonFragile()) {
2680        while (IDecl->getSuperClass()) {
2681          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2682          IDecl = IDecl->getSuperClass();
2683        }
2684      }
2685    }
2686    SetIvarInitializers(IC);
2687  } else if (ObjCCategoryImplDecl* CatImplClass =
2688                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2689    CatImplClass->setAtEndRange(AtEnd);
2690
2691    // Find category interface decl and then check that all methods declared
2692    // in this interface are implemented in the category @implementation.
2693    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2694      if (ObjCCategoryDecl *Cat
2695            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2696        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2697      }
2698    }
2699  }
2700  if (isInterfaceDeclKind) {
2701    // Reject invalid vardecls.
2702    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2703      DeclGroupRef DG = allTUVars[i].get();
2704      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2705        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2706          if (!VDecl->hasExternalStorage())
2707            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2708        }
2709    }
2710  }
2711  ActOnObjCContainerFinishDefinition();
2712
2713  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2714    DeclGroupRef DG = allTUVars[i].get();
2715    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2716      (*I)->setTopLevelDeclInObjCContainer();
2717    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2718  }
2719
2720  ActOnDocumentableDecl(ClassDecl);
2721  return ClassDecl;
2722}
2723
2724
2725/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2726/// objective-c's type qualifier from the parser version of the same info.
2727static Decl::ObjCDeclQualifier
2728CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2729  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2730}
2731
2732static inline
2733unsigned countAlignAttr(const AttrVec &A) {
2734  unsigned count=0;
2735  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2736    if ((*i)->getKind() == attr::Aligned)
2737      ++count;
2738  return count;
2739}
2740
2741static inline
2742bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2743                                        const AttrVec &A) {
2744  // If method is only declared in implementation (private method),
2745  // No need to issue any diagnostics on method definition with attributes.
2746  if (!IMD)
2747    return false;
2748
2749  // method declared in interface has no attribute.
2750  // But implementation has attributes. This is invalid.
2751  // Except when implementation has 'Align' attribute which is
2752  // immaterial to method declared in interface.
2753  if (!IMD->hasAttrs())
2754    return (A.size() > countAlignAttr(A));
2755
2756  const AttrVec &D = IMD->getAttrs();
2757
2758  unsigned countAlignOnImpl = countAlignAttr(A);
2759  if (!countAlignOnImpl && (A.size() != D.size()))
2760    return true;
2761  else if (countAlignOnImpl) {
2762    unsigned countAlignOnDecl = countAlignAttr(D);
2763    if (countAlignOnDecl && (A.size() != D.size()))
2764      return true;
2765    else if (!countAlignOnDecl &&
2766             ((A.size()-countAlignOnImpl) != D.size()))
2767      return true;
2768  }
2769
2770  // attributes on method declaration and definition must match exactly.
2771  // Note that we have at most a couple of attributes on methods, so this
2772  // n*n search is good enough.
2773  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2774    if ((*i)->getKind() == attr::Aligned)
2775      continue;
2776    bool match = false;
2777    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2778      if ((*i)->getKind() == (*i1)->getKind()) {
2779        match = true;
2780        break;
2781      }
2782    }
2783    if (!match)
2784      return true;
2785  }
2786
2787  return false;
2788}
2789
2790/// \brief Check whether the declared result type of the given Objective-C
2791/// method declaration is compatible with the method's class.
2792///
2793static Sema::ResultTypeCompatibilityKind
2794CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2795                                    ObjCInterfaceDecl *CurrentClass) {
2796  QualType ResultType = Method->getResultType();
2797
2798  // If an Objective-C method inherits its related result type, then its
2799  // declared result type must be compatible with its own class type. The
2800  // declared result type is compatible if:
2801  if (const ObjCObjectPointerType *ResultObjectType
2802                                = ResultType->getAs<ObjCObjectPointerType>()) {
2803    //   - it is id or qualified id, or
2804    if (ResultObjectType->isObjCIdType() ||
2805        ResultObjectType->isObjCQualifiedIdType())
2806      return Sema::RTC_Compatible;
2807
2808    if (CurrentClass) {
2809      if (ObjCInterfaceDecl *ResultClass
2810                                      = ResultObjectType->getInterfaceDecl()) {
2811        //   - it is the same as the method's class type, or
2812        if (declaresSameEntity(CurrentClass, ResultClass))
2813          return Sema::RTC_Compatible;
2814
2815        //   - it is a superclass of the method's class type
2816        if (ResultClass->isSuperClassOf(CurrentClass))
2817          return Sema::RTC_Compatible;
2818      }
2819    } else {
2820      // Any Objective-C pointer type might be acceptable for a protocol
2821      // method; we just don't know.
2822      return Sema::RTC_Unknown;
2823    }
2824  }
2825
2826  return Sema::RTC_Incompatible;
2827}
2828
2829namespace {
2830/// A helper class for searching for methods which a particular method
2831/// overrides.
2832class OverrideSearch {
2833public:
2834  Sema &S;
2835  ObjCMethodDecl *Method;
2836  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2837  bool Recursive;
2838
2839public:
2840  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2841    Selector selector = method->getSelector();
2842
2843    // Bypass this search if we've never seen an instance/class method
2844    // with this selector before.
2845    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2846    if (it == S.MethodPool.end()) {
2847      if (!S.getExternalSource()) return;
2848      S.ReadMethodPool(selector);
2849
2850      it = S.MethodPool.find(selector);
2851      if (it == S.MethodPool.end())
2852        return;
2853    }
2854    ObjCMethodList &list =
2855      method->isInstanceMethod() ? it->second.first : it->second.second;
2856    if (!list.Method) return;
2857
2858    ObjCContainerDecl *container
2859      = cast<ObjCContainerDecl>(method->getDeclContext());
2860
2861    // Prevent the search from reaching this container again.  This is
2862    // important with categories, which override methods from the
2863    // interface and each other.
2864    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2865      searchFromContainer(container);
2866      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2867        searchFromContainer(Interface);
2868    } else {
2869      searchFromContainer(container);
2870    }
2871  }
2872
2873  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2874  iterator begin() const { return Overridden.begin(); }
2875  iterator end() const { return Overridden.end(); }
2876
2877private:
2878  void searchFromContainer(ObjCContainerDecl *container) {
2879    if (container->isInvalidDecl()) return;
2880
2881    switch (container->getDeclKind()) {
2882#define OBJCCONTAINER(type, base) \
2883    case Decl::type: \
2884      searchFrom(cast<type##Decl>(container)); \
2885      break;
2886#define ABSTRACT_DECL(expansion)
2887#define DECL(type, base) \
2888    case Decl::type:
2889#include "clang/AST/DeclNodes.inc"
2890      llvm_unreachable("not an ObjC container!");
2891    }
2892  }
2893
2894  void searchFrom(ObjCProtocolDecl *protocol) {
2895    if (!protocol->hasDefinition())
2896      return;
2897
2898    // A method in a protocol declaration overrides declarations from
2899    // referenced ("parent") protocols.
2900    search(protocol->getReferencedProtocols());
2901  }
2902
2903  void searchFrom(ObjCCategoryDecl *category) {
2904    // A method in a category declaration overrides declarations from
2905    // the main class and from protocols the category references.
2906    // The main class is handled in the constructor.
2907    search(category->getReferencedProtocols());
2908  }
2909
2910  void searchFrom(ObjCCategoryImplDecl *impl) {
2911    // A method in a category definition that has a category
2912    // declaration overrides declarations from the category
2913    // declaration.
2914    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2915      search(category);
2916      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2917        search(Interface);
2918
2919    // Otherwise it overrides declarations from the class.
2920    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2921      search(Interface);
2922    }
2923  }
2924
2925  void searchFrom(ObjCInterfaceDecl *iface) {
2926    // A method in a class declaration overrides declarations from
2927    if (!iface->hasDefinition())
2928      return;
2929
2930    //   - categories,
2931    for (ObjCInterfaceDecl::known_categories_iterator
2932           cat = iface->known_categories_begin(),
2933           catEnd = iface->known_categories_end();
2934         cat != catEnd; ++cat) {
2935      search(*cat);
2936    }
2937
2938    //   - the super class, and
2939    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2940      search(super);
2941
2942    //   - any referenced protocols.
2943    search(iface->getReferencedProtocols());
2944  }
2945
2946  void searchFrom(ObjCImplementationDecl *impl) {
2947    // A method in a class implementation overrides declarations from
2948    // the class interface.
2949    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2950      search(Interface);
2951  }
2952
2953
2954  void search(const ObjCProtocolList &protocols) {
2955    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2956         i != e; ++i)
2957      search(*i);
2958  }
2959
2960  void search(ObjCContainerDecl *container) {
2961    // Check for a method in this container which matches this selector.
2962    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2963                                                Method->isInstanceMethod(),
2964                                                /*AllowHidden=*/true);
2965
2966    // If we find one, record it and bail out.
2967    if (meth) {
2968      Overridden.insert(meth);
2969      return;
2970    }
2971
2972    // Otherwise, search for methods that a hypothetical method here
2973    // would have overridden.
2974
2975    // Note that we're now in a recursive case.
2976    Recursive = true;
2977
2978    searchFromContainer(container);
2979  }
2980};
2981}
2982
2983void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2984                                    ObjCInterfaceDecl *CurrentClass,
2985                                    ResultTypeCompatibilityKind RTC) {
2986  // Search for overridden methods and merge information down from them.
2987  OverrideSearch overrides(*this, ObjCMethod);
2988  // Keep track if the method overrides any method in the class's base classes,
2989  // its protocols, or its categories' protocols; we will keep that info
2990  // in the ObjCMethodDecl.
2991  // For this info, a method in an implementation is not considered as
2992  // overriding the same method in the interface or its categories.
2993  bool hasOverriddenMethodsInBaseOrProtocol = false;
2994  for (OverrideSearch::iterator
2995         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2996    ObjCMethodDecl *overridden = *i;
2997
2998    if (!hasOverriddenMethodsInBaseOrProtocol) {
2999      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
3000          CurrentClass != overridden->getClassInterface() ||
3001          overridden->isOverriding()) {
3002        hasOverriddenMethodsInBaseOrProtocol = true;
3003
3004      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
3005        // OverrideSearch will return as "overridden" the same method in the
3006        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
3007        // check whether a category of a base class introduced a method with the
3008        // same selector, after the interface method declaration.
3009        // To avoid unnecessary lookups in the majority of cases, we use the
3010        // extra info bits in GlobalMethodPool to check whether there were any
3011        // category methods with this selector.
3012        GlobalMethodPool::iterator It =
3013            MethodPool.find(ObjCMethod->getSelector());
3014        if (It != MethodPool.end()) {
3015          ObjCMethodList &List =
3016            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
3017          unsigned CategCount = List.getBits();
3018          if (CategCount > 0) {
3019            // If the method is in a category we'll do lookup if there were at
3020            // least 2 category methods recorded, otherwise only one will do.
3021            if (CategCount > 1 ||
3022                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3023              OverrideSearch overrides(*this, overridden);
3024              for (OverrideSearch::iterator
3025                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3026                ObjCMethodDecl *SuperOverridden = *OI;
3027                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3028                    CurrentClass != SuperOverridden->getClassInterface()) {
3029                  hasOverriddenMethodsInBaseOrProtocol = true;
3030                  overridden->setOverriding(true);
3031                  break;
3032                }
3033              }
3034            }
3035          }
3036        }
3037      }
3038    }
3039
3040    // Propagate down the 'related result type' bit from overridden methods.
3041    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3042      ObjCMethod->SetRelatedResultType();
3043
3044    // Then merge the declarations.
3045    mergeObjCMethodDecls(ObjCMethod, overridden);
3046
3047    if (ObjCMethod->isImplicit() && overridden->isImplicit())
3048      continue; // Conflicting properties are detected elsewhere.
3049
3050    // Check for overriding methods
3051    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3052        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3053      CheckConflictingOverridingMethod(ObjCMethod, overridden,
3054              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3055
3056    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3057        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3058        !overridden->isImplicit() /* not meant for properties */) {
3059      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3060                                          E = ObjCMethod->param_end();
3061      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3062                                     PrevE = overridden->param_end();
3063      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3064        assert(PrevI != overridden->param_end() && "Param mismatch");
3065        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3066        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3067        // If type of argument of method in this class does not match its
3068        // respective argument type in the super class method, issue warning;
3069        if (!Context.typesAreCompatible(T1, T2)) {
3070          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3071            << T1 << T2;
3072          Diag(overridden->getLocation(), diag::note_previous_declaration);
3073          break;
3074        }
3075      }
3076    }
3077  }
3078
3079  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3080}
3081
3082Decl *Sema::ActOnMethodDeclaration(
3083    Scope *S,
3084    SourceLocation MethodLoc, SourceLocation EndLoc,
3085    tok::TokenKind MethodType,
3086    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3087    ArrayRef<SourceLocation> SelectorLocs,
3088    Selector Sel,
3089    // optional arguments. The number of types/arguments is obtained
3090    // from the Sel.getNumArgs().
3091    ObjCArgInfo *ArgInfo,
3092    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3093    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3094    bool isVariadic, bool MethodDefinition) {
3095  // Make sure we can establish a context for the method.
3096  if (!CurContext->isObjCContainer()) {
3097    Diag(MethodLoc, diag::error_missing_method_context);
3098    return 0;
3099  }
3100  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3101  Decl *ClassDecl = cast<Decl>(OCD);
3102  QualType resultDeclType;
3103
3104  bool HasRelatedResultType = false;
3105  TypeSourceInfo *ResultTInfo = 0;
3106  if (ReturnType) {
3107    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
3108
3109    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3110      return 0;
3111
3112    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3113  } else { // get the type for "id".
3114    resultDeclType = Context.getObjCIdType();
3115    Diag(MethodLoc, diag::warn_missing_method_return_type)
3116      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3117  }
3118
3119  ObjCMethodDecl* ObjCMethod =
3120    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
3121                           resultDeclType,
3122                           ResultTInfo,
3123                           CurContext,
3124                           MethodType == tok::minus, isVariadic,
3125                           /*isPropertyAccessor=*/false,
3126                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3127                           MethodDeclKind == tok::objc_optional
3128                             ? ObjCMethodDecl::Optional
3129                             : ObjCMethodDecl::Required,
3130                           HasRelatedResultType);
3131
3132  SmallVector<ParmVarDecl*, 16> Params;
3133
3134  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3135    QualType ArgType;
3136    TypeSourceInfo *DI;
3137
3138    if (!ArgInfo[i].Type) {
3139      ArgType = Context.getObjCIdType();
3140      DI = 0;
3141    } else {
3142      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3143    }
3144
3145    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3146                   LookupOrdinaryName, ForRedeclaration);
3147    LookupName(R, S);
3148    if (R.isSingleResult()) {
3149      NamedDecl *PrevDecl = R.getFoundDecl();
3150      if (S->isDeclScope(PrevDecl)) {
3151        Diag(ArgInfo[i].NameLoc,
3152             (MethodDefinition ? diag::warn_method_param_redefinition
3153                               : diag::warn_method_param_declaration))
3154          << ArgInfo[i].Name;
3155        Diag(PrevDecl->getLocation(),
3156             diag::note_previous_declaration);
3157      }
3158    }
3159
3160    SourceLocation StartLoc = DI
3161      ? DI->getTypeLoc().getBeginLoc()
3162      : ArgInfo[i].NameLoc;
3163
3164    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3165                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
3166                                        ArgType, DI, SC_None);
3167
3168    Param->setObjCMethodScopeInfo(i);
3169
3170    Param->setObjCDeclQualifier(
3171      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3172
3173    // Apply the attributes to the parameter.
3174    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3175
3176    if (Param->hasAttr<BlocksAttr>()) {
3177      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3178      Param->setInvalidDecl();
3179    }
3180    S->AddDecl(Param);
3181    IdResolver.AddDecl(Param);
3182
3183    Params.push_back(Param);
3184  }
3185
3186  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3187    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3188    QualType ArgType = Param->getType();
3189    if (ArgType.isNull())
3190      ArgType = Context.getObjCIdType();
3191    else
3192      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3193      ArgType = Context.getAdjustedParameterType(ArgType);
3194
3195    Param->setDeclContext(ObjCMethod);
3196    Params.push_back(Param);
3197  }
3198
3199  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3200  ObjCMethod->setObjCDeclQualifier(
3201    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3202
3203  if (AttrList)
3204    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3205
3206  // Add the method now.
3207  const ObjCMethodDecl *PrevMethod = 0;
3208  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3209    if (MethodType == tok::minus) {
3210      PrevMethod = ImpDecl->getInstanceMethod(Sel);
3211      ImpDecl->addInstanceMethod(ObjCMethod);
3212    } else {
3213      PrevMethod = ImpDecl->getClassMethod(Sel);
3214      ImpDecl->addClassMethod(ObjCMethod);
3215    }
3216
3217    ObjCMethodDecl *IMD = 0;
3218    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3219      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3220                                ObjCMethod->isInstanceMethod());
3221    if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3222        !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3223      // merge the attribute into implementation.
3224      ObjCMethod->addAttr(
3225        new (Context) ObjCRequiresSuperAttr(ObjCMethod->getLocation(), Context));
3226    }
3227    if (ObjCMethod->hasAttrs() &&
3228        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3229      SourceLocation MethodLoc = IMD->getLocation();
3230      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3231        Diag(EndLoc, diag::warn_attribute_method_def);
3232        Diag(MethodLoc, diag::note_method_declared_at)
3233          << ObjCMethod->getDeclName();
3234      }
3235    }
3236  } else {
3237    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3238  }
3239
3240  if (PrevMethod) {
3241    // You can never have two method definitions with the same name.
3242    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3243      << ObjCMethod->getDeclName();
3244    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3245    ObjCMethod->setInvalidDecl();
3246    return ObjCMethod;
3247  }
3248
3249  // If this Objective-C method does not have a related result type, but we
3250  // are allowed to infer related result types, try to do so based on the
3251  // method family.
3252  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3253  if (!CurrentClass) {
3254    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3255      CurrentClass = Cat->getClassInterface();
3256    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3257      CurrentClass = Impl->getClassInterface();
3258    else if (ObjCCategoryImplDecl *CatImpl
3259                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3260      CurrentClass = CatImpl->getClassInterface();
3261  }
3262
3263  ResultTypeCompatibilityKind RTC
3264    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3265
3266  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3267
3268  bool ARCError = false;
3269  if (getLangOpts().ObjCAutoRefCount)
3270    ARCError = CheckARCMethodDecl(ObjCMethod);
3271
3272  // Infer the related result type when possible.
3273  if (!ARCError && RTC == Sema::RTC_Compatible &&
3274      !ObjCMethod->hasRelatedResultType() &&
3275      LangOpts.ObjCInferRelatedResultType) {
3276    bool InferRelatedResultType = false;
3277    switch (ObjCMethod->getMethodFamily()) {
3278    case OMF_None:
3279    case OMF_copy:
3280    case OMF_dealloc:
3281    case OMF_finalize:
3282    case OMF_mutableCopy:
3283    case OMF_release:
3284    case OMF_retainCount:
3285    case OMF_performSelector:
3286      break;
3287
3288    case OMF_alloc:
3289    case OMF_new:
3290      InferRelatedResultType = ObjCMethod->isClassMethod();
3291      break;
3292
3293    case OMF_init:
3294    case OMF_autorelease:
3295    case OMF_retain:
3296    case OMF_self:
3297      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3298      break;
3299    }
3300
3301    if (InferRelatedResultType)
3302      ObjCMethod->SetRelatedResultType();
3303  }
3304
3305  ActOnDocumentableDecl(ObjCMethod);
3306
3307  return ObjCMethod;
3308}
3309
3310bool Sema::CheckObjCDeclScope(Decl *D) {
3311  // Following is also an error. But it is caused by a missing @end
3312  // and diagnostic is issued elsewhere.
3313  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3314    return false;
3315
3316  // If we switched context to translation unit while we are still lexically in
3317  // an objc container, it means the parser missed emitting an error.
3318  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3319    return false;
3320
3321  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3322  D->setInvalidDecl();
3323
3324  return true;
3325}
3326
3327/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3328/// instance variables of ClassName into Decls.
3329void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3330                     IdentifierInfo *ClassName,
3331                     SmallVectorImpl<Decl*> &Decls) {
3332  // Check that ClassName is a valid class
3333  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3334  if (!Class) {
3335    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3336    return;
3337  }
3338  if (LangOpts.ObjCRuntime.isNonFragile()) {
3339    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3340    return;
3341  }
3342
3343  // Collect the instance variables
3344  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3345  Context.DeepCollectObjCIvars(Class, true, Ivars);
3346  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3347  for (unsigned i = 0; i < Ivars.size(); i++) {
3348    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3349    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3350    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3351                                           /*FIXME: StartL=*/ID->getLocation(),
3352                                           ID->getLocation(),
3353                                           ID->getIdentifier(), ID->getType(),
3354                                           ID->getBitWidth());
3355    Decls.push_back(FD);
3356  }
3357
3358  // Introduce all of these fields into the appropriate scope.
3359  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3360       D != Decls.end(); ++D) {
3361    FieldDecl *FD = cast<FieldDecl>(*D);
3362    if (getLangOpts().CPlusPlus)
3363      PushOnScopeChains(cast<FieldDecl>(FD), S);
3364    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3365      Record->addDecl(FD);
3366  }
3367}
3368
3369/// \brief Build a type-check a new Objective-C exception variable declaration.
3370VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3371                                      SourceLocation StartLoc,
3372                                      SourceLocation IdLoc,
3373                                      IdentifierInfo *Id,
3374                                      bool Invalid) {
3375  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3376  // duration shall not be qualified by an address-space qualifier."
3377  // Since all parameters have automatic store duration, they can not have
3378  // an address space.
3379  if (T.getAddressSpace() != 0) {
3380    Diag(IdLoc, diag::err_arg_with_address_space);
3381    Invalid = true;
3382  }
3383
3384  // An @catch parameter must be an unqualified object pointer type;
3385  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3386  if (Invalid) {
3387    // Don't do any further checking.
3388  } else if (T->isDependentType()) {
3389    // Okay: we don't know what this type will instantiate to.
3390  } else if (!T->isObjCObjectPointerType()) {
3391    Invalid = true;
3392    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3393  } else if (T->isObjCQualifiedIdType()) {
3394    Invalid = true;
3395    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3396  }
3397
3398  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3399                                 T, TInfo, SC_None);
3400  New->setExceptionVariable(true);
3401
3402  // In ARC, infer 'retaining' for variables of retainable type.
3403  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3404    Invalid = true;
3405
3406  if (Invalid)
3407    New->setInvalidDecl();
3408  return New;
3409}
3410
3411Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3412  const DeclSpec &DS = D.getDeclSpec();
3413
3414  // We allow the "register" storage class on exception variables because
3415  // GCC did, but we drop it completely. Any other storage class is an error.
3416  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3417    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3418      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3419  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3420    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3421      << DeclSpec::getSpecifierName(SCS);
3422  }
3423  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3424    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3425         diag::err_invalid_thread)
3426     << DeclSpec::getSpecifierName(TSCS);
3427  D.getMutableDeclSpec().ClearStorageClassSpecs();
3428
3429  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3430
3431  // Check that there are no default arguments inside the type of this
3432  // exception object (C++ only).
3433  if (getLangOpts().CPlusPlus)
3434    CheckExtraCXXDefaultArguments(D);
3435
3436  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3437  QualType ExceptionType = TInfo->getType();
3438
3439  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3440                                        D.getSourceRange().getBegin(),
3441                                        D.getIdentifierLoc(),
3442                                        D.getIdentifier(),
3443                                        D.isInvalidType());
3444
3445  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3446  if (D.getCXXScopeSpec().isSet()) {
3447    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3448      << D.getCXXScopeSpec().getRange();
3449    New->setInvalidDecl();
3450  }
3451
3452  // Add the parameter declaration into this scope.
3453  S->AddDecl(New);
3454  if (D.getIdentifier())
3455    IdResolver.AddDecl(New);
3456
3457  ProcessDeclAttributes(S, New, D);
3458
3459  if (New->hasAttr<BlocksAttr>())
3460    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3461  return New;
3462}
3463
3464/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3465/// initialization.
3466void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3467                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3468  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3469       Iv= Iv->getNextIvar()) {
3470    QualType QT = Context.getBaseElementType(Iv->getType());
3471    if (QT->isRecordType())
3472      Ivars.push_back(Iv);
3473  }
3474}
3475
3476void Sema::DiagnoseUseOfUnimplementedSelectors() {
3477  // Load referenced selectors from the external source.
3478  if (ExternalSource) {
3479    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3480    ExternalSource->ReadReferencedSelectors(Sels);
3481    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3482      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3483  }
3484
3485  DiagnoseMismatchedMethodsInGlobalPool();
3486
3487  // Warning will be issued only when selector table is
3488  // generated (which means there is at lease one implementation
3489  // in the TU). This is to match gcc's behavior.
3490  if (ReferencedSelectors.empty() ||
3491      !Context.AnyObjCImplementation())
3492    return;
3493  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3494        ReferencedSelectors.begin(),
3495       E = ReferencedSelectors.end(); S != E; ++S) {
3496    Selector Sel = (*S).first;
3497    if (!LookupImplementedMethodInGlobalPool(Sel))
3498      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3499  }
3500  return;
3501}
3502
3503ObjCIvarDecl *
3504Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
3505                                     const ObjCPropertyDecl *&PDecl) const {
3506
3507  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
3508  if (!IDecl)
3509    return 0;
3510  Method = IDecl->lookupMethod(Method->getSelector(), true);
3511  if (!Method || !Method->isPropertyAccessor())
3512    return 0;
3513  if ((PDecl = Method->findPropertyDecl())) {
3514    if (!PDecl->getDeclContext())
3515      return 0;
3516    // Make sure property belongs to accessor's class and not to
3517    // one of its super classes.
3518    if (const ObjCInterfaceDecl *CID =
3519        dyn_cast<ObjCInterfaceDecl>(PDecl->getDeclContext()))
3520      if (CID != IDecl)
3521        return 0;
3522    return PDecl->getPropertyIvarDecl();
3523  }
3524  return 0;
3525}
3526
3527void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S) {
3528  if (S->hasUnrecoverableErrorOccurred() || !S->isInObjcMethodScope())
3529    return;
3530
3531  const ObjCMethodDecl *CurMethod = getCurMethodDecl();
3532  if (!CurMethod)
3533    return;
3534  const ObjCPropertyDecl *PDecl;
3535  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
3536  if (IV && !IV->getBackingIvarReferencedInAccessor()) {
3537    Diag(getCurMethodDecl()->getLocation(), diag::warn_unused_property_backing_ivar)
3538    << IV->getDeclName();
3539    Diag(PDecl->getLocation(), diag::note_property_declare);
3540  }
3541}
3542