LiteralSupport.cpp revision 263508
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Basic/CharInfo.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/Lex/LexDiagnostic.h"
19#include "clang/Lex/Preprocessor.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/ConvertUTF.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27  switch (kind) {
28  default: llvm_unreachable("Unknown token type!");
29  case tok::char_constant:
30  case tok::string_literal:
31  case tok::utf8_string_literal:
32    return Target.getCharWidth();
33  case tok::wide_char_constant:
34  case tok::wide_string_literal:
35    return Target.getWCharWidth();
36  case tok::utf16_char_constant:
37  case tok::utf16_string_literal:
38    return Target.getChar16Width();
39  case tok::utf32_char_constant:
40  case tok::utf32_string_literal:
41    return Target.getChar32Width();
42  }
43}
44
45static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
46                                           FullSourceLoc TokLoc,
47                                           const char *TokBegin,
48                                           const char *TokRangeBegin,
49                                           const char *TokRangeEnd) {
50  SourceLocation Begin =
51    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
52                                   TokLoc.getManager(), Features);
53  SourceLocation End =
54    Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
55                                   TokLoc.getManager(), Features);
56  return CharSourceRange::getCharRange(Begin, End);
57}
58
59/// \brief Produce a diagnostic highlighting some portion of a literal.
60///
61/// Emits the diagnostic \p DiagID, highlighting the range of characters from
62/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
63/// a substring of a spelling buffer for the token beginning at \p TokBegin.
64static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
65                              const LangOptions &Features, FullSourceLoc TokLoc,
66                              const char *TokBegin, const char *TokRangeBegin,
67                              const char *TokRangeEnd, unsigned DiagID) {
68  SourceLocation Begin =
69    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
70                                   TokLoc.getManager(), Features);
71  return Diags->Report(Begin, DiagID) <<
72    MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
73}
74
75/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
76/// either a character or a string literal.
77static unsigned ProcessCharEscape(const char *ThisTokBegin,
78                                  const char *&ThisTokBuf,
79                                  const char *ThisTokEnd, bool &HadError,
80                                  FullSourceLoc Loc, unsigned CharWidth,
81                                  DiagnosticsEngine *Diags,
82                                  const LangOptions &Features) {
83  const char *EscapeBegin = ThisTokBuf;
84
85  // Skip the '\' char.
86  ++ThisTokBuf;
87
88  // We know that this character can't be off the end of the buffer, because
89  // that would have been \", which would not have been the end of string.
90  unsigned ResultChar = *ThisTokBuf++;
91  switch (ResultChar) {
92  // These map to themselves.
93  case '\\': case '\'': case '"': case '?': break;
94
95    // These have fixed mappings.
96  case 'a':
97    // TODO: K&R: the meaning of '\\a' is different in traditional C
98    ResultChar = 7;
99    break;
100  case 'b':
101    ResultChar = 8;
102    break;
103  case 'e':
104    if (Diags)
105      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
106           diag::ext_nonstandard_escape) << "e";
107    ResultChar = 27;
108    break;
109  case 'E':
110    if (Diags)
111      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
112           diag::ext_nonstandard_escape) << "E";
113    ResultChar = 27;
114    break;
115  case 'f':
116    ResultChar = 12;
117    break;
118  case 'n':
119    ResultChar = 10;
120    break;
121  case 'r':
122    ResultChar = 13;
123    break;
124  case 't':
125    ResultChar = 9;
126    break;
127  case 'v':
128    ResultChar = 11;
129    break;
130  case 'x': { // Hex escape.
131    ResultChar = 0;
132    if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
133      if (Diags)
134        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
135             diag::err_hex_escape_no_digits) << "x";
136      HadError = 1;
137      break;
138    }
139
140    // Hex escapes are a maximal series of hex digits.
141    bool Overflow = false;
142    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
143      int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
144      if (CharVal == -1) break;
145      // About to shift out a digit?
146      Overflow |= (ResultChar & 0xF0000000) ? true : false;
147      ResultChar <<= 4;
148      ResultChar |= CharVal;
149    }
150
151    // See if any bits will be truncated when evaluated as a character.
152    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
153      Overflow = true;
154      ResultChar &= ~0U >> (32-CharWidth);
155    }
156
157    // Check for overflow.
158    if (Overflow && Diags)   // Too many digits to fit in
159      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160           diag::err_hex_escape_too_large);
161    break;
162  }
163  case '0': case '1': case '2': case '3':
164  case '4': case '5': case '6': case '7': {
165    // Octal escapes.
166    --ThisTokBuf;
167    ResultChar = 0;
168
169    // Octal escapes are a series of octal digits with maximum length 3.
170    // "\0123" is a two digit sequence equal to "\012" "3".
171    unsigned NumDigits = 0;
172    do {
173      ResultChar <<= 3;
174      ResultChar |= *ThisTokBuf++ - '0';
175      ++NumDigits;
176    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
177             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
178
179    // Check for overflow.  Reject '\777', but not L'\777'.
180    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
181      if (Diags)
182        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
183             diag::err_octal_escape_too_large);
184      ResultChar &= ~0U >> (32-CharWidth);
185    }
186    break;
187  }
188
189    // Otherwise, these are not valid escapes.
190  case '(': case '{': case '[': case '%':
191    // GCC accepts these as extensions.  We warn about them as such though.
192    if (Diags)
193      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
194           diag::ext_nonstandard_escape)
195        << std::string(1, ResultChar);
196    break;
197  default:
198    if (Diags == 0)
199      break;
200
201    if (isPrintable(ResultChar))
202      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
203           diag::ext_unknown_escape)
204        << std::string(1, ResultChar);
205    else
206      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
207           diag::ext_unknown_escape)
208        << "x" + llvm::utohexstr(ResultChar);
209    break;
210  }
211
212  return ResultChar;
213}
214
215/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
216/// return the UTF32.
217static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
218                             const char *ThisTokEnd,
219                             uint32_t &UcnVal, unsigned short &UcnLen,
220                             FullSourceLoc Loc, DiagnosticsEngine *Diags,
221                             const LangOptions &Features,
222                             bool in_char_string_literal = false) {
223  const char *UcnBegin = ThisTokBuf;
224
225  // Skip the '\u' char's.
226  ThisTokBuf += 2;
227
228  if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
229    if (Diags)
230      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
231           diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
232    return false;
233  }
234  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
235  unsigned short UcnLenSave = UcnLen;
236  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
237    int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
238    if (CharVal == -1) break;
239    UcnVal <<= 4;
240    UcnVal |= CharVal;
241  }
242  // If we didn't consume the proper number of digits, there is a problem.
243  if (UcnLenSave) {
244    if (Diags)
245      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
246           diag::err_ucn_escape_incomplete);
247    return false;
248  }
249
250  // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
251  if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
252      UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
253    if (Diags)
254      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
255           diag::err_ucn_escape_invalid);
256    return false;
257  }
258
259  // C++11 allows UCNs that refer to control characters and basic source
260  // characters inside character and string literals
261  if (UcnVal < 0xa0 &&
262      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
263    bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
264    if (Diags) {
265      char BasicSCSChar = UcnVal;
266      if (UcnVal >= 0x20 && UcnVal < 0x7f)
267        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
268             IsError ? diag::err_ucn_escape_basic_scs :
269                       diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
270            << StringRef(&BasicSCSChar, 1);
271      else
272        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
273             IsError ? diag::err_ucn_control_character :
274                       diag::warn_cxx98_compat_literal_ucn_control_character);
275    }
276    if (IsError)
277      return false;
278  }
279
280  if (!Features.CPlusPlus && !Features.C99 && Diags)
281    Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
282         diag::warn_ucn_not_valid_in_c89_literal);
283
284  return true;
285}
286
287/// MeasureUCNEscape - Determine the number of bytes within the resulting string
288/// which this UCN will occupy.
289static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
290                            const char *ThisTokEnd, unsigned CharByteWidth,
291                            const LangOptions &Features, bool &HadError) {
292  // UTF-32: 4 bytes per escape.
293  if (CharByteWidth == 4)
294    return 4;
295
296  uint32_t UcnVal = 0;
297  unsigned short UcnLen = 0;
298  FullSourceLoc Loc;
299
300  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
301                        UcnLen, Loc, 0, Features, true)) {
302    HadError = true;
303    return 0;
304  }
305
306  // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
307  if (CharByteWidth == 2)
308    return UcnVal <= 0xFFFF ? 2 : 4;
309
310  // UTF-8.
311  if (UcnVal < 0x80)
312    return 1;
313  if (UcnVal < 0x800)
314    return 2;
315  if (UcnVal < 0x10000)
316    return 3;
317  return 4;
318}
319
320/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
321/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
322/// StringLiteralParser. When we decide to implement UCN's for identifiers,
323/// we will likely rework our support for UCN's.
324static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
325                            const char *ThisTokEnd,
326                            char *&ResultBuf, bool &HadError,
327                            FullSourceLoc Loc, unsigned CharByteWidth,
328                            DiagnosticsEngine *Diags,
329                            const LangOptions &Features) {
330  typedef uint32_t UTF32;
331  UTF32 UcnVal = 0;
332  unsigned short UcnLen = 0;
333  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
334                        Loc, Diags, Features, true)) {
335    HadError = true;
336    return;
337  }
338
339  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
340         "only character widths of 1, 2, or 4 bytes supported");
341
342  (void)UcnLen;
343  assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
344
345  if (CharByteWidth == 4) {
346    // FIXME: Make the type of the result buffer correct instead of
347    // using reinterpret_cast.
348    UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
349    *ResultPtr = UcnVal;
350    ResultBuf += 4;
351    return;
352  }
353
354  if (CharByteWidth == 2) {
355    // FIXME: Make the type of the result buffer correct instead of
356    // using reinterpret_cast.
357    UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
358
359    if (UcnVal <= (UTF32)0xFFFF) {
360      *ResultPtr = UcnVal;
361      ResultBuf += 2;
362      return;
363    }
364
365    // Convert to UTF16.
366    UcnVal -= 0x10000;
367    *ResultPtr     = 0xD800 + (UcnVal >> 10);
368    *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
369    ResultBuf += 4;
370    return;
371  }
372
373  assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
374
375  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
376  // The conversion below was inspired by:
377  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
378  // First, we determine how many bytes the result will require.
379  typedef uint8_t UTF8;
380
381  unsigned short bytesToWrite = 0;
382  if (UcnVal < (UTF32)0x80)
383    bytesToWrite = 1;
384  else if (UcnVal < (UTF32)0x800)
385    bytesToWrite = 2;
386  else if (UcnVal < (UTF32)0x10000)
387    bytesToWrite = 3;
388  else
389    bytesToWrite = 4;
390
391  const unsigned byteMask = 0xBF;
392  const unsigned byteMark = 0x80;
393
394  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
395  // into the first byte, depending on how many bytes follow.
396  static const UTF8 firstByteMark[5] = {
397    0x00, 0x00, 0xC0, 0xE0, 0xF0
398  };
399  // Finally, we write the bytes into ResultBuf.
400  ResultBuf += bytesToWrite;
401  switch (bytesToWrite) { // note: everything falls through.
402  case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
403  case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
404  case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
405  case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
406  }
407  // Update the buffer.
408  ResultBuf += bytesToWrite;
409}
410
411
412///       integer-constant: [C99 6.4.4.1]
413///         decimal-constant integer-suffix
414///         octal-constant integer-suffix
415///         hexadecimal-constant integer-suffix
416///         binary-literal integer-suffix [GNU, C++1y]
417///       user-defined-integer-literal: [C++11 lex.ext]
418///         decimal-literal ud-suffix
419///         octal-literal ud-suffix
420///         hexadecimal-literal ud-suffix
421///         binary-literal ud-suffix [GNU, C++1y]
422///       decimal-constant:
423///         nonzero-digit
424///         decimal-constant digit
425///       octal-constant:
426///         0
427///         octal-constant octal-digit
428///       hexadecimal-constant:
429///         hexadecimal-prefix hexadecimal-digit
430///         hexadecimal-constant hexadecimal-digit
431///       hexadecimal-prefix: one of
432///         0x 0X
433///       binary-literal:
434///         0b binary-digit
435///         0B binary-digit
436///         binary-literal binary-digit
437///       integer-suffix:
438///         unsigned-suffix [long-suffix]
439///         unsigned-suffix [long-long-suffix]
440///         long-suffix [unsigned-suffix]
441///         long-long-suffix [unsigned-sufix]
442///       nonzero-digit:
443///         1 2 3 4 5 6 7 8 9
444///       octal-digit:
445///         0 1 2 3 4 5 6 7
446///       hexadecimal-digit:
447///         0 1 2 3 4 5 6 7 8 9
448///         a b c d e f
449///         A B C D E F
450///       binary-digit:
451///         0
452///         1
453///       unsigned-suffix: one of
454///         u U
455///       long-suffix: one of
456///         l L
457///       long-long-suffix: one of
458///         ll LL
459///
460///       floating-constant: [C99 6.4.4.2]
461///         TODO: add rules...
462///
463NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
464                                           SourceLocation TokLoc,
465                                           Preprocessor &PP)
466  : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
467
468  // This routine assumes that the range begin/end matches the regex for integer
469  // and FP constants (specifically, the 'pp-number' regex), and assumes that
470  // the byte at "*end" is both valid and not part of the regex.  Because of
471  // this, it doesn't have to check for 'overscan' in various places.
472  assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
473
474  s = DigitsBegin = ThisTokBegin;
475  saw_exponent = false;
476  saw_period = false;
477  saw_ud_suffix = false;
478  isLong = false;
479  isUnsigned = false;
480  isLongLong = false;
481  isFloat = false;
482  isImaginary = false;
483  isMicrosoftInteger = false;
484  hadError = false;
485
486  if (*s == '0') { // parse radix
487    ParseNumberStartingWithZero(TokLoc);
488    if (hadError)
489      return;
490  } else { // the first digit is non-zero
491    radix = 10;
492    s = SkipDigits(s);
493    if (s == ThisTokEnd) {
494      // Done.
495    } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
496      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
497              diag::err_invalid_decimal_digit) << StringRef(s, 1);
498      hadError = true;
499      return;
500    } else if (*s == '.') {
501      checkSeparator(TokLoc, s, CSK_AfterDigits);
502      s++;
503      saw_period = true;
504      checkSeparator(TokLoc, s, CSK_BeforeDigits);
505      s = SkipDigits(s);
506    }
507    if ((*s == 'e' || *s == 'E')) { // exponent
508      checkSeparator(TokLoc, s, CSK_AfterDigits);
509      const char *Exponent = s;
510      s++;
511      saw_exponent = true;
512      if (*s == '+' || *s == '-')  s++; // sign
513      checkSeparator(TokLoc, s, CSK_BeforeDigits);
514      const char *first_non_digit = SkipDigits(s);
515      if (first_non_digit != s) {
516        s = first_non_digit;
517      } else {
518        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
519                diag::err_exponent_has_no_digits);
520        hadError = true;
521        return;
522      }
523    }
524  }
525
526  SuffixBegin = s;
527  checkSeparator(TokLoc, s, CSK_AfterDigits);
528
529  // Parse the suffix.  At this point we can classify whether we have an FP or
530  // integer constant.
531  bool isFPConstant = isFloatingLiteral();
532  const char *ImaginarySuffixLoc = 0;
533
534  // Loop over all of the characters of the suffix.  If we see something bad,
535  // we break out of the loop.
536  for (; s != ThisTokEnd; ++s) {
537    switch (*s) {
538    case 'f':      // FP Suffix for "float"
539    case 'F':
540      if (!isFPConstant) break;  // Error for integer constant.
541      if (isFloat || isLong) break; // FF, LF invalid.
542      isFloat = true;
543      continue;  // Success.
544    case 'u':
545    case 'U':
546      if (isFPConstant) break;  // Error for floating constant.
547      if (isUnsigned) break;    // Cannot be repeated.
548      isUnsigned = true;
549      continue;  // Success.
550    case 'l':
551    case 'L':
552      if (isLong || isLongLong) break;  // Cannot be repeated.
553      if (isFloat) break;               // LF invalid.
554
555      // Check for long long.  The L's need to be adjacent and the same case.
556      if (s+1 != ThisTokEnd && s[1] == s[0]) {
557        if (isFPConstant) break;        // long long invalid for floats.
558        isLongLong = true;
559        ++s;  // Eat both of them.
560      } else {
561        isLong = true;
562      }
563      continue;  // Success.
564    case 'i':
565    case 'I':
566      if (PP.getLangOpts().MicrosoftExt) {
567        if (isFPConstant || isLong || isLongLong) break;
568
569        // Allow i8, i16, i32, i64, and i128.
570        if (s + 1 != ThisTokEnd) {
571          switch (s[1]) {
572            case '8':
573              s += 2; // i8 suffix
574              isMicrosoftInteger = true;
575              break;
576            case '1':
577              if (s + 2 == ThisTokEnd) break;
578              if (s[2] == '6') {
579                s += 3; // i16 suffix
580                isMicrosoftInteger = true;
581              }
582              else if (s[2] == '2') {
583                if (s + 3 == ThisTokEnd) break;
584                if (s[3] == '8') {
585                  s += 4; // i128 suffix
586                  isMicrosoftInteger = true;
587                }
588              }
589              break;
590            case '3':
591              if (s + 2 == ThisTokEnd) break;
592              if (s[2] == '2') {
593                s += 3; // i32 suffix
594                isLong = true;
595                isMicrosoftInteger = true;
596              }
597              break;
598            case '6':
599              if (s + 2 == ThisTokEnd) break;
600              if (s[2] == '4') {
601                s += 3; // i64 suffix
602                isLongLong = true;
603                isMicrosoftInteger = true;
604              }
605              break;
606            default:
607              break;
608          }
609          break;
610        }
611      }
612      // "i", "if", and "il" are user-defined suffixes in C++1y.
613      if (PP.getLangOpts().CPlusPlus1y && *s == 'i')
614        break;
615      // fall through.
616    case 'j':
617    case 'J':
618      if (isImaginary) break;   // Cannot be repeated.
619      isImaginary = true;
620      ImaginarySuffixLoc = s;
621      continue;  // Success.
622    }
623    // If we reached here, there was an error or a ud-suffix.
624    break;
625  }
626
627  if (s != ThisTokEnd) {
628    if (isValidUDSuffix(PP.getLangOpts(),
629                        StringRef(SuffixBegin, ThisTokEnd - SuffixBegin))) {
630      // Any suffix pieces we might have parsed are actually part of the
631      // ud-suffix.
632      isLong = false;
633      isUnsigned = false;
634      isLongLong = false;
635      isFloat = false;
636      isImaginary = false;
637      isMicrosoftInteger = false;
638
639      saw_ud_suffix = true;
640      return;
641    }
642
643    // Report an error if there are any.
644    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
645            isFPConstant ? diag::err_invalid_suffix_float_constant :
646                           diag::err_invalid_suffix_integer_constant)
647      << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
648    hadError = true;
649    return;
650  }
651
652  if (isImaginary) {
653    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
654                                       ImaginarySuffixLoc - ThisTokBegin),
655            diag::ext_imaginary_constant);
656  }
657}
658
659/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
660/// suffixes as ud-suffixes, because the diagnostic experience is better if we
661/// treat it as an invalid suffix.
662bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
663                                           StringRef Suffix) {
664  if (!LangOpts.CPlusPlus11 || Suffix.empty())
665    return false;
666
667  // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
668  if (Suffix[0] == '_')
669    return true;
670
671  // In C++11, there are no library suffixes.
672  if (!LangOpts.CPlusPlus1y)
673    return false;
674
675  // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
676  // Per tweaked N3660, "il", "i", and "if" are also used in the library.
677  return llvm::StringSwitch<bool>(Suffix)
678      .Cases("h", "min", "s", true)
679      .Cases("ms", "us", "ns", true)
680      .Cases("il", "i", "if", true)
681      .Default(false);
682}
683
684void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
685                                          const char *Pos,
686                                          CheckSeparatorKind IsAfterDigits) {
687  if (IsAfterDigits == CSK_AfterDigits) {
688    if (Pos == ThisTokBegin)
689      return;
690    --Pos;
691  } else if (Pos == ThisTokEnd)
692    return;
693
694  if (isDigitSeparator(*Pos))
695    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
696            diag::err_digit_separator_not_between_digits)
697      << IsAfterDigits;
698}
699
700/// ParseNumberStartingWithZero - This method is called when the first character
701/// of the number is found to be a zero.  This means it is either an octal
702/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
703/// a floating point number (01239.123e4).  Eat the prefix, determining the
704/// radix etc.
705void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
706  assert(s[0] == '0' && "Invalid method call");
707  s++;
708
709  int c1 = s[0];
710  int c2 = s[1];
711
712  // Handle a hex number like 0x1234.
713  if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c2) || c2 == '.')) {
714    s++;
715    radix = 16;
716    DigitsBegin = s;
717    s = SkipHexDigits(s);
718    bool noSignificand = (s == DigitsBegin);
719    if (s == ThisTokEnd) {
720      // Done.
721    } else if (*s == '.') {
722      s++;
723      saw_period = true;
724      const char *floatDigitsBegin = s;
725      s = SkipHexDigits(s);
726      noSignificand &= (floatDigitsBegin == s);
727    }
728
729    if (noSignificand) {
730      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
731        diag::err_hexconstant_requires_digits);
732      hadError = true;
733      return;
734    }
735
736    // A binary exponent can appear with or with a '.'. If dotted, the
737    // binary exponent is required.
738    if (*s == 'p' || *s == 'P') {
739      const char *Exponent = s;
740      s++;
741      saw_exponent = true;
742      if (*s == '+' || *s == '-')  s++; // sign
743      const char *first_non_digit = SkipDigits(s);
744      if (first_non_digit == s) {
745        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
746                diag::err_exponent_has_no_digits);
747        hadError = true;
748        return;
749      }
750      s = first_non_digit;
751
752      if (!PP.getLangOpts().HexFloats)
753        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
754    } else if (saw_period) {
755      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
756              diag::err_hexconstant_requires_exponent);
757      hadError = true;
758    }
759    return;
760  }
761
762  // Handle simple binary numbers 0b01010
763  if ((c1 == 'b' || c1 == 'B') && (c2 == '0' || c2 == '1')) {
764    // 0b101010 is a C++1y / GCC extension.
765    PP.Diag(TokLoc,
766            PP.getLangOpts().CPlusPlus1y
767              ? diag::warn_cxx11_compat_binary_literal
768              : PP.getLangOpts().CPlusPlus
769                ? diag::ext_binary_literal_cxx1y
770                : diag::ext_binary_literal);
771    ++s;
772    radix = 2;
773    DigitsBegin = s;
774    s = SkipBinaryDigits(s);
775    if (s == ThisTokEnd) {
776      // Done.
777    } else if (isHexDigit(*s)) {
778      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
779              diag::err_invalid_binary_digit) << StringRef(s, 1);
780      hadError = true;
781    }
782    // Other suffixes will be diagnosed by the caller.
783    return;
784  }
785
786  // For now, the radix is set to 8. If we discover that we have a
787  // floating point constant, the radix will change to 10. Octal floating
788  // point constants are not permitted (only decimal and hexadecimal).
789  radix = 8;
790  DigitsBegin = s;
791  s = SkipOctalDigits(s);
792  if (s == ThisTokEnd)
793    return; // Done, simple octal number like 01234
794
795  // If we have some other non-octal digit that *is* a decimal digit, see if
796  // this is part of a floating point number like 094.123 or 09e1.
797  if (isDigit(*s)) {
798    const char *EndDecimal = SkipDigits(s);
799    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
800      s = EndDecimal;
801      radix = 10;
802    }
803  }
804
805  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
806  // the code is using an incorrect base.
807  if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
808    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
809            diag::err_invalid_octal_digit) << StringRef(s, 1);
810    hadError = true;
811    return;
812  }
813
814  if (*s == '.') {
815    s++;
816    radix = 10;
817    saw_period = true;
818    s = SkipDigits(s); // Skip suffix.
819  }
820  if (*s == 'e' || *s == 'E') { // exponent
821    const char *Exponent = s;
822    s++;
823    radix = 10;
824    saw_exponent = true;
825    if (*s == '+' || *s == '-')  s++; // sign
826    const char *first_non_digit = SkipDigits(s);
827    if (first_non_digit != s) {
828      s = first_non_digit;
829    } else {
830      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
831              diag::err_exponent_has_no_digits);
832      hadError = true;
833      return;
834    }
835  }
836}
837
838static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
839  switch (Radix) {
840  case 2:
841    return NumDigits <= 64;
842  case 8:
843    return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
844  case 10:
845    return NumDigits <= 19; // floor(log10(2^64))
846  case 16:
847    return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
848  default:
849    llvm_unreachable("impossible Radix");
850  }
851}
852
853/// GetIntegerValue - Convert this numeric literal value to an APInt that
854/// matches Val's input width.  If there is an overflow, set Val to the low bits
855/// of the result and return true.  Otherwise, return false.
856bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
857  // Fast path: Compute a conservative bound on the maximum number of
858  // bits per digit in this radix. If we can't possibly overflow a
859  // uint64 based on that bound then do the simple conversion to
860  // integer. This avoids the expensive overflow checking below, and
861  // handles the common cases that matter (small decimal integers and
862  // hex/octal values which don't overflow).
863  const unsigned NumDigits = SuffixBegin - DigitsBegin;
864  if (alwaysFitsInto64Bits(radix, NumDigits)) {
865    uint64_t N = 0;
866    for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
867      if (!isDigitSeparator(*Ptr))
868        N = N * radix + llvm::hexDigitValue(*Ptr);
869
870    // This will truncate the value to Val's input width. Simply check
871    // for overflow by comparing.
872    Val = N;
873    return Val.getZExtValue() != N;
874  }
875
876  Val = 0;
877  const char *Ptr = DigitsBegin;
878
879  llvm::APInt RadixVal(Val.getBitWidth(), radix);
880  llvm::APInt CharVal(Val.getBitWidth(), 0);
881  llvm::APInt OldVal = Val;
882
883  bool OverflowOccurred = false;
884  while (Ptr < SuffixBegin) {
885    if (isDigitSeparator(*Ptr)) {
886      ++Ptr;
887      continue;
888    }
889
890    unsigned C = llvm::hexDigitValue(*Ptr++);
891
892    // If this letter is out of bound for this radix, reject it.
893    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
894
895    CharVal = C;
896
897    // Add the digit to the value in the appropriate radix.  If adding in digits
898    // made the value smaller, then this overflowed.
899    OldVal = Val;
900
901    // Multiply by radix, did overflow occur on the multiply?
902    Val *= RadixVal;
903    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
904
905    // Add value, did overflow occur on the value?
906    //   (a + b) ult b  <=> overflow
907    Val += CharVal;
908    OverflowOccurred |= Val.ult(CharVal);
909  }
910  return OverflowOccurred;
911}
912
913llvm::APFloat::opStatus
914NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
915  using llvm::APFloat;
916
917  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
918
919  llvm::SmallString<16> Buffer;
920  StringRef Str(ThisTokBegin, n);
921  if (Str.find('\'') != StringRef::npos) {
922    Buffer.reserve(n);
923    std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
924                        &isDigitSeparator);
925    Str = Buffer;
926  }
927
928  return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
929}
930
931
932/// \verbatim
933///       user-defined-character-literal: [C++11 lex.ext]
934///         character-literal ud-suffix
935///       ud-suffix:
936///         identifier
937///       character-literal: [C++11 lex.ccon]
938///         ' c-char-sequence '
939///         u' c-char-sequence '
940///         U' c-char-sequence '
941///         L' c-char-sequence '
942///       c-char-sequence:
943///         c-char
944///         c-char-sequence c-char
945///       c-char:
946///         any member of the source character set except the single-quote ',
947///           backslash \, or new-line character
948///         escape-sequence
949///         universal-character-name
950///       escape-sequence:
951///         simple-escape-sequence
952///         octal-escape-sequence
953///         hexadecimal-escape-sequence
954///       simple-escape-sequence:
955///         one of \' \" \? \\ \a \b \f \n \r \t \v
956///       octal-escape-sequence:
957///         \ octal-digit
958///         \ octal-digit octal-digit
959///         \ octal-digit octal-digit octal-digit
960///       hexadecimal-escape-sequence:
961///         \x hexadecimal-digit
962///         hexadecimal-escape-sequence hexadecimal-digit
963///       universal-character-name: [C++11 lex.charset]
964///         \u hex-quad
965///         \U hex-quad hex-quad
966///       hex-quad:
967///         hex-digit hex-digit hex-digit hex-digit
968/// \endverbatim
969///
970CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
971                                     SourceLocation Loc, Preprocessor &PP,
972                                     tok::TokenKind kind) {
973  // At this point we know that the character matches the regex "(L|u|U)?'.*'".
974  HadError = false;
975
976  Kind = kind;
977
978  const char *TokBegin = begin;
979
980  // Skip over wide character determinant.
981  if (Kind != tok::char_constant) {
982    ++begin;
983  }
984
985  // Skip over the entry quote.
986  assert(begin[0] == '\'' && "Invalid token lexed");
987  ++begin;
988
989  // Remove an optional ud-suffix.
990  if (end[-1] != '\'') {
991    const char *UDSuffixEnd = end;
992    do {
993      --end;
994    } while (end[-1] != '\'');
995    UDSuffixBuf.assign(end, UDSuffixEnd);
996    UDSuffixOffset = end - TokBegin;
997  }
998
999  // Trim the ending quote.
1000  assert(end != begin && "Invalid token lexed");
1001  --end;
1002
1003  // FIXME: The "Value" is an uint64_t so we can handle char literals of
1004  // up to 64-bits.
1005  // FIXME: This extensively assumes that 'char' is 8-bits.
1006  assert(PP.getTargetInfo().getCharWidth() == 8 &&
1007         "Assumes char is 8 bits");
1008  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1009         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1010         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1011  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1012         "Assumes sizeof(wchar) on target is <= 64");
1013
1014  SmallVector<uint32_t, 4> codepoint_buffer;
1015  codepoint_buffer.resize(end - begin);
1016  uint32_t *buffer_begin = &codepoint_buffer.front();
1017  uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1018
1019  // Unicode escapes representing characters that cannot be correctly
1020  // represented in a single code unit are disallowed in character literals
1021  // by this implementation.
1022  uint32_t largest_character_for_kind;
1023  if (tok::wide_char_constant == Kind) {
1024    largest_character_for_kind =
1025        0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1026  } else if (tok::utf16_char_constant == Kind) {
1027    largest_character_for_kind = 0xFFFF;
1028  } else if (tok::utf32_char_constant == Kind) {
1029    largest_character_for_kind = 0x10FFFF;
1030  } else {
1031    largest_character_for_kind = 0x7Fu;
1032  }
1033
1034  while (begin != end) {
1035    // Is this a span of non-escape characters?
1036    if (begin[0] != '\\') {
1037      char const *start = begin;
1038      do {
1039        ++begin;
1040      } while (begin != end && *begin != '\\');
1041
1042      char const *tmp_in_start = start;
1043      uint32_t *tmp_out_start = buffer_begin;
1044      ConversionResult res =
1045          ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1046                             reinterpret_cast<UTF8 const *>(begin),
1047                             &buffer_begin, buffer_end, strictConversion);
1048      if (res != conversionOK) {
1049        // If we see bad encoding for unprefixed character literals, warn and
1050        // simply copy the byte values, for compatibility with gcc and
1051        // older versions of clang.
1052        bool NoErrorOnBadEncoding = isAscii();
1053        unsigned Msg = diag::err_bad_character_encoding;
1054        if (NoErrorOnBadEncoding)
1055          Msg = diag::warn_bad_character_encoding;
1056        PP.Diag(Loc, Msg);
1057        if (NoErrorOnBadEncoding) {
1058          start = tmp_in_start;
1059          buffer_begin = tmp_out_start;
1060          for (; start != begin; ++start, ++buffer_begin)
1061            *buffer_begin = static_cast<uint8_t>(*start);
1062        } else {
1063          HadError = true;
1064        }
1065      } else {
1066        for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1067          if (*tmp_out_start > largest_character_for_kind) {
1068            HadError = true;
1069            PP.Diag(Loc, diag::err_character_too_large);
1070          }
1071        }
1072      }
1073
1074      continue;
1075    }
1076    // Is this a Universal Character Name escape?
1077    if (begin[1] == 'u' || begin[1] == 'U') {
1078      unsigned short UcnLen = 0;
1079      if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1080                            FullSourceLoc(Loc, PP.getSourceManager()),
1081                            &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1082        HadError = true;
1083      } else if (*buffer_begin > largest_character_for_kind) {
1084        HadError = true;
1085        PP.Diag(Loc, diag::err_character_too_large);
1086      }
1087
1088      ++buffer_begin;
1089      continue;
1090    }
1091    unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1092    uint64_t result =
1093      ProcessCharEscape(TokBegin, begin, end, HadError,
1094                        FullSourceLoc(Loc,PP.getSourceManager()),
1095                        CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1096    *buffer_begin++ = result;
1097  }
1098
1099  unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1100
1101  if (NumCharsSoFar > 1) {
1102    if (isWide())
1103      PP.Diag(Loc, diag::warn_extraneous_char_constant);
1104    else if (isAscii() && NumCharsSoFar == 4)
1105      PP.Diag(Loc, diag::ext_four_char_character_literal);
1106    else if (isAscii())
1107      PP.Diag(Loc, diag::ext_multichar_character_literal);
1108    else
1109      PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1110    IsMultiChar = true;
1111  } else {
1112    IsMultiChar = false;
1113  }
1114
1115  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1116
1117  // Narrow character literals act as though their value is concatenated
1118  // in this implementation, but warn on overflow.
1119  bool multi_char_too_long = false;
1120  if (isAscii() && isMultiChar()) {
1121    LitVal = 0;
1122    for (size_t i = 0; i < NumCharsSoFar; ++i) {
1123      // check for enough leading zeros to shift into
1124      multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1125      LitVal <<= 8;
1126      LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1127    }
1128  } else if (NumCharsSoFar > 0) {
1129    // otherwise just take the last character
1130    LitVal = buffer_begin[-1];
1131  }
1132
1133  if (!HadError && multi_char_too_long) {
1134    PP.Diag(Loc, diag::warn_char_constant_too_large);
1135  }
1136
1137  // Transfer the value from APInt to uint64_t
1138  Value = LitVal.getZExtValue();
1139
1140  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1141  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1142  // character constants are not sign extended in the this implementation:
1143  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1144  if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1145      PP.getLangOpts().CharIsSigned)
1146    Value = (signed char)Value;
1147}
1148
1149/// \verbatim
1150///       string-literal: [C++0x lex.string]
1151///         encoding-prefix " [s-char-sequence] "
1152///         encoding-prefix R raw-string
1153///       encoding-prefix:
1154///         u8
1155///         u
1156///         U
1157///         L
1158///       s-char-sequence:
1159///         s-char
1160///         s-char-sequence s-char
1161///       s-char:
1162///         any member of the source character set except the double-quote ",
1163///           backslash \, or new-line character
1164///         escape-sequence
1165///         universal-character-name
1166///       raw-string:
1167///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1168///       r-char-sequence:
1169///         r-char
1170///         r-char-sequence r-char
1171///       r-char:
1172///         any member of the source character set, except a right parenthesis )
1173///           followed by the initial d-char-sequence (which may be empty)
1174///           followed by a double quote ".
1175///       d-char-sequence:
1176///         d-char
1177///         d-char-sequence d-char
1178///       d-char:
1179///         any member of the basic source character set except:
1180///           space, the left parenthesis (, the right parenthesis ),
1181///           the backslash \, and the control characters representing horizontal
1182///           tab, vertical tab, form feed, and newline.
1183///       escape-sequence: [C++0x lex.ccon]
1184///         simple-escape-sequence
1185///         octal-escape-sequence
1186///         hexadecimal-escape-sequence
1187///       simple-escape-sequence:
1188///         one of \' \" \? \\ \a \b \f \n \r \t \v
1189///       octal-escape-sequence:
1190///         \ octal-digit
1191///         \ octal-digit octal-digit
1192///         \ octal-digit octal-digit octal-digit
1193///       hexadecimal-escape-sequence:
1194///         \x hexadecimal-digit
1195///         hexadecimal-escape-sequence hexadecimal-digit
1196///       universal-character-name:
1197///         \u hex-quad
1198///         \U hex-quad hex-quad
1199///       hex-quad:
1200///         hex-digit hex-digit hex-digit hex-digit
1201/// \endverbatim
1202///
1203StringLiteralParser::
1204StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
1205                    Preprocessor &PP, bool Complain)
1206  : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1207    Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
1208    MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1209    ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1210  init(StringToks, NumStringToks);
1211}
1212
1213void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
1214  // The literal token may have come from an invalid source location (e.g. due
1215  // to a PCH error), in which case the token length will be 0.
1216  if (NumStringToks == 0 || StringToks[0].getLength() < 2)
1217    return DiagnoseLexingError(SourceLocation());
1218
1219  // Scan all of the string portions, remember the max individual token length,
1220  // computing a bound on the concatenated string length, and see whether any
1221  // piece is a wide-string.  If any of the string portions is a wide-string
1222  // literal, the result is a wide-string literal [C99 6.4.5p4].
1223  assert(NumStringToks && "expected at least one token");
1224  MaxTokenLength = StringToks[0].getLength();
1225  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1226  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
1227  Kind = StringToks[0].getKind();
1228
1229  hadError = false;
1230
1231  // Implement Translation Phase #6: concatenation of string literals
1232  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1233  for (unsigned i = 1; i != NumStringToks; ++i) {
1234    if (StringToks[i].getLength() < 2)
1235      return DiagnoseLexingError(StringToks[i].getLocation());
1236
1237    // The string could be shorter than this if it needs cleaning, but this is a
1238    // reasonable bound, which is all we need.
1239    assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1240    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
1241
1242    // Remember maximum string piece length.
1243    if (StringToks[i].getLength() > MaxTokenLength)
1244      MaxTokenLength = StringToks[i].getLength();
1245
1246    // Remember if we see any wide or utf-8/16/32 strings.
1247    // Also check for illegal concatenations.
1248    if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1249      if (isAscii()) {
1250        Kind = StringToks[i].getKind();
1251      } else {
1252        if (Diags)
1253          Diags->Report(StringToks[i].getLocation(),
1254                        diag::err_unsupported_string_concat);
1255        hadError = true;
1256      }
1257    }
1258  }
1259
1260  // Include space for the null terminator.
1261  ++SizeBound;
1262
1263  // TODO: K&R warning: "traditional C rejects string constant concatenation"
1264
1265  // Get the width in bytes of char/wchar_t/char16_t/char32_t
1266  CharByteWidth = getCharWidth(Kind, Target);
1267  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1268  CharByteWidth /= 8;
1269
1270  // The output buffer size needs to be large enough to hold wide characters.
1271  // This is a worst-case assumption which basically corresponds to L"" "long".
1272  SizeBound *= CharByteWidth;
1273
1274  // Size the temporary buffer to hold the result string data.
1275  ResultBuf.resize(SizeBound);
1276
1277  // Likewise, but for each string piece.
1278  SmallString<512> TokenBuf;
1279  TokenBuf.resize(MaxTokenLength);
1280
1281  // Loop over all the strings, getting their spelling, and expanding them to
1282  // wide strings as appropriate.
1283  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
1284
1285  Pascal = false;
1286
1287  SourceLocation UDSuffixTokLoc;
1288
1289  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
1290    const char *ThisTokBuf = &TokenBuf[0];
1291    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
1292    // that ThisTokBuf points to a buffer that is big enough for the whole token
1293    // and 'spelled' tokens can only shrink.
1294    bool StringInvalid = false;
1295    unsigned ThisTokLen =
1296      Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1297                         &StringInvalid);
1298    if (StringInvalid)
1299      return DiagnoseLexingError(StringToks[i].getLocation());
1300
1301    const char *ThisTokBegin = ThisTokBuf;
1302    const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1303
1304    // Remove an optional ud-suffix.
1305    if (ThisTokEnd[-1] != '"') {
1306      const char *UDSuffixEnd = ThisTokEnd;
1307      do {
1308        --ThisTokEnd;
1309      } while (ThisTokEnd[-1] != '"');
1310
1311      StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1312
1313      if (UDSuffixBuf.empty()) {
1314        UDSuffixBuf.assign(UDSuffix);
1315        UDSuffixToken = i;
1316        UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1317        UDSuffixTokLoc = StringToks[i].getLocation();
1318      } else if (!UDSuffixBuf.equals(UDSuffix)) {
1319        // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1320        // result of a concatenation involving at least one user-defined-string-
1321        // literal, all the participating user-defined-string-literals shall
1322        // have the same ud-suffix.
1323        if (Diags) {
1324          SourceLocation TokLoc = StringToks[i].getLocation();
1325          Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1326            << UDSuffixBuf << UDSuffix
1327            << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1328            << SourceRange(TokLoc, TokLoc);
1329        }
1330        hadError = true;
1331      }
1332    }
1333
1334    // Strip the end quote.
1335    --ThisTokEnd;
1336
1337    // TODO: Input character set mapping support.
1338
1339    // Skip marker for wide or unicode strings.
1340    if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1341      ++ThisTokBuf;
1342      // Skip 8 of u8 marker for utf8 strings.
1343      if (ThisTokBuf[0] == '8')
1344        ++ThisTokBuf;
1345    }
1346
1347    // Check for raw string
1348    if (ThisTokBuf[0] == 'R') {
1349      ThisTokBuf += 2; // skip R"
1350
1351      const char *Prefix = ThisTokBuf;
1352      while (ThisTokBuf[0] != '(')
1353        ++ThisTokBuf;
1354      ++ThisTokBuf; // skip '('
1355
1356      // Remove same number of characters from the end
1357      ThisTokEnd -= ThisTokBuf - Prefix;
1358      assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1359
1360      // Copy the string over
1361      if (CopyStringFragment(StringToks[i], ThisTokBegin,
1362                             StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1363        hadError = true;
1364    } else {
1365      if (ThisTokBuf[0] != '"') {
1366        // The file may have come from PCH and then changed after loading the
1367        // PCH; Fail gracefully.
1368        return DiagnoseLexingError(StringToks[i].getLocation());
1369      }
1370      ++ThisTokBuf; // skip "
1371
1372      // Check if this is a pascal string
1373      if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1374          ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1375
1376        // If the \p sequence is found in the first token, we have a pascal string
1377        // Otherwise, if we already have a pascal string, ignore the first \p
1378        if (i == 0) {
1379          ++ThisTokBuf;
1380          Pascal = true;
1381        } else if (Pascal)
1382          ThisTokBuf += 2;
1383      }
1384
1385      while (ThisTokBuf != ThisTokEnd) {
1386        // Is this a span of non-escape characters?
1387        if (ThisTokBuf[0] != '\\') {
1388          const char *InStart = ThisTokBuf;
1389          do {
1390            ++ThisTokBuf;
1391          } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1392
1393          // Copy the character span over.
1394          if (CopyStringFragment(StringToks[i], ThisTokBegin,
1395                                 StringRef(InStart, ThisTokBuf - InStart)))
1396            hadError = true;
1397          continue;
1398        }
1399        // Is this a Universal Character Name escape?
1400        if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1401          EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1402                          ResultPtr, hadError,
1403                          FullSourceLoc(StringToks[i].getLocation(), SM),
1404                          CharByteWidth, Diags, Features);
1405          continue;
1406        }
1407        // Otherwise, this is a non-UCN escape character.  Process it.
1408        unsigned ResultChar =
1409          ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1410                            FullSourceLoc(StringToks[i].getLocation(), SM),
1411                            CharByteWidth*8, Diags, Features);
1412
1413        if (CharByteWidth == 4) {
1414          // FIXME: Make the type of the result buffer correct instead of
1415          // using reinterpret_cast.
1416          UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1417          *ResultWidePtr = ResultChar;
1418          ResultPtr += 4;
1419        } else if (CharByteWidth == 2) {
1420          // FIXME: Make the type of the result buffer correct instead of
1421          // using reinterpret_cast.
1422          UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1423          *ResultWidePtr = ResultChar & 0xFFFF;
1424          ResultPtr += 2;
1425        } else {
1426          assert(CharByteWidth == 1 && "Unexpected char width");
1427          *ResultPtr++ = ResultChar & 0xFF;
1428        }
1429      }
1430    }
1431  }
1432
1433  if (Pascal) {
1434    if (CharByteWidth == 4) {
1435      // FIXME: Make the type of the result buffer correct instead of
1436      // using reinterpret_cast.
1437      UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1438      ResultWidePtr[0] = GetNumStringChars() - 1;
1439    } else if (CharByteWidth == 2) {
1440      // FIXME: Make the type of the result buffer correct instead of
1441      // using reinterpret_cast.
1442      UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1443      ResultWidePtr[0] = GetNumStringChars() - 1;
1444    } else {
1445      assert(CharByteWidth == 1 && "Unexpected char width");
1446      ResultBuf[0] = GetNumStringChars() - 1;
1447    }
1448
1449    // Verify that pascal strings aren't too large.
1450    if (GetStringLength() > 256) {
1451      if (Diags)
1452        Diags->Report(StringToks[0].getLocation(),
1453                      diag::err_pascal_string_too_long)
1454          << SourceRange(StringToks[0].getLocation(),
1455                         StringToks[NumStringToks-1].getLocation());
1456      hadError = true;
1457      return;
1458    }
1459  } else if (Diags) {
1460    // Complain if this string literal has too many characters.
1461    unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1462
1463    if (GetNumStringChars() > MaxChars)
1464      Diags->Report(StringToks[0].getLocation(),
1465                    diag::ext_string_too_long)
1466        << GetNumStringChars() << MaxChars
1467        << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1468        << SourceRange(StringToks[0].getLocation(),
1469                       StringToks[NumStringToks-1].getLocation());
1470  }
1471}
1472
1473static const char *resyncUTF8(const char *Err, const char *End) {
1474  if (Err == End)
1475    return End;
1476  End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1477  while (++Err != End && (*Err & 0xC0) == 0x80)
1478    ;
1479  return Err;
1480}
1481
1482/// \brief This function copies from Fragment, which is a sequence of bytes
1483/// within Tok's contents (which begin at TokBegin) into ResultPtr.
1484/// Performs widening for multi-byte characters.
1485bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1486                                             const char *TokBegin,
1487                                             StringRef Fragment) {
1488  const UTF8 *ErrorPtrTmp;
1489  if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1490    return false;
1491
1492  // If we see bad encoding for unprefixed string literals, warn and
1493  // simply copy the byte values, for compatibility with gcc and older
1494  // versions of clang.
1495  bool NoErrorOnBadEncoding = isAscii();
1496  if (NoErrorOnBadEncoding) {
1497    memcpy(ResultPtr, Fragment.data(), Fragment.size());
1498    ResultPtr += Fragment.size();
1499  }
1500
1501  if (Diags) {
1502    const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1503
1504    FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1505    const DiagnosticBuilder &Builder =
1506      Diag(Diags, Features, SourceLoc, TokBegin,
1507           ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1508           NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1509                                : diag::err_bad_string_encoding);
1510
1511    const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1512    StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1513
1514    // Decode into a dummy buffer.
1515    SmallString<512> Dummy;
1516    Dummy.reserve(Fragment.size() * CharByteWidth);
1517    char *Ptr = Dummy.data();
1518
1519    while (!Builder.hasMaxRanges() &&
1520           !ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1521      const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1522      NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1523      Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1524                                     ErrorPtr, NextStart);
1525      NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1526    }
1527  }
1528  return !NoErrorOnBadEncoding;
1529}
1530
1531void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1532  hadError = true;
1533  if (Diags)
1534    Diags->Report(Loc, diag::err_lexing_string);
1535}
1536
1537/// getOffsetOfStringByte - This function returns the offset of the
1538/// specified byte of the string data represented by Token.  This handles
1539/// advancing over escape sequences in the string.
1540unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1541                                                    unsigned ByteNo) const {
1542  // Get the spelling of the token.
1543  SmallString<32> SpellingBuffer;
1544  SpellingBuffer.resize(Tok.getLength());
1545
1546  bool StringInvalid = false;
1547  const char *SpellingPtr = &SpellingBuffer[0];
1548  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1549                                       &StringInvalid);
1550  if (StringInvalid)
1551    return 0;
1552
1553  const char *SpellingStart = SpellingPtr;
1554  const char *SpellingEnd = SpellingPtr+TokLen;
1555
1556  // Handle UTF-8 strings just like narrow strings.
1557  if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1558    SpellingPtr += 2;
1559
1560  assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1561         SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1562
1563  // For raw string literals, this is easy.
1564  if (SpellingPtr[0] == 'R') {
1565    assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1566    // Skip 'R"'.
1567    SpellingPtr += 2;
1568    while (*SpellingPtr != '(') {
1569      ++SpellingPtr;
1570      assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1571    }
1572    // Skip '('.
1573    ++SpellingPtr;
1574    return SpellingPtr - SpellingStart + ByteNo;
1575  }
1576
1577  // Skip over the leading quote
1578  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1579  ++SpellingPtr;
1580
1581  // Skip over bytes until we find the offset we're looking for.
1582  while (ByteNo) {
1583    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1584
1585    // Step over non-escapes simply.
1586    if (*SpellingPtr != '\\') {
1587      ++SpellingPtr;
1588      --ByteNo;
1589      continue;
1590    }
1591
1592    // Otherwise, this is an escape character.  Advance over it.
1593    bool HadError = false;
1594    if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1595      const char *EscapePtr = SpellingPtr;
1596      unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1597                                      1, Features, HadError);
1598      if (Len > ByteNo) {
1599        // ByteNo is somewhere within the escape sequence.
1600        SpellingPtr = EscapePtr;
1601        break;
1602      }
1603      ByteNo -= Len;
1604    } else {
1605      ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1606                        FullSourceLoc(Tok.getLocation(), SM),
1607                        CharByteWidth*8, Diags, Features);
1608      --ByteNo;
1609    }
1610    assert(!HadError && "This method isn't valid on erroneous strings");
1611  }
1612
1613  return SpellingPtr-SpellingStart;
1614}
1615