TargetInfo.cpp revision 263508
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27using namespace CodeGen;
28
29static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30                               llvm::Value *Array,
31                               llvm::Value *Value,
32                               unsigned FirstIndex,
33                               unsigned LastIndex) {
34  // Alternatively, we could emit this as a loop in the source.
35  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37    Builder.CreateStore(Value, Cell);
38  }
39}
40
41static bool isAggregateTypeForABI(QualType T) {
42  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43         T->isMemberFunctionPointerType();
44}
45
46ABIInfo::~ABIInfo() {}
47
48static bool isRecordReturnIndirect(const RecordType *RT,
49                                   CGCXXABI &CXXABI) {
50  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51  if (!RD)
52    return false;
53  return CXXABI.isReturnTypeIndirect(RD);
54}
55
56
57static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58  const RecordType *RT = T->getAs<RecordType>();
59  if (!RT)
60    return false;
61  return isRecordReturnIndirect(RT, CXXABI);
62}
63
64static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65                                              CGCXXABI &CXXABI) {
66  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67  if (!RD)
68    return CGCXXABI::RAA_Default;
69  return CXXABI.getRecordArgABI(RD);
70}
71
72static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73                                              CGCXXABI &CXXABI) {
74  const RecordType *RT = T->getAs<RecordType>();
75  if (!RT)
76    return CGCXXABI::RAA_Default;
77  return getRecordArgABI(RT, CXXABI);
78}
79
80CGCXXABI &ABIInfo::getCXXABI() const {
81  return CGT.getCXXABI();
82}
83
84ASTContext &ABIInfo::getContext() const {
85  return CGT.getContext();
86}
87
88llvm::LLVMContext &ABIInfo::getVMContext() const {
89  return CGT.getLLVMContext();
90}
91
92const llvm::DataLayout &ABIInfo::getDataLayout() const {
93  return CGT.getDataLayout();
94}
95
96const TargetInfo &ABIInfo::getTarget() const {
97  return CGT.getTarget();
98}
99
100void ABIArgInfo::dump() const {
101  raw_ostream &OS = llvm::errs();
102  OS << "(ABIArgInfo Kind=";
103  switch (TheKind) {
104  case Direct:
105    OS << "Direct Type=";
106    if (llvm::Type *Ty = getCoerceToType())
107      Ty->print(OS);
108    else
109      OS << "null";
110    break;
111  case Extend:
112    OS << "Extend";
113    break;
114  case Ignore:
115    OS << "Ignore";
116    break;
117  case Indirect:
118    OS << "Indirect Align=" << getIndirectAlign()
119       << " ByVal=" << getIndirectByVal()
120       << " Realign=" << getIndirectRealign();
121    break;
122  case Expand:
123    OS << "Expand";
124    break;
125  }
126  OS << ")\n";
127}
128
129TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130
131// If someone can figure out a general rule for this, that would be great.
132// It's probably just doomed to be platform-dependent, though.
133unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134  // Verified for:
135  //   x86-64     FreeBSD, Linux, Darwin
136  //   x86-32     FreeBSD, Linux, Darwin
137  //   PowerPC    Linux, Darwin
138  //   ARM        Darwin (*not* EABI)
139  //   AArch64    Linux
140  return 32;
141}
142
143bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144                                     const FunctionNoProtoType *fnType) const {
145  // The following conventions are known to require this to be false:
146  //   x86_stdcall
147  //   MIPS
148  // For everything else, we just prefer false unless we opt out.
149  return false;
150}
151
152void
153TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154                                             llvm::SmallString<24> &Opt) const {
155  // This assumes the user is passing a library name like "rt" instead of a
156  // filename like "librt.a/so", and that they don't care whether it's static or
157  // dynamic.
158  Opt = "-l";
159  Opt += Lib;
160}
161
162static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163
164/// isEmptyField - Return true iff a the field is "empty", that is it
165/// is an unnamed bit-field or an (array of) empty record(s).
166static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167                         bool AllowArrays) {
168  if (FD->isUnnamedBitfield())
169    return true;
170
171  QualType FT = FD->getType();
172
173  // Constant arrays of empty records count as empty, strip them off.
174  // Constant arrays of zero length always count as empty.
175  if (AllowArrays)
176    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177      if (AT->getSize() == 0)
178        return true;
179      FT = AT->getElementType();
180    }
181
182  const RecordType *RT = FT->getAs<RecordType>();
183  if (!RT)
184    return false;
185
186  // C++ record fields are never empty, at least in the Itanium ABI.
187  //
188  // FIXME: We should use a predicate for whether this behavior is true in the
189  // current ABI.
190  if (isa<CXXRecordDecl>(RT->getDecl()))
191    return false;
192
193  return isEmptyRecord(Context, FT, AllowArrays);
194}
195
196/// isEmptyRecord - Return true iff a structure contains only empty
197/// fields. Note that a structure with a flexible array member is not
198/// considered empty.
199static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200  const RecordType *RT = T->getAs<RecordType>();
201  if (!RT)
202    return 0;
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return false;
206
207  // If this is a C++ record, check the bases first.
208  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210           e = CXXRD->bases_end(); i != e; ++i)
211      if (!isEmptyRecord(Context, i->getType(), true))
212        return false;
213
214  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215         i != e; ++i)
216    if (!isEmptyField(Context, *i, AllowArrays))
217      return false;
218  return true;
219}
220
221/// isSingleElementStruct - Determine if a structure is a "single
222/// element struct", i.e. it has exactly one non-empty field or
223/// exactly one field which is itself a single element
224/// struct. Structures with flexible array members are never
225/// considered single element structs.
226///
227/// \return The field declaration for the single non-empty field, if
228/// it exists.
229static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230  const RecordType *RT = T->getAsStructureType();
231  if (!RT)
232    return 0;
233
234  const RecordDecl *RD = RT->getDecl();
235  if (RD->hasFlexibleArrayMember())
236    return 0;
237
238  const Type *Found = 0;
239
240  // If this is a C++ record, check the bases first.
241  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243           e = CXXRD->bases_end(); i != e; ++i) {
244      // Ignore empty records.
245      if (isEmptyRecord(Context, i->getType(), true))
246        continue;
247
248      // If we already found an element then this isn't a single-element struct.
249      if (Found)
250        return 0;
251
252      // If this is non-empty and not a single element struct, the composite
253      // cannot be a single element struct.
254      Found = isSingleElementStruct(i->getType(), Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // Check for single element.
261  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262         i != e; ++i) {
263    const FieldDecl *FD = *i;
264    QualType FT = FD->getType();
265
266    // Ignore empty fields.
267    if (isEmptyField(Context, FD, true))
268      continue;
269
270    // If we already found an element then this isn't a single-element
271    // struct.
272    if (Found)
273      return 0;
274
275    // Treat single element arrays as the element.
276    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277      if (AT->getSize().getZExtValue() != 1)
278        break;
279      FT = AT->getElementType();
280    }
281
282    if (!isAggregateTypeForABI(FT)) {
283      Found = FT.getTypePtr();
284    } else {
285      Found = isSingleElementStruct(FT, Context);
286      if (!Found)
287        return 0;
288    }
289  }
290
291  // We don't consider a struct a single-element struct if it has
292  // padding beyond the element type.
293  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294    return 0;
295
296  return Found;
297}
298
299static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300  // Treat complex types as the element type.
301  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302    Ty = CTy->getElementType();
303
304  // Check for a type which we know has a simple scalar argument-passing
305  // convention without any padding.  (We're specifically looking for 32
306  // and 64-bit integer and integer-equivalents, float, and double.)
307  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309    return false;
310
311  uint64_t Size = Context.getTypeSize(Ty);
312  return Size == 32 || Size == 64;
313}
314
315/// canExpandIndirectArgument - Test whether an argument type which is to be
316/// passed indirectly (on the stack) would have the equivalent layout if it was
317/// expanded into separate arguments. If so, we prefer to do the latter to avoid
318/// inhibiting optimizations.
319///
320// FIXME: This predicate is missing many cases, currently it just follows
321// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322// should probably make this smarter, or better yet make the LLVM backend
323// capable of handling it.
324static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325  // We can only expand structure types.
326  const RecordType *RT = Ty->getAs<RecordType>();
327  if (!RT)
328    return false;
329
330  // We can only expand (C) structures.
331  //
332  // FIXME: This needs to be generalized to handle classes as well.
333  const RecordDecl *RD = RT->getDecl();
334  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335    return false;
336
337  uint64_t Size = 0;
338
339  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340         i != e; ++i) {
341    const FieldDecl *FD = *i;
342
343    if (!is32Or64BitBasicType(FD->getType(), Context))
344      return false;
345
346    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347    // how to expand them yet, and the predicate for telling if a bitfield still
348    // counts as "basic" is more complicated than what we were doing previously.
349    if (FD->isBitField())
350      return false;
351
352    Size += Context.getTypeSize(FD->getType());
353  }
354
355  // Make sure there are not any holes in the struct.
356  if (Size != Context.getTypeSize(Ty))
357    return false;
358
359  return true;
360}
361
362namespace {
363/// DefaultABIInfo - The default implementation for ABI specific
364/// details. This implementation provides information which results in
365/// self-consistent and sensible LLVM IR generation, but does not
366/// conform to any particular ABI.
367class DefaultABIInfo : public ABIInfo {
368public:
369  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370
371  ABIArgInfo classifyReturnType(QualType RetTy) const;
372  ABIArgInfo classifyArgumentType(QualType RetTy) const;
373
374  virtual void computeInfo(CGFunctionInfo &FI) const {
375    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377         it != ie; ++it)
378      it->info = classifyArgumentType(it->type);
379  }
380
381  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382                                 CodeGenFunction &CGF) const;
383};
384
385class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386public:
387  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389};
390
391llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392                                       CodeGenFunction &CGF) const {
393  return 0;
394}
395
396ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397  if (isAggregateTypeForABI(Ty)) {
398    // Records with non trivial destructors/constructors should not be passed
399    // by value.
400    if (isRecordReturnIndirect(Ty, getCXXABI()))
401      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402
403    return ABIArgInfo::getIndirect(0);
404  }
405
406  // Treat an enum type as its underlying type.
407  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408    Ty = EnumTy->getDecl()->getIntegerType();
409
410  return (Ty->isPromotableIntegerType() ?
411          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412}
413
414ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415  if (RetTy->isVoidType())
416    return ABIArgInfo::getIgnore();
417
418  if (isAggregateTypeForABI(RetTy))
419    return ABIArgInfo::getIndirect(0);
420
421  // Treat an enum type as its underlying type.
422  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423    RetTy = EnumTy->getDecl()->getIntegerType();
424
425  return (RetTy->isPromotableIntegerType() ?
426          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427}
428
429//===----------------------------------------------------------------------===//
430// le32/PNaCl bitcode ABI Implementation
431//
432// This is a simplified version of the x86_32 ABI.  Arguments and return values
433// are always passed on the stack.
434//===----------------------------------------------------------------------===//
435
436class PNaClABIInfo : public ABIInfo {
437 public:
438  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439
440  ABIArgInfo classifyReturnType(QualType RetTy) const;
441  ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
443  virtual void computeInfo(CGFunctionInfo &FI) const;
444  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445                                 CodeGenFunction &CGF) const;
446};
447
448class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449 public:
450  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452};
453
454void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458         it != ie; ++it)
459      it->info = classifyArgumentType(it->type);
460  }
461
462llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                                       CodeGenFunction &CGF) const {
464  return 0;
465}
466
467/// \brief Classify argument of given type \p Ty.
468ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469  if (isAggregateTypeForABI(Ty)) {
470    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472    return ABIArgInfo::getIndirect(0);
473  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474    // Treat an enum type as its underlying type.
475    Ty = EnumTy->getDecl()->getIntegerType();
476  } else if (Ty->isFloatingType()) {
477    // Floating-point types don't go inreg.
478    return ABIArgInfo::getDirect();
479  }
480
481  return (Ty->isPromotableIntegerType() ?
482          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483}
484
485ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486  if (RetTy->isVoidType())
487    return ABIArgInfo::getIgnore();
488
489  // In the PNaCl ABI we always return records/structures on the stack.
490  if (isAggregateTypeForABI(RetTy))
491    return ABIArgInfo::getIndirect(0);
492
493  // Treat an enum type as its underlying type.
494  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495    RetTy = EnumTy->getDecl()->getIntegerType();
496
497  return (RetTy->isPromotableIntegerType() ?
498          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499}
500
501/// IsX86_MMXType - Return true if this is an MMX type.
502bool IsX86_MMXType(llvm::Type *IRType) {
503  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506    IRType->getScalarSizeInBits() != 64;
507}
508
509static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510                                          StringRef Constraint,
511                                          llvm::Type* Ty) {
512  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514      // Invalid MMX constraint
515      return 0;
516    }
517
518    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519  }
520
521  // No operation needed
522  return Ty;
523}
524
525//===----------------------------------------------------------------------===//
526// X86-32 ABI Implementation
527//===----------------------------------------------------------------------===//
528
529/// X86_32ABIInfo - The X86-32 ABI information.
530class X86_32ABIInfo : public ABIInfo {
531  enum Class {
532    Integer,
533    Float
534  };
535
536  static const unsigned MinABIStackAlignInBytes = 4;
537
538  bool IsDarwinVectorABI;
539  bool IsSmallStructInRegABI;
540  bool IsWin32StructABI;
541  unsigned DefaultNumRegisterParameters;
542
543  static bool isRegisterSize(unsigned Size) {
544    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
545  }
546
547  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
548                                          unsigned callingConvention);
549
550  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
551  /// such that the argument will be passed in memory.
552  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
553                               unsigned &FreeRegs) const;
554
555  /// \brief Return the alignment to use for the given type on the stack.
556  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
557
558  Class classify(QualType Ty) const;
559  ABIArgInfo classifyReturnType(QualType RetTy,
560                                unsigned callingConvention) const;
561  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
562                                  bool IsFastCall) const;
563  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
564                      bool IsFastCall, bool &NeedsPadding) const;
565
566public:
567
568  virtual void computeInfo(CGFunctionInfo &FI) const;
569  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570                                 CodeGenFunction &CGF) const;
571
572  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
573                unsigned r)
574    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
575      IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
576};
577
578class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
579public:
580  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
581      bool d, bool p, bool w, unsigned r)
582    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
583
584  static bool isStructReturnInRegABI(
585      const llvm::Triple &Triple, const CodeGenOptions &Opts);
586
587  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
588                           CodeGen::CodeGenModule &CGM) const;
589
590  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
591    // Darwin uses different dwarf register numbers for EH.
592    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
593    return 4;
594  }
595
596  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
597                               llvm::Value *Address) const;
598
599  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
600                                  StringRef Constraint,
601                                  llvm::Type* Ty) const {
602    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
603  }
604
605  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
606    unsigned Sig = (0xeb << 0) |  // jmp rel8
607                   (0x06 << 8) |  //           .+0x08
608                   ('F' << 16) |
609                   ('T' << 24);
610    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
611  }
612
613};
614
615}
616
617/// shouldReturnTypeInRegister - Determine if the given type should be
618/// passed in a register (for the Darwin ABI).
619bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
620                                               ASTContext &Context,
621                                               unsigned callingConvention) {
622  uint64_t Size = Context.getTypeSize(Ty);
623
624  // Type must be register sized.
625  if (!isRegisterSize(Size))
626    return false;
627
628  if (Ty->isVectorType()) {
629    // 64- and 128- bit vectors inside structures are not returned in
630    // registers.
631    if (Size == 64 || Size == 128)
632      return false;
633
634    return true;
635  }
636
637  // If this is a builtin, pointer, enum, complex type, member pointer, or
638  // member function pointer it is ok.
639  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
640      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
641      Ty->isBlockPointerType() || Ty->isMemberPointerType())
642    return true;
643
644  // Arrays are treated like records.
645  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
646    return shouldReturnTypeInRegister(AT->getElementType(), Context,
647                                      callingConvention);
648
649  // Otherwise, it must be a record type.
650  const RecordType *RT = Ty->getAs<RecordType>();
651  if (!RT) return false;
652
653  // FIXME: Traverse bases here too.
654
655  // For thiscall conventions, structures will never be returned in
656  // a register.  This is for compatibility with the MSVC ABI
657  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
658      RT->isStructureType()) {
659    return false;
660  }
661
662  // Structure types are passed in register if all fields would be
663  // passed in a register.
664  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
665         e = RT->getDecl()->field_end(); i != e; ++i) {
666    const FieldDecl *FD = *i;
667
668    // Empty fields are ignored.
669    if (isEmptyField(Context, FD, true))
670      continue;
671
672    // Check fields recursively.
673    if (!shouldReturnTypeInRegister(FD->getType(), Context,
674                                    callingConvention))
675      return false;
676  }
677  return true;
678}
679
680ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
681                                            unsigned callingConvention) const {
682  if (RetTy->isVoidType())
683    return ABIArgInfo::getIgnore();
684
685  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
686    // On Darwin, some vectors are returned in registers.
687    if (IsDarwinVectorABI) {
688      uint64_t Size = getContext().getTypeSize(RetTy);
689
690      // 128-bit vectors are a special case; they are returned in
691      // registers and we need to make sure to pick a type the LLVM
692      // backend will like.
693      if (Size == 128)
694        return ABIArgInfo::getDirect(llvm::VectorType::get(
695                  llvm::Type::getInt64Ty(getVMContext()), 2));
696
697      // Always return in register if it fits in a general purpose
698      // register, or if it is 64 bits and has a single element.
699      if ((Size == 8 || Size == 16 || Size == 32) ||
700          (Size == 64 && VT->getNumElements() == 1))
701        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
702                                                            Size));
703
704      return ABIArgInfo::getIndirect(0);
705    }
706
707    return ABIArgInfo::getDirect();
708  }
709
710  if (isAggregateTypeForABI(RetTy)) {
711    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
712      if (isRecordReturnIndirect(RT, getCXXABI()))
713        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
714
715      // Structures with flexible arrays are always indirect.
716      if (RT->getDecl()->hasFlexibleArrayMember())
717        return ABIArgInfo::getIndirect(0);
718    }
719
720    // If specified, structs and unions are always indirect.
721    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
722      return ABIArgInfo::getIndirect(0);
723
724    // Small structures which are register sized are generally returned
725    // in a register.
726    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
727                                                  callingConvention)) {
728      uint64_t Size = getContext().getTypeSize(RetTy);
729
730      // As a special-case, if the struct is a "single-element" struct, and
731      // the field is of type "float" or "double", return it in a
732      // floating-point register. (MSVC does not apply this special case.)
733      // We apply a similar transformation for pointer types to improve the
734      // quality of the generated IR.
735      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
736        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
737            || SeltTy->hasPointerRepresentation())
738          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
739
740      // FIXME: We should be able to narrow this integer in cases with dead
741      // padding.
742      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
743    }
744
745    return ABIArgInfo::getIndirect(0);
746  }
747
748  // Treat an enum type as its underlying type.
749  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
750    RetTy = EnumTy->getDecl()->getIntegerType();
751
752  return (RetTy->isPromotableIntegerType() ?
753          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754}
755
756static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
757  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
758}
759
760static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
761  const RecordType *RT = Ty->getAs<RecordType>();
762  if (!RT)
763    return 0;
764  const RecordDecl *RD = RT->getDecl();
765
766  // If this is a C++ record, check the bases first.
767  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
768    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
769           e = CXXRD->bases_end(); i != e; ++i)
770      if (!isRecordWithSSEVectorType(Context, i->getType()))
771        return false;
772
773  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
774       i != e; ++i) {
775    QualType FT = i->getType();
776
777    if (isSSEVectorType(Context, FT))
778      return true;
779
780    if (isRecordWithSSEVectorType(Context, FT))
781      return true;
782  }
783
784  return false;
785}
786
787unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
788                                                 unsigned Align) const {
789  // Otherwise, if the alignment is less than or equal to the minimum ABI
790  // alignment, just use the default; the backend will handle this.
791  if (Align <= MinABIStackAlignInBytes)
792    return 0; // Use default alignment.
793
794  // On non-Darwin, the stack type alignment is always 4.
795  if (!IsDarwinVectorABI) {
796    // Set explicit alignment, since we may need to realign the top.
797    return MinABIStackAlignInBytes;
798  }
799
800  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
801  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
802                      isRecordWithSSEVectorType(getContext(), Ty)))
803    return 16;
804
805  return MinABIStackAlignInBytes;
806}
807
808ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
809                                            unsigned &FreeRegs) const {
810  if (!ByVal) {
811    if (FreeRegs) {
812      --FreeRegs; // Non byval indirects just use one pointer.
813      return ABIArgInfo::getIndirectInReg(0, false);
814    }
815    return ABIArgInfo::getIndirect(0, false);
816  }
817
818  // Compute the byval alignment.
819  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
820  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
821  if (StackAlign == 0)
822    return ABIArgInfo::getIndirect(4);
823
824  // If the stack alignment is less than the type alignment, realign the
825  // argument.
826  if (StackAlign < TypeAlign)
827    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
828                                   /*Realign=*/true);
829
830  return ABIArgInfo::getIndirect(StackAlign);
831}
832
833X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
834  const Type *T = isSingleElementStruct(Ty, getContext());
835  if (!T)
836    T = Ty.getTypePtr();
837
838  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
839    BuiltinType::Kind K = BT->getKind();
840    if (K == BuiltinType::Float || K == BuiltinType::Double)
841      return Float;
842  }
843  return Integer;
844}
845
846bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
847                                   bool IsFastCall, bool &NeedsPadding) const {
848  NeedsPadding = false;
849  Class C = classify(Ty);
850  if (C == Float)
851    return false;
852
853  unsigned Size = getContext().getTypeSize(Ty);
854  unsigned SizeInRegs = (Size + 31) / 32;
855
856  if (SizeInRegs == 0)
857    return false;
858
859  if (SizeInRegs > FreeRegs) {
860    FreeRegs = 0;
861    return false;
862  }
863
864  FreeRegs -= SizeInRegs;
865
866  if (IsFastCall) {
867    if (Size > 32)
868      return false;
869
870    if (Ty->isIntegralOrEnumerationType())
871      return true;
872
873    if (Ty->isPointerType())
874      return true;
875
876    if (Ty->isReferenceType())
877      return true;
878
879    if (FreeRegs)
880      NeedsPadding = true;
881
882    return false;
883  }
884
885  return true;
886}
887
888ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
889                                               unsigned &FreeRegs,
890                                               bool IsFastCall) const {
891  // FIXME: Set alignment on indirect arguments.
892  if (isAggregateTypeForABI(Ty)) {
893    if (const RecordType *RT = Ty->getAs<RecordType>()) {
894      if (IsWin32StructABI)
895        return getIndirectResult(Ty, true, FreeRegs);
896
897      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
898        return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
899
900      // Structures with flexible arrays are always indirect.
901      if (RT->getDecl()->hasFlexibleArrayMember())
902        return getIndirectResult(Ty, true, FreeRegs);
903    }
904
905    // Ignore empty structs/unions.
906    if (isEmptyRecord(getContext(), Ty, true))
907      return ABIArgInfo::getIgnore();
908
909    llvm::LLVMContext &LLVMContext = getVMContext();
910    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
911    bool NeedsPadding;
912    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
913      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
914      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
915      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
916      return ABIArgInfo::getDirectInReg(Result);
917    }
918    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
919
920    // Expand small (<= 128-bit) record types when we know that the stack layout
921    // of those arguments will match the struct. This is important because the
922    // LLVM backend isn't smart enough to remove byval, which inhibits many
923    // optimizations.
924    if (getContext().getTypeSize(Ty) <= 4*32 &&
925        canExpandIndirectArgument(Ty, getContext()))
926      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
927
928    return getIndirectResult(Ty, true, FreeRegs);
929  }
930
931  if (const VectorType *VT = Ty->getAs<VectorType>()) {
932    // On Darwin, some vectors are passed in memory, we handle this by passing
933    // it as an i8/i16/i32/i64.
934    if (IsDarwinVectorABI) {
935      uint64_t Size = getContext().getTypeSize(Ty);
936      if ((Size == 8 || Size == 16 || Size == 32) ||
937          (Size == 64 && VT->getNumElements() == 1))
938        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
939                                                            Size));
940    }
941
942    if (IsX86_MMXType(CGT.ConvertType(Ty)))
943      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
944
945    return ABIArgInfo::getDirect();
946  }
947
948
949  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
950    Ty = EnumTy->getDecl()->getIntegerType();
951
952  bool NeedsPadding;
953  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
954
955  if (Ty->isPromotableIntegerType()) {
956    if (InReg)
957      return ABIArgInfo::getExtendInReg();
958    return ABIArgInfo::getExtend();
959  }
960  if (InReg)
961    return ABIArgInfo::getDirectInReg();
962  return ABIArgInfo::getDirect();
963}
964
965void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
966  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
967                                          FI.getCallingConvention());
968
969  unsigned CC = FI.getCallingConvention();
970  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
971  unsigned FreeRegs;
972  if (IsFastCall)
973    FreeRegs = 2;
974  else if (FI.getHasRegParm())
975    FreeRegs = FI.getRegParm();
976  else
977    FreeRegs = DefaultNumRegisterParameters;
978
979  // If the return value is indirect, then the hidden argument is consuming one
980  // integer register.
981  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
982    --FreeRegs;
983    ABIArgInfo &Old = FI.getReturnInfo();
984    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
985                                       Old.getIndirectByVal(),
986                                       Old.getIndirectRealign());
987  }
988
989  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
990       it != ie; ++it)
991    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
992}
993
994llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
995                                      CodeGenFunction &CGF) const {
996  llvm::Type *BPP = CGF.Int8PtrPtrTy;
997
998  CGBuilderTy &Builder = CGF.Builder;
999  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1000                                                       "ap");
1001  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1002
1003  // Compute if the address needs to be aligned
1004  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1005  Align = getTypeStackAlignInBytes(Ty, Align);
1006  Align = std::max(Align, 4U);
1007  if (Align > 4) {
1008    // addr = (addr + align - 1) & -align;
1009    llvm::Value *Offset =
1010      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1011    Addr = CGF.Builder.CreateGEP(Addr, Offset);
1012    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1013                                                    CGF.Int32Ty);
1014    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1015    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1016                                      Addr->getType(),
1017                                      "ap.cur.aligned");
1018  }
1019
1020  llvm::Type *PTy =
1021    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1022  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1023
1024  uint64_t Offset =
1025    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1026  llvm::Value *NextAddr =
1027    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1028                      "ap.next");
1029  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1030
1031  return AddrTyped;
1032}
1033
1034void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1035                                                  llvm::GlobalValue *GV,
1036                                            CodeGen::CodeGenModule &CGM) const {
1037  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1039      // Get the LLVM function.
1040      llvm::Function *Fn = cast<llvm::Function>(GV);
1041
1042      // Now add the 'alignstack' attribute with a value of 16.
1043      llvm::AttrBuilder B;
1044      B.addStackAlignmentAttr(16);
1045      Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1046                      llvm::AttributeSet::get(CGM.getLLVMContext(),
1047                                              llvm::AttributeSet::FunctionIndex,
1048                                              B));
1049    }
1050  }
1051}
1052
1053bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1054                                               CodeGen::CodeGenFunction &CGF,
1055                                               llvm::Value *Address) const {
1056  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1057
1058  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1059
1060  // 0-7 are the eight integer registers;  the order is different
1061  //   on Darwin (for EH), but the range is the same.
1062  // 8 is %eip.
1063  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1064
1065  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1066    // 12-16 are st(0..4).  Not sure why we stop at 4.
1067    // These have size 16, which is sizeof(long double) on
1068    // platforms with 8-byte alignment for that type.
1069    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1070    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1071
1072  } else {
1073    // 9 is %eflags, which doesn't get a size on Darwin for some
1074    // reason.
1075    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1076
1077    // 11-16 are st(0..5).  Not sure why we stop at 5.
1078    // These have size 12, which is sizeof(long double) on
1079    // platforms with 4-byte alignment for that type.
1080    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1081    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1082  }
1083
1084  return false;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// X86-64 ABI Implementation
1089//===----------------------------------------------------------------------===//
1090
1091
1092namespace {
1093/// X86_64ABIInfo - The X86_64 ABI information.
1094class X86_64ABIInfo : public ABIInfo {
1095  enum Class {
1096    Integer = 0,
1097    SSE,
1098    SSEUp,
1099    X87,
1100    X87Up,
1101    ComplexX87,
1102    NoClass,
1103    Memory
1104  };
1105
1106  /// merge - Implement the X86_64 ABI merging algorithm.
1107  ///
1108  /// Merge an accumulating classification \arg Accum with a field
1109  /// classification \arg Field.
1110  ///
1111  /// \param Accum - The accumulating classification. This should
1112  /// always be either NoClass or the result of a previous merge
1113  /// call. In addition, this should never be Memory (the caller
1114  /// should just return Memory for the aggregate).
1115  static Class merge(Class Accum, Class Field);
1116
1117  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1118  ///
1119  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1120  /// final MEMORY or SSE classes when necessary.
1121  ///
1122  /// \param AggregateSize - The size of the current aggregate in
1123  /// the classification process.
1124  ///
1125  /// \param Lo - The classification for the parts of the type
1126  /// residing in the low word of the containing object.
1127  ///
1128  /// \param Hi - The classification for the parts of the type
1129  /// residing in the higher words of the containing object.
1130  ///
1131  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1132
1133  /// classify - Determine the x86_64 register classes in which the
1134  /// given type T should be passed.
1135  ///
1136  /// \param Lo - The classification for the parts of the type
1137  /// residing in the low word of the containing object.
1138  ///
1139  /// \param Hi - The classification for the parts of the type
1140  /// residing in the high word of the containing object.
1141  ///
1142  /// \param OffsetBase - The bit offset of this type in the
1143  /// containing object.  Some parameters are classified different
1144  /// depending on whether they straddle an eightbyte boundary.
1145  ///
1146  /// \param isNamedArg - Whether the argument in question is a "named"
1147  /// argument, as used in AMD64-ABI 3.5.7.
1148  ///
1149  /// If a word is unused its result will be NoClass; if a type should
1150  /// be passed in Memory then at least the classification of \arg Lo
1151  /// will be Memory.
1152  ///
1153  /// The \arg Lo class will be NoClass iff the argument is ignored.
1154  ///
1155  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1156  /// also be ComplexX87.
1157  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1158                bool isNamedArg) const;
1159
1160  llvm::Type *GetByteVectorType(QualType Ty) const;
1161  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1162                                 unsigned IROffset, QualType SourceTy,
1163                                 unsigned SourceOffset) const;
1164  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1165                                     unsigned IROffset, QualType SourceTy,
1166                                     unsigned SourceOffset) const;
1167
1168  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1169  /// such that the argument will be returned in memory.
1170  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1171
1172  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173  /// such that the argument will be passed in memory.
1174  ///
1175  /// \param freeIntRegs - The number of free integer registers remaining
1176  /// available.
1177  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1178
1179  ABIArgInfo classifyReturnType(QualType RetTy) const;
1180
1181  ABIArgInfo classifyArgumentType(QualType Ty,
1182                                  unsigned freeIntRegs,
1183                                  unsigned &neededInt,
1184                                  unsigned &neededSSE,
1185                                  bool isNamedArg) const;
1186
1187  bool IsIllegalVectorType(QualType Ty) const;
1188
1189  /// The 0.98 ABI revision clarified a lot of ambiguities,
1190  /// unfortunately in ways that were not always consistent with
1191  /// certain previous compilers.  In particular, platforms which
1192  /// required strict binary compatibility with older versions of GCC
1193  /// may need to exempt themselves.
1194  bool honorsRevision0_98() const {
1195    return !getTarget().getTriple().isOSDarwin();
1196  }
1197
1198  bool HasAVX;
1199  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1200  // 64-bit hardware.
1201  bool Has64BitPointers;
1202
1203public:
1204  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1205      ABIInfo(CGT), HasAVX(hasavx),
1206      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1207  }
1208
1209  bool isPassedUsingAVXType(QualType type) const {
1210    unsigned neededInt, neededSSE;
1211    // The freeIntRegs argument doesn't matter here.
1212    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1213                                           /*isNamedArg*/true);
1214    if (info.isDirect()) {
1215      llvm::Type *ty = info.getCoerceToType();
1216      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1217        return (vectorTy->getBitWidth() > 128);
1218    }
1219    return false;
1220  }
1221
1222  virtual void computeInfo(CGFunctionInfo &FI) const;
1223
1224  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1225                                 CodeGenFunction &CGF) const;
1226};
1227
1228/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1229class WinX86_64ABIInfo : public ABIInfo {
1230
1231  ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1232
1233public:
1234  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1235
1236  virtual void computeInfo(CGFunctionInfo &FI) const;
1237
1238  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1239                                 CodeGenFunction &CGF) const;
1240};
1241
1242class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1243public:
1244  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1245      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1246
1247  const X86_64ABIInfo &getABIInfo() const {
1248    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1249  }
1250
1251  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1252    return 7;
1253  }
1254
1255  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1256                               llvm::Value *Address) const {
1257    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1258
1259    // 0-15 are the 16 integer registers.
1260    // 16 is %rip.
1261    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1262    return false;
1263  }
1264
1265  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1266                                  StringRef Constraint,
1267                                  llvm::Type* Ty) const {
1268    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1269  }
1270
1271  bool isNoProtoCallVariadic(const CallArgList &args,
1272                             const FunctionNoProtoType *fnType) const {
1273    // The default CC on x86-64 sets %al to the number of SSA
1274    // registers used, and GCC sets this when calling an unprototyped
1275    // function, so we override the default behavior.  However, don't do
1276    // that when AVX types are involved: the ABI explicitly states it is
1277    // undefined, and it doesn't work in practice because of how the ABI
1278    // defines varargs anyway.
1279    if (fnType->getCallConv() == CC_C) {
1280      bool HasAVXType = false;
1281      for (CallArgList::const_iterator
1282             it = args.begin(), ie = args.end(); it != ie; ++it) {
1283        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1284          HasAVXType = true;
1285          break;
1286        }
1287      }
1288
1289      if (!HasAVXType)
1290        return true;
1291    }
1292
1293    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1294  }
1295
1296  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1297    unsigned Sig = (0xeb << 0) |  // jmp rel8
1298                   (0x0a << 8) |  //           .+0x0c
1299                   ('F' << 16) |
1300                   ('T' << 24);
1301    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1302  }
1303
1304};
1305
1306static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1307  // If the argument does not end in .lib, automatically add the suffix. This
1308  // matches the behavior of MSVC.
1309  std::string ArgStr = Lib;
1310  if (!Lib.endswith_lower(".lib"))
1311    ArgStr += ".lib";
1312  return ArgStr;
1313}
1314
1315class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1316public:
1317  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1318        bool d, bool p, bool w, unsigned RegParms)
1319    : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1320
1321  void getDependentLibraryOption(llvm::StringRef Lib,
1322                                 llvm::SmallString<24> &Opt) const {
1323    Opt = "/DEFAULTLIB:";
1324    Opt += qualifyWindowsLibrary(Lib);
1325  }
1326
1327  void getDetectMismatchOption(llvm::StringRef Name,
1328                               llvm::StringRef Value,
1329                               llvm::SmallString<32> &Opt) const {
1330    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1331  }
1332};
1333
1334class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1335public:
1336  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1337    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1338
1339  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1340    return 7;
1341  }
1342
1343  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1344                               llvm::Value *Address) const {
1345    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1346
1347    // 0-15 are the 16 integer registers.
1348    // 16 is %rip.
1349    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1350    return false;
1351  }
1352
1353  void getDependentLibraryOption(llvm::StringRef Lib,
1354                                 llvm::SmallString<24> &Opt) const {
1355    Opt = "/DEFAULTLIB:";
1356    Opt += qualifyWindowsLibrary(Lib);
1357  }
1358
1359  void getDetectMismatchOption(llvm::StringRef Name,
1360                               llvm::StringRef Value,
1361                               llvm::SmallString<32> &Opt) const {
1362    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1363  }
1364};
1365
1366}
1367
1368void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1369                              Class &Hi) const {
1370  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1371  //
1372  // (a) If one of the classes is Memory, the whole argument is passed in
1373  //     memory.
1374  //
1375  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1376  //     memory.
1377  //
1378  // (c) If the size of the aggregate exceeds two eightbytes and the first
1379  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1380  //     argument is passed in memory. NOTE: This is necessary to keep the
1381  //     ABI working for processors that don't support the __m256 type.
1382  //
1383  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1384  //
1385  // Some of these are enforced by the merging logic.  Others can arise
1386  // only with unions; for example:
1387  //   union { _Complex double; unsigned; }
1388  //
1389  // Note that clauses (b) and (c) were added in 0.98.
1390  //
1391  if (Hi == Memory)
1392    Lo = Memory;
1393  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1394    Lo = Memory;
1395  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1396    Lo = Memory;
1397  if (Hi == SSEUp && Lo != SSE)
1398    Hi = SSE;
1399}
1400
1401X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1402  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1403  // classified recursively so that always two fields are
1404  // considered. The resulting class is calculated according to
1405  // the classes of the fields in the eightbyte:
1406  //
1407  // (a) If both classes are equal, this is the resulting class.
1408  //
1409  // (b) If one of the classes is NO_CLASS, the resulting class is
1410  // the other class.
1411  //
1412  // (c) If one of the classes is MEMORY, the result is the MEMORY
1413  // class.
1414  //
1415  // (d) If one of the classes is INTEGER, the result is the
1416  // INTEGER.
1417  //
1418  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1419  // MEMORY is used as class.
1420  //
1421  // (f) Otherwise class SSE is used.
1422
1423  // Accum should never be memory (we should have returned) or
1424  // ComplexX87 (because this cannot be passed in a structure).
1425  assert((Accum != Memory && Accum != ComplexX87) &&
1426         "Invalid accumulated classification during merge.");
1427  if (Accum == Field || Field == NoClass)
1428    return Accum;
1429  if (Field == Memory)
1430    return Memory;
1431  if (Accum == NoClass)
1432    return Field;
1433  if (Accum == Integer || Field == Integer)
1434    return Integer;
1435  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1436      Accum == X87 || Accum == X87Up)
1437    return Memory;
1438  return SSE;
1439}
1440
1441void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1442                             Class &Lo, Class &Hi, bool isNamedArg) const {
1443  // FIXME: This code can be simplified by introducing a simple value class for
1444  // Class pairs with appropriate constructor methods for the various
1445  // situations.
1446
1447  // FIXME: Some of the split computations are wrong; unaligned vectors
1448  // shouldn't be passed in registers for example, so there is no chance they
1449  // can straddle an eightbyte. Verify & simplify.
1450
1451  Lo = Hi = NoClass;
1452
1453  Class &Current = OffsetBase < 64 ? Lo : Hi;
1454  Current = Memory;
1455
1456  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1457    BuiltinType::Kind k = BT->getKind();
1458
1459    if (k == BuiltinType::Void) {
1460      Current = NoClass;
1461    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1462      Lo = Integer;
1463      Hi = Integer;
1464    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1465      Current = Integer;
1466    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1467               (k == BuiltinType::LongDouble &&
1468                getTarget().getTriple().isOSNaCl())) {
1469      Current = SSE;
1470    } else if (k == BuiltinType::LongDouble) {
1471      Lo = X87;
1472      Hi = X87Up;
1473    }
1474    // FIXME: _Decimal32 and _Decimal64 are SSE.
1475    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1476    return;
1477  }
1478
1479  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1480    // Classify the underlying integer type.
1481    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1482    return;
1483  }
1484
1485  if (Ty->hasPointerRepresentation()) {
1486    Current = Integer;
1487    return;
1488  }
1489
1490  if (Ty->isMemberPointerType()) {
1491    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1492      Lo = Hi = Integer;
1493    else
1494      Current = Integer;
1495    return;
1496  }
1497
1498  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1499    uint64_t Size = getContext().getTypeSize(VT);
1500    if (Size == 32) {
1501      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1502      // float> as integer.
1503      Current = Integer;
1504
1505      // If this type crosses an eightbyte boundary, it should be
1506      // split.
1507      uint64_t EB_Real = (OffsetBase) / 64;
1508      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1509      if (EB_Real != EB_Imag)
1510        Hi = Lo;
1511    } else if (Size == 64) {
1512      // gcc passes <1 x double> in memory. :(
1513      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1514        return;
1515
1516      // gcc passes <1 x long long> as INTEGER.
1517      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1518          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1519          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1520          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1521        Current = Integer;
1522      else
1523        Current = SSE;
1524
1525      // If this type crosses an eightbyte boundary, it should be
1526      // split.
1527      if (OffsetBase && OffsetBase != 64)
1528        Hi = Lo;
1529    } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1530      // Arguments of 256-bits are split into four eightbyte chunks. The
1531      // least significant one belongs to class SSE and all the others to class
1532      // SSEUP. The original Lo and Hi design considers that types can't be
1533      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1534      // This design isn't correct for 256-bits, but since there're no cases
1535      // where the upper parts would need to be inspected, avoid adding
1536      // complexity and just consider Hi to match the 64-256 part.
1537      //
1538      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1539      // registers if they are "named", i.e. not part of the "..." of a
1540      // variadic function.
1541      Lo = SSE;
1542      Hi = SSEUp;
1543    }
1544    return;
1545  }
1546
1547  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1548    QualType ET = getContext().getCanonicalType(CT->getElementType());
1549
1550    uint64_t Size = getContext().getTypeSize(Ty);
1551    if (ET->isIntegralOrEnumerationType()) {
1552      if (Size <= 64)
1553        Current = Integer;
1554      else if (Size <= 128)
1555        Lo = Hi = Integer;
1556    } else if (ET == getContext().FloatTy)
1557      Current = SSE;
1558    else if (ET == getContext().DoubleTy ||
1559             (ET == getContext().LongDoubleTy &&
1560              getTarget().getTriple().isOSNaCl()))
1561      Lo = Hi = SSE;
1562    else if (ET == getContext().LongDoubleTy)
1563      Current = ComplexX87;
1564
1565    // If this complex type crosses an eightbyte boundary then it
1566    // should be split.
1567    uint64_t EB_Real = (OffsetBase) / 64;
1568    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1569    if (Hi == NoClass && EB_Real != EB_Imag)
1570      Hi = Lo;
1571
1572    return;
1573  }
1574
1575  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1576    // Arrays are treated like structures.
1577
1578    uint64_t Size = getContext().getTypeSize(Ty);
1579
1580    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1581    // than four eightbytes, ..., it has class MEMORY.
1582    if (Size > 256)
1583      return;
1584
1585    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1586    // fields, it has class MEMORY.
1587    //
1588    // Only need to check alignment of array base.
1589    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1590      return;
1591
1592    // Otherwise implement simplified merge. We could be smarter about
1593    // this, but it isn't worth it and would be harder to verify.
1594    Current = NoClass;
1595    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1596    uint64_t ArraySize = AT->getSize().getZExtValue();
1597
1598    // The only case a 256-bit wide vector could be used is when the array
1599    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1600    // to work for sizes wider than 128, early check and fallback to memory.
1601    if (Size > 128 && EltSize != 256)
1602      return;
1603
1604    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1605      Class FieldLo, FieldHi;
1606      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1607      Lo = merge(Lo, FieldLo);
1608      Hi = merge(Hi, FieldHi);
1609      if (Lo == Memory || Hi == Memory)
1610        break;
1611    }
1612
1613    postMerge(Size, Lo, Hi);
1614    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1615    return;
1616  }
1617
1618  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1619    uint64_t Size = getContext().getTypeSize(Ty);
1620
1621    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1622    // than four eightbytes, ..., it has class MEMORY.
1623    if (Size > 256)
1624      return;
1625
1626    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1627    // copy constructor or a non-trivial destructor, it is passed by invisible
1628    // reference.
1629    if (getRecordArgABI(RT, getCXXABI()))
1630      return;
1631
1632    const RecordDecl *RD = RT->getDecl();
1633
1634    // Assume variable sized types are passed in memory.
1635    if (RD->hasFlexibleArrayMember())
1636      return;
1637
1638    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1639
1640    // Reset Lo class, this will be recomputed.
1641    Current = NoClass;
1642
1643    // If this is a C++ record, classify the bases first.
1644    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1645      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1646             e = CXXRD->bases_end(); i != e; ++i) {
1647        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1648               "Unexpected base class!");
1649        const CXXRecordDecl *Base =
1650          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1651
1652        // Classify this field.
1653        //
1654        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1655        // single eightbyte, each is classified separately. Each eightbyte gets
1656        // initialized to class NO_CLASS.
1657        Class FieldLo, FieldHi;
1658        uint64_t Offset =
1659          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1660        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1661        Lo = merge(Lo, FieldLo);
1662        Hi = merge(Hi, FieldHi);
1663        if (Lo == Memory || Hi == Memory)
1664          break;
1665      }
1666    }
1667
1668    // Classify the fields one at a time, merging the results.
1669    unsigned idx = 0;
1670    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1671           i != e; ++i, ++idx) {
1672      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1673      bool BitField = i->isBitField();
1674
1675      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1676      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1677      //
1678      // The only case a 256-bit wide vector could be used is when the struct
1679      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1680      // to work for sizes wider than 128, early check and fallback to memory.
1681      //
1682      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1683        Lo = Memory;
1684        return;
1685      }
1686      // Note, skip this test for bit-fields, see below.
1687      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1688        Lo = Memory;
1689        return;
1690      }
1691
1692      // Classify this field.
1693      //
1694      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1695      // exceeds a single eightbyte, each is classified
1696      // separately. Each eightbyte gets initialized to class
1697      // NO_CLASS.
1698      Class FieldLo, FieldHi;
1699
1700      // Bit-fields require special handling, they do not force the
1701      // structure to be passed in memory even if unaligned, and
1702      // therefore they can straddle an eightbyte.
1703      if (BitField) {
1704        // Ignore padding bit-fields.
1705        if (i->isUnnamedBitfield())
1706          continue;
1707
1708        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1709        uint64_t Size = i->getBitWidthValue(getContext());
1710
1711        uint64_t EB_Lo = Offset / 64;
1712        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1713
1714        if (EB_Lo) {
1715          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1716          FieldLo = NoClass;
1717          FieldHi = Integer;
1718        } else {
1719          FieldLo = Integer;
1720          FieldHi = EB_Hi ? Integer : NoClass;
1721        }
1722      } else
1723        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1724      Lo = merge(Lo, FieldLo);
1725      Hi = merge(Hi, FieldHi);
1726      if (Lo == Memory || Hi == Memory)
1727        break;
1728    }
1729
1730    postMerge(Size, Lo, Hi);
1731  }
1732}
1733
1734ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1735  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1736  // place naturally.
1737  if (!isAggregateTypeForABI(Ty)) {
1738    // Treat an enum type as its underlying type.
1739    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1740      Ty = EnumTy->getDecl()->getIntegerType();
1741
1742    return (Ty->isPromotableIntegerType() ?
1743            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1744  }
1745
1746  return ABIArgInfo::getIndirect(0);
1747}
1748
1749bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1750  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1751    uint64_t Size = getContext().getTypeSize(VecTy);
1752    unsigned LargestVector = HasAVX ? 256 : 128;
1753    if (Size <= 64 || Size > LargestVector)
1754      return true;
1755  }
1756
1757  return false;
1758}
1759
1760ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1761                                            unsigned freeIntRegs) const {
1762  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1763  // place naturally.
1764  //
1765  // This assumption is optimistic, as there could be free registers available
1766  // when we need to pass this argument in memory, and LLVM could try to pass
1767  // the argument in the free register. This does not seem to happen currently,
1768  // but this code would be much safer if we could mark the argument with
1769  // 'onstack'. See PR12193.
1770  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1771    // Treat an enum type as its underlying type.
1772    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1773      Ty = EnumTy->getDecl()->getIntegerType();
1774
1775    return (Ty->isPromotableIntegerType() ?
1776            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777  }
1778
1779  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1780    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1781
1782  // Compute the byval alignment. We specify the alignment of the byval in all
1783  // cases so that the mid-level optimizer knows the alignment of the byval.
1784  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1785
1786  // Attempt to avoid passing indirect results using byval when possible. This
1787  // is important for good codegen.
1788  //
1789  // We do this by coercing the value into a scalar type which the backend can
1790  // handle naturally (i.e., without using byval).
1791  //
1792  // For simplicity, we currently only do this when we have exhausted all of the
1793  // free integer registers. Doing this when there are free integer registers
1794  // would require more care, as we would have to ensure that the coerced value
1795  // did not claim the unused register. That would require either reording the
1796  // arguments to the function (so that any subsequent inreg values came first),
1797  // or only doing this optimization when there were no following arguments that
1798  // might be inreg.
1799  //
1800  // We currently expect it to be rare (particularly in well written code) for
1801  // arguments to be passed on the stack when there are still free integer
1802  // registers available (this would typically imply large structs being passed
1803  // by value), so this seems like a fair tradeoff for now.
1804  //
1805  // We can revisit this if the backend grows support for 'onstack' parameter
1806  // attributes. See PR12193.
1807  if (freeIntRegs == 0) {
1808    uint64_t Size = getContext().getTypeSize(Ty);
1809
1810    // If this type fits in an eightbyte, coerce it into the matching integral
1811    // type, which will end up on the stack (with alignment 8).
1812    if (Align == 8 && Size <= 64)
1813      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1814                                                          Size));
1815  }
1816
1817  return ABIArgInfo::getIndirect(Align);
1818}
1819
1820/// GetByteVectorType - The ABI specifies that a value should be passed in an
1821/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1822/// vector register.
1823llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1824  llvm::Type *IRType = CGT.ConvertType(Ty);
1825
1826  // Wrapper structs that just contain vectors are passed just like vectors,
1827  // strip them off if present.
1828  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1829  while (STy && STy->getNumElements() == 1) {
1830    IRType = STy->getElementType(0);
1831    STy = dyn_cast<llvm::StructType>(IRType);
1832  }
1833
1834  // If the preferred type is a 16-byte vector, prefer to pass it.
1835  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1836    llvm::Type *EltTy = VT->getElementType();
1837    unsigned BitWidth = VT->getBitWidth();
1838    if ((BitWidth >= 128 && BitWidth <= 256) &&
1839        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1840         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1841         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1842         EltTy->isIntegerTy(128)))
1843      return VT;
1844  }
1845
1846  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1847}
1848
1849/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1850/// is known to either be off the end of the specified type or being in
1851/// alignment padding.  The user type specified is known to be at most 128 bits
1852/// in size, and have passed through X86_64ABIInfo::classify with a successful
1853/// classification that put one of the two halves in the INTEGER class.
1854///
1855/// It is conservatively correct to return false.
1856static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1857                                  unsigned EndBit, ASTContext &Context) {
1858  // If the bytes being queried are off the end of the type, there is no user
1859  // data hiding here.  This handles analysis of builtins, vectors and other
1860  // types that don't contain interesting padding.
1861  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1862  if (TySize <= StartBit)
1863    return true;
1864
1865  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1866    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1867    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1868
1869    // Check each element to see if the element overlaps with the queried range.
1870    for (unsigned i = 0; i != NumElts; ++i) {
1871      // If the element is after the span we care about, then we're done..
1872      unsigned EltOffset = i*EltSize;
1873      if (EltOffset >= EndBit) break;
1874
1875      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1876      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1877                                 EndBit-EltOffset, Context))
1878        return false;
1879    }
1880    // If it overlaps no elements, then it is safe to process as padding.
1881    return true;
1882  }
1883
1884  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885    const RecordDecl *RD = RT->getDecl();
1886    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888    // If this is a C++ record, check the bases first.
1889    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1890      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1891           e = CXXRD->bases_end(); i != e; ++i) {
1892        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1893               "Unexpected base class!");
1894        const CXXRecordDecl *Base =
1895          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1896
1897        // If the base is after the span we care about, ignore it.
1898        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1899        if (BaseOffset >= EndBit) continue;
1900
1901        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1902        if (!BitsContainNoUserData(i->getType(), BaseStart,
1903                                   EndBit-BaseOffset, Context))
1904          return false;
1905      }
1906    }
1907
1908    // Verify that no field has data that overlaps the region of interest.  Yes
1909    // this could be sped up a lot by being smarter about queried fields,
1910    // however we're only looking at structs up to 16 bytes, so we don't care
1911    // much.
1912    unsigned idx = 0;
1913    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1914         i != e; ++i, ++idx) {
1915      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1916
1917      // If we found a field after the region we care about, then we're done.
1918      if (FieldOffset >= EndBit) break;
1919
1920      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1921      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1922                                 Context))
1923        return false;
1924    }
1925
1926    // If nothing in this record overlapped the area of interest, then we're
1927    // clean.
1928    return true;
1929  }
1930
1931  return false;
1932}
1933
1934/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1935/// float member at the specified offset.  For example, {int,{float}} has a
1936/// float at offset 4.  It is conservatively correct for this routine to return
1937/// false.
1938static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1939                                  const llvm::DataLayout &TD) {
1940  // Base case if we find a float.
1941  if (IROffset == 0 && IRType->isFloatTy())
1942    return true;
1943
1944  // If this is a struct, recurse into the field at the specified offset.
1945  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1946    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1947    unsigned Elt = SL->getElementContainingOffset(IROffset);
1948    IROffset -= SL->getElementOffset(Elt);
1949    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1950  }
1951
1952  // If this is an array, recurse into the field at the specified offset.
1953  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1954    llvm::Type *EltTy = ATy->getElementType();
1955    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1956    IROffset -= IROffset/EltSize*EltSize;
1957    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1958  }
1959
1960  return false;
1961}
1962
1963
1964/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1965/// low 8 bytes of an XMM register, corresponding to the SSE class.
1966llvm::Type *X86_64ABIInfo::
1967GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1968                   QualType SourceTy, unsigned SourceOffset) const {
1969  // The only three choices we have are either double, <2 x float>, or float. We
1970  // pass as float if the last 4 bytes is just padding.  This happens for
1971  // structs that contain 3 floats.
1972  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1973                            SourceOffset*8+64, getContext()))
1974    return llvm::Type::getFloatTy(getVMContext());
1975
1976  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1977  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1978  // case.
1979  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1980      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1981    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1982
1983  return llvm::Type::getDoubleTy(getVMContext());
1984}
1985
1986
1987/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1988/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1989/// about the high or low part of an up-to-16-byte struct.  This routine picks
1990/// the best LLVM IR type to represent this, which may be i64 or may be anything
1991/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1992/// etc).
1993///
1994/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1995/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1996/// the 8-byte value references.  PrefType may be null.
1997///
1998/// SourceTy is the source level type for the entire argument.  SourceOffset is
1999/// an offset into this that we're processing (which is always either 0 or 8).
2000///
2001llvm::Type *X86_64ABIInfo::
2002GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2003                       QualType SourceTy, unsigned SourceOffset) const {
2004  // If we're dealing with an un-offset LLVM IR type, then it means that we're
2005  // returning an 8-byte unit starting with it.  See if we can safely use it.
2006  if (IROffset == 0) {
2007    // Pointers and int64's always fill the 8-byte unit.
2008    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2009        IRType->isIntegerTy(64))
2010      return IRType;
2011
2012    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2013    // goodness in the source type is just tail padding.  This is allowed to
2014    // kick in for struct {double,int} on the int, but not on
2015    // struct{double,int,int} because we wouldn't return the second int.  We
2016    // have to do this analysis on the source type because we can't depend on
2017    // unions being lowered a specific way etc.
2018    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2019        IRType->isIntegerTy(32) ||
2020        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2021      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2022          cast<llvm::IntegerType>(IRType)->getBitWidth();
2023
2024      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2025                                SourceOffset*8+64, getContext()))
2026        return IRType;
2027    }
2028  }
2029
2030  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2031    // If this is a struct, recurse into the field at the specified offset.
2032    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2033    if (IROffset < SL->getSizeInBytes()) {
2034      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2035      IROffset -= SL->getElementOffset(FieldIdx);
2036
2037      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2038                                    SourceTy, SourceOffset);
2039    }
2040  }
2041
2042  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043    llvm::Type *EltTy = ATy->getElementType();
2044    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2045    unsigned EltOffset = IROffset/EltSize*EltSize;
2046    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2047                                  SourceOffset);
2048  }
2049
2050  // Okay, we don't have any better idea of what to pass, so we pass this in an
2051  // integer register that isn't too big to fit the rest of the struct.
2052  unsigned TySizeInBytes =
2053    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2054
2055  assert(TySizeInBytes != SourceOffset && "Empty field?");
2056
2057  // It is always safe to classify this as an integer type up to i64 that
2058  // isn't larger than the structure.
2059  return llvm::IntegerType::get(getVMContext(),
2060                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
2061}
2062
2063
2064/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2065/// be used as elements of a two register pair to pass or return, return a
2066/// first class aggregate to represent them.  For example, if the low part of
2067/// a by-value argument should be passed as i32* and the high part as float,
2068/// return {i32*, float}.
2069static llvm::Type *
2070GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2071                           const llvm::DataLayout &TD) {
2072  // In order to correctly satisfy the ABI, we need to the high part to start
2073  // at offset 8.  If the high and low parts we inferred are both 4-byte types
2074  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2075  // the second element at offset 8.  Check for this:
2076  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2077  unsigned HiAlign = TD.getABITypeAlignment(Hi);
2078  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2079  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2080
2081  // To handle this, we have to increase the size of the low part so that the
2082  // second element will start at an 8 byte offset.  We can't increase the size
2083  // of the second element because it might make us access off the end of the
2084  // struct.
2085  if (HiStart != 8) {
2086    // There are only two sorts of types the ABI generation code can produce for
2087    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2088    // Promote these to a larger type.
2089    if (Lo->isFloatTy())
2090      Lo = llvm::Type::getDoubleTy(Lo->getContext());
2091    else {
2092      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2093      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2094    }
2095  }
2096
2097  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2098
2099
2100  // Verify that the second element is at an 8-byte offset.
2101  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2102         "Invalid x86-64 argument pair!");
2103  return Result;
2104}
2105
2106ABIArgInfo X86_64ABIInfo::
2107classifyReturnType(QualType RetTy) const {
2108  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2109  // classification algorithm.
2110  X86_64ABIInfo::Class Lo, Hi;
2111  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2112
2113  // Check some invariants.
2114  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2115  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2116
2117  llvm::Type *ResType = 0;
2118  switch (Lo) {
2119  case NoClass:
2120    if (Hi == NoClass)
2121      return ABIArgInfo::getIgnore();
2122    // If the low part is just padding, it takes no register, leave ResType
2123    // null.
2124    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2125           "Unknown missing lo part");
2126    break;
2127
2128  case SSEUp:
2129  case X87Up:
2130    llvm_unreachable("Invalid classification for lo word.");
2131
2132    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2133    // hidden argument.
2134  case Memory:
2135    return getIndirectReturnResult(RetTy);
2136
2137    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2138    // available register of the sequence %rax, %rdx is used.
2139  case Integer:
2140    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2141
2142    // If we have a sign or zero extended integer, make sure to return Extend
2143    // so that the parameter gets the right LLVM IR attributes.
2144    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2145      // Treat an enum type as its underlying type.
2146      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2147        RetTy = EnumTy->getDecl()->getIntegerType();
2148
2149      if (RetTy->isIntegralOrEnumerationType() &&
2150          RetTy->isPromotableIntegerType())
2151        return ABIArgInfo::getExtend();
2152    }
2153    break;
2154
2155    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2156    // available SSE register of the sequence %xmm0, %xmm1 is used.
2157  case SSE:
2158    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2159    break;
2160
2161    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2162    // returned on the X87 stack in %st0 as 80-bit x87 number.
2163  case X87:
2164    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2165    break;
2166
2167    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2168    // part of the value is returned in %st0 and the imaginary part in
2169    // %st1.
2170  case ComplexX87:
2171    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2172    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2173                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2174                                    NULL);
2175    break;
2176  }
2177
2178  llvm::Type *HighPart = 0;
2179  switch (Hi) {
2180    // Memory was handled previously and X87 should
2181    // never occur as a hi class.
2182  case Memory:
2183  case X87:
2184    llvm_unreachable("Invalid classification for hi word.");
2185
2186  case ComplexX87: // Previously handled.
2187  case NoClass:
2188    break;
2189
2190  case Integer:
2191    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2192    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2193      return ABIArgInfo::getDirect(HighPart, 8);
2194    break;
2195  case SSE:
2196    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2197    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2198      return ABIArgInfo::getDirect(HighPart, 8);
2199    break;
2200
2201    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2202    // is passed in the next available eightbyte chunk if the last used
2203    // vector register.
2204    //
2205    // SSEUP should always be preceded by SSE, just widen.
2206  case SSEUp:
2207    assert(Lo == SSE && "Unexpected SSEUp classification.");
2208    ResType = GetByteVectorType(RetTy);
2209    break;
2210
2211    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2212    // returned together with the previous X87 value in %st0.
2213  case X87Up:
2214    // If X87Up is preceded by X87, we don't need to do
2215    // anything. However, in some cases with unions it may not be
2216    // preceded by X87. In such situations we follow gcc and pass the
2217    // extra bits in an SSE reg.
2218    if (Lo != X87) {
2219      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2220      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2221        return ABIArgInfo::getDirect(HighPart, 8);
2222    }
2223    break;
2224  }
2225
2226  // If a high part was specified, merge it together with the low part.  It is
2227  // known to pass in the high eightbyte of the result.  We do this by forming a
2228  // first class struct aggregate with the high and low part: {low, high}
2229  if (HighPart)
2230    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2231
2232  return ABIArgInfo::getDirect(ResType);
2233}
2234
2235ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2236  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2237  bool isNamedArg)
2238  const
2239{
2240  X86_64ABIInfo::Class Lo, Hi;
2241  classify(Ty, 0, Lo, Hi, isNamedArg);
2242
2243  // Check some invariants.
2244  // FIXME: Enforce these by construction.
2245  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2246  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2247
2248  neededInt = 0;
2249  neededSSE = 0;
2250  llvm::Type *ResType = 0;
2251  switch (Lo) {
2252  case NoClass:
2253    if (Hi == NoClass)
2254      return ABIArgInfo::getIgnore();
2255    // If the low part is just padding, it takes no register, leave ResType
2256    // null.
2257    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2258           "Unknown missing lo part");
2259    break;
2260
2261    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2262    // on the stack.
2263  case Memory:
2264
2265    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2266    // COMPLEX_X87, it is passed in memory.
2267  case X87:
2268  case ComplexX87:
2269    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2270      ++neededInt;
2271    return getIndirectResult(Ty, freeIntRegs);
2272
2273  case SSEUp:
2274  case X87Up:
2275    llvm_unreachable("Invalid classification for lo word.");
2276
2277    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2278    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2279    // and %r9 is used.
2280  case Integer:
2281    ++neededInt;
2282
2283    // Pick an 8-byte type based on the preferred type.
2284    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2285
2286    // If we have a sign or zero extended integer, make sure to return Extend
2287    // so that the parameter gets the right LLVM IR attributes.
2288    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2289      // Treat an enum type as its underlying type.
2290      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291        Ty = EnumTy->getDecl()->getIntegerType();
2292
2293      if (Ty->isIntegralOrEnumerationType() &&
2294          Ty->isPromotableIntegerType())
2295        return ABIArgInfo::getExtend();
2296    }
2297
2298    break;
2299
2300    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2301    // available SSE register is used, the registers are taken in the
2302    // order from %xmm0 to %xmm7.
2303  case SSE: {
2304    llvm::Type *IRType = CGT.ConvertType(Ty);
2305    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2306    ++neededSSE;
2307    break;
2308  }
2309  }
2310
2311  llvm::Type *HighPart = 0;
2312  switch (Hi) {
2313    // Memory was handled previously, ComplexX87 and X87 should
2314    // never occur as hi classes, and X87Up must be preceded by X87,
2315    // which is passed in memory.
2316  case Memory:
2317  case X87:
2318  case ComplexX87:
2319    llvm_unreachable("Invalid classification for hi word.");
2320
2321  case NoClass: break;
2322
2323  case Integer:
2324    ++neededInt;
2325    // Pick an 8-byte type based on the preferred type.
2326    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2327
2328    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2329      return ABIArgInfo::getDirect(HighPart, 8);
2330    break;
2331
2332    // X87Up generally doesn't occur here (long double is passed in
2333    // memory), except in situations involving unions.
2334  case X87Up:
2335  case SSE:
2336    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2337
2338    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2339      return ABIArgInfo::getDirect(HighPart, 8);
2340
2341    ++neededSSE;
2342    break;
2343
2344    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2345    // eightbyte is passed in the upper half of the last used SSE
2346    // register.  This only happens when 128-bit vectors are passed.
2347  case SSEUp:
2348    assert(Lo == SSE && "Unexpected SSEUp classification");
2349    ResType = GetByteVectorType(Ty);
2350    break;
2351  }
2352
2353  // If a high part was specified, merge it together with the low part.  It is
2354  // known to pass in the high eightbyte of the result.  We do this by forming a
2355  // first class struct aggregate with the high and low part: {low, high}
2356  if (HighPart)
2357    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2358
2359  return ABIArgInfo::getDirect(ResType);
2360}
2361
2362void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2363
2364  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2365
2366  // Keep track of the number of assigned registers.
2367  unsigned freeIntRegs = 6, freeSSERegs = 8;
2368
2369  // If the return value is indirect, then the hidden argument is consuming one
2370  // integer register.
2371  if (FI.getReturnInfo().isIndirect())
2372    --freeIntRegs;
2373
2374  bool isVariadic = FI.isVariadic();
2375  unsigned numRequiredArgs = 0;
2376  if (isVariadic)
2377    numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2378
2379  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2380  // get assigned (in left-to-right order) for passing as follows...
2381  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2382       it != ie; ++it) {
2383    bool isNamedArg = true;
2384    if (isVariadic)
2385      isNamedArg = (it - FI.arg_begin()) <
2386                    static_cast<signed>(numRequiredArgs);
2387
2388    unsigned neededInt, neededSSE;
2389    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2390                                    neededSSE, isNamedArg);
2391
2392    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2393    // eightbyte of an argument, the whole argument is passed on the
2394    // stack. If registers have already been assigned for some
2395    // eightbytes of such an argument, the assignments get reverted.
2396    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2397      freeIntRegs -= neededInt;
2398      freeSSERegs -= neededSSE;
2399    } else {
2400      it->info = getIndirectResult(it->type, freeIntRegs);
2401    }
2402  }
2403}
2404
2405static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2406                                        QualType Ty,
2407                                        CodeGenFunction &CGF) {
2408  llvm::Value *overflow_arg_area_p =
2409    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2410  llvm::Value *overflow_arg_area =
2411    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2412
2413  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2414  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2415  // It isn't stated explicitly in the standard, but in practice we use
2416  // alignment greater than 16 where necessary.
2417  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2418  if (Align > 8) {
2419    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2420    llvm::Value *Offset =
2421      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2422    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2423    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2424                                                    CGF.Int64Ty);
2425    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2426    overflow_arg_area =
2427      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2428                                 overflow_arg_area->getType(),
2429                                 "overflow_arg_area.align");
2430  }
2431
2432  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2433  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434  llvm::Value *Res =
2435    CGF.Builder.CreateBitCast(overflow_arg_area,
2436                              llvm::PointerType::getUnqual(LTy));
2437
2438  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2439  // l->overflow_arg_area + sizeof(type).
2440  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2441  // an 8 byte boundary.
2442
2443  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2444  llvm::Value *Offset =
2445      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2446  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2447                                            "overflow_arg_area.next");
2448  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2449
2450  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2451  return Res;
2452}
2453
2454llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2455                                      CodeGenFunction &CGF) const {
2456  // Assume that va_list type is correct; should be pointer to LLVM type:
2457  // struct {
2458  //   i32 gp_offset;
2459  //   i32 fp_offset;
2460  //   i8* overflow_arg_area;
2461  //   i8* reg_save_area;
2462  // };
2463  unsigned neededInt, neededSSE;
2464
2465  Ty = CGF.getContext().getCanonicalType(Ty);
2466  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2467                                       /*isNamedArg*/false);
2468
2469  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2470  // in the registers. If not go to step 7.
2471  if (!neededInt && !neededSSE)
2472    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2473
2474  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2475  // general purpose registers needed to pass type and num_fp to hold
2476  // the number of floating point registers needed.
2477
2478  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2479  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2480  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2481  //
2482  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2483  // register save space).
2484
2485  llvm::Value *InRegs = 0;
2486  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2487  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2488  if (neededInt) {
2489    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2490    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2491    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2492    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2493  }
2494
2495  if (neededSSE) {
2496    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2497    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2498    llvm::Value *FitsInFP =
2499      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2500    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2501    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2502  }
2503
2504  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2505  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2506  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2507  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2508
2509  // Emit code to load the value if it was passed in registers.
2510
2511  CGF.EmitBlock(InRegBlock);
2512
2513  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2514  // an offset of l->gp_offset and/or l->fp_offset. This may require
2515  // copying to a temporary location in case the parameter is passed
2516  // in different register classes or requires an alignment greater
2517  // than 8 for general purpose registers and 16 for XMM registers.
2518  //
2519  // FIXME: This really results in shameful code when we end up needing to
2520  // collect arguments from different places; often what should result in a
2521  // simple assembling of a structure from scattered addresses has many more
2522  // loads than necessary. Can we clean this up?
2523  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2524  llvm::Value *RegAddr =
2525    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2526                           "reg_save_area");
2527  if (neededInt && neededSSE) {
2528    // FIXME: Cleanup.
2529    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2530    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2531    llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2532    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2533    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2534    llvm::Type *TyLo = ST->getElementType(0);
2535    llvm::Type *TyHi = ST->getElementType(1);
2536    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2537           "Unexpected ABI info for mixed regs");
2538    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2539    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2540    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2541    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2542    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2543    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2544    llvm::Value *V =
2545      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2546    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2547    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2548    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2549
2550    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2551                                        llvm::PointerType::getUnqual(LTy));
2552  } else if (neededInt) {
2553    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2554    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555                                        llvm::PointerType::getUnqual(LTy));
2556
2557    // Copy to a temporary if necessary to ensure the appropriate alignment.
2558    std::pair<CharUnits, CharUnits> SizeAlign =
2559        CGF.getContext().getTypeInfoInChars(Ty);
2560    uint64_t TySize = SizeAlign.first.getQuantity();
2561    unsigned TyAlign = SizeAlign.second.getQuantity();
2562    if (TyAlign > 8) {
2563      llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2564      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2565      RegAddr = Tmp;
2566    }
2567  } else if (neededSSE == 1) {
2568    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2569    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2570                                        llvm::PointerType::getUnqual(LTy));
2571  } else {
2572    assert(neededSSE == 2 && "Invalid number of needed registers!");
2573    // SSE registers are spaced 16 bytes apart in the register save
2574    // area, we need to collect the two eightbytes together.
2575    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2576    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2577    llvm::Type *DoubleTy = CGF.DoubleTy;
2578    llvm::Type *DblPtrTy =
2579      llvm::PointerType::getUnqual(DoubleTy);
2580    llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2581    llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2582    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2583    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2584                                                         DblPtrTy));
2585    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2586    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2587                                                         DblPtrTy));
2588    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2589    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2590                                        llvm::PointerType::getUnqual(LTy));
2591  }
2592
2593  // AMD64-ABI 3.5.7p5: Step 5. Set:
2594  // l->gp_offset = l->gp_offset + num_gp * 8
2595  // l->fp_offset = l->fp_offset + num_fp * 16.
2596  if (neededInt) {
2597    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2598    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2599                            gp_offset_p);
2600  }
2601  if (neededSSE) {
2602    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2603    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2604                            fp_offset_p);
2605  }
2606  CGF.EmitBranch(ContBlock);
2607
2608  // Emit code to load the value if it was passed in memory.
2609
2610  CGF.EmitBlock(InMemBlock);
2611  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2612
2613  // Return the appropriate result.
2614
2615  CGF.EmitBlock(ContBlock);
2616  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2617                                                 "vaarg.addr");
2618  ResAddr->addIncoming(RegAddr, InRegBlock);
2619  ResAddr->addIncoming(MemAddr, InMemBlock);
2620  return ResAddr;
2621}
2622
2623ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2624
2625  if (Ty->isVoidType())
2626    return ABIArgInfo::getIgnore();
2627
2628  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2629    Ty = EnumTy->getDecl()->getIntegerType();
2630
2631  uint64_t Size = getContext().getTypeSize(Ty);
2632
2633  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2634    if (IsReturnType) {
2635      if (isRecordReturnIndirect(RT, getCXXABI()))
2636        return ABIArgInfo::getIndirect(0, false);
2637    } else {
2638      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2639        return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2640    }
2641
2642    if (RT->getDecl()->hasFlexibleArrayMember())
2643      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644
2645    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2646    if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2647      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2648                                                          Size));
2649
2650    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2651    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2652    if (Size <= 64 &&
2653        (Size & (Size - 1)) == 0)
2654      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2655                                                          Size));
2656
2657    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2658  }
2659
2660  if (Ty->isPromotableIntegerType())
2661    return ABIArgInfo::getExtend();
2662
2663  return ABIArgInfo::getDirect();
2664}
2665
2666void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2667
2668  QualType RetTy = FI.getReturnType();
2669  FI.getReturnInfo() = classify(RetTy, true);
2670
2671  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2672       it != ie; ++it)
2673    it->info = classify(it->type, false);
2674}
2675
2676llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2677                                      CodeGenFunction &CGF) const {
2678  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2679
2680  CGBuilderTy &Builder = CGF.Builder;
2681  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2682                                                       "ap");
2683  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2684  llvm::Type *PTy =
2685    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2686  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2687
2688  uint64_t Offset =
2689    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2690  llvm::Value *NextAddr =
2691    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2692                      "ap.next");
2693  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2694
2695  return AddrTyped;
2696}
2697
2698namespace {
2699
2700class NaClX86_64ABIInfo : public ABIInfo {
2701 public:
2702  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2703      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2704  virtual void computeInfo(CGFunctionInfo &FI) const;
2705  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2706                                 CodeGenFunction &CGF) const;
2707 private:
2708  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2709  X86_64ABIInfo NInfo; // Used for everything else.
2710};
2711
2712class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2713 public:
2714  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2715      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2716};
2717
2718}
2719
2720void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2721  if (FI.getASTCallingConvention() == CC_PnaclCall)
2722    PInfo.computeInfo(FI);
2723  else
2724    NInfo.computeInfo(FI);
2725}
2726
2727llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728                                          CodeGenFunction &CGF) const {
2729  // Always use the native convention; calling pnacl-style varargs functions
2730  // is unuspported.
2731  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2732}
2733
2734
2735// PowerPC-32
2736
2737namespace {
2738class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2739public:
2740  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2741
2742  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2743    // This is recovered from gcc output.
2744    return 1; // r1 is the dedicated stack pointer
2745  }
2746
2747  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2748                               llvm::Value *Address) const;
2749};
2750
2751}
2752
2753bool
2754PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2755                                                llvm::Value *Address) const {
2756  // This is calculated from the LLVM and GCC tables and verified
2757  // against gcc output.  AFAIK all ABIs use the same encoding.
2758
2759  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2760
2761  llvm::IntegerType *i8 = CGF.Int8Ty;
2762  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2763  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2764  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2765
2766  // 0-31: r0-31, the 4-byte general-purpose registers
2767  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2768
2769  // 32-63: fp0-31, the 8-byte floating-point registers
2770  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2771
2772  // 64-76 are various 4-byte special-purpose registers:
2773  // 64: mq
2774  // 65: lr
2775  // 66: ctr
2776  // 67: ap
2777  // 68-75 cr0-7
2778  // 76: xer
2779  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2780
2781  // 77-108: v0-31, the 16-byte vector registers
2782  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2783
2784  // 109: vrsave
2785  // 110: vscr
2786  // 111: spe_acc
2787  // 112: spefscr
2788  // 113: sfp
2789  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2790
2791  return false;
2792}
2793
2794// PowerPC-64
2795
2796namespace {
2797/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2798class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2799
2800public:
2801  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2802
2803  bool isPromotableTypeForABI(QualType Ty) const;
2804
2805  ABIArgInfo classifyReturnType(QualType RetTy) const;
2806  ABIArgInfo classifyArgumentType(QualType Ty) const;
2807
2808  // TODO: We can add more logic to computeInfo to improve performance.
2809  // Example: For aggregate arguments that fit in a register, we could
2810  // use getDirectInReg (as is done below for structs containing a single
2811  // floating-point value) to avoid pushing them to memory on function
2812  // entry.  This would require changing the logic in PPCISelLowering
2813  // when lowering the parameters in the caller and args in the callee.
2814  virtual void computeInfo(CGFunctionInfo &FI) const {
2815    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2816    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2817         it != ie; ++it) {
2818      // We rely on the default argument classification for the most part.
2819      // One exception:  An aggregate containing a single floating-point
2820      // or vector item must be passed in a register if one is available.
2821      const Type *T = isSingleElementStruct(it->type, getContext());
2822      if (T) {
2823        const BuiltinType *BT = T->getAs<BuiltinType>();
2824        if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2825          QualType QT(T, 0);
2826          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2827          continue;
2828        }
2829      }
2830      it->info = classifyArgumentType(it->type);
2831    }
2832  }
2833
2834  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2835                                 QualType Ty,
2836                                 CodeGenFunction &CGF) const;
2837};
2838
2839class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2840public:
2841  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2842    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2843
2844  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2845    // This is recovered from gcc output.
2846    return 1; // r1 is the dedicated stack pointer
2847  }
2848
2849  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2850                               llvm::Value *Address) const;
2851};
2852
2853class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2854public:
2855  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2856
2857  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2858    // This is recovered from gcc output.
2859    return 1; // r1 is the dedicated stack pointer
2860  }
2861
2862  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2863                               llvm::Value *Address) const;
2864};
2865
2866}
2867
2868// Return true if the ABI requires Ty to be passed sign- or zero-
2869// extended to 64 bits.
2870bool
2871PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2872  // Treat an enum type as its underlying type.
2873  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2874    Ty = EnumTy->getDecl()->getIntegerType();
2875
2876  // Promotable integer types are required to be promoted by the ABI.
2877  if (Ty->isPromotableIntegerType())
2878    return true;
2879
2880  // In addition to the usual promotable integer types, we also need to
2881  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2882  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2883    switch (BT->getKind()) {
2884    case BuiltinType::Int:
2885    case BuiltinType::UInt:
2886      return true;
2887    default:
2888      break;
2889    }
2890
2891  return false;
2892}
2893
2894ABIArgInfo
2895PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2896  if (Ty->isAnyComplexType())
2897    return ABIArgInfo::getDirect();
2898
2899  if (isAggregateTypeForABI(Ty)) {
2900    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2901      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2902
2903    return ABIArgInfo::getIndirect(0);
2904  }
2905
2906  return (isPromotableTypeForABI(Ty) ?
2907          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2908}
2909
2910ABIArgInfo
2911PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2912  if (RetTy->isVoidType())
2913    return ABIArgInfo::getIgnore();
2914
2915  if (RetTy->isAnyComplexType())
2916    return ABIArgInfo::getDirect();
2917
2918  if (isAggregateTypeForABI(RetTy))
2919    return ABIArgInfo::getIndirect(0);
2920
2921  return (isPromotableTypeForABI(RetTy) ?
2922          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2923}
2924
2925// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2926llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2927                                           QualType Ty,
2928                                           CodeGenFunction &CGF) const {
2929  llvm::Type *BP = CGF.Int8PtrTy;
2930  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2931
2932  CGBuilderTy &Builder = CGF.Builder;
2933  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2934  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2935
2936  // Update the va_list pointer.  The pointer should be bumped by the
2937  // size of the object.  We can trust getTypeSize() except for a complex
2938  // type whose base type is smaller than a doubleword.  For these, the
2939  // size of the object is 16 bytes; see below for further explanation.
2940  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2941  QualType BaseTy;
2942  unsigned CplxBaseSize = 0;
2943
2944  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2945    BaseTy = CTy->getElementType();
2946    CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2947    if (CplxBaseSize < 8)
2948      SizeInBytes = 16;
2949  }
2950
2951  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2952  llvm::Value *NextAddr =
2953    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2954                      "ap.next");
2955  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2956
2957  // If we have a complex type and the base type is smaller than 8 bytes,
2958  // the ABI calls for the real and imaginary parts to be right-adjusted
2959  // in separate doublewords.  However, Clang expects us to produce a
2960  // pointer to a structure with the two parts packed tightly.  So generate
2961  // loads of the real and imaginary parts relative to the va_list pointer,
2962  // and store them to a temporary structure.
2963  if (CplxBaseSize && CplxBaseSize < 8) {
2964    llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2965    llvm::Value *ImagAddr = RealAddr;
2966    RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2967    ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2968    llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2969    RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2970    ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2971    llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2972    llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2973    llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2974                                            "vacplx");
2975    llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2976    llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2977    Builder.CreateStore(Real, RealPtr, false);
2978    Builder.CreateStore(Imag, ImagPtr, false);
2979    return Ptr;
2980  }
2981
2982  // If the argument is smaller than 8 bytes, it is right-adjusted in
2983  // its doubleword slot.  Adjust the pointer to pick it up from the
2984  // correct offset.
2985  if (SizeInBytes < 8) {
2986    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2987    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2988    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2989  }
2990
2991  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2992  return Builder.CreateBitCast(Addr, PTy);
2993}
2994
2995static bool
2996PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2997                              llvm::Value *Address) {
2998  // This is calculated from the LLVM and GCC tables and verified
2999  // against gcc output.  AFAIK all ABIs use the same encoding.
3000
3001  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3002
3003  llvm::IntegerType *i8 = CGF.Int8Ty;
3004  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3005  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3006  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3007
3008  // 0-31: r0-31, the 8-byte general-purpose registers
3009  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3010
3011  // 32-63: fp0-31, the 8-byte floating-point registers
3012  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3013
3014  // 64-76 are various 4-byte special-purpose registers:
3015  // 64: mq
3016  // 65: lr
3017  // 66: ctr
3018  // 67: ap
3019  // 68-75 cr0-7
3020  // 76: xer
3021  AssignToArrayRange(Builder, Address, Four8, 64, 76);
3022
3023  // 77-108: v0-31, the 16-byte vector registers
3024  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3025
3026  // 109: vrsave
3027  // 110: vscr
3028  // 111: spe_acc
3029  // 112: spefscr
3030  // 113: sfp
3031  AssignToArrayRange(Builder, Address, Four8, 109, 113);
3032
3033  return false;
3034}
3035
3036bool
3037PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3038  CodeGen::CodeGenFunction &CGF,
3039  llvm::Value *Address) const {
3040
3041  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3042}
3043
3044bool
3045PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3046                                                llvm::Value *Address) const {
3047
3048  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3049}
3050
3051//===----------------------------------------------------------------------===//
3052// ARM ABI Implementation
3053//===----------------------------------------------------------------------===//
3054
3055namespace {
3056
3057class ARMABIInfo : public ABIInfo {
3058public:
3059  enum ABIKind {
3060    APCS = 0,
3061    AAPCS = 1,
3062    AAPCS_VFP
3063  };
3064
3065private:
3066  ABIKind Kind;
3067
3068public:
3069  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3070    setRuntimeCC();
3071  }
3072
3073  bool isEABI() const {
3074    StringRef Env = getTarget().getTriple().getEnvironmentName();
3075    return (Env == "gnueabi" || Env == "eabi" ||
3076            Env == "android" || Env == "androideabi");
3077  }
3078
3079  ABIKind getABIKind() const { return Kind; }
3080
3081private:
3082  ABIArgInfo classifyReturnType(QualType RetTy) const;
3083  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3084                                  unsigned &AllocatedVFP,
3085                                  bool &IsHA) const;
3086  bool isIllegalVectorType(QualType Ty) const;
3087
3088  virtual void computeInfo(CGFunctionInfo &FI) const;
3089
3090  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3091                                 CodeGenFunction &CGF) const;
3092
3093  llvm::CallingConv::ID getLLVMDefaultCC() const;
3094  llvm::CallingConv::ID getABIDefaultCC() const;
3095  void setRuntimeCC();
3096};
3097
3098class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3099public:
3100  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3101    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3102
3103  const ARMABIInfo &getABIInfo() const {
3104    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3105  }
3106
3107  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3108    return 13;
3109  }
3110
3111  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3112    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3113  }
3114
3115  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3116                               llvm::Value *Address) const {
3117    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3118
3119    // 0-15 are the 16 integer registers.
3120    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3121    return false;
3122  }
3123
3124  unsigned getSizeOfUnwindException() const {
3125    if (getABIInfo().isEABI()) return 88;
3126    return TargetCodeGenInfo::getSizeOfUnwindException();
3127  }
3128
3129  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3130                           CodeGen::CodeGenModule &CGM) const {
3131    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3132    if (!FD)
3133      return;
3134
3135    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3136    if (!Attr)
3137      return;
3138
3139    const char *Kind;
3140    switch (Attr->getInterrupt()) {
3141    case ARMInterruptAttr::Generic: Kind = ""; break;
3142    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3143    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3144    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3145    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3146    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3147    }
3148
3149    llvm::Function *Fn = cast<llvm::Function>(GV);
3150
3151    Fn->addFnAttr("interrupt", Kind);
3152
3153    if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3154      return;
3155
3156    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3157    // however this is not necessarily true on taking any interrupt. Instruct
3158    // the backend to perform a realignment as part of the function prologue.
3159    llvm::AttrBuilder B;
3160    B.addStackAlignmentAttr(8);
3161    Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3162                      llvm::AttributeSet::get(CGM.getLLVMContext(),
3163                                              llvm::AttributeSet::FunctionIndex,
3164                                              B));
3165  }
3166
3167};
3168
3169}
3170
3171void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3172  // To correctly handle Homogeneous Aggregate, we need to keep track of the
3173  // VFP registers allocated so far.
3174  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3175  // VFP registers of the appropriate type unallocated then the argument is
3176  // allocated to the lowest-numbered sequence of such registers.
3177  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3178  // unallocated are marked as unavailable.
3179  unsigned AllocatedVFP = 0;
3180  int VFPRegs[16] = { 0 };
3181  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3182  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3183       it != ie; ++it) {
3184    unsigned PreAllocation = AllocatedVFP;
3185    bool IsHA = false;
3186    // 6.1.2.3 There is one VFP co-processor register class using registers
3187    // s0-s15 (d0-d7) for passing arguments.
3188    const unsigned NumVFPs = 16;
3189    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3190    // If we do not have enough VFP registers for the HA, any VFP registers
3191    // that are unallocated are marked as unavailable. To achieve this, we add
3192    // padding of (NumVFPs - PreAllocation) floats.
3193    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3194      llvm::Type *PaddingTy = llvm::ArrayType::get(
3195          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3196      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3197    }
3198  }
3199
3200  // Always honor user-specified calling convention.
3201  if (FI.getCallingConvention() != llvm::CallingConv::C)
3202    return;
3203
3204  llvm::CallingConv::ID cc = getRuntimeCC();
3205  if (cc != llvm::CallingConv::C)
3206    FI.setEffectiveCallingConvention(cc);
3207}
3208
3209/// Return the default calling convention that LLVM will use.
3210llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3211  // The default calling convention that LLVM will infer.
3212  if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3213    return llvm::CallingConv::ARM_AAPCS_VFP;
3214  else if (isEABI())
3215    return llvm::CallingConv::ARM_AAPCS;
3216  else
3217    return llvm::CallingConv::ARM_APCS;
3218}
3219
3220/// Return the calling convention that our ABI would like us to use
3221/// as the C calling convention.
3222llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3223  switch (getABIKind()) {
3224  case APCS: return llvm::CallingConv::ARM_APCS;
3225  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3226  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3227  }
3228  llvm_unreachable("bad ABI kind");
3229}
3230
3231void ARMABIInfo::setRuntimeCC() {
3232  assert(getRuntimeCC() == llvm::CallingConv::C);
3233
3234  // Don't muddy up the IR with a ton of explicit annotations if
3235  // they'd just match what LLVM will infer from the triple.
3236  llvm::CallingConv::ID abiCC = getABIDefaultCC();
3237  if (abiCC != getLLVMDefaultCC())
3238    RuntimeCC = abiCC;
3239}
3240
3241/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3242/// aggregate.  If HAMembers is non-null, the number of base elements
3243/// contained in the type is returned through it; this is used for the
3244/// recursive calls that check aggregate component types.
3245static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3246                                   ASTContext &Context,
3247                                   uint64_t *HAMembers = 0) {
3248  uint64_t Members = 0;
3249  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3250    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3251      return false;
3252    Members *= AT->getSize().getZExtValue();
3253  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3254    const RecordDecl *RD = RT->getDecl();
3255    if (RD->hasFlexibleArrayMember())
3256      return false;
3257
3258    Members = 0;
3259    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3260         i != e; ++i) {
3261      const FieldDecl *FD = *i;
3262      uint64_t FldMembers;
3263      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3264        return false;
3265
3266      Members = (RD->isUnion() ?
3267                 std::max(Members, FldMembers) : Members + FldMembers);
3268    }
3269  } else {
3270    Members = 1;
3271    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3272      Members = 2;
3273      Ty = CT->getElementType();
3274    }
3275
3276    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3277    // double, or 64-bit or 128-bit vectors.
3278    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3279      if (BT->getKind() != BuiltinType::Float &&
3280          BT->getKind() != BuiltinType::Double &&
3281          BT->getKind() != BuiltinType::LongDouble)
3282        return false;
3283    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3284      unsigned VecSize = Context.getTypeSize(VT);
3285      if (VecSize != 64 && VecSize != 128)
3286        return false;
3287    } else {
3288      return false;
3289    }
3290
3291    // The base type must be the same for all members.  Vector types of the
3292    // same total size are treated as being equivalent here.
3293    const Type *TyPtr = Ty.getTypePtr();
3294    if (!Base)
3295      Base = TyPtr;
3296    if (Base != TyPtr &&
3297        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3298         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3299      return false;
3300  }
3301
3302  // Homogeneous Aggregates can have at most 4 members of the base type.
3303  if (HAMembers)
3304    *HAMembers = Members;
3305
3306  return (Members > 0 && Members <= 4);
3307}
3308
3309/// markAllocatedVFPs - update VFPRegs according to the alignment and
3310/// number of VFP registers (unit is S register) requested.
3311static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3312                              unsigned Alignment,
3313                              unsigned NumRequired) {
3314  // Early Exit.
3315  if (AllocatedVFP >= 16)
3316    return;
3317  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3318  // VFP registers of the appropriate type unallocated then the argument is
3319  // allocated to the lowest-numbered sequence of such registers.
3320  for (unsigned I = 0; I < 16; I += Alignment) {
3321    bool FoundSlot = true;
3322    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3323      if (J >= 16 || VFPRegs[J]) {
3324         FoundSlot = false;
3325         break;
3326      }
3327    if (FoundSlot) {
3328      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3329        VFPRegs[J] = 1;
3330      AllocatedVFP += NumRequired;
3331      return;
3332    }
3333  }
3334  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3335  // unallocated are marked as unavailable.
3336  for (unsigned I = 0; I < 16; I++)
3337    VFPRegs[I] = 1;
3338  AllocatedVFP = 17; // We do not have enough VFP registers.
3339}
3340
3341ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3342                                            unsigned &AllocatedVFP,
3343                                            bool &IsHA) const {
3344  // We update number of allocated VFPs according to
3345  // 6.1.2.1 The following argument types are VFP CPRCs:
3346  //   A single-precision floating-point type (including promoted
3347  //   half-precision types); A double-precision floating-point type;
3348  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3349  //   with a Base Type of a single- or double-precision floating-point type,
3350  //   64-bit containerized vectors or 128-bit containerized vectors with one
3351  //   to four Elements.
3352
3353  // Handle illegal vector types here.
3354  if (isIllegalVectorType(Ty)) {
3355    uint64_t Size = getContext().getTypeSize(Ty);
3356    if (Size <= 32) {
3357      llvm::Type *ResType =
3358          llvm::Type::getInt32Ty(getVMContext());
3359      return ABIArgInfo::getDirect(ResType);
3360    }
3361    if (Size == 64) {
3362      llvm::Type *ResType = llvm::VectorType::get(
3363          llvm::Type::getInt32Ty(getVMContext()), 2);
3364      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3365      return ABIArgInfo::getDirect(ResType);
3366    }
3367    if (Size == 128) {
3368      llvm::Type *ResType = llvm::VectorType::get(
3369          llvm::Type::getInt32Ty(getVMContext()), 4);
3370      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3371      return ABIArgInfo::getDirect(ResType);
3372    }
3373    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3374  }
3375  // Update VFPRegs for legal vector types.
3376  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3377    uint64_t Size = getContext().getTypeSize(VT);
3378    // Size of a legal vector should be power of 2 and above 64.
3379    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3380  }
3381  // Update VFPRegs for floating point types.
3382  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3383    if (BT->getKind() == BuiltinType::Half ||
3384        BT->getKind() == BuiltinType::Float)
3385      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3386    if (BT->getKind() == BuiltinType::Double ||
3387        BT->getKind() == BuiltinType::LongDouble)
3388      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3389  }
3390
3391  if (!isAggregateTypeForABI(Ty)) {
3392    // Treat an enum type as its underlying type.
3393    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3394      Ty = EnumTy->getDecl()->getIntegerType();
3395
3396    return (Ty->isPromotableIntegerType() ?
3397            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3398  }
3399
3400  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3401    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3402
3403  // Ignore empty records.
3404  if (isEmptyRecord(getContext(), Ty, true))
3405    return ABIArgInfo::getIgnore();
3406
3407  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3408    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3409    // into VFP registers.
3410    const Type *Base = 0;
3411    uint64_t Members = 0;
3412    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3413      assert(Base && "Base class should be set for homogeneous aggregate");
3414      // Base can be a floating-point or a vector.
3415      if (Base->isVectorType()) {
3416        // ElementSize is in number of floats.
3417        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3418        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3419                          Members * ElementSize);
3420      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3421        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3422      else {
3423        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3424               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3425        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3426      }
3427      IsHA = true;
3428      return ABIArgInfo::getExpand();
3429    }
3430  }
3431
3432  // Support byval for ARM.
3433  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3434  // most 8-byte. We realign the indirect argument if type alignment is bigger
3435  // than ABI alignment.
3436  uint64_t ABIAlign = 4;
3437  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3438  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3439      getABIKind() == ARMABIInfo::AAPCS)
3440    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3441  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3442    return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3443           /*Realign=*/TyAlign > ABIAlign);
3444  }
3445
3446  // Otherwise, pass by coercing to a structure of the appropriate size.
3447  llvm::Type* ElemTy;
3448  unsigned SizeRegs;
3449  // FIXME: Try to match the types of the arguments more accurately where
3450  // we can.
3451  if (getContext().getTypeAlign(Ty) <= 32) {
3452    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3453    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3454  } else {
3455    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3456    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3457  }
3458
3459  llvm::Type *STy =
3460    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3461  return ABIArgInfo::getDirect(STy);
3462}
3463
3464static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3465                              llvm::LLVMContext &VMContext) {
3466  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3467  // is called integer-like if its size is less than or equal to one word, and
3468  // the offset of each of its addressable sub-fields is zero.
3469
3470  uint64_t Size = Context.getTypeSize(Ty);
3471
3472  // Check that the type fits in a word.
3473  if (Size > 32)
3474    return false;
3475
3476  // FIXME: Handle vector types!
3477  if (Ty->isVectorType())
3478    return false;
3479
3480  // Float types are never treated as "integer like".
3481  if (Ty->isRealFloatingType())
3482    return false;
3483
3484  // If this is a builtin or pointer type then it is ok.
3485  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3486    return true;
3487
3488  // Small complex integer types are "integer like".
3489  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3490    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3491
3492  // Single element and zero sized arrays should be allowed, by the definition
3493  // above, but they are not.
3494
3495  // Otherwise, it must be a record type.
3496  const RecordType *RT = Ty->getAs<RecordType>();
3497  if (!RT) return false;
3498
3499  // Ignore records with flexible arrays.
3500  const RecordDecl *RD = RT->getDecl();
3501  if (RD->hasFlexibleArrayMember())
3502    return false;
3503
3504  // Check that all sub-fields are at offset 0, and are themselves "integer
3505  // like".
3506  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3507
3508  bool HadField = false;
3509  unsigned idx = 0;
3510  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3511       i != e; ++i, ++idx) {
3512    const FieldDecl *FD = *i;
3513
3514    // Bit-fields are not addressable, we only need to verify they are "integer
3515    // like". We still have to disallow a subsequent non-bitfield, for example:
3516    //   struct { int : 0; int x }
3517    // is non-integer like according to gcc.
3518    if (FD->isBitField()) {
3519      if (!RD->isUnion())
3520        HadField = true;
3521
3522      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3523        return false;
3524
3525      continue;
3526    }
3527
3528    // Check if this field is at offset 0.
3529    if (Layout.getFieldOffset(idx) != 0)
3530      return false;
3531
3532    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3533      return false;
3534
3535    // Only allow at most one field in a structure. This doesn't match the
3536    // wording above, but follows gcc in situations with a field following an
3537    // empty structure.
3538    if (!RD->isUnion()) {
3539      if (HadField)
3540        return false;
3541
3542      HadField = true;
3543    }
3544  }
3545
3546  return true;
3547}
3548
3549ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3550  if (RetTy->isVoidType())
3551    return ABIArgInfo::getIgnore();
3552
3553  // Large vector types should be returned via memory.
3554  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3555    return ABIArgInfo::getIndirect(0);
3556
3557  if (!isAggregateTypeForABI(RetTy)) {
3558    // Treat an enum type as its underlying type.
3559    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560      RetTy = EnumTy->getDecl()->getIntegerType();
3561
3562    return (RetTy->isPromotableIntegerType() ?
3563            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564  }
3565
3566  // Structures with either a non-trivial destructor or a non-trivial
3567  // copy constructor are always indirect.
3568  if (isRecordReturnIndirect(RetTy, getCXXABI()))
3569    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3570
3571  // Are we following APCS?
3572  if (getABIKind() == APCS) {
3573    if (isEmptyRecord(getContext(), RetTy, false))
3574      return ABIArgInfo::getIgnore();
3575
3576    // Complex types are all returned as packed integers.
3577    //
3578    // FIXME: Consider using 2 x vector types if the back end handles them
3579    // correctly.
3580    if (RetTy->isAnyComplexType())
3581      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3582                                              getContext().getTypeSize(RetTy)));
3583
3584    // Integer like structures are returned in r0.
3585    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3586      // Return in the smallest viable integer type.
3587      uint64_t Size = getContext().getTypeSize(RetTy);
3588      if (Size <= 8)
3589        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3590      if (Size <= 16)
3591        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3592      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3593    }
3594
3595    // Otherwise return in memory.
3596    return ABIArgInfo::getIndirect(0);
3597  }
3598
3599  // Otherwise this is an AAPCS variant.
3600
3601  if (isEmptyRecord(getContext(), RetTy, true))
3602    return ABIArgInfo::getIgnore();
3603
3604  // Check for homogeneous aggregates with AAPCS-VFP.
3605  if (getABIKind() == AAPCS_VFP) {
3606    const Type *Base = 0;
3607    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3608      assert(Base && "Base class should be set for homogeneous aggregate");
3609      // Homogeneous Aggregates are returned directly.
3610      return ABIArgInfo::getDirect();
3611    }
3612  }
3613
3614  // Aggregates <= 4 bytes are returned in r0; other aggregates
3615  // are returned indirectly.
3616  uint64_t Size = getContext().getTypeSize(RetTy);
3617  if (Size <= 32) {
3618    // Return in the smallest viable integer type.
3619    if (Size <= 8)
3620      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3621    if (Size <= 16)
3622      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3623    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3624  }
3625
3626  return ABIArgInfo::getIndirect(0);
3627}
3628
3629/// isIllegalVector - check whether Ty is an illegal vector type.
3630bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3631  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3632    // Check whether VT is legal.
3633    unsigned NumElements = VT->getNumElements();
3634    uint64_t Size = getContext().getTypeSize(VT);
3635    // NumElements should be power of 2.
3636    if ((NumElements & (NumElements - 1)) != 0)
3637      return true;
3638    // Size should be greater than 32 bits.
3639    return Size <= 32;
3640  }
3641  return false;
3642}
3643
3644llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3645                                   CodeGenFunction &CGF) const {
3646  llvm::Type *BP = CGF.Int8PtrTy;
3647  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3648
3649  CGBuilderTy &Builder = CGF.Builder;
3650  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3651  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3652
3653  if (isEmptyRecord(getContext(), Ty, true)) {
3654    // These are ignored for parameter passing purposes.
3655    llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3656    return Builder.CreateBitCast(Addr, PTy);
3657  }
3658
3659  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3660  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3661  bool IsIndirect = false;
3662
3663  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3664  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3665  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3666      getABIKind() == ARMABIInfo::AAPCS)
3667    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3668  else
3669    TyAlign = 4;
3670  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3671  if (isIllegalVectorType(Ty) && Size > 16) {
3672    IsIndirect = true;
3673    Size = 4;
3674    TyAlign = 4;
3675  }
3676
3677  // Handle address alignment for ABI alignment > 4 bytes.
3678  if (TyAlign > 4) {
3679    assert((TyAlign & (TyAlign - 1)) == 0 &&
3680           "Alignment is not power of 2!");
3681    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3682    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3683    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3684    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3685  }
3686
3687  uint64_t Offset =
3688    llvm::RoundUpToAlignment(Size, 4);
3689  llvm::Value *NextAddr =
3690    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3691                      "ap.next");
3692  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3693
3694  if (IsIndirect)
3695    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3696  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3697    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3698    // may not be correctly aligned for the vector type. We create an aligned
3699    // temporary space and copy the content over from ap.cur to the temporary
3700    // space. This is necessary if the natural alignment of the type is greater
3701    // than the ABI alignment.
3702    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3703    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3704    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3705                                                    "var.align");
3706    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3707    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3708    Builder.CreateMemCpy(Dst, Src,
3709        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3710        TyAlign, false);
3711    Addr = AlignedTemp; //The content is in aligned location.
3712  }
3713  llvm::Type *PTy =
3714    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3715  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3716
3717  return AddrTyped;
3718}
3719
3720namespace {
3721
3722class NaClARMABIInfo : public ABIInfo {
3723 public:
3724  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3725      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3726  virtual void computeInfo(CGFunctionInfo &FI) const;
3727  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3728                                 CodeGenFunction &CGF) const;
3729 private:
3730  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3731  ARMABIInfo NInfo; // Used for everything else.
3732};
3733
3734class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3735 public:
3736  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3737      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3738};
3739
3740}
3741
3742void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3743  if (FI.getASTCallingConvention() == CC_PnaclCall)
3744    PInfo.computeInfo(FI);
3745  else
3746    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3747}
3748
3749llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3750                                       CodeGenFunction &CGF) const {
3751  // Always use the native convention; calling pnacl-style varargs functions
3752  // is unsupported.
3753  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3754}
3755
3756//===----------------------------------------------------------------------===//
3757// AArch64 ABI Implementation
3758//===----------------------------------------------------------------------===//
3759
3760namespace {
3761
3762class AArch64ABIInfo : public ABIInfo {
3763public:
3764  AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3765
3766private:
3767  // The AArch64 PCS is explicit about return types and argument types being
3768  // handled identically, so we don't need to draw a distinction between
3769  // Argument and Return classification.
3770  ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3771                                 int &FreeVFPRegs) const;
3772
3773  ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3774                        llvm::Type *DirectTy = 0) const;
3775
3776  virtual void computeInfo(CGFunctionInfo &FI) const;
3777
3778  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3779                                 CodeGenFunction &CGF) const;
3780};
3781
3782class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3783public:
3784  AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3785    :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3786
3787  const AArch64ABIInfo &getABIInfo() const {
3788    return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3789  }
3790
3791  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3792    return 31;
3793  }
3794
3795  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3796                               llvm::Value *Address) const {
3797    // 0-31 are x0-x30 and sp: 8 bytes each
3798    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3799    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3800
3801    // 64-95 are v0-v31: 16 bytes each
3802    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3803    AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3804
3805    return false;
3806  }
3807
3808};
3809
3810}
3811
3812void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3813  int FreeIntRegs = 8, FreeVFPRegs = 8;
3814
3815  FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3816                                           FreeIntRegs, FreeVFPRegs);
3817
3818  FreeIntRegs = FreeVFPRegs = 8;
3819  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3820       it != ie; ++it) {
3821    it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3822
3823  }
3824}
3825
3826ABIArgInfo
3827AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3828                           bool IsInt, llvm::Type *DirectTy) const {
3829  if (FreeRegs >= RegsNeeded) {
3830    FreeRegs -= RegsNeeded;
3831    return ABIArgInfo::getDirect(DirectTy);
3832  }
3833
3834  llvm::Type *Padding = 0;
3835
3836  // We need padding so that later arguments don't get filled in anyway. That
3837  // wouldn't happen if only ByVal arguments followed in the same category, but
3838  // a large structure will simply seem to be a pointer as far as LLVM is
3839  // concerned.
3840  if (FreeRegs > 0) {
3841    if (IsInt)
3842      Padding = llvm::Type::getInt64Ty(getVMContext());
3843    else
3844      Padding = llvm::Type::getFloatTy(getVMContext());
3845
3846    // Either [N x i64] or [N x float].
3847    Padding = llvm::ArrayType::get(Padding, FreeRegs);
3848    FreeRegs = 0;
3849  }
3850
3851  return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3852                                 /*IsByVal=*/ true, /*Realign=*/ false,
3853                                 Padding);
3854}
3855
3856
3857ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3858                                               int &FreeIntRegs,
3859                                               int &FreeVFPRegs) const {
3860  // Can only occurs for return, but harmless otherwise.
3861  if (Ty->isVoidType())
3862    return ABIArgInfo::getIgnore();
3863
3864  // Large vector types should be returned via memory. There's no such concept
3865  // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3866  // classified they'd go into memory (see B.3).
3867  if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3868    if (FreeIntRegs > 0)
3869      --FreeIntRegs;
3870    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3871  }
3872
3873  // All non-aggregate LLVM types have a concrete ABI representation so they can
3874  // be passed directly. After this block we're guaranteed to be in a
3875  // complicated case.
3876  if (!isAggregateTypeForABI(Ty)) {
3877    // Treat an enum type as its underlying type.
3878    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3879      Ty = EnumTy->getDecl()->getIntegerType();
3880
3881    if (Ty->isFloatingType() || Ty->isVectorType())
3882      return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3883
3884    assert(getContext().getTypeSize(Ty) <= 128 &&
3885           "unexpectedly large scalar type");
3886
3887    int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3888
3889    // If the type may need padding registers to ensure "alignment", we must be
3890    // careful when this is accounted for. Increasing the effective size covers
3891    // all cases.
3892    if (getContext().getTypeAlign(Ty) == 128)
3893      RegsNeeded += FreeIntRegs % 2 != 0;
3894
3895    return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3896  }
3897
3898  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3899    if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3900      --FreeIntRegs;
3901    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3902  }
3903
3904  if (isEmptyRecord(getContext(), Ty, true)) {
3905    if (!getContext().getLangOpts().CPlusPlus) {
3906      // Empty structs outside C++ mode are a GNU extension, so no ABI can
3907      // possibly tell us what to do. It turns out (I believe) that GCC ignores
3908      // the object for parameter-passsing purposes.
3909      return ABIArgInfo::getIgnore();
3910    }
3911
3912    // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3913    // description of va_arg in the PCS require that an empty struct does
3914    // actually occupy space for parameter-passing. I'm hoping for a
3915    // clarification giving an explicit paragraph to point to in future.
3916    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3917                      llvm::Type::getInt8Ty(getVMContext()));
3918  }
3919
3920  // Homogeneous vector aggregates get passed in registers or on the stack.
3921  const Type *Base = 0;
3922  uint64_t NumMembers = 0;
3923  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3924    assert(Base && "Base class should be set for homogeneous aggregate");
3925    // Homogeneous aggregates are passed and returned directly.
3926    return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3927                      /*IsInt=*/ false);
3928  }
3929
3930  uint64_t Size = getContext().getTypeSize(Ty);
3931  if (Size <= 128) {
3932    // Small structs can use the same direct type whether they're in registers
3933    // or on the stack.
3934    llvm::Type *BaseTy;
3935    unsigned NumBases;
3936    int SizeInRegs = (Size + 63) / 64;
3937
3938    if (getContext().getTypeAlign(Ty) == 128) {
3939      BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3940      NumBases = 1;
3941
3942      // If the type may need padding registers to ensure "alignment", we must
3943      // be careful when this is accounted for. Increasing the effective size
3944      // covers all cases.
3945      SizeInRegs += FreeIntRegs % 2 != 0;
3946    } else {
3947      BaseTy = llvm::Type::getInt64Ty(getVMContext());
3948      NumBases = SizeInRegs;
3949    }
3950    llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3951
3952    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3953                      /*IsInt=*/ true, DirectTy);
3954  }
3955
3956  // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3957  // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3958  --FreeIntRegs;
3959  return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3960}
3961
3962llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3963                                       CodeGenFunction &CGF) const {
3964  // The AArch64 va_list type and handling is specified in the Procedure Call
3965  // Standard, section B.4:
3966  //
3967  // struct {
3968  //   void *__stack;
3969  //   void *__gr_top;
3970  //   void *__vr_top;
3971  //   int __gr_offs;
3972  //   int __vr_offs;
3973  // };
3974
3975  assert(!CGF.CGM.getDataLayout().isBigEndian()
3976         && "va_arg not implemented for big-endian AArch64");
3977
3978  int FreeIntRegs = 8, FreeVFPRegs = 8;
3979  Ty = CGF.getContext().getCanonicalType(Ty);
3980  ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3981
3982  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3983  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3984  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3985  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3986
3987  llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3988  int reg_top_index;
3989  int RegSize;
3990  if (FreeIntRegs < 8) {
3991    assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3992    // 3 is the field number of __gr_offs
3993    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3994    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3995    reg_top_index = 1; // field number for __gr_top
3996    RegSize = 8 * (8 - FreeIntRegs);
3997  } else {
3998    assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3999    // 4 is the field number of __vr_offs.
4000    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4001    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4002    reg_top_index = 2; // field number for __vr_top
4003    RegSize = 16 * (8 - FreeVFPRegs);
4004  }
4005
4006  //=======================================
4007  // Find out where argument was passed
4008  //=======================================
4009
4010  // If reg_offs >= 0 we're already using the stack for this type of
4011  // argument. We don't want to keep updating reg_offs (in case it overflows,
4012  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4013  // whatever they get).
4014  llvm::Value *UsingStack = 0;
4015  UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4016                                         llvm::ConstantInt::get(CGF.Int32Ty, 0));
4017
4018  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4019
4020  // Otherwise, at least some kind of argument could go in these registers, the
4021  // quesiton is whether this particular type is too big.
4022  CGF.EmitBlock(MaybeRegBlock);
4023
4024  // Integer arguments may need to correct register alignment (for example a
4025  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4026  // align __gr_offs to calculate the potential address.
4027  if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4028    int Align = getContext().getTypeAlign(Ty) / 8;
4029
4030    reg_offs = CGF.Builder.CreateAdd(reg_offs,
4031                                 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4032                                 "align_regoffs");
4033    reg_offs = CGF.Builder.CreateAnd(reg_offs,
4034                                    llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4035                                    "aligned_regoffs");
4036  }
4037
4038  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4039  llvm::Value *NewOffset = 0;
4040  NewOffset = CGF.Builder.CreateAdd(reg_offs,
4041                                    llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4042                                    "new_reg_offs");
4043  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4044
4045  // Now we're in a position to decide whether this argument really was in
4046  // registers or not.
4047  llvm::Value *InRegs = 0;
4048  InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4049                                     llvm::ConstantInt::get(CGF.Int32Ty, 0),
4050                                     "inreg");
4051
4052  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4053
4054  //=======================================
4055  // Argument was in registers
4056  //=======================================
4057
4058  // Now we emit the code for if the argument was originally passed in
4059  // registers. First start the appropriate block:
4060  CGF.EmitBlock(InRegBlock);
4061
4062  llvm::Value *reg_top_p = 0, *reg_top = 0;
4063  reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4064  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4065  llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4066  llvm::Value *RegAddr = 0;
4067  llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4068
4069  if (!AI.isDirect()) {
4070    // If it's been passed indirectly (actually a struct), whatever we find from
4071    // stored registers or on the stack will actually be a struct **.
4072    MemTy = llvm::PointerType::getUnqual(MemTy);
4073  }
4074
4075  const Type *Base = 0;
4076  uint64_t NumMembers;
4077  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4078      && NumMembers > 1) {
4079    // Homogeneous aggregates passed in registers will have their elements split
4080    // and stored 16-bytes apart regardless of size (they're notionally in qN,
4081    // qN+1, ...). We reload and store into a temporary local variable
4082    // contiguously.
4083    assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4084    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4085    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4086    llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4087
4088    for (unsigned i = 0; i < NumMembers; ++i) {
4089      llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4090      llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4091      LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4092                                           llvm::PointerType::getUnqual(BaseTy));
4093      llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4094
4095      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4096      CGF.Builder.CreateStore(Elem, StoreAddr);
4097    }
4098
4099    RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4100  } else {
4101    // Otherwise the object is contiguous in memory
4102    RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4103  }
4104
4105  CGF.EmitBranch(ContBlock);
4106
4107  //=======================================
4108  // Argument was on the stack
4109  //=======================================
4110  CGF.EmitBlock(OnStackBlock);
4111
4112  llvm::Value *stack_p = 0, *OnStackAddr = 0;
4113  stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4114  OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4115
4116  // Again, stack arguments may need realigmnent. In this case both integer and
4117  // floating-point ones might be affected.
4118  if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4119    int Align = getContext().getTypeAlign(Ty) / 8;
4120
4121    OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4122
4123    OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4124                                 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4125                                 "align_stack");
4126    OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4127                                    llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4128                                    "align_stack");
4129
4130    OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4131  }
4132
4133  uint64_t StackSize;
4134  if (AI.isDirect())
4135    StackSize = getContext().getTypeSize(Ty) / 8;
4136  else
4137    StackSize = 8;
4138
4139  // All stack slots are 8 bytes
4140  StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4141
4142  llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4143  llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4144                                                "new_stack");
4145
4146  // Write the new value of __stack for the next call to va_arg
4147  CGF.Builder.CreateStore(NewStack, stack_p);
4148
4149  OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4150
4151  CGF.EmitBranch(ContBlock);
4152
4153  //=======================================
4154  // Tidy up
4155  //=======================================
4156  CGF.EmitBlock(ContBlock);
4157
4158  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4159  ResAddr->addIncoming(RegAddr, InRegBlock);
4160  ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4161
4162  if (AI.isDirect())
4163    return ResAddr;
4164
4165  return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4166}
4167
4168//===----------------------------------------------------------------------===//
4169// NVPTX ABI Implementation
4170//===----------------------------------------------------------------------===//
4171
4172namespace {
4173
4174class NVPTXABIInfo : public ABIInfo {
4175public:
4176  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4177
4178  ABIArgInfo classifyReturnType(QualType RetTy) const;
4179  ABIArgInfo classifyArgumentType(QualType Ty) const;
4180
4181  virtual void computeInfo(CGFunctionInfo &FI) const;
4182  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4183                                 CodeGenFunction &CFG) const;
4184};
4185
4186class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4187public:
4188  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4189    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4190
4191  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4192                                   CodeGen::CodeGenModule &M) const;
4193private:
4194  static void addKernelMetadata(llvm::Function *F);
4195};
4196
4197ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4198  if (RetTy->isVoidType())
4199    return ABIArgInfo::getIgnore();
4200
4201  // note: this is different from default ABI
4202  if (!RetTy->isScalarType())
4203    return ABIArgInfo::getDirect();
4204
4205  // Treat an enum type as its underlying type.
4206  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4207    RetTy = EnumTy->getDecl()->getIntegerType();
4208
4209  return (RetTy->isPromotableIntegerType() ?
4210          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4211}
4212
4213ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4214  // Treat an enum type as its underlying type.
4215  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4216    Ty = EnumTy->getDecl()->getIntegerType();
4217
4218  return (Ty->isPromotableIntegerType() ?
4219          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4220}
4221
4222void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4223  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4224  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4225       it != ie; ++it)
4226    it->info = classifyArgumentType(it->type);
4227
4228  // Always honor user-specified calling convention.
4229  if (FI.getCallingConvention() != llvm::CallingConv::C)
4230    return;
4231
4232  FI.setEffectiveCallingConvention(getRuntimeCC());
4233}
4234
4235llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4236                                     CodeGenFunction &CFG) const {
4237  llvm_unreachable("NVPTX does not support varargs");
4238}
4239
4240void NVPTXTargetCodeGenInfo::
4241SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4242                    CodeGen::CodeGenModule &M) const{
4243  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4244  if (!FD) return;
4245
4246  llvm::Function *F = cast<llvm::Function>(GV);
4247
4248  // Perform special handling in OpenCL mode
4249  if (M.getLangOpts().OpenCL) {
4250    // Use OpenCL function attributes to check for kernel functions
4251    // By default, all functions are device functions
4252    if (FD->hasAttr<OpenCLKernelAttr>()) {
4253      // OpenCL __kernel functions get kernel metadata
4254      addKernelMetadata(F);
4255      // And kernel functions are not subject to inlining
4256      F->addFnAttr(llvm::Attribute::NoInline);
4257    }
4258  }
4259
4260  // Perform special handling in CUDA mode.
4261  if (M.getLangOpts().CUDA) {
4262    // CUDA __global__ functions get a kernel metadata entry.  Since
4263    // __global__ functions cannot be called from the device, we do not
4264    // need to set the noinline attribute.
4265    if (FD->getAttr<CUDAGlobalAttr>())
4266      addKernelMetadata(F);
4267  }
4268}
4269
4270void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4271  llvm::Module *M = F->getParent();
4272  llvm::LLVMContext &Ctx = M->getContext();
4273
4274  // Get "nvvm.annotations" metadata node
4275  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4276
4277  // Create !{<func-ref>, metadata !"kernel", i32 1} node
4278  llvm::SmallVector<llvm::Value *, 3> MDVals;
4279  MDVals.push_back(F);
4280  MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4281  MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4282
4283  // Append metadata to nvvm.annotations
4284  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4285}
4286
4287}
4288
4289//===----------------------------------------------------------------------===//
4290// SystemZ ABI Implementation
4291//===----------------------------------------------------------------------===//
4292
4293namespace {
4294
4295class SystemZABIInfo : public ABIInfo {
4296public:
4297  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4298
4299  bool isPromotableIntegerType(QualType Ty) const;
4300  bool isCompoundType(QualType Ty) const;
4301  bool isFPArgumentType(QualType Ty) const;
4302
4303  ABIArgInfo classifyReturnType(QualType RetTy) const;
4304  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4305
4306  virtual void computeInfo(CGFunctionInfo &FI) const {
4307    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4308    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4309         it != ie; ++it)
4310      it->info = classifyArgumentType(it->type);
4311  }
4312
4313  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4314                                 CodeGenFunction &CGF) const;
4315};
4316
4317class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4318public:
4319  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4320    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4321};
4322
4323}
4324
4325bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4326  // Treat an enum type as its underlying type.
4327  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4328    Ty = EnumTy->getDecl()->getIntegerType();
4329
4330  // Promotable integer types are required to be promoted by the ABI.
4331  if (Ty->isPromotableIntegerType())
4332    return true;
4333
4334  // 32-bit values must also be promoted.
4335  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4336    switch (BT->getKind()) {
4337    case BuiltinType::Int:
4338    case BuiltinType::UInt:
4339      return true;
4340    default:
4341      return false;
4342    }
4343  return false;
4344}
4345
4346bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4347  return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4348}
4349
4350bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4351  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4352    switch (BT->getKind()) {
4353    case BuiltinType::Float:
4354    case BuiltinType::Double:
4355      return true;
4356    default:
4357      return false;
4358    }
4359
4360  if (const RecordType *RT = Ty->getAsStructureType()) {
4361    const RecordDecl *RD = RT->getDecl();
4362    bool Found = false;
4363
4364    // If this is a C++ record, check the bases first.
4365    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4366      for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4367             E = CXXRD->bases_end(); I != E; ++I) {
4368        QualType Base = I->getType();
4369
4370        // Empty bases don't affect things either way.
4371        if (isEmptyRecord(getContext(), Base, true))
4372          continue;
4373
4374        if (Found)
4375          return false;
4376        Found = isFPArgumentType(Base);
4377        if (!Found)
4378          return false;
4379      }
4380
4381    // Check the fields.
4382    for (RecordDecl::field_iterator I = RD->field_begin(),
4383           E = RD->field_end(); I != E; ++I) {
4384      const FieldDecl *FD = *I;
4385
4386      // Empty bitfields don't affect things either way.
4387      // Unlike isSingleElementStruct(), empty structure and array fields
4388      // do count.  So do anonymous bitfields that aren't zero-sized.
4389      if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4390        return true;
4391
4392      // Unlike isSingleElementStruct(), arrays do not count.
4393      // Nested isFPArgumentType structures still do though.
4394      if (Found)
4395        return false;
4396      Found = isFPArgumentType(FD->getType());
4397      if (!Found)
4398        return false;
4399    }
4400
4401    // Unlike isSingleElementStruct(), trailing padding is allowed.
4402    // An 8-byte aligned struct s { float f; } is passed as a double.
4403    return Found;
4404  }
4405
4406  return false;
4407}
4408
4409llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4410                                       CodeGenFunction &CGF) const {
4411  // Assume that va_list type is correct; should be pointer to LLVM type:
4412  // struct {
4413  //   i64 __gpr;
4414  //   i64 __fpr;
4415  //   i8 *__overflow_arg_area;
4416  //   i8 *__reg_save_area;
4417  // };
4418
4419  // Every argument occupies 8 bytes and is passed by preference in either
4420  // GPRs or FPRs.
4421  Ty = CGF.getContext().getCanonicalType(Ty);
4422  ABIArgInfo AI = classifyArgumentType(Ty);
4423  bool InFPRs = isFPArgumentType(Ty);
4424
4425  llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4426  bool IsIndirect = AI.isIndirect();
4427  unsigned UnpaddedBitSize;
4428  if (IsIndirect) {
4429    APTy = llvm::PointerType::getUnqual(APTy);
4430    UnpaddedBitSize = 64;
4431  } else
4432    UnpaddedBitSize = getContext().getTypeSize(Ty);
4433  unsigned PaddedBitSize = 64;
4434  assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4435
4436  unsigned PaddedSize = PaddedBitSize / 8;
4437  unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4438
4439  unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4440  if (InFPRs) {
4441    MaxRegs = 4; // Maximum of 4 FPR arguments
4442    RegCountField = 1; // __fpr
4443    RegSaveIndex = 16; // save offset for f0
4444    RegPadding = 0; // floats are passed in the high bits of an FPR
4445  } else {
4446    MaxRegs = 5; // Maximum of 5 GPR arguments
4447    RegCountField = 0; // __gpr
4448    RegSaveIndex = 2; // save offset for r2
4449    RegPadding = Padding; // values are passed in the low bits of a GPR
4450  }
4451
4452  llvm::Value *RegCountPtr =
4453    CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4454  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4455  llvm::Type *IndexTy = RegCount->getType();
4456  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4457  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4458						  "fits_in_regs");
4459
4460  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4461  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4462  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4463  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4464
4465  // Emit code to load the value if it was passed in registers.
4466  CGF.EmitBlock(InRegBlock);
4467
4468  // Work out the address of an argument register.
4469  llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4470  llvm::Value *ScaledRegCount =
4471    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4472  llvm::Value *RegBase =
4473    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4474  llvm::Value *RegOffset =
4475    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4476  llvm::Value *RegSaveAreaPtr =
4477    CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4478  llvm::Value *RegSaveArea =
4479    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4480  llvm::Value *RawRegAddr =
4481    CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4482  llvm::Value *RegAddr =
4483    CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4484
4485  // Update the register count
4486  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4487  llvm::Value *NewRegCount =
4488    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4489  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4490  CGF.EmitBranch(ContBlock);
4491
4492  // Emit code to load the value if it was passed in memory.
4493  CGF.EmitBlock(InMemBlock);
4494
4495  // Work out the address of a stack argument.
4496  llvm::Value *OverflowArgAreaPtr =
4497    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4498  llvm::Value *OverflowArgArea =
4499    CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4500  llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4501  llvm::Value *RawMemAddr =
4502    CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4503  llvm::Value *MemAddr =
4504    CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4505
4506  // Update overflow_arg_area_ptr pointer
4507  llvm::Value *NewOverflowArgArea =
4508    CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4509  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4510  CGF.EmitBranch(ContBlock);
4511
4512  // Return the appropriate result.
4513  CGF.EmitBlock(ContBlock);
4514  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4515  ResAddr->addIncoming(RegAddr, InRegBlock);
4516  ResAddr->addIncoming(MemAddr, InMemBlock);
4517
4518  if (IsIndirect)
4519    return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4520
4521  return ResAddr;
4522}
4523
4524bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4525    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4526  assert(Triple.getArch() == llvm::Triple::x86);
4527
4528  switch (Opts.getStructReturnConvention()) {
4529  case CodeGenOptions::SRCK_Default:
4530    break;
4531  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4532    return false;
4533  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4534    return true;
4535  }
4536
4537  if (Triple.isOSDarwin())
4538    return true;
4539
4540  switch (Triple.getOS()) {
4541  case llvm::Triple::Cygwin:
4542  case llvm::Triple::MinGW32:
4543  case llvm::Triple::AuroraUX:
4544  case llvm::Triple::DragonFly:
4545  case llvm::Triple::FreeBSD:
4546  case llvm::Triple::OpenBSD:
4547  case llvm::Triple::Bitrig:
4548  case llvm::Triple::Win32:
4549    return true;
4550  default:
4551    return false;
4552  }
4553}
4554
4555ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4556  if (RetTy->isVoidType())
4557    return ABIArgInfo::getIgnore();
4558  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4559    return ABIArgInfo::getIndirect(0);
4560  return (isPromotableIntegerType(RetTy) ?
4561          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4562}
4563
4564ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4565  // Handle the generic C++ ABI.
4566  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4567    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4568
4569  // Integers and enums are extended to full register width.
4570  if (isPromotableIntegerType(Ty))
4571    return ABIArgInfo::getExtend();
4572
4573  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4574  uint64_t Size = getContext().getTypeSize(Ty);
4575  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4576    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4577
4578  // Handle small structures.
4579  if (const RecordType *RT = Ty->getAs<RecordType>()) {
4580    // Structures with flexible arrays have variable length, so really
4581    // fail the size test above.
4582    const RecordDecl *RD = RT->getDecl();
4583    if (RD->hasFlexibleArrayMember())
4584      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4585
4586    // The structure is passed as an unextended integer, a float, or a double.
4587    llvm::Type *PassTy;
4588    if (isFPArgumentType(Ty)) {
4589      assert(Size == 32 || Size == 64);
4590      if (Size == 32)
4591        PassTy = llvm::Type::getFloatTy(getVMContext());
4592      else
4593        PassTy = llvm::Type::getDoubleTy(getVMContext());
4594    } else
4595      PassTy = llvm::IntegerType::get(getVMContext(), Size);
4596    return ABIArgInfo::getDirect(PassTy);
4597  }
4598
4599  // Non-structure compounds are passed indirectly.
4600  if (isCompoundType(Ty))
4601    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4602
4603  return ABIArgInfo::getDirect(0);
4604}
4605
4606//===----------------------------------------------------------------------===//
4607// MSP430 ABI Implementation
4608//===----------------------------------------------------------------------===//
4609
4610namespace {
4611
4612class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4613public:
4614  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4615    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4616  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4617                           CodeGen::CodeGenModule &M) const;
4618};
4619
4620}
4621
4622void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4623                                                  llvm::GlobalValue *GV,
4624                                             CodeGen::CodeGenModule &M) const {
4625  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4626    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4627      // Handle 'interrupt' attribute:
4628      llvm::Function *F = cast<llvm::Function>(GV);
4629
4630      // Step 1: Set ISR calling convention.
4631      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4632
4633      // Step 2: Add attributes goodness.
4634      F->addFnAttr(llvm::Attribute::NoInline);
4635
4636      // Step 3: Emit ISR vector alias.
4637      unsigned Num = attr->getNumber() / 2;
4638      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4639                            "__isr_" + Twine(Num),
4640                            GV, &M.getModule());
4641    }
4642  }
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// MIPS ABI Implementation.  This works for both little-endian and
4647// big-endian variants.
4648//===----------------------------------------------------------------------===//
4649
4650namespace {
4651class MipsABIInfo : public ABIInfo {
4652  bool IsO32;
4653  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4654  void CoerceToIntArgs(uint64_t TySize,
4655                       SmallVectorImpl<llvm::Type *> &ArgList) const;
4656  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4657  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4658  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4659public:
4660  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4661    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4662    StackAlignInBytes(IsO32 ? 8 : 16) {}
4663
4664  ABIArgInfo classifyReturnType(QualType RetTy) const;
4665  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4666  virtual void computeInfo(CGFunctionInfo &FI) const;
4667  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4668                                 CodeGenFunction &CGF) const;
4669};
4670
4671class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4672  unsigned SizeOfUnwindException;
4673public:
4674  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4675    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4676      SizeOfUnwindException(IsO32 ? 24 : 32) {}
4677
4678  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4679    return 29;
4680  }
4681
4682  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4683                           CodeGen::CodeGenModule &CGM) const {
4684    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4685    if (!FD) return;
4686    llvm::Function *Fn = cast<llvm::Function>(GV);
4687    if (FD->hasAttr<Mips16Attr>()) {
4688      Fn->addFnAttr("mips16");
4689    }
4690    else if (FD->hasAttr<NoMips16Attr>()) {
4691      Fn->addFnAttr("nomips16");
4692    }
4693  }
4694
4695  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4696                               llvm::Value *Address) const;
4697
4698  unsigned getSizeOfUnwindException() const {
4699    return SizeOfUnwindException;
4700  }
4701};
4702}
4703
4704void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4705                                  SmallVectorImpl<llvm::Type *> &ArgList) const {
4706  llvm::IntegerType *IntTy =
4707    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4708
4709  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4710  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4711    ArgList.push_back(IntTy);
4712
4713  // If necessary, add one more integer type to ArgList.
4714  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4715
4716  if (R)
4717    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4718}
4719
4720// In N32/64, an aligned double precision floating point field is passed in
4721// a register.
4722llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4723  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4724
4725  if (IsO32) {
4726    CoerceToIntArgs(TySize, ArgList);
4727    return llvm::StructType::get(getVMContext(), ArgList);
4728  }
4729
4730  if (Ty->isComplexType())
4731    return CGT.ConvertType(Ty);
4732
4733  const RecordType *RT = Ty->getAs<RecordType>();
4734
4735  // Unions/vectors are passed in integer registers.
4736  if (!RT || !RT->isStructureOrClassType()) {
4737    CoerceToIntArgs(TySize, ArgList);
4738    return llvm::StructType::get(getVMContext(), ArgList);
4739  }
4740
4741  const RecordDecl *RD = RT->getDecl();
4742  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4743  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4744
4745  uint64_t LastOffset = 0;
4746  unsigned idx = 0;
4747  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4748
4749  // Iterate over fields in the struct/class and check if there are any aligned
4750  // double fields.
4751  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4752       i != e; ++i, ++idx) {
4753    const QualType Ty = i->getType();
4754    const BuiltinType *BT = Ty->getAs<BuiltinType>();
4755
4756    if (!BT || BT->getKind() != BuiltinType::Double)
4757      continue;
4758
4759    uint64_t Offset = Layout.getFieldOffset(idx);
4760    if (Offset % 64) // Ignore doubles that are not aligned.
4761      continue;
4762
4763    // Add ((Offset - LastOffset) / 64) args of type i64.
4764    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4765      ArgList.push_back(I64);
4766
4767    // Add double type.
4768    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4769    LastOffset = Offset + 64;
4770  }
4771
4772  CoerceToIntArgs(TySize - LastOffset, IntArgList);
4773  ArgList.append(IntArgList.begin(), IntArgList.end());
4774
4775  return llvm::StructType::get(getVMContext(), ArgList);
4776}
4777
4778llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4779                                        uint64_t Offset) const {
4780  if (OrigOffset + MinABIStackAlignInBytes > Offset)
4781    return 0;
4782
4783  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4784}
4785
4786ABIArgInfo
4787MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4788  uint64_t OrigOffset = Offset;
4789  uint64_t TySize = getContext().getTypeSize(Ty);
4790  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4791
4792  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4793                   (uint64_t)StackAlignInBytes);
4794  unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4795  Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4796
4797  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4798    // Ignore empty aggregates.
4799    if (TySize == 0)
4800      return ABIArgInfo::getIgnore();
4801
4802    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4803      Offset = OrigOffset + MinABIStackAlignInBytes;
4804      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4805    }
4806
4807    // If we have reached here, aggregates are passed directly by coercing to
4808    // another structure type. Padding is inserted if the offset of the
4809    // aggregate is unaligned.
4810    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4811                                 getPaddingType(OrigOffset, CurrOffset));
4812  }
4813
4814  // Treat an enum type as its underlying type.
4815  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4816    Ty = EnumTy->getDecl()->getIntegerType();
4817
4818  if (Ty->isPromotableIntegerType())
4819    return ABIArgInfo::getExtend();
4820
4821  return ABIArgInfo::getDirect(
4822      0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4823}
4824
4825llvm::Type*
4826MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4827  const RecordType *RT = RetTy->getAs<RecordType>();
4828  SmallVector<llvm::Type*, 8> RTList;
4829
4830  if (RT && RT->isStructureOrClassType()) {
4831    const RecordDecl *RD = RT->getDecl();
4832    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4833    unsigned FieldCnt = Layout.getFieldCount();
4834
4835    // N32/64 returns struct/classes in floating point registers if the
4836    // following conditions are met:
4837    // 1. The size of the struct/class is no larger than 128-bit.
4838    // 2. The struct/class has one or two fields all of which are floating
4839    //    point types.
4840    // 3. The offset of the first field is zero (this follows what gcc does).
4841    //
4842    // Any other composite results are returned in integer registers.
4843    //
4844    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4845      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4846      for (; b != e; ++b) {
4847        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4848
4849        if (!BT || !BT->isFloatingPoint())
4850          break;
4851
4852        RTList.push_back(CGT.ConvertType(b->getType()));
4853      }
4854
4855      if (b == e)
4856        return llvm::StructType::get(getVMContext(), RTList,
4857                                     RD->hasAttr<PackedAttr>());
4858
4859      RTList.clear();
4860    }
4861  }
4862
4863  CoerceToIntArgs(Size, RTList);
4864  return llvm::StructType::get(getVMContext(), RTList);
4865}
4866
4867ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4868  uint64_t Size = getContext().getTypeSize(RetTy);
4869
4870  if (RetTy->isVoidType() || Size == 0)
4871    return ABIArgInfo::getIgnore();
4872
4873  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4874    if (isRecordReturnIndirect(RetTy, getCXXABI()))
4875      return ABIArgInfo::getIndirect(0);
4876
4877    if (Size <= 128) {
4878      if (RetTy->isAnyComplexType())
4879        return ABIArgInfo::getDirect();
4880
4881      // O32 returns integer vectors in registers.
4882      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4883        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4884
4885      if (!IsO32)
4886        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4887    }
4888
4889    return ABIArgInfo::getIndirect(0);
4890  }
4891
4892  // Treat an enum type as its underlying type.
4893  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4894    RetTy = EnumTy->getDecl()->getIntegerType();
4895
4896  return (RetTy->isPromotableIntegerType() ?
4897          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4898}
4899
4900void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4901  ABIArgInfo &RetInfo = FI.getReturnInfo();
4902  RetInfo = classifyReturnType(FI.getReturnType());
4903
4904  // Check if a pointer to an aggregate is passed as a hidden argument.
4905  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4906
4907  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4908       it != ie; ++it)
4909    it->info = classifyArgumentType(it->type, Offset);
4910}
4911
4912llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4913                                    CodeGenFunction &CGF) const {
4914  llvm::Type *BP = CGF.Int8PtrTy;
4915  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4916
4917  CGBuilderTy &Builder = CGF.Builder;
4918  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4919  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4920  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4921  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4922  llvm::Value *AddrTyped;
4923  unsigned PtrWidth = getTarget().getPointerWidth(0);
4924  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4925
4926  if (TypeAlign > MinABIStackAlignInBytes) {
4927    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4928    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4929    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4930    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4931    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4932    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4933  }
4934  else
4935    AddrTyped = Builder.CreateBitCast(Addr, PTy);
4936
4937  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4938  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4939  uint64_t Offset =
4940    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4941  llvm::Value *NextAddr =
4942    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4943                      "ap.next");
4944  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4945
4946  return AddrTyped;
4947}
4948
4949bool
4950MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4951                                               llvm::Value *Address) const {
4952  // This information comes from gcc's implementation, which seems to
4953  // as canonical as it gets.
4954
4955  // Everything on MIPS is 4 bytes.  Double-precision FP registers
4956  // are aliased to pairs of single-precision FP registers.
4957  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4958
4959  // 0-31 are the general purpose registers, $0 - $31.
4960  // 32-63 are the floating-point registers, $f0 - $f31.
4961  // 64 and 65 are the multiply/divide registers, $hi and $lo.
4962  // 66 is the (notional, I think) register for signal-handler return.
4963  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4964
4965  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4966  // They are one bit wide and ignored here.
4967
4968  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4969  // (coprocessor 1 is the FP unit)
4970  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4971  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4972  // 176-181 are the DSP accumulator registers.
4973  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4974  return false;
4975}
4976
4977//===----------------------------------------------------------------------===//
4978// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4979// Currently subclassed only to implement custom OpenCL C function attribute
4980// handling.
4981//===----------------------------------------------------------------------===//
4982
4983namespace {
4984
4985class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4986public:
4987  TCETargetCodeGenInfo(CodeGenTypes &CGT)
4988    : DefaultTargetCodeGenInfo(CGT) {}
4989
4990  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4991                                   CodeGen::CodeGenModule &M) const;
4992};
4993
4994void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4995                                               llvm::GlobalValue *GV,
4996                                               CodeGen::CodeGenModule &M) const {
4997  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4998  if (!FD) return;
4999
5000  llvm::Function *F = cast<llvm::Function>(GV);
5001
5002  if (M.getLangOpts().OpenCL) {
5003    if (FD->hasAttr<OpenCLKernelAttr>()) {
5004      // OpenCL C Kernel functions are not subject to inlining
5005      F->addFnAttr(llvm::Attribute::NoInline);
5006
5007      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5008
5009        // Convert the reqd_work_group_size() attributes to metadata.
5010        llvm::LLVMContext &Context = F->getContext();
5011        llvm::NamedMDNode *OpenCLMetadata =
5012            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5013
5014        SmallVector<llvm::Value*, 5> Operands;
5015        Operands.push_back(F);
5016
5017        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5018                             llvm::APInt(32,
5019                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5020        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5021                             llvm::APInt(32,
5022                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5023        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5024                             llvm::APInt(32,
5025                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5026
5027        // Add a boolean constant operand for "required" (true) or "hint" (false)
5028        // for implementing the work_group_size_hint attr later. Currently
5029        // always true as the hint is not yet implemented.
5030        Operands.push_back(llvm::ConstantInt::getTrue(Context));
5031        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5032      }
5033    }
5034  }
5035}
5036
5037}
5038
5039//===----------------------------------------------------------------------===//
5040// Hexagon ABI Implementation
5041//===----------------------------------------------------------------------===//
5042
5043namespace {
5044
5045class HexagonABIInfo : public ABIInfo {
5046
5047
5048public:
5049  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5050
5051private:
5052
5053  ABIArgInfo classifyReturnType(QualType RetTy) const;
5054  ABIArgInfo classifyArgumentType(QualType RetTy) const;
5055
5056  virtual void computeInfo(CGFunctionInfo &FI) const;
5057
5058  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5059                                 CodeGenFunction &CGF) const;
5060};
5061
5062class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5063public:
5064  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5065    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5066
5067  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5068    return 29;
5069  }
5070};
5071
5072}
5073
5074void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5075  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5076  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5077       it != ie; ++it)
5078    it->info = classifyArgumentType(it->type);
5079}
5080
5081ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5082  if (!isAggregateTypeForABI(Ty)) {
5083    // Treat an enum type as its underlying type.
5084    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5085      Ty = EnumTy->getDecl()->getIntegerType();
5086
5087    return (Ty->isPromotableIntegerType() ?
5088            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5089  }
5090
5091  // Ignore empty records.
5092  if (isEmptyRecord(getContext(), Ty, true))
5093    return ABIArgInfo::getIgnore();
5094
5095  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5096    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5097
5098  uint64_t Size = getContext().getTypeSize(Ty);
5099  if (Size > 64)
5100    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5101    // Pass in the smallest viable integer type.
5102  else if (Size > 32)
5103      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5104  else if (Size > 16)
5105      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5106  else if (Size > 8)
5107      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5108  else
5109      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5110}
5111
5112ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5113  if (RetTy->isVoidType())
5114    return ABIArgInfo::getIgnore();
5115
5116  // Large vector types should be returned via memory.
5117  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5118    return ABIArgInfo::getIndirect(0);
5119
5120  if (!isAggregateTypeForABI(RetTy)) {
5121    // Treat an enum type as its underlying type.
5122    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5123      RetTy = EnumTy->getDecl()->getIntegerType();
5124
5125    return (RetTy->isPromotableIntegerType() ?
5126            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5127  }
5128
5129  // Structures with either a non-trivial destructor or a non-trivial
5130  // copy constructor are always indirect.
5131  if (isRecordReturnIndirect(RetTy, getCXXABI()))
5132    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5133
5134  if (isEmptyRecord(getContext(), RetTy, true))
5135    return ABIArgInfo::getIgnore();
5136
5137  // Aggregates <= 8 bytes are returned in r0; other aggregates
5138  // are returned indirectly.
5139  uint64_t Size = getContext().getTypeSize(RetTy);
5140  if (Size <= 64) {
5141    // Return in the smallest viable integer type.
5142    if (Size <= 8)
5143      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5144    if (Size <= 16)
5145      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5146    if (Size <= 32)
5147      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5148    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5149  }
5150
5151  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5152}
5153
5154llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5155                                       CodeGenFunction &CGF) const {
5156  // FIXME: Need to handle alignment
5157  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5158
5159  CGBuilderTy &Builder = CGF.Builder;
5160  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5161                                                       "ap");
5162  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5163  llvm::Type *PTy =
5164    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5165  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5166
5167  uint64_t Offset =
5168    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5169  llvm::Value *NextAddr =
5170    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5171                      "ap.next");
5172  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5173
5174  return AddrTyped;
5175}
5176
5177
5178//===----------------------------------------------------------------------===//
5179// SPARC v9 ABI Implementation.
5180// Based on the SPARC Compliance Definition version 2.4.1.
5181//
5182// Function arguments a mapped to a nominal "parameter array" and promoted to
5183// registers depending on their type. Each argument occupies 8 or 16 bytes in
5184// the array, structs larger than 16 bytes are passed indirectly.
5185//
5186// One case requires special care:
5187//
5188//   struct mixed {
5189//     int i;
5190//     float f;
5191//   };
5192//
5193// When a struct mixed is passed by value, it only occupies 8 bytes in the
5194// parameter array, but the int is passed in an integer register, and the float
5195// is passed in a floating point register. This is represented as two arguments
5196// with the LLVM IR inreg attribute:
5197//
5198//   declare void f(i32 inreg %i, float inreg %f)
5199//
5200// The code generator will only allocate 4 bytes from the parameter array for
5201// the inreg arguments. All other arguments are allocated a multiple of 8
5202// bytes.
5203//
5204namespace {
5205class SparcV9ABIInfo : public ABIInfo {
5206public:
5207  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5208
5209private:
5210  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5211  virtual void computeInfo(CGFunctionInfo &FI) const;
5212  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5213                                 CodeGenFunction &CGF) const;
5214
5215  // Coercion type builder for structs passed in registers. The coercion type
5216  // serves two purposes:
5217  //
5218  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5219  //    in registers.
5220  // 2. Expose aligned floating point elements as first-level elements, so the
5221  //    code generator knows to pass them in floating point registers.
5222  //
5223  // We also compute the InReg flag which indicates that the struct contains
5224  // aligned 32-bit floats.
5225  //
5226  struct CoerceBuilder {
5227    llvm::LLVMContext &Context;
5228    const llvm::DataLayout &DL;
5229    SmallVector<llvm::Type*, 8> Elems;
5230    uint64_t Size;
5231    bool InReg;
5232
5233    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5234      : Context(c), DL(dl), Size(0), InReg(false) {}
5235
5236    // Pad Elems with integers until Size is ToSize.
5237    void pad(uint64_t ToSize) {
5238      assert(ToSize >= Size && "Cannot remove elements");
5239      if (ToSize == Size)
5240        return;
5241
5242      // Finish the current 64-bit word.
5243      uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5244      if (Aligned > Size && Aligned <= ToSize) {
5245        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5246        Size = Aligned;
5247      }
5248
5249      // Add whole 64-bit words.
5250      while (Size + 64 <= ToSize) {
5251        Elems.push_back(llvm::Type::getInt64Ty(Context));
5252        Size += 64;
5253      }
5254
5255      // Final in-word padding.
5256      if (Size < ToSize) {
5257        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5258        Size = ToSize;
5259      }
5260    }
5261
5262    // Add a floating point element at Offset.
5263    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5264      // Unaligned floats are treated as integers.
5265      if (Offset % Bits)
5266        return;
5267      // The InReg flag is only required if there are any floats < 64 bits.
5268      if (Bits < 64)
5269        InReg = true;
5270      pad(Offset);
5271      Elems.push_back(Ty);
5272      Size = Offset + Bits;
5273    }
5274
5275    // Add a struct type to the coercion type, starting at Offset (in bits).
5276    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5277      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5278      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5279        llvm::Type *ElemTy = StrTy->getElementType(i);
5280        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5281        switch (ElemTy->getTypeID()) {
5282        case llvm::Type::StructTyID:
5283          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5284          break;
5285        case llvm::Type::FloatTyID:
5286          addFloat(ElemOffset, ElemTy, 32);
5287          break;
5288        case llvm::Type::DoubleTyID:
5289          addFloat(ElemOffset, ElemTy, 64);
5290          break;
5291        case llvm::Type::FP128TyID:
5292          addFloat(ElemOffset, ElemTy, 128);
5293          break;
5294        case llvm::Type::PointerTyID:
5295          if (ElemOffset % 64 == 0) {
5296            pad(ElemOffset);
5297            Elems.push_back(ElemTy);
5298            Size += 64;
5299          }
5300          break;
5301        default:
5302          break;
5303        }
5304      }
5305    }
5306
5307    // Check if Ty is a usable substitute for the coercion type.
5308    bool isUsableType(llvm::StructType *Ty) const {
5309      if (Ty->getNumElements() != Elems.size())
5310        return false;
5311      for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5312        if (Elems[i] != Ty->getElementType(i))
5313          return false;
5314      return true;
5315    }
5316
5317    // Get the coercion type as a literal struct type.
5318    llvm::Type *getType() const {
5319      if (Elems.size() == 1)
5320        return Elems.front();
5321      else
5322        return llvm::StructType::get(Context, Elems);
5323    }
5324  };
5325};
5326} // end anonymous namespace
5327
5328ABIArgInfo
5329SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5330  if (Ty->isVoidType())
5331    return ABIArgInfo::getIgnore();
5332
5333  uint64_t Size = getContext().getTypeSize(Ty);
5334
5335  // Anything too big to fit in registers is passed with an explicit indirect
5336  // pointer / sret pointer.
5337  if (Size > SizeLimit)
5338    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5339
5340  // Treat an enum type as its underlying type.
5341  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5342    Ty = EnumTy->getDecl()->getIntegerType();
5343
5344  // Integer types smaller than a register are extended.
5345  if (Size < 64 && Ty->isIntegerType())
5346    return ABIArgInfo::getExtend();
5347
5348  // Other non-aggregates go in registers.
5349  if (!isAggregateTypeForABI(Ty))
5350    return ABIArgInfo::getDirect();
5351
5352  // This is a small aggregate type that should be passed in registers.
5353  // Build a coercion type from the LLVM struct type.
5354  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5355  if (!StrTy)
5356    return ABIArgInfo::getDirect();
5357
5358  CoerceBuilder CB(getVMContext(), getDataLayout());
5359  CB.addStruct(0, StrTy);
5360  CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5361
5362  // Try to use the original type for coercion.
5363  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5364
5365  if (CB.InReg)
5366    return ABIArgInfo::getDirectInReg(CoerceTy);
5367  else
5368    return ABIArgInfo::getDirect(CoerceTy);
5369}
5370
5371llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5372                                       CodeGenFunction &CGF) const {
5373  ABIArgInfo AI = classifyType(Ty, 16 * 8);
5374  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5375  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5376    AI.setCoerceToType(ArgTy);
5377
5378  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5379  CGBuilderTy &Builder = CGF.Builder;
5380  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5381  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5382  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5383  llvm::Value *ArgAddr;
5384  unsigned Stride;
5385
5386  switch (AI.getKind()) {
5387  case ABIArgInfo::Expand:
5388    llvm_unreachable("Unsupported ABI kind for va_arg");
5389
5390  case ABIArgInfo::Extend:
5391    Stride = 8;
5392    ArgAddr = Builder
5393      .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5394                          "extend");
5395    break;
5396
5397  case ABIArgInfo::Direct:
5398    Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5399    ArgAddr = Addr;
5400    break;
5401
5402  case ABIArgInfo::Indirect:
5403    Stride = 8;
5404    ArgAddr = Builder.CreateBitCast(Addr,
5405                                    llvm::PointerType::getUnqual(ArgPtrTy),
5406                                    "indirect");
5407    ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5408    break;
5409
5410  case ABIArgInfo::Ignore:
5411    return llvm::UndefValue::get(ArgPtrTy);
5412  }
5413
5414  // Update VAList.
5415  Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5416  Builder.CreateStore(Addr, VAListAddrAsBPP);
5417
5418  return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5419}
5420
5421void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5422  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5423  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5424       it != ie; ++it)
5425    it->info = classifyType(it->type, 16 * 8);
5426}
5427
5428namespace {
5429class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5430public:
5431  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5432    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5433};
5434} // end anonymous namespace
5435
5436
5437//===----------------------------------------------------------------------===//
5438// Xcore ABI Implementation
5439//===----------------------------------------------------------------------===//
5440namespace {
5441class XCoreABIInfo : public DefaultABIInfo {
5442public:
5443  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5444  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5445                                 CodeGenFunction &CGF) const;
5446};
5447
5448class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5449public:
5450  XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5451    :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5452};
5453} // End anonymous namespace.
5454
5455llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5456                                     CodeGenFunction &CGF) const {
5457  CGBuilderTy &Builder = CGF.Builder;
5458
5459  // Get the VAList.
5460  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5461                                                       CGF.Int8PtrPtrTy);
5462  llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5463
5464  // Handle the argument.
5465  ABIArgInfo AI = classifyArgumentType(Ty);
5466  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5467  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5468    AI.setCoerceToType(ArgTy);
5469  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5470  llvm::Value *Val;
5471  uint64_t ArgSize = 0;
5472  switch (AI.getKind()) {
5473  case ABIArgInfo::Expand:
5474    llvm_unreachable("Unsupported ABI kind for va_arg");
5475  case ABIArgInfo::Ignore:
5476    Val = llvm::UndefValue::get(ArgPtrTy);
5477    ArgSize = 0;
5478    break;
5479  case ABIArgInfo::Extend:
5480  case ABIArgInfo::Direct:
5481    Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5482    ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5483    if (ArgSize < 4)
5484      ArgSize = 4;
5485    break;
5486  case ABIArgInfo::Indirect:
5487    llvm::Value *ArgAddr;
5488    ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5489    ArgAddr = Builder.CreateLoad(ArgAddr);
5490    Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5491    ArgSize = 4;
5492    break;
5493  }
5494
5495  // Increment the VAList.
5496  if (ArgSize) {
5497    llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5498    Builder.CreateStore(APN, VAListAddrAsBPP);
5499  }
5500  return Val;
5501}
5502
5503//===----------------------------------------------------------------------===//
5504// Driver code
5505//===----------------------------------------------------------------------===//
5506
5507const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5508  if (TheTargetCodeGenInfo)
5509    return *TheTargetCodeGenInfo;
5510
5511  const llvm::Triple &Triple = getTarget().getTriple();
5512  switch (Triple.getArch()) {
5513  default:
5514    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5515
5516  case llvm::Triple::le32:
5517    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5518  case llvm::Triple::mips:
5519  case llvm::Triple::mipsel:
5520    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5521
5522  case llvm::Triple::mips64:
5523  case llvm::Triple::mips64el:
5524    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5525
5526  case llvm::Triple::aarch64:
5527    return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5528
5529  case llvm::Triple::arm:
5530  case llvm::Triple::thumb:
5531    {
5532      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5533      if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5534        Kind = ARMABIInfo::APCS;
5535      else if (CodeGenOpts.FloatABI == "hard" ||
5536               (CodeGenOpts.FloatABI != "soft" &&
5537                Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5538        Kind = ARMABIInfo::AAPCS_VFP;
5539
5540      switch (Triple.getOS()) {
5541        case llvm::Triple::NaCl:
5542          return *(TheTargetCodeGenInfo =
5543                   new NaClARMTargetCodeGenInfo(Types, Kind));
5544        default:
5545          return *(TheTargetCodeGenInfo =
5546                   new ARMTargetCodeGenInfo(Types, Kind));
5547      }
5548    }
5549
5550  case llvm::Triple::ppc:
5551    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5552  case llvm::Triple::ppc64:
5553    if (Triple.isOSBinFormatELF())
5554      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5555    else
5556      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5557  case llvm::Triple::ppc64le:
5558    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5559    return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5560
5561  case llvm::Triple::nvptx:
5562  case llvm::Triple::nvptx64:
5563    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5564
5565  case llvm::Triple::msp430:
5566    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5567
5568  case llvm::Triple::systemz:
5569    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5570
5571  case llvm::Triple::tce:
5572    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5573
5574  case llvm::Triple::x86: {
5575    bool IsDarwinVectorABI = Triple.isOSDarwin();
5576    bool IsSmallStructInRegABI =
5577        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5578    bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5579
5580    if (Triple.getOS() == llvm::Triple::Win32) {
5581      return *(TheTargetCodeGenInfo =
5582               new WinX86_32TargetCodeGenInfo(Types,
5583                                              IsDarwinVectorABI, IsSmallStructInRegABI,
5584                                              IsWin32FloatStructABI,
5585                                              CodeGenOpts.NumRegisterParameters));
5586    } else {
5587      return *(TheTargetCodeGenInfo =
5588               new X86_32TargetCodeGenInfo(Types,
5589                                           IsDarwinVectorABI, IsSmallStructInRegABI,
5590                                           IsWin32FloatStructABI,
5591                                           CodeGenOpts.NumRegisterParameters));
5592    }
5593  }
5594
5595  case llvm::Triple::x86_64: {
5596    bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5597
5598    switch (Triple.getOS()) {
5599    case llvm::Triple::Win32:
5600    case llvm::Triple::MinGW32:
5601    case llvm::Triple::Cygwin:
5602      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5603    case llvm::Triple::NaCl:
5604      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5605                                                                      HasAVX));
5606    default:
5607      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5608                                                                  HasAVX));
5609    }
5610  }
5611  case llvm::Triple::hexagon:
5612    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5613  case llvm::Triple::sparcv9:
5614    return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5615  case llvm::Triple::xcore:
5616    return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5617
5618  }
5619}
5620