CGObjCGNU.cpp revision 263508
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime.  The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Basic/FileManager.h"
27#include "clang/Basic/SourceManager.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Module.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Compiler.h"
36#include <cstdarg>
37
38
39using namespace clang;
40using namespace CodeGen;
41
42
43namespace {
44/// Class that lazily initialises the runtime function.  Avoids inserting the
45/// types and the function declaration into a module if they're not used, and
46/// avoids constructing the type more than once if it's used more than once.
47class LazyRuntimeFunction {
48  CodeGenModule *CGM;
49  std::vector<llvm::Type*> ArgTys;
50  const char *FunctionName;
51  llvm::Constant *Function;
52  public:
53    /// Constructor leaves this class uninitialized, because it is intended to
54    /// be used as a field in another class and not all of the types that are
55    /// used as arguments will necessarily be available at construction time.
56    LazyRuntimeFunction() : CGM(0), FunctionName(0), Function(0) {}
57
58    /// Initialises the lazy function with the name, return type, and the types
59    /// of the arguments.
60    END_WITH_NULL
61    void init(CodeGenModule *Mod, const char *name,
62        llvm::Type *RetTy, ...) {
63       CGM =Mod;
64       FunctionName = name;
65       Function = 0;
66       ArgTys.clear();
67       va_list Args;
68       va_start(Args, RetTy);
69         while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
70           ArgTys.push_back(ArgTy);
71       va_end(Args);
72       // Push the return type on at the end so we can pop it off easily
73       ArgTys.push_back(RetTy);
74   }
75   /// Overloaded cast operator, allows the class to be implicitly cast to an
76   /// LLVM constant.
77   operator llvm::Constant*() {
78     if (!Function) {
79       if (0 == FunctionName) return 0;
80       // We put the return type on the end of the vector, so pop it back off
81       llvm::Type *RetTy = ArgTys.back();
82       ArgTys.pop_back();
83       llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
84       Function =
85         cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
86       // We won't need to use the types again, so we may as well clean up the
87       // vector now
88       ArgTys.resize(0);
89     }
90     return Function;
91   }
92   operator llvm::Function*() {
93     return cast<llvm::Function>((llvm::Constant*)*this);
94   }
95
96};
97
98
99/// GNU Objective-C runtime code generation.  This class implements the parts of
100/// Objective-C support that are specific to the GNU family of runtimes (GCC,
101/// GNUstep and ObjFW).
102class CGObjCGNU : public CGObjCRuntime {
103protected:
104  /// The LLVM module into which output is inserted
105  llvm::Module &TheModule;
106  /// strut objc_super.  Used for sending messages to super.  This structure
107  /// contains the receiver (object) and the expected class.
108  llvm::StructType *ObjCSuperTy;
109  /// struct objc_super*.  The type of the argument to the superclass message
110  /// lookup functions.
111  llvm::PointerType *PtrToObjCSuperTy;
112  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
113  /// SEL is included in a header somewhere, in which case it will be whatever
114  /// type is declared in that header, most likely {i8*, i8*}.
115  llvm::PointerType *SelectorTy;
116  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
117  /// places where it's used
118  llvm::IntegerType *Int8Ty;
119  /// Pointer to i8 - LLVM type of char*, for all of the places where the
120  /// runtime needs to deal with C strings.
121  llvm::PointerType *PtrToInt8Ty;
122  /// Instance Method Pointer type.  This is a pointer to a function that takes,
123  /// at a minimum, an object and a selector, and is the generic type for
124  /// Objective-C methods.  Due to differences between variadic / non-variadic
125  /// calling conventions, it must always be cast to the correct type before
126  /// actually being used.
127  llvm::PointerType *IMPTy;
128  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
129  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
130  /// but if the runtime header declaring it is included then it may be a
131  /// pointer to a structure.
132  llvm::PointerType *IdTy;
133  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
134  /// message lookup function and some GC-related functions.
135  llvm::PointerType *PtrToIdTy;
136  /// The clang type of id.  Used when using the clang CGCall infrastructure to
137  /// call Objective-C methods.
138  CanQualType ASTIdTy;
139  /// LLVM type for C int type.
140  llvm::IntegerType *IntTy;
141  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
142  /// used in the code to document the difference between i8* meaning a pointer
143  /// to a C string and i8* meaning a pointer to some opaque type.
144  llvm::PointerType *PtrTy;
145  /// LLVM type for C long type.  The runtime uses this in a lot of places where
146  /// it should be using intptr_t, but we can't fix this without breaking
147  /// compatibility with GCC...
148  llvm::IntegerType *LongTy;
149  /// LLVM type for C size_t.  Used in various runtime data structures.
150  llvm::IntegerType *SizeTy;
151  /// LLVM type for C intptr_t.
152  llvm::IntegerType *IntPtrTy;
153  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
154  llvm::IntegerType *PtrDiffTy;
155  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
156  /// variables.
157  llvm::PointerType *PtrToIntTy;
158  /// LLVM type for Objective-C BOOL type.
159  llvm::Type *BoolTy;
160  /// 32-bit integer type, to save us needing to look it up every time it's used.
161  llvm::IntegerType *Int32Ty;
162  /// 64-bit integer type, to save us needing to look it up every time it's used.
163  llvm::IntegerType *Int64Ty;
164  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
165  /// runtime provides some LLVM passes that can use this to do things like
166  /// automatic IMP caching and speculative inlining.
167  unsigned msgSendMDKind;
168  /// Helper function that generates a constant string and returns a pointer to
169  /// the start of the string.  The result of this function can be used anywhere
170  /// where the C code specifies const char*.
171  llvm::Constant *MakeConstantString(const std::string &Str,
172                                     const std::string &Name="") {
173    llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
174    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
175  }
176  /// Emits a linkonce_odr string, whose name is the prefix followed by the
177  /// string value.  This allows the linker to combine the strings between
178  /// different modules.  Used for EH typeinfo names, selector strings, and a
179  /// few other things.
180  llvm::Constant *ExportUniqueString(const std::string &Str,
181                                     const std::string prefix) {
182    std::string name = prefix + Str;
183    llvm::Constant *ConstStr = TheModule.getGlobalVariable(name);
184    if (!ConstStr) {
185      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
186      ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
187              llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
188    }
189    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
190  }
191  /// Generates a global structure, initialized by the elements in the vector.
192  /// The element types must match the types of the structure elements in the
193  /// first argument.
194  llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
195                                   ArrayRef<llvm::Constant *> V,
196                                   StringRef Name="",
197                                   llvm::GlobalValue::LinkageTypes linkage
198                                         =llvm::GlobalValue::InternalLinkage) {
199    llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
200    return new llvm::GlobalVariable(TheModule, Ty, false,
201        linkage, C, Name);
202  }
203  /// Generates a global array.  The vector must contain the same number of
204  /// elements that the array type declares, of the type specified as the array
205  /// element type.
206  llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
207                                   ArrayRef<llvm::Constant *> V,
208                                   StringRef Name="",
209                                   llvm::GlobalValue::LinkageTypes linkage
210                                         =llvm::GlobalValue::InternalLinkage) {
211    llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
212    return new llvm::GlobalVariable(TheModule, Ty, false,
213                                    linkage, C, Name);
214  }
215  /// Generates a global array, inferring the array type from the specified
216  /// element type and the size of the initialiser.
217  llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
218                                        ArrayRef<llvm::Constant *> V,
219                                        StringRef Name="",
220                                        llvm::GlobalValue::LinkageTypes linkage
221                                         =llvm::GlobalValue::InternalLinkage) {
222    llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
223    return MakeGlobal(ArrayTy, V, Name, linkage);
224  }
225  /// Returns a property name and encoding string.
226  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
227                                             const Decl *Container) {
228    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
229    if ((R.getKind() == ObjCRuntime::GNUstep) &&
230        (R.getVersion() >= VersionTuple(1, 6))) {
231      std::string NameAndAttributes;
232      std::string TypeStr;
233      CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
234      NameAndAttributes += '\0';
235      NameAndAttributes += TypeStr.length() + 3;
236      NameAndAttributes += TypeStr;
237      NameAndAttributes += '\0';
238      NameAndAttributes += PD->getNameAsString();
239      NameAndAttributes += '\0';
240      return llvm::ConstantExpr::getGetElementPtr(
241          CGM.GetAddrOfConstantString(NameAndAttributes), Zeros);
242    }
243    return MakeConstantString(PD->getNameAsString());
244  }
245  /// Push the property attributes into two structure fields.
246  void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
247      ObjCPropertyDecl *property, bool isSynthesized=true, bool
248      isDynamic=true) {
249    int attrs = property->getPropertyAttributes();
250    // For read-only properties, clear the copy and retain flags
251    if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
252      attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
253      attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
254      attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
255      attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
256    }
257    // The first flags field has the same attribute values as clang uses internally
258    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
259    attrs >>= 8;
260    attrs <<= 2;
261    // For protocol properties, synthesized and dynamic have no meaning, so we
262    // reuse these flags to indicate that this is a protocol property (both set
263    // has no meaning, as a property can't be both synthesized and dynamic)
264    attrs |= isSynthesized ? (1<<0) : 0;
265    attrs |= isDynamic ? (1<<1) : 0;
266    // The second field is the next four fields left shifted by two, with the
267    // low bit set to indicate whether the field is synthesized or dynamic.
268    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
269    // Two padding fields
270    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
271    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
272  }
273  /// Ensures that the value has the required type, by inserting a bitcast if
274  /// required.  This function lets us avoid inserting bitcasts that are
275  /// redundant.
276  llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
277    if (V->getType() == Ty) return V;
278    return B.CreateBitCast(V, Ty);
279  }
280  // Some zeros used for GEPs in lots of places.
281  llvm::Constant *Zeros[2];
282  /// Null pointer value.  Mainly used as a terminator in various arrays.
283  llvm::Constant *NULLPtr;
284  /// LLVM context.
285  llvm::LLVMContext &VMContext;
286private:
287  /// Placeholder for the class.  Lots of things refer to the class before we've
288  /// actually emitted it.  We use this alias as a placeholder, and then replace
289  /// it with a pointer to the class structure before finally emitting the
290  /// module.
291  llvm::GlobalAlias *ClassPtrAlias;
292  /// Placeholder for the metaclass.  Lots of things refer to the class before
293  /// we've / actually emitted it.  We use this alias as a placeholder, and then
294  /// replace / it with a pointer to the metaclass structure before finally
295  /// emitting the / module.
296  llvm::GlobalAlias *MetaClassPtrAlias;
297  /// All of the classes that have been generated for this compilation units.
298  std::vector<llvm::Constant*> Classes;
299  /// All of the categories that have been generated for this compilation units.
300  std::vector<llvm::Constant*> Categories;
301  /// All of the Objective-C constant strings that have been generated for this
302  /// compilation units.
303  std::vector<llvm::Constant*> ConstantStrings;
304  /// Map from string values to Objective-C constant strings in the output.
305  /// Used to prevent emitting Objective-C strings more than once.  This should
306  /// not be required at all - CodeGenModule should manage this list.
307  llvm::StringMap<llvm::Constant*> ObjCStrings;
308  /// All of the protocols that have been declared.
309  llvm::StringMap<llvm::Constant*> ExistingProtocols;
310  /// For each variant of a selector, we store the type encoding and a
311  /// placeholder value.  For an untyped selector, the type will be the empty
312  /// string.  Selector references are all done via the module's selector table,
313  /// so we create an alias as a placeholder and then replace it with the real
314  /// value later.
315  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
316  /// Type of the selector map.  This is roughly equivalent to the structure
317  /// used in the GNUstep runtime, which maintains a list of all of the valid
318  /// types for a selector in a table.
319  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
320    SelectorMap;
321  /// A map from selectors to selector types.  This allows us to emit all
322  /// selectors of the same name and type together.
323  SelectorMap SelectorTable;
324
325  /// Selectors related to memory management.  When compiling in GC mode, we
326  /// omit these.
327  Selector RetainSel, ReleaseSel, AutoreleaseSel;
328  /// Runtime functions used for memory management in GC mode.  Note that clang
329  /// supports code generation for calling these functions, but neither GNU
330  /// runtime actually supports this API properly yet.
331  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
332    WeakAssignFn, GlobalAssignFn;
333
334  typedef std::pair<std::string, std::string> ClassAliasPair;
335  /// All classes that have aliases set for them.
336  std::vector<ClassAliasPair> ClassAliases;
337
338protected:
339  /// Function used for throwing Objective-C exceptions.
340  LazyRuntimeFunction ExceptionThrowFn;
341  /// Function used for rethrowing exceptions, used at the end of \@finally or
342  /// \@synchronize blocks.
343  LazyRuntimeFunction ExceptionReThrowFn;
344  /// Function called when entering a catch function.  This is required for
345  /// differentiating Objective-C exceptions and foreign exceptions.
346  LazyRuntimeFunction EnterCatchFn;
347  /// Function called when exiting from a catch block.  Used to do exception
348  /// cleanup.
349  LazyRuntimeFunction ExitCatchFn;
350  /// Function called when entering an \@synchronize block.  Acquires the lock.
351  LazyRuntimeFunction SyncEnterFn;
352  /// Function called when exiting an \@synchronize block.  Releases the lock.
353  LazyRuntimeFunction SyncExitFn;
354
355private:
356
357  /// Function called if fast enumeration detects that the collection is
358  /// modified during the update.
359  LazyRuntimeFunction EnumerationMutationFn;
360  /// Function for implementing synthesized property getters that return an
361  /// object.
362  LazyRuntimeFunction GetPropertyFn;
363  /// Function for implementing synthesized property setters that return an
364  /// object.
365  LazyRuntimeFunction SetPropertyFn;
366  /// Function used for non-object declared property getters.
367  LazyRuntimeFunction GetStructPropertyFn;
368  /// Function used for non-object declared property setters.
369  LazyRuntimeFunction SetStructPropertyFn;
370
371  /// The version of the runtime that this class targets.  Must match the
372  /// version in the runtime.
373  int RuntimeVersion;
374  /// The version of the protocol class.  Used to differentiate between ObjC1
375  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
376  /// components and can not contain declared properties.  We always emit
377  /// Objective-C 2 property structures, but we have to pretend that they're
378  /// Objective-C 1 property structures when targeting the GCC runtime or it
379  /// will abort.
380  const int ProtocolVersion;
381private:
382  /// Generates an instance variable list structure.  This is a structure
383  /// containing a size and an array of structures containing instance variable
384  /// metadata.  This is used purely for introspection in the fragile ABI.  In
385  /// the non-fragile ABI, it's used for instance variable fixup.
386  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
387                                   ArrayRef<llvm::Constant *> IvarTypes,
388                                   ArrayRef<llvm::Constant *> IvarOffsets);
389  /// Generates a method list structure.  This is a structure containing a size
390  /// and an array of structures containing method metadata.
391  ///
392  /// This structure is used by both classes and categories, and contains a next
393  /// pointer allowing them to be chained together in a linked list.
394  llvm::Constant *GenerateMethodList(const StringRef &ClassName,
395      const StringRef &CategoryName,
396      ArrayRef<Selector> MethodSels,
397      ArrayRef<llvm::Constant *> MethodTypes,
398      bool isClassMethodList);
399  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
400  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
401  /// real protocol.
402  llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
403  /// Generates a list of property metadata structures.  This follows the same
404  /// pattern as method and instance variable metadata lists.
405  llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
406        SmallVectorImpl<Selector> &InstanceMethodSels,
407        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
408  /// Generates a list of referenced protocols.  Classes, categories, and
409  /// protocols all use this structure.
410  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
411  /// To ensure that all protocols are seen by the runtime, we add a category on
412  /// a class defined in the runtime, declaring no methods, but adopting the
413  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
414  /// of the protocols without changing the ABI.
415  void GenerateProtocolHolderCategory();
416  /// Generates a class structure.
417  llvm::Constant *GenerateClassStructure(
418      llvm::Constant *MetaClass,
419      llvm::Constant *SuperClass,
420      unsigned info,
421      const char *Name,
422      llvm::Constant *Version,
423      llvm::Constant *InstanceSize,
424      llvm::Constant *IVars,
425      llvm::Constant *Methods,
426      llvm::Constant *Protocols,
427      llvm::Constant *IvarOffsets,
428      llvm::Constant *Properties,
429      llvm::Constant *StrongIvarBitmap,
430      llvm::Constant *WeakIvarBitmap,
431      bool isMeta=false);
432  /// Generates a method list.  This is used by protocols to define the required
433  /// and optional methods.
434  llvm::Constant *GenerateProtocolMethodList(
435      ArrayRef<llvm::Constant *> MethodNames,
436      ArrayRef<llvm::Constant *> MethodTypes);
437  /// Returns a selector with the specified type encoding.  An empty string is
438  /// used to return an untyped selector (with the types field set to NULL).
439  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
440    const std::string &TypeEncoding, bool lval);
441  /// Returns the variable used to store the offset of an instance variable.
442  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
443      const ObjCIvarDecl *Ivar);
444  /// Emits a reference to a class.  This allows the linker to object if there
445  /// is no class of the matching name.
446protected:
447  void EmitClassRef(const std::string &className);
448  /// Emits a pointer to the named class
449  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
450                                     const std::string &Name, bool isWeak);
451  /// Looks up the method for sending a message to the specified object.  This
452  /// mechanism differs between the GCC and GNU runtimes, so this method must be
453  /// overridden in subclasses.
454  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
455                                 llvm::Value *&Receiver,
456                                 llvm::Value *cmd,
457                                 llvm::MDNode *node,
458                                 MessageSendInfo &MSI) = 0;
459  /// Looks up the method for sending a message to a superclass.  This
460  /// mechanism differs between the GCC and GNU runtimes, so this method must
461  /// be overridden in subclasses.
462  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
463                                      llvm::Value *ObjCSuper,
464                                      llvm::Value *cmd,
465                                      MessageSendInfo &MSI) = 0;
466  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
467  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
468  /// bits set to their values, LSB first, while larger ones are stored in a
469  /// structure of this / form:
470  ///
471  /// struct { int32_t length; int32_t values[length]; };
472  ///
473  /// The values in the array are stored in host-endian format, with the least
474  /// significant bit being assumed to come first in the bitfield.  Therefore,
475  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
476  /// while a bitfield / with the 63rd bit set will be 1<<64.
477  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
478public:
479  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
480      unsigned protocolClassVersion);
481
482  virtual llvm::Constant *GenerateConstantString(const StringLiteral *);
483
484  virtual RValue
485  GenerateMessageSend(CodeGenFunction &CGF,
486                      ReturnValueSlot Return,
487                      QualType ResultType,
488                      Selector Sel,
489                      llvm::Value *Receiver,
490                      const CallArgList &CallArgs,
491                      const ObjCInterfaceDecl *Class,
492                      const ObjCMethodDecl *Method);
493  virtual RValue
494  GenerateMessageSendSuper(CodeGenFunction &CGF,
495                           ReturnValueSlot Return,
496                           QualType ResultType,
497                           Selector Sel,
498                           const ObjCInterfaceDecl *Class,
499                           bool isCategoryImpl,
500                           llvm::Value *Receiver,
501                           bool IsClassMessage,
502                           const CallArgList &CallArgs,
503                           const ObjCMethodDecl *Method);
504  virtual llvm::Value *GetClass(CodeGenFunction &CGF,
505                                const ObjCInterfaceDecl *OID);
506  virtual llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
507                                   bool lval = false);
508  virtual llvm::Value *GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
509      *Method);
510  virtual llvm::Constant *GetEHType(QualType T);
511
512  virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
513                                         const ObjCContainerDecl *CD);
514  virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD);
515  virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl);
516  virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD);
517  virtual llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
518                                           const ObjCProtocolDecl *PD);
519  virtual void GenerateProtocol(const ObjCProtocolDecl *PD);
520  virtual llvm::Function *ModuleInitFunction();
521  virtual llvm::Constant *GetPropertyGetFunction();
522  virtual llvm::Constant *GetPropertySetFunction();
523  virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
524                                                          bool copy);
525  virtual llvm::Constant *GetSetStructFunction();
526  virtual llvm::Constant *GetGetStructFunction();
527  virtual llvm::Constant *GetCppAtomicObjectGetFunction();
528  virtual llvm::Constant *GetCppAtomicObjectSetFunction();
529  virtual llvm::Constant *EnumerationMutationFunction();
530
531  virtual void EmitTryStmt(CodeGenFunction &CGF,
532                           const ObjCAtTryStmt &S);
533  virtual void EmitSynchronizedStmt(CodeGenFunction &CGF,
534                                    const ObjCAtSynchronizedStmt &S);
535  virtual void EmitThrowStmt(CodeGenFunction &CGF,
536                             const ObjCAtThrowStmt &S,
537                             bool ClearInsertionPoint=true);
538  virtual llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
539                                         llvm::Value *AddrWeakObj);
540  virtual void EmitObjCWeakAssign(CodeGenFunction &CGF,
541                                  llvm::Value *src, llvm::Value *dst);
542  virtual void EmitObjCGlobalAssign(CodeGenFunction &CGF,
543                                    llvm::Value *src, llvm::Value *dest,
544                                    bool threadlocal=false);
545  virtual void EmitObjCIvarAssign(CodeGenFunction &CGF,
546                                    llvm::Value *src, llvm::Value *dest,
547                                    llvm::Value *ivarOffset);
548  virtual void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
549                                        llvm::Value *src, llvm::Value *dest);
550  virtual void EmitGCMemmoveCollectable(CodeGenFunction &CGF,
551                                        llvm::Value *DestPtr,
552                                        llvm::Value *SrcPtr,
553                                        llvm::Value *Size);
554  virtual LValue EmitObjCValueForIvar(CodeGenFunction &CGF,
555                                      QualType ObjectTy,
556                                      llvm::Value *BaseValue,
557                                      const ObjCIvarDecl *Ivar,
558                                      unsigned CVRQualifiers);
559  virtual llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
560                                      const ObjCInterfaceDecl *Interface,
561                                      const ObjCIvarDecl *Ivar);
562  virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF);
563  virtual llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
564                                             const CGBlockInfo &blockInfo) {
565    return NULLPtr;
566  }
567  virtual llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
568                                             const CGBlockInfo &blockInfo) {
569    return NULLPtr;
570  }
571
572  virtual llvm::Constant *BuildByrefLayout(CodeGenModule &CGM,
573                                           QualType T) {
574    return NULLPtr;
575  }
576
577  virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) {
578    return 0;
579  }
580};
581/// Class representing the legacy GCC Objective-C ABI.  This is the default when
582/// -fobjc-nonfragile-abi is not specified.
583///
584/// The GCC ABI target actually generates code that is approximately compatible
585/// with the new GNUstep runtime ABI, but refrains from using any features that
586/// would not work with the GCC runtime.  For example, clang always generates
587/// the extended form of the class structure, and the extra fields are simply
588/// ignored by GCC libobjc.
589class CGObjCGCC : public CGObjCGNU {
590  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
591  /// method implementation for this message.
592  LazyRuntimeFunction MsgLookupFn;
593  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
594  /// structure describing the receiver and the class, and a selector as
595  /// arguments.  Returns the IMP for the corresponding method.
596  LazyRuntimeFunction MsgLookupSuperFn;
597protected:
598  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
599                                 llvm::Value *&Receiver,
600                                 llvm::Value *cmd,
601                                 llvm::MDNode *node,
602                                 MessageSendInfo &MSI) {
603    CGBuilderTy &Builder = CGF.Builder;
604    llvm::Value *args[] = {
605            EnforceType(Builder, Receiver, IdTy),
606            EnforceType(Builder, cmd, SelectorTy) };
607    llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
608    imp->setMetadata(msgSendMDKind, node);
609    return imp.getInstruction();
610  }
611  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
612                                      llvm::Value *ObjCSuper,
613                                      llvm::Value *cmd,
614                                      MessageSendInfo &MSI) {
615      CGBuilderTy &Builder = CGF.Builder;
616      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
617          PtrToObjCSuperTy), cmd};
618      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
619    }
620  public:
621    CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
622      // IMP objc_msg_lookup(id, SEL);
623      MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL);
624      // IMP objc_msg_lookup_super(struct objc_super*, SEL);
625      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
626              PtrToObjCSuperTy, SelectorTy, NULL);
627    }
628};
629/// Class used when targeting the new GNUstep runtime ABI.
630class CGObjCGNUstep : public CGObjCGNU {
631    /// The slot lookup function.  Returns a pointer to a cacheable structure
632    /// that contains (among other things) the IMP.
633    LazyRuntimeFunction SlotLookupFn;
634    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
635    /// a structure describing the receiver and the class, and a selector as
636    /// arguments.  Returns the slot for the corresponding method.  Superclass
637    /// message lookup rarely changes, so this is a good caching opportunity.
638    LazyRuntimeFunction SlotLookupSuperFn;
639    /// Specialised function for setting atomic retain properties
640    LazyRuntimeFunction SetPropertyAtomic;
641    /// Specialised function for setting atomic copy properties
642    LazyRuntimeFunction SetPropertyAtomicCopy;
643    /// Specialised function for setting nonatomic retain properties
644    LazyRuntimeFunction SetPropertyNonAtomic;
645    /// Specialised function for setting nonatomic copy properties
646    LazyRuntimeFunction SetPropertyNonAtomicCopy;
647    /// Function to perform atomic copies of C++ objects with nontrivial copy
648    /// constructors from Objective-C ivars.
649    LazyRuntimeFunction CxxAtomicObjectGetFn;
650    /// Function to perform atomic copies of C++ objects with nontrivial copy
651    /// constructors to Objective-C ivars.
652    LazyRuntimeFunction CxxAtomicObjectSetFn;
653    /// Type of an slot structure pointer.  This is returned by the various
654    /// lookup functions.
655    llvm::Type *SlotTy;
656  public:
657    virtual llvm::Constant *GetEHType(QualType T);
658  protected:
659    virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
660                                   llvm::Value *&Receiver,
661                                   llvm::Value *cmd,
662                                   llvm::MDNode *node,
663                                   MessageSendInfo &MSI) {
664      CGBuilderTy &Builder = CGF.Builder;
665      llvm::Function *LookupFn = SlotLookupFn;
666
667      // Store the receiver on the stack so that we can reload it later
668      llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
669      Builder.CreateStore(Receiver, ReceiverPtr);
670
671      llvm::Value *self;
672
673      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
674        self = CGF.LoadObjCSelf();
675      } else {
676        self = llvm::ConstantPointerNull::get(IdTy);
677      }
678
679      // The lookup function is guaranteed not to capture the receiver pointer.
680      LookupFn->setDoesNotCapture(1);
681
682      llvm::Value *args[] = {
683              EnforceType(Builder, ReceiverPtr, PtrToIdTy),
684              EnforceType(Builder, cmd, SelectorTy),
685              EnforceType(Builder, self, IdTy) };
686      llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
687      slot.setOnlyReadsMemory();
688      slot->setMetadata(msgSendMDKind, node);
689
690      // Load the imp from the slot
691      llvm::Value *imp =
692        Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4));
693
694      // The lookup function may have changed the receiver, so make sure we use
695      // the new one.
696      Receiver = Builder.CreateLoad(ReceiverPtr, true);
697      return imp;
698    }
699    virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
700                                        llvm::Value *ObjCSuper,
701                                        llvm::Value *cmd,
702                                        MessageSendInfo &MSI) {
703      CGBuilderTy &Builder = CGF.Builder;
704      llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
705
706      llvm::CallInst *slot =
707        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
708      slot->setOnlyReadsMemory();
709
710      return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4));
711    }
712  public:
713    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
714      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
715
716      llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
717          PtrTy, PtrTy, IntTy, IMPTy, NULL);
718      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
719      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
720      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
721          SelectorTy, IdTy, NULL);
722      // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
723      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
724              PtrToObjCSuperTy, SelectorTy, NULL);
725      // If we're in ObjC++ mode, then we want to make
726      if (CGM.getLangOpts().CPlusPlus) {
727        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
728        // void *__cxa_begin_catch(void *e)
729        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, NULL);
730        // void __cxa_end_catch(void)
731        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, NULL);
732        // void _Unwind_Resume_or_Rethrow(void*)
733        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
734            PtrTy, NULL);
735      } else if (R.getVersion() >= VersionTuple(1, 7)) {
736        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
737        // id objc_begin_catch(void *e)
738        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, NULL);
739        // void objc_end_catch(void)
740        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, NULL);
741        // void _Unwind_Resume_or_Rethrow(void*)
742        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
743            PtrTy, NULL);
744      }
745      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
746      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
747          SelectorTy, IdTy, PtrDiffTy, NULL);
748      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
749          IdTy, SelectorTy, IdTy, PtrDiffTy, NULL);
750      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
751          IdTy, SelectorTy, IdTy, PtrDiffTy, NULL);
752      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
753          VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, NULL);
754      // void objc_setCppObjectAtomic(void *dest, const void *src, void
755      // *helper);
756      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
757          PtrTy, PtrTy, NULL);
758      // void objc_getCppObjectAtomic(void *dest, const void *src, void
759      // *helper);
760      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
761          PtrTy, PtrTy, NULL);
762    }
763    virtual llvm::Constant *GetCppAtomicObjectGetFunction() {
764      // The optimised functions were added in version 1.7 of the GNUstep
765      // runtime.
766      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
767          VersionTuple(1, 7));
768      return CxxAtomicObjectGetFn;
769    }
770    virtual llvm::Constant *GetCppAtomicObjectSetFunction() {
771      // The optimised functions were added in version 1.7 of the GNUstep
772      // runtime.
773      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
774          VersionTuple(1, 7));
775      return CxxAtomicObjectSetFn;
776    }
777    virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
778                                                            bool copy) {
779      // The optimised property functions omit the GC check, and so are not
780      // safe to use in GC mode.  The standard functions are fast in GC mode,
781      // so there is less advantage in using them.
782      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
783      // The optimised functions were added in version 1.7 of the GNUstep
784      // runtime.
785      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
786          VersionTuple(1, 7));
787
788      if (atomic) {
789        if (copy) return SetPropertyAtomicCopy;
790        return SetPropertyAtomic;
791      }
792      if (copy) return SetPropertyNonAtomicCopy;
793      return SetPropertyNonAtomic;
794
795      return 0;
796    }
797};
798
799/// Support for the ObjFW runtime.
800class CGObjCObjFW: public CGObjCGNU {
801protected:
802  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
803  /// method implementation for this message.
804  LazyRuntimeFunction MsgLookupFn;
805  /// stret lookup function.  While this does not seem to make sense at the
806  /// first look, this is required to call the correct forwarding function.
807  LazyRuntimeFunction MsgLookupFnSRet;
808  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
809  /// structure describing the receiver and the class, and a selector as
810  /// arguments.  Returns the IMP for the corresponding method.
811  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
812
813  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
814                                 llvm::Value *&Receiver,
815                                 llvm::Value *cmd,
816                                 llvm::MDNode *node,
817                                 MessageSendInfo &MSI) {
818    CGBuilderTy &Builder = CGF.Builder;
819    llvm::Value *args[] = {
820            EnforceType(Builder, Receiver, IdTy),
821            EnforceType(Builder, cmd, SelectorTy) };
822
823    llvm::CallSite imp;
824    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
825      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
826    else
827      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
828
829    imp->setMetadata(msgSendMDKind, node);
830    return imp.getInstruction();
831  }
832
833  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
834                                      llvm::Value *ObjCSuper,
835                                      llvm::Value *cmd,
836                                      MessageSendInfo &MSI) {
837      CGBuilderTy &Builder = CGF.Builder;
838      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
839          PtrToObjCSuperTy), cmd};
840
841      if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
842        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
843      else
844        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
845    }
846
847  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
848                                     const std::string &Name, bool isWeak) {
849    if (isWeak)
850      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
851
852    EmitClassRef(Name);
853
854    std::string SymbolName = "_OBJC_CLASS_" + Name;
855
856    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
857
858    if (!ClassSymbol)
859      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
860                                             llvm::GlobalValue::ExternalLinkage,
861                                             0, SymbolName);
862
863    return ClassSymbol;
864  }
865
866public:
867  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
868    // IMP objc_msg_lookup(id, SEL);
869    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL);
870    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
871                         SelectorTy, NULL);
872    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
873    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
874                          PtrToObjCSuperTy, SelectorTy, NULL);
875    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
876                              PtrToObjCSuperTy, SelectorTy, NULL);
877  }
878};
879} // end anonymous namespace
880
881
882/// Emits a reference to a dummy variable which is emitted with each class.
883/// This ensures that a linker error will be generated when trying to link
884/// together modules where a referenced class is not defined.
885void CGObjCGNU::EmitClassRef(const std::string &className) {
886  std::string symbolRef = "__objc_class_ref_" + className;
887  // Don't emit two copies of the same symbol
888  if (TheModule.getGlobalVariable(symbolRef))
889    return;
890  std::string symbolName = "__objc_class_name_" + className;
891  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
892  if (!ClassSymbol) {
893    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
894        llvm::GlobalValue::ExternalLinkage, 0, symbolName);
895  }
896  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
897    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
898}
899
900static std::string SymbolNameForMethod(const StringRef &ClassName,
901    const StringRef &CategoryName, const Selector MethodName,
902    bool isClassMethod) {
903  std::string MethodNameColonStripped = MethodName.getAsString();
904  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
905      ':', '_');
906  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
907    CategoryName + "_" + MethodNameColonStripped).str();
908}
909
910CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
911    unsigned protocolClassVersion)
912  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
913    VMContext(cgm.getLLVMContext()), ClassPtrAlias(0), MetaClassPtrAlias(0),
914    RuntimeVersion(runtimeABIVersion), ProtocolVersion(protocolClassVersion) {
915
916  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
917
918  CodeGenTypes &Types = CGM.getTypes();
919  IntTy = cast<llvm::IntegerType>(
920      Types.ConvertType(CGM.getContext().IntTy));
921  LongTy = cast<llvm::IntegerType>(
922      Types.ConvertType(CGM.getContext().LongTy));
923  SizeTy = cast<llvm::IntegerType>(
924      Types.ConvertType(CGM.getContext().getSizeType()));
925  PtrDiffTy = cast<llvm::IntegerType>(
926      Types.ConvertType(CGM.getContext().getPointerDiffType()));
927  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
928
929  Int8Ty = llvm::Type::getInt8Ty(VMContext);
930  // C string type.  Used in lots of places.
931  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
932
933  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
934  Zeros[1] = Zeros[0];
935  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
936  // Get the selector Type.
937  QualType selTy = CGM.getContext().getObjCSelType();
938  if (QualType() == selTy) {
939    SelectorTy = PtrToInt8Ty;
940  } else {
941    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
942  }
943
944  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
945  PtrTy = PtrToInt8Ty;
946
947  Int32Ty = llvm::Type::getInt32Ty(VMContext);
948  Int64Ty = llvm::Type::getInt64Ty(VMContext);
949
950  IntPtrTy =
951      TheModule.getPointerSize() == llvm::Module::Pointer32 ? Int32Ty : Int64Ty;
952
953  // Object type
954  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
955  ASTIdTy = CanQualType();
956  if (UnqualIdTy != QualType()) {
957    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
958    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
959  } else {
960    IdTy = PtrToInt8Ty;
961  }
962  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
963
964  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, NULL);
965  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
966
967  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
968
969  // void objc_exception_throw(id);
970  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
971  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
972  // int objc_sync_enter(id);
973  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, NULL);
974  // int objc_sync_exit(id);
975  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, NULL);
976
977  // void objc_enumerationMutation (id)
978  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
979      IdTy, NULL);
980
981  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
982  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
983      PtrDiffTy, BoolTy, NULL);
984  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
985  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
986      PtrDiffTy, IdTy, BoolTy, BoolTy, NULL);
987  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
988  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
989      PtrDiffTy, BoolTy, BoolTy, NULL);
990  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
991  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
992      PtrDiffTy, BoolTy, BoolTy, NULL);
993
994  // IMP type
995  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
996  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
997              true));
998
999  const LangOptions &Opts = CGM.getLangOpts();
1000  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
1001    RuntimeVersion = 10;
1002
1003  // Don't bother initialising the GC stuff unless we're compiling in GC mode
1004  if (Opts.getGC() != LangOptions::NonGC) {
1005    // This is a bit of an hack.  We should sort this out by having a proper
1006    // CGObjCGNUstep subclass for GC, but we may want to really support the old
1007    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
1008    // Get selectors needed in GC mode
1009    RetainSel = GetNullarySelector("retain", CGM.getContext());
1010    ReleaseSel = GetNullarySelector("release", CGM.getContext());
1011    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
1012
1013    // Get functions needed in GC mode
1014
1015    // id objc_assign_ivar(id, id, ptrdiff_t);
1016    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
1017        NULL);
1018    // id objc_assign_strongCast (id, id*)
1019    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1020        PtrToIdTy, NULL);
1021    // id objc_assign_global(id, id*);
1022    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1023        NULL);
1024    // id objc_assign_weak(id, id*);
1025    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, NULL);
1026    // id objc_read_weak(id*);
1027    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, NULL);
1028    // void *objc_memmove_collectable(void*, void *, size_t);
1029    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1030        SizeTy, NULL);
1031  }
1032}
1033
1034llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1035                                      const std::string &Name,
1036                                      bool isWeak) {
1037  llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name);
1038  // With the incompatible ABI, this will need to be replaced with a direct
1039  // reference to the class symbol.  For the compatible nonfragile ABI we are
1040  // still performing this lookup at run time but emitting the symbol for the
1041  // class externally so that we can make the switch later.
1042  //
1043  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1044  // with memoized versions or with static references if it's safe to do so.
1045  if (!isWeak)
1046    EmitClassRef(Name);
1047  ClassName = CGF.Builder.CreateStructGEP(ClassName, 0);
1048
1049  llvm::Constant *ClassLookupFn =
1050    CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1051                              "objc_lookup_class");
1052  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1053}
1054
1055// This has to perform the lookup every time, since posing and related
1056// techniques can modify the name -> class mapping.
1057llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1058                                 const ObjCInterfaceDecl *OID) {
1059  return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1060}
1061llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1062  return GetClassNamed(CGF, "NSAutoreleasePool", false);
1063}
1064
1065llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1066    const std::string &TypeEncoding, bool lval) {
1067
1068  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1069  llvm::GlobalAlias *SelValue = 0;
1070
1071
1072  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1073      e = Types.end() ; i!=e ; i++) {
1074    if (i->first == TypeEncoding) {
1075      SelValue = i->second;
1076      break;
1077    }
1078  }
1079  if (0 == SelValue) {
1080    SelValue = new llvm::GlobalAlias(SelectorTy,
1081                                     llvm::GlobalValue::PrivateLinkage,
1082                                     ".objc_selector_"+Sel.getAsString(), NULL,
1083                                     &TheModule);
1084    Types.push_back(TypedSelector(TypeEncoding, SelValue));
1085  }
1086
1087  if (lval) {
1088    llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1089    CGF.Builder.CreateStore(SelValue, tmp);
1090    return tmp;
1091  }
1092  return SelValue;
1093}
1094
1095llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1096                                    bool lval) {
1097  return GetSelector(CGF, Sel, std::string(), lval);
1098}
1099
1100llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1101                                    const ObjCMethodDecl *Method) {
1102  std::string SelTypes;
1103  CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1104  return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1105}
1106
1107llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1108  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1109    // With the old ABI, there was only one kind of catchall, which broke
1110    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
1111    // a pointer indicating object catchalls, and NULL to indicate real
1112    // catchalls
1113    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1114      return MakeConstantString("@id");
1115    } else {
1116      return 0;
1117    }
1118  }
1119
1120  // All other types should be Objective-C interface pointer types.
1121  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1122  assert(OPT && "Invalid @catch type.");
1123  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1124  assert(IDecl && "Invalid @catch type.");
1125  return MakeConstantString(IDecl->getIdentifier()->getName());
1126}
1127
1128llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1129  if (!CGM.getLangOpts().CPlusPlus)
1130    return CGObjCGNU::GetEHType(T);
1131
1132  // For Objective-C++, we want to provide the ability to catch both C++ and
1133  // Objective-C objects in the same function.
1134
1135  // There's a particular fixed type info for 'id'.
1136  if (T->isObjCIdType() ||
1137      T->isObjCQualifiedIdType()) {
1138    llvm::Constant *IDEHType =
1139      CGM.getModule().getGlobalVariable("__objc_id_type_info");
1140    if (!IDEHType)
1141      IDEHType =
1142        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1143                                 false,
1144                                 llvm::GlobalValue::ExternalLinkage,
1145                                 0, "__objc_id_type_info");
1146    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1147  }
1148
1149  const ObjCObjectPointerType *PT =
1150    T->getAs<ObjCObjectPointerType>();
1151  assert(PT && "Invalid @catch type.");
1152  const ObjCInterfaceType *IT = PT->getInterfaceType();
1153  assert(IT && "Invalid @catch type.");
1154  std::string className = IT->getDecl()->getIdentifier()->getName();
1155
1156  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1157
1158  // Return the existing typeinfo if it exists
1159  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1160  if (typeinfo)
1161    return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1162
1163  // Otherwise create it.
1164
1165  // vtable for gnustep::libobjc::__objc_class_type_info
1166  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
1167  // platform's name mangling.
1168  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1169  llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName);
1170  if (!Vtable) {
1171    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1172            llvm::GlobalValue::ExternalLinkage, 0, vtableName);
1173  }
1174  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1175  Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two);
1176  Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty);
1177
1178  llvm::Constant *typeName =
1179    ExportUniqueString(className, "__objc_eh_typename_");
1180
1181  std::vector<llvm::Constant*> fields;
1182  fields.push_back(Vtable);
1183  fields.push_back(typeName);
1184  llvm::Constant *TI =
1185      MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1186              NULL), fields, "__objc_eh_typeinfo_" + className,
1187          llvm::GlobalValue::LinkOnceODRLinkage);
1188  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1189}
1190
1191/// Generate an NSConstantString object.
1192llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1193
1194  std::string Str = SL->getString().str();
1195
1196  // Look for an existing one
1197  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1198  if (old != ObjCStrings.end())
1199    return old->getValue();
1200
1201  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1202
1203  if (StringClass.empty()) StringClass = "NXConstantString";
1204
1205  std::string Sym = "_OBJC_CLASS_";
1206  Sym += StringClass;
1207
1208  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1209
1210  if (!isa)
1211    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1212            llvm::GlobalValue::ExternalWeakLinkage, 0, Sym);
1213  else if (isa->getType() != PtrToIdTy)
1214    isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1215
1216  std::vector<llvm::Constant*> Ivars;
1217  Ivars.push_back(isa);
1218  Ivars.push_back(MakeConstantString(Str));
1219  Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1220  llvm::Constant *ObjCStr = MakeGlobal(
1221    llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, NULL),
1222    Ivars, ".objc_str");
1223  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1224  ObjCStrings[Str] = ObjCStr;
1225  ConstantStrings.push_back(ObjCStr);
1226  return ObjCStr;
1227}
1228
1229///Generates a message send where the super is the receiver.  This is a message
1230///send to self with special delivery semantics indicating which class's method
1231///should be called.
1232RValue
1233CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1234                                    ReturnValueSlot Return,
1235                                    QualType ResultType,
1236                                    Selector Sel,
1237                                    const ObjCInterfaceDecl *Class,
1238                                    bool isCategoryImpl,
1239                                    llvm::Value *Receiver,
1240                                    bool IsClassMessage,
1241                                    const CallArgList &CallArgs,
1242                                    const ObjCMethodDecl *Method) {
1243  CGBuilderTy &Builder = CGF.Builder;
1244  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1245    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1246      return RValue::get(EnforceType(Builder, Receiver,
1247                  CGM.getTypes().ConvertType(ResultType)));
1248    }
1249    if (Sel == ReleaseSel) {
1250      return RValue::get(0);
1251    }
1252  }
1253
1254  llvm::Value *cmd = GetSelector(CGF, Sel);
1255
1256
1257  CallArgList ActualArgs;
1258
1259  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1260  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1261  ActualArgs.addFrom(CallArgs);
1262
1263  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1264
1265  llvm::Value *ReceiverClass = 0;
1266  if (isCategoryImpl) {
1267    llvm::Constant *classLookupFunction = 0;
1268    if (IsClassMessage)  {
1269      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1270            IdTy, PtrTy, true), "objc_get_meta_class");
1271    } else {
1272      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1273            IdTy, PtrTy, true), "objc_get_class");
1274    }
1275    ReceiverClass = Builder.CreateCall(classLookupFunction,
1276        MakeConstantString(Class->getNameAsString()));
1277  } else {
1278    // Set up global aliases for the metaclass or class pointer if they do not
1279    // already exist.  These will are forward-references which will be set to
1280    // pointers to the class and metaclass structure created for the runtime
1281    // load function.  To send a message to super, we look up the value of the
1282    // super_class pointer from either the class or metaclass structure.
1283    if (IsClassMessage)  {
1284      if (!MetaClassPtrAlias) {
1285        MetaClassPtrAlias = new llvm::GlobalAlias(IdTy,
1286            llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" +
1287            Class->getNameAsString(), NULL, &TheModule);
1288      }
1289      ReceiverClass = MetaClassPtrAlias;
1290    } else {
1291      if (!ClassPtrAlias) {
1292        ClassPtrAlias = new llvm::GlobalAlias(IdTy,
1293            llvm::GlobalValue::InternalLinkage, ".objc_class_ref" +
1294            Class->getNameAsString(), NULL, &TheModule);
1295      }
1296      ReceiverClass = ClassPtrAlias;
1297    }
1298  }
1299  // Cast the pointer to a simplified version of the class structure
1300  ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1301      llvm::PointerType::getUnqual(
1302        llvm::StructType::get(IdTy, IdTy, NULL)));
1303  // Get the superclass pointer
1304  ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1);
1305  // Load the superclass pointer
1306  ReceiverClass = Builder.CreateLoad(ReceiverClass);
1307  // Construct the structure used to look up the IMP
1308  llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1309      Receiver->getType(), IdTy, NULL);
1310  llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1311
1312  Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
1313  Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
1314
1315  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1316
1317  // Get the IMP
1318  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1319  imp = EnforceType(Builder, imp, MSI.MessengerType);
1320
1321  llvm::Value *impMD[] = {
1322      llvm::MDString::get(VMContext, Sel.getAsString()),
1323      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1324      llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage)
1325   };
1326  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1327
1328  llvm::Instruction *call;
1329  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 0, &call);
1330  call->setMetadata(msgSendMDKind, node);
1331  return msgRet;
1332}
1333
1334/// Generate code for a message send expression.
1335RValue
1336CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1337                               ReturnValueSlot Return,
1338                               QualType ResultType,
1339                               Selector Sel,
1340                               llvm::Value *Receiver,
1341                               const CallArgList &CallArgs,
1342                               const ObjCInterfaceDecl *Class,
1343                               const ObjCMethodDecl *Method) {
1344  CGBuilderTy &Builder = CGF.Builder;
1345
1346  // Strip out message sends to retain / release in GC mode
1347  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1348    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1349      return RValue::get(EnforceType(Builder, Receiver,
1350                  CGM.getTypes().ConvertType(ResultType)));
1351    }
1352    if (Sel == ReleaseSel) {
1353      return RValue::get(0);
1354    }
1355  }
1356
1357  // If the return type is something that goes in an integer register, the
1358  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1359  // ourselves.
1360  //
1361  // The language spec says the result of this kind of message send is
1362  // undefined, but lots of people seem to have forgotten to read that
1363  // paragraph and insist on sending messages to nil that have structure
1364  // returns.  With GCC, this generates a random return value (whatever happens
1365  // to be on the stack / in those registers at the time) on most platforms,
1366  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1367  // the stack.
1368  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1369      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1370
1371  llvm::BasicBlock *startBB = 0;
1372  llvm::BasicBlock *messageBB = 0;
1373  llvm::BasicBlock *continueBB = 0;
1374
1375  if (!isPointerSizedReturn) {
1376    startBB = Builder.GetInsertBlock();
1377    messageBB = CGF.createBasicBlock("msgSend");
1378    continueBB = CGF.createBasicBlock("continue");
1379
1380    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1381            llvm::Constant::getNullValue(Receiver->getType()));
1382    Builder.CreateCondBr(isNil, continueBB, messageBB);
1383    CGF.EmitBlock(messageBB);
1384  }
1385
1386  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1387  llvm::Value *cmd;
1388  if (Method)
1389    cmd = GetSelector(CGF, Method);
1390  else
1391    cmd = GetSelector(CGF, Sel);
1392  cmd = EnforceType(Builder, cmd, SelectorTy);
1393  Receiver = EnforceType(Builder, Receiver, IdTy);
1394
1395  llvm::Value *impMD[] = {
1396        llvm::MDString::get(VMContext, Sel.getAsString()),
1397        llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""),
1398        llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), Class!=0)
1399   };
1400  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1401
1402  CallArgList ActualArgs;
1403  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1404  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1405  ActualArgs.addFrom(CallArgs);
1406
1407  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1408
1409  // Get the IMP to call
1410  llvm::Value *imp;
1411
1412  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1413  // functions.  These are not supported on all platforms (or all runtimes on a
1414  // given platform), so we
1415  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1416    case CodeGenOptions::Legacy:
1417      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1418      break;
1419    case CodeGenOptions::Mixed:
1420    case CodeGenOptions::NonLegacy:
1421      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1422        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1423                                  "objc_msgSend_fpret");
1424      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1425        // The actual types here don't matter - we're going to bitcast the
1426        // function anyway
1427        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1428                                  "objc_msgSend_stret");
1429      } else {
1430        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1431                                  "objc_msgSend");
1432      }
1433  }
1434
1435  // Reset the receiver in case the lookup modified it
1436  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1437
1438  imp = EnforceType(Builder, imp, MSI.MessengerType);
1439
1440  llvm::Instruction *call;
1441  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 0, &call);
1442  call->setMetadata(msgSendMDKind, node);
1443
1444
1445  if (!isPointerSizedReturn) {
1446    messageBB = CGF.Builder.GetInsertBlock();
1447    CGF.Builder.CreateBr(continueBB);
1448    CGF.EmitBlock(continueBB);
1449    if (msgRet.isScalar()) {
1450      llvm::Value *v = msgRet.getScalarVal();
1451      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1452      phi->addIncoming(v, messageBB);
1453      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1454      msgRet = RValue::get(phi);
1455    } else if (msgRet.isAggregate()) {
1456      llvm::Value *v = msgRet.getAggregateAddr();
1457      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1458      llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1459      llvm::AllocaInst *NullVal =
1460          CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1461      CGF.InitTempAlloca(NullVal,
1462          llvm::Constant::getNullValue(RetTy->getElementType()));
1463      phi->addIncoming(v, messageBB);
1464      phi->addIncoming(NullVal, startBB);
1465      msgRet = RValue::getAggregate(phi);
1466    } else /* isComplex() */ {
1467      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1468      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1469      phi->addIncoming(v.first, messageBB);
1470      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1471          startBB);
1472      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1473      phi2->addIncoming(v.second, messageBB);
1474      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1475          startBB);
1476      msgRet = RValue::getComplex(phi, phi2);
1477    }
1478  }
1479  return msgRet;
1480}
1481
1482/// Generates a MethodList.  Used in construction of a objc_class and
1483/// objc_category structures.
1484llvm::Constant *CGObjCGNU::
1485GenerateMethodList(const StringRef &ClassName,
1486                   const StringRef &CategoryName,
1487                   ArrayRef<Selector> MethodSels,
1488                   ArrayRef<llvm::Constant *> MethodTypes,
1489                   bool isClassMethodList) {
1490  if (MethodSels.empty())
1491    return NULLPtr;
1492  // Get the method structure type.
1493  llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1494    PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1495    PtrToInt8Ty, // Method types
1496    IMPTy, //Method pointer
1497    NULL);
1498  std::vector<llvm::Constant*> Methods;
1499  std::vector<llvm::Constant*> Elements;
1500  for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1501    Elements.clear();
1502    llvm::Constant *Method =
1503      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1504                                                MethodSels[i],
1505                                                isClassMethodList));
1506    assert(Method && "Can't generate metadata for method that doesn't exist");
1507    llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1508    Elements.push_back(C);
1509    Elements.push_back(MethodTypes[i]);
1510    Method = llvm::ConstantExpr::getBitCast(Method,
1511        IMPTy);
1512    Elements.push_back(Method);
1513    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1514  }
1515
1516  // Array of method structures
1517  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1518                                                            Methods.size());
1519  llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1520                                                         Methods);
1521
1522  // Structure containing list pointer, array and array count
1523  llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1524  llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1525  ObjCMethodListTy->setBody(
1526      NextPtrTy,
1527      IntTy,
1528      ObjCMethodArrayTy,
1529      NULL);
1530
1531  Methods.clear();
1532  Methods.push_back(llvm::ConstantPointerNull::get(
1533        llvm::PointerType::getUnqual(ObjCMethodListTy)));
1534  Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1535  Methods.push_back(MethodArray);
1536
1537  // Create an instance of the structure
1538  return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1539}
1540
1541/// Generates an IvarList.  Used in construction of a objc_class.
1542llvm::Constant *CGObjCGNU::
1543GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1544                 ArrayRef<llvm::Constant *> IvarTypes,
1545                 ArrayRef<llvm::Constant *> IvarOffsets) {
1546  if (IvarNames.size() == 0)
1547    return NULLPtr;
1548  // Get the method structure type.
1549  llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1550    PtrToInt8Ty,
1551    PtrToInt8Ty,
1552    IntTy,
1553    NULL);
1554  std::vector<llvm::Constant*> Ivars;
1555  std::vector<llvm::Constant*> Elements;
1556  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1557    Elements.clear();
1558    Elements.push_back(IvarNames[i]);
1559    Elements.push_back(IvarTypes[i]);
1560    Elements.push_back(IvarOffsets[i]);
1561    Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1562  }
1563
1564  // Array of method structures
1565  llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1566      IvarNames.size());
1567
1568
1569  Elements.clear();
1570  Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1571  Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1572  // Structure containing array and array count
1573  llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1574    ObjCIvarArrayTy,
1575    NULL);
1576
1577  // Create an instance of the structure
1578  return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1579}
1580
1581/// Generate a class structure
1582llvm::Constant *CGObjCGNU::GenerateClassStructure(
1583    llvm::Constant *MetaClass,
1584    llvm::Constant *SuperClass,
1585    unsigned info,
1586    const char *Name,
1587    llvm::Constant *Version,
1588    llvm::Constant *InstanceSize,
1589    llvm::Constant *IVars,
1590    llvm::Constant *Methods,
1591    llvm::Constant *Protocols,
1592    llvm::Constant *IvarOffsets,
1593    llvm::Constant *Properties,
1594    llvm::Constant *StrongIvarBitmap,
1595    llvm::Constant *WeakIvarBitmap,
1596    bool isMeta) {
1597  // Set up the class structure
1598  // Note:  Several of these are char*s when they should be ids.  This is
1599  // because the runtime performs this translation on load.
1600  //
1601  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1602  // anyway; the classes will still work with the GNU runtime, they will just
1603  // be ignored.
1604  llvm::StructType *ClassTy = llvm::StructType::get(
1605      PtrToInt8Ty,        // isa
1606      PtrToInt8Ty,        // super_class
1607      PtrToInt8Ty,        // name
1608      LongTy,             // version
1609      LongTy,             // info
1610      LongTy,             // instance_size
1611      IVars->getType(),   // ivars
1612      Methods->getType(), // methods
1613      // These are all filled in by the runtime, so we pretend
1614      PtrTy,              // dtable
1615      PtrTy,              // subclass_list
1616      PtrTy,              // sibling_class
1617      PtrTy,              // protocols
1618      PtrTy,              // gc_object_type
1619      // New ABI:
1620      LongTy,                 // abi_version
1621      IvarOffsets->getType(), // ivar_offsets
1622      Properties->getType(),  // properties
1623      IntPtrTy,               // strong_pointers
1624      IntPtrTy,               // weak_pointers
1625      NULL);
1626  llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1627  // Fill in the structure
1628  std::vector<llvm::Constant*> Elements;
1629  Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1630  Elements.push_back(SuperClass);
1631  Elements.push_back(MakeConstantString(Name, ".class_name"));
1632  Elements.push_back(Zero);
1633  Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1634  if (isMeta) {
1635    llvm::DataLayout td(&TheModule);
1636    Elements.push_back(
1637        llvm::ConstantInt::get(LongTy,
1638                               td.getTypeSizeInBits(ClassTy) /
1639                                 CGM.getContext().getCharWidth()));
1640  } else
1641    Elements.push_back(InstanceSize);
1642  Elements.push_back(IVars);
1643  Elements.push_back(Methods);
1644  Elements.push_back(NULLPtr);
1645  Elements.push_back(NULLPtr);
1646  Elements.push_back(NULLPtr);
1647  Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1648  Elements.push_back(NULLPtr);
1649  Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1650  Elements.push_back(IvarOffsets);
1651  Elements.push_back(Properties);
1652  Elements.push_back(StrongIvarBitmap);
1653  Elements.push_back(WeakIvarBitmap);
1654  // Create an instance of the structure
1655  // This is now an externally visible symbol, so that we can speed up class
1656  // messages in the next ABI.  We may already have some weak references to
1657  // this, so check and fix them properly.
1658  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1659          std::string(Name));
1660  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1661  llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1662          llvm::GlobalValue::ExternalLinkage);
1663  if (ClassRef) {
1664      ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1665                  ClassRef->getType()));
1666      ClassRef->removeFromParent();
1667      Class->setName(ClassSym);
1668  }
1669  return Class;
1670}
1671
1672llvm::Constant *CGObjCGNU::
1673GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1674                           ArrayRef<llvm::Constant *> MethodTypes) {
1675  // Get the method structure type.
1676  llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1677    PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1678    PtrToInt8Ty,
1679    NULL);
1680  std::vector<llvm::Constant*> Methods;
1681  std::vector<llvm::Constant*> Elements;
1682  for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1683    Elements.clear();
1684    Elements.push_back(MethodNames[i]);
1685    Elements.push_back(MethodTypes[i]);
1686    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1687  }
1688  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1689      MethodNames.size());
1690  llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1691                                                   Methods);
1692  llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1693      IntTy, ObjCMethodArrayTy, NULL);
1694  Methods.clear();
1695  Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1696  Methods.push_back(Array);
1697  return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1698}
1699
1700// Create the protocol list structure used in classes, categories and so on
1701llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1702  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1703      Protocols.size());
1704  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1705      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1706      SizeTy,
1707      ProtocolArrayTy,
1708      NULL);
1709  std::vector<llvm::Constant*> Elements;
1710  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1711      iter != endIter ; iter++) {
1712    llvm::Constant *protocol = 0;
1713    llvm::StringMap<llvm::Constant*>::iterator value =
1714      ExistingProtocols.find(*iter);
1715    if (value == ExistingProtocols.end()) {
1716      protocol = GenerateEmptyProtocol(*iter);
1717    } else {
1718      protocol = value->getValue();
1719    }
1720    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1721                                                           PtrToInt8Ty);
1722    Elements.push_back(Ptr);
1723  }
1724  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1725      Elements);
1726  Elements.clear();
1727  Elements.push_back(NULLPtr);
1728  Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1729  Elements.push_back(ProtocolArray);
1730  return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1731}
1732
1733llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1734                                            const ObjCProtocolDecl *PD) {
1735  llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1736  llvm::Type *T =
1737    CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1738  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1739}
1740
1741llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1742  const std::string &ProtocolName) {
1743  SmallVector<std::string, 0> EmptyStringVector;
1744  SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1745
1746  llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1747  llvm::Constant *MethodList =
1748    GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1749  // Protocols are objects containing lists of the methods implemented and
1750  // protocols adopted.
1751  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1752      PtrToInt8Ty,
1753      ProtocolList->getType(),
1754      MethodList->getType(),
1755      MethodList->getType(),
1756      MethodList->getType(),
1757      MethodList->getType(),
1758      NULL);
1759  std::vector<llvm::Constant*> Elements;
1760  // The isa pointer must be set to a magic number so the runtime knows it's
1761  // the correct layout.
1762  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1763        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1764  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1765  Elements.push_back(ProtocolList);
1766  Elements.push_back(MethodList);
1767  Elements.push_back(MethodList);
1768  Elements.push_back(MethodList);
1769  Elements.push_back(MethodList);
1770  return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1771}
1772
1773void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1774  ASTContext &Context = CGM.getContext();
1775  std::string ProtocolName = PD->getNameAsString();
1776
1777  // Use the protocol definition, if there is one.
1778  if (const ObjCProtocolDecl *Def = PD->getDefinition())
1779    PD = Def;
1780
1781  SmallVector<std::string, 16> Protocols;
1782  for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(),
1783       E = PD->protocol_end(); PI != E; ++PI)
1784    Protocols.push_back((*PI)->getNameAsString());
1785  SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1786  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1787  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1788  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1789  for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(),
1790       E = PD->instmeth_end(); iter != E; iter++) {
1791    std::string TypeStr;
1792    Context.getObjCEncodingForMethodDecl(*iter, TypeStr);
1793    if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1794      OptionalInstanceMethodNames.push_back(
1795          MakeConstantString((*iter)->getSelector().getAsString()));
1796      OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1797    } else {
1798      InstanceMethodNames.push_back(
1799          MakeConstantString((*iter)->getSelector().getAsString()));
1800      InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1801    }
1802  }
1803  // Collect information about class methods:
1804  SmallVector<llvm::Constant*, 16> ClassMethodNames;
1805  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1806  SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1807  SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1808  for (ObjCProtocolDecl::classmeth_iterator
1809         iter = PD->classmeth_begin(), endIter = PD->classmeth_end();
1810       iter != endIter ; iter++) {
1811    std::string TypeStr;
1812    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
1813    if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1814      OptionalClassMethodNames.push_back(
1815          MakeConstantString((*iter)->getSelector().getAsString()));
1816      OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1817    } else {
1818      ClassMethodNames.push_back(
1819          MakeConstantString((*iter)->getSelector().getAsString()));
1820      ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1821    }
1822  }
1823
1824  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1825  llvm::Constant *InstanceMethodList =
1826    GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1827  llvm::Constant *ClassMethodList =
1828    GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1829  llvm::Constant *OptionalInstanceMethodList =
1830    GenerateProtocolMethodList(OptionalInstanceMethodNames,
1831            OptionalInstanceMethodTypes);
1832  llvm::Constant *OptionalClassMethodList =
1833    GenerateProtocolMethodList(OptionalClassMethodNames,
1834            OptionalClassMethodTypes);
1835
1836  // Property metadata: name, attributes, isSynthesized, setter name, setter
1837  // types, getter name, getter types.
1838  // The isSynthesized value is always set to 0 in a protocol.  It exists to
1839  // simplify the runtime library by allowing it to use the same data
1840  // structures for protocol metadata everywhere.
1841  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1842          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1843          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, NULL);
1844  std::vector<llvm::Constant*> Properties;
1845  std::vector<llvm::Constant*> OptionalProperties;
1846
1847  // Add all of the property methods need adding to the method list and to the
1848  // property metadata list.
1849  for (ObjCContainerDecl::prop_iterator
1850         iter = PD->prop_begin(), endIter = PD->prop_end();
1851       iter != endIter ; iter++) {
1852    std::vector<llvm::Constant*> Fields;
1853    ObjCPropertyDecl *property = *iter;
1854
1855    Fields.push_back(MakePropertyEncodingString(property, 0));
1856    PushPropertyAttributes(Fields, property);
1857
1858    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1859      std::string TypeStr;
1860      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1861      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1862      InstanceMethodTypes.push_back(TypeEncoding);
1863      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1864      Fields.push_back(TypeEncoding);
1865    } else {
1866      Fields.push_back(NULLPtr);
1867      Fields.push_back(NULLPtr);
1868    }
1869    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1870      std::string TypeStr;
1871      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1872      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1873      InstanceMethodTypes.push_back(TypeEncoding);
1874      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1875      Fields.push_back(TypeEncoding);
1876    } else {
1877      Fields.push_back(NULLPtr);
1878      Fields.push_back(NULLPtr);
1879    }
1880    if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1881      OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1882    } else {
1883      Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1884    }
1885  }
1886  llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1887      llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1888  llvm::Constant* PropertyListInitFields[] =
1889    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1890
1891  llvm::Constant *PropertyListInit =
1892      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1893  llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1894      PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1895      PropertyListInit, ".objc_property_list");
1896
1897  llvm::Constant *OptionalPropertyArray =
1898      llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1899          OptionalProperties.size()) , OptionalProperties);
1900  llvm::Constant* OptionalPropertyListInitFields[] = {
1901      llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1902      OptionalPropertyArray };
1903
1904  llvm::Constant *OptionalPropertyListInit =
1905      llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1906  llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1907          OptionalPropertyListInit->getType(), false,
1908          llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1909          ".objc_property_list");
1910
1911  // Protocols are objects containing lists of the methods implemented and
1912  // protocols adopted.
1913  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1914      PtrToInt8Ty,
1915      ProtocolList->getType(),
1916      InstanceMethodList->getType(),
1917      ClassMethodList->getType(),
1918      OptionalInstanceMethodList->getType(),
1919      OptionalClassMethodList->getType(),
1920      PropertyList->getType(),
1921      OptionalPropertyList->getType(),
1922      NULL);
1923  std::vector<llvm::Constant*> Elements;
1924  // The isa pointer must be set to a magic number so the runtime knows it's
1925  // the correct layout.
1926  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1927        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1928  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1929  Elements.push_back(ProtocolList);
1930  Elements.push_back(InstanceMethodList);
1931  Elements.push_back(ClassMethodList);
1932  Elements.push_back(OptionalInstanceMethodList);
1933  Elements.push_back(OptionalClassMethodList);
1934  Elements.push_back(PropertyList);
1935  Elements.push_back(OptionalPropertyList);
1936  ExistingProtocols[ProtocolName] =
1937    llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1938          ".objc_protocol"), IdTy);
1939}
1940void CGObjCGNU::GenerateProtocolHolderCategory() {
1941  // Collect information about instance methods
1942  SmallVector<Selector, 1> MethodSels;
1943  SmallVector<llvm::Constant*, 1> MethodTypes;
1944
1945  std::vector<llvm::Constant*> Elements;
1946  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1947  const std::string CategoryName = "AnotherHack";
1948  Elements.push_back(MakeConstantString(CategoryName));
1949  Elements.push_back(MakeConstantString(ClassName));
1950  // Instance method list
1951  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1952          ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1953  // Class method list
1954  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1955          ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1956  // Protocol list
1957  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1958      ExistingProtocols.size());
1959  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1960      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1961      SizeTy,
1962      ProtocolArrayTy,
1963      NULL);
1964  std::vector<llvm::Constant*> ProtocolElements;
1965  for (llvm::StringMapIterator<llvm::Constant*> iter =
1966       ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1967       iter != endIter ; iter++) {
1968    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1969            PtrTy);
1970    ProtocolElements.push_back(Ptr);
1971  }
1972  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1973      ProtocolElements);
1974  ProtocolElements.clear();
1975  ProtocolElements.push_back(NULLPtr);
1976  ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1977              ExistingProtocols.size()));
1978  ProtocolElements.push_back(ProtocolArray);
1979  Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1980                  ProtocolElements, ".objc_protocol_list"), PtrTy));
1981  Categories.push_back(llvm::ConstantExpr::getBitCast(
1982        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1983            PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
1984}
1985
1986/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1987/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1988/// bits set to their values, LSB first, while larger ones are stored in a
1989/// structure of this / form:
1990///
1991/// struct { int32_t length; int32_t values[length]; };
1992///
1993/// The values in the array are stored in host-endian format, with the least
1994/// significant bit being assumed to come first in the bitfield.  Therefore, a
1995/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1996/// bitfield / with the 63rd bit set will be 1<<64.
1997llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1998  int bitCount = bits.size();
1999  int ptrBits =
2000        (TheModule.getPointerSize() == llvm::Module::Pointer32) ? 32 : 64;
2001  if (bitCount < ptrBits) {
2002    uint64_t val = 1;
2003    for (int i=0 ; i<bitCount ; ++i) {
2004      if (bits[i]) val |= 1ULL<<(i+1);
2005    }
2006    return llvm::ConstantInt::get(IntPtrTy, val);
2007  }
2008  SmallVector<llvm::Constant *, 8> values;
2009  int v=0;
2010  while (v < bitCount) {
2011    int32_t word = 0;
2012    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
2013      if (bits[v]) word |= 1<<i;
2014      v++;
2015    }
2016    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
2017  }
2018  llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
2019  llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
2020  llvm::Constant *fields[2] = {
2021      llvm::ConstantInt::get(Int32Ty, values.size()),
2022      array };
2023  llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2024        NULL), fields);
2025  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2026  return ptr;
2027}
2028
2029void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2030  std::string ClassName = OCD->getClassInterface()->getNameAsString();
2031  std::string CategoryName = OCD->getNameAsString();
2032  // Collect information about instance methods
2033  SmallVector<Selector, 16> InstanceMethodSels;
2034  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2035  for (ObjCCategoryImplDecl::instmeth_iterator
2036         iter = OCD->instmeth_begin(), endIter = OCD->instmeth_end();
2037       iter != endIter ; iter++) {
2038    InstanceMethodSels.push_back((*iter)->getSelector());
2039    std::string TypeStr;
2040    CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
2041    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2042  }
2043
2044  // Collect information about class methods
2045  SmallVector<Selector, 16> ClassMethodSels;
2046  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2047  for (ObjCCategoryImplDecl::classmeth_iterator
2048         iter = OCD->classmeth_begin(), endIter = OCD->classmeth_end();
2049       iter != endIter ; iter++) {
2050    ClassMethodSels.push_back((*iter)->getSelector());
2051    std::string TypeStr;
2052    CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
2053    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2054  }
2055
2056  // Collect the names of referenced protocols
2057  SmallVector<std::string, 16> Protocols;
2058  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2059  const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2060  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2061       E = Protos.end(); I != E; ++I)
2062    Protocols.push_back((*I)->getNameAsString());
2063
2064  std::vector<llvm::Constant*> Elements;
2065  Elements.push_back(MakeConstantString(CategoryName));
2066  Elements.push_back(MakeConstantString(ClassName));
2067  // Instance method list
2068  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2069          ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2070          false), PtrTy));
2071  // Class method list
2072  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2073          ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2074        PtrTy));
2075  // Protocol list
2076  Elements.push_back(llvm::ConstantExpr::getBitCast(
2077        GenerateProtocolList(Protocols), PtrTy));
2078  Categories.push_back(llvm::ConstantExpr::getBitCast(
2079        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2080            PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
2081}
2082
2083llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2084        SmallVectorImpl<Selector> &InstanceMethodSels,
2085        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2086  ASTContext &Context = CGM.getContext();
2087  // Property metadata: name, attributes, attributes2, padding1, padding2,
2088  // setter name, setter types, getter name, getter types.
2089  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2090          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2091          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, NULL);
2092  std::vector<llvm::Constant*> Properties;
2093
2094  // Add all of the property methods need adding to the method list and to the
2095  // property metadata list.
2096  for (ObjCImplDecl::propimpl_iterator
2097         iter = OID->propimpl_begin(), endIter = OID->propimpl_end();
2098       iter != endIter ; iter++) {
2099    std::vector<llvm::Constant*> Fields;
2100    ObjCPropertyDecl *property = iter->getPropertyDecl();
2101    ObjCPropertyImplDecl *propertyImpl = *iter;
2102    bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2103        ObjCPropertyImplDecl::Synthesize);
2104    bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2105        ObjCPropertyImplDecl::Dynamic);
2106
2107    Fields.push_back(MakePropertyEncodingString(property, OID));
2108    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2109    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2110      std::string TypeStr;
2111      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2112      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2113      if (isSynthesized) {
2114        InstanceMethodTypes.push_back(TypeEncoding);
2115        InstanceMethodSels.push_back(getter->getSelector());
2116      }
2117      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2118      Fields.push_back(TypeEncoding);
2119    } else {
2120      Fields.push_back(NULLPtr);
2121      Fields.push_back(NULLPtr);
2122    }
2123    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2124      std::string TypeStr;
2125      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2126      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2127      if (isSynthesized) {
2128        InstanceMethodTypes.push_back(TypeEncoding);
2129        InstanceMethodSels.push_back(setter->getSelector());
2130      }
2131      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2132      Fields.push_back(TypeEncoding);
2133    } else {
2134      Fields.push_back(NULLPtr);
2135      Fields.push_back(NULLPtr);
2136    }
2137    Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2138  }
2139  llvm::ArrayType *PropertyArrayTy =
2140      llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2141  llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2142          Properties);
2143  llvm::Constant* PropertyListInitFields[] =
2144    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2145
2146  llvm::Constant *PropertyListInit =
2147      llvm::ConstantStruct::getAnon(PropertyListInitFields);
2148  return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2149          llvm::GlobalValue::InternalLinkage, PropertyListInit,
2150          ".objc_property_list");
2151}
2152
2153void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2154  // Get the class declaration for which the alias is specified.
2155  ObjCInterfaceDecl *ClassDecl =
2156    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2157  std::string ClassName = ClassDecl->getNameAsString();
2158  std::string AliasName = OAD->getNameAsString();
2159  ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2160}
2161
2162void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2163  ASTContext &Context = CGM.getContext();
2164
2165  // Get the superclass name.
2166  const ObjCInterfaceDecl * SuperClassDecl =
2167    OID->getClassInterface()->getSuperClass();
2168  std::string SuperClassName;
2169  if (SuperClassDecl) {
2170    SuperClassName = SuperClassDecl->getNameAsString();
2171    EmitClassRef(SuperClassName);
2172  }
2173
2174  // Get the class name
2175  ObjCInterfaceDecl *ClassDecl =
2176    const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2177  std::string ClassName = ClassDecl->getNameAsString();
2178  // Emit the symbol that is used to generate linker errors if this class is
2179  // referenced in other modules but not declared.
2180  std::string classSymbolName = "__objc_class_name_" + ClassName;
2181  if (llvm::GlobalVariable *symbol =
2182      TheModule.getGlobalVariable(classSymbolName)) {
2183    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2184  } else {
2185    new llvm::GlobalVariable(TheModule, LongTy, false,
2186    llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2187    classSymbolName);
2188  }
2189
2190  // Get the size of instances.
2191  int instanceSize =
2192    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2193
2194  // Collect information about instance variables.
2195  SmallVector<llvm::Constant*, 16> IvarNames;
2196  SmallVector<llvm::Constant*, 16> IvarTypes;
2197  SmallVector<llvm::Constant*, 16> IvarOffsets;
2198
2199  std::vector<llvm::Constant*> IvarOffsetValues;
2200  SmallVector<bool, 16> WeakIvars;
2201  SmallVector<bool, 16> StrongIvars;
2202
2203  int superInstanceSize = !SuperClassDecl ? 0 :
2204    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2205  // For non-fragile ivars, set the instance size to 0 - {the size of just this
2206  // class}.  The runtime will then set this to the correct value on load.
2207  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2208    instanceSize = 0 - (instanceSize - superInstanceSize);
2209  }
2210
2211  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2212       IVD = IVD->getNextIvar()) {
2213      // Store the name
2214      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2215      // Get the type encoding for this ivar
2216      std::string TypeStr;
2217      Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2218      IvarTypes.push_back(MakeConstantString(TypeStr));
2219      // Get the offset
2220      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2221      uint64_t Offset = BaseOffset;
2222      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2223        Offset = BaseOffset - superInstanceSize;
2224      }
2225      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2226      // Create the direct offset value
2227      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2228          IVD->getNameAsString();
2229      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2230      if (OffsetVar) {
2231        OffsetVar->setInitializer(OffsetValue);
2232        // If this is the real definition, change its linkage type so that
2233        // different modules will use this one, rather than their private
2234        // copy.
2235        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2236      } else
2237        OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2238          false, llvm::GlobalValue::ExternalLinkage,
2239          OffsetValue,
2240          "__objc_ivar_offset_value_" + ClassName +"." +
2241          IVD->getNameAsString());
2242      IvarOffsets.push_back(OffsetValue);
2243      IvarOffsetValues.push_back(OffsetVar);
2244      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2245      switch (lt) {
2246        case Qualifiers::OCL_Strong:
2247          StrongIvars.push_back(true);
2248          WeakIvars.push_back(false);
2249          break;
2250        case Qualifiers::OCL_Weak:
2251          StrongIvars.push_back(false);
2252          WeakIvars.push_back(true);
2253          break;
2254        default:
2255          StrongIvars.push_back(false);
2256          WeakIvars.push_back(false);
2257      }
2258  }
2259  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2260  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2261  llvm::GlobalVariable *IvarOffsetArray =
2262    MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2263
2264
2265  // Collect information about instance methods
2266  SmallVector<Selector, 16> InstanceMethodSels;
2267  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2268  for (ObjCImplementationDecl::instmeth_iterator
2269         iter = OID->instmeth_begin(), endIter = OID->instmeth_end();
2270       iter != endIter ; iter++) {
2271    InstanceMethodSels.push_back((*iter)->getSelector());
2272    std::string TypeStr;
2273    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2274    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2275  }
2276
2277  llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2278          InstanceMethodTypes);
2279
2280
2281  // Collect information about class methods
2282  SmallVector<Selector, 16> ClassMethodSels;
2283  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2284  for (ObjCImplementationDecl::classmeth_iterator
2285         iter = OID->classmeth_begin(), endIter = OID->classmeth_end();
2286       iter != endIter ; iter++) {
2287    ClassMethodSels.push_back((*iter)->getSelector());
2288    std::string TypeStr;
2289    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2290    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2291  }
2292  // Collect the names of referenced protocols
2293  SmallVector<std::string, 16> Protocols;
2294  for (ObjCInterfaceDecl::protocol_iterator
2295         I = ClassDecl->protocol_begin(),
2296         E = ClassDecl->protocol_end(); I != E; ++I)
2297    Protocols.push_back((*I)->getNameAsString());
2298
2299
2300
2301  // Get the superclass pointer.
2302  llvm::Constant *SuperClass;
2303  if (!SuperClassName.empty()) {
2304    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2305  } else {
2306    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2307  }
2308  // Empty vector used to construct empty method lists
2309  SmallVector<llvm::Constant*, 1>  empty;
2310  // Generate the method and instance variable lists
2311  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2312      InstanceMethodSels, InstanceMethodTypes, false);
2313  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2314      ClassMethodSels, ClassMethodTypes, true);
2315  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2316      IvarOffsets);
2317  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2318  // we emit a symbol containing the offset for each ivar in the class.  This
2319  // allows code compiled for the non-Fragile ABI to inherit from code compiled
2320  // for the legacy ABI, without causing problems.  The converse is also
2321  // possible, but causes all ivar accesses to be fragile.
2322
2323  // Offset pointer for getting at the correct field in the ivar list when
2324  // setting up the alias.  These are: The base address for the global, the
2325  // ivar array (second field), the ivar in this list (set for each ivar), and
2326  // the offset (third field in ivar structure)
2327  llvm::Type *IndexTy = Int32Ty;
2328  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2329      llvm::ConstantInt::get(IndexTy, 1), 0,
2330      llvm::ConstantInt::get(IndexTy, 2) };
2331
2332  unsigned ivarIndex = 0;
2333  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2334       IVD = IVD->getNextIvar()) {
2335      const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2336          + IVD->getNameAsString();
2337      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2338      // Get the correct ivar field
2339      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2340              IvarList, offsetPointerIndexes);
2341      // Get the existing variable, if one exists.
2342      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2343      if (offset) {
2344        offset->setInitializer(offsetValue);
2345        // If this is the real definition, change its linkage type so that
2346        // different modules will use this one, rather than their private
2347        // copy.
2348        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2349      } else {
2350        // Add a new alias if there isn't one already.
2351        offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2352                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2353        (void) offset; // Silence dead store warning.
2354      }
2355      ++ivarIndex;
2356  }
2357  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2358  //Generate metaclass for class methods
2359  llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2360      NULLPtr, 0x12L, ClassName.c_str(), 0, Zeros[0], GenerateIvarList(
2361        empty, empty, empty), ClassMethodList, NULLPtr,
2362      NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2363
2364  // Generate the class structure
2365  llvm::Constant *ClassStruct =
2366    GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2367                           ClassName.c_str(), 0,
2368      llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2369      MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2370      Properties, StrongIvarBitmap, WeakIvarBitmap);
2371
2372  // Resolve the class aliases, if they exist.
2373  if (ClassPtrAlias) {
2374    ClassPtrAlias->replaceAllUsesWith(
2375        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2376    ClassPtrAlias->eraseFromParent();
2377    ClassPtrAlias = 0;
2378  }
2379  if (MetaClassPtrAlias) {
2380    MetaClassPtrAlias->replaceAllUsesWith(
2381        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2382    MetaClassPtrAlias->eraseFromParent();
2383    MetaClassPtrAlias = 0;
2384  }
2385
2386  // Add class structure to list to be added to the symtab later
2387  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2388  Classes.push_back(ClassStruct);
2389}
2390
2391
2392llvm::Function *CGObjCGNU::ModuleInitFunction() {
2393  // Only emit an ObjC load function if no Objective-C stuff has been called
2394  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2395      ExistingProtocols.empty() && SelectorTable.empty())
2396    return NULL;
2397
2398  // Add all referenced protocols to a category.
2399  GenerateProtocolHolderCategory();
2400
2401  llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2402          SelectorTy->getElementType());
2403  llvm::Type *SelStructPtrTy = SelectorTy;
2404  if (SelStructTy == 0) {
2405    SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, NULL);
2406    SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2407  }
2408
2409  std::vector<llvm::Constant*> Elements;
2410  llvm::Constant *Statics = NULLPtr;
2411  // Generate statics list:
2412  if (ConstantStrings.size()) {
2413    llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2414        ConstantStrings.size() + 1);
2415    ConstantStrings.push_back(NULLPtr);
2416
2417    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2418
2419    if (StringClass.empty()) StringClass = "NXConstantString";
2420
2421    Elements.push_back(MakeConstantString(StringClass,
2422                ".objc_static_class_name"));
2423    Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2424       ConstantStrings));
2425    llvm::StructType *StaticsListTy =
2426      llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, NULL);
2427    llvm::Type *StaticsListPtrTy =
2428      llvm::PointerType::getUnqual(StaticsListTy);
2429    Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2430    llvm::ArrayType *StaticsListArrayTy =
2431      llvm::ArrayType::get(StaticsListPtrTy, 2);
2432    Elements.clear();
2433    Elements.push_back(Statics);
2434    Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2435    Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2436    Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2437  }
2438  // Array of classes, categories, and constant objects
2439  llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2440      Classes.size() + Categories.size()  + 2);
2441  llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2442                                                     llvm::Type::getInt16Ty(VMContext),
2443                                                     llvm::Type::getInt16Ty(VMContext),
2444                                                     ClassListTy, NULL);
2445
2446  Elements.clear();
2447  // Pointer to an array of selectors used in this module.
2448  std::vector<llvm::Constant*> Selectors;
2449  std::vector<llvm::GlobalAlias*> SelectorAliases;
2450  for (SelectorMap::iterator iter = SelectorTable.begin(),
2451      iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2452
2453    std::string SelNameStr = iter->first.getAsString();
2454    llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2455
2456    SmallVectorImpl<TypedSelector> &Types = iter->second;
2457    for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2458        e = Types.end() ; i!=e ; i++) {
2459
2460      llvm::Constant *SelectorTypeEncoding = NULLPtr;
2461      if (!i->first.empty())
2462        SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2463
2464      Elements.push_back(SelName);
2465      Elements.push_back(SelectorTypeEncoding);
2466      Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2467      Elements.clear();
2468
2469      // Store the selector alias for later replacement
2470      SelectorAliases.push_back(i->second);
2471    }
2472  }
2473  unsigned SelectorCount = Selectors.size();
2474  // NULL-terminate the selector list.  This should not actually be required,
2475  // because the selector list has a length field.  Unfortunately, the GCC
2476  // runtime decides to ignore the length field and expects a NULL terminator,
2477  // and GCC cooperates with this by always setting the length to 0.
2478  Elements.push_back(NULLPtr);
2479  Elements.push_back(NULLPtr);
2480  Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2481  Elements.clear();
2482
2483  // Number of static selectors
2484  Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2485  llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors,
2486          ".objc_selector_list");
2487  Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2488    SelStructPtrTy));
2489
2490  // Now that all of the static selectors exist, create pointers to them.
2491  for (unsigned int i=0 ; i<SelectorCount ; i++) {
2492
2493    llvm::Constant *Idxs[] = {Zeros[0],
2494      llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2495    // FIXME: We're generating redundant loads and stores here!
2496    llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList,
2497        makeArrayRef(Idxs, 2));
2498    // If selectors are defined as an opaque type, cast the pointer to this
2499    // type.
2500    SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2501    SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2502    SelectorAliases[i]->eraseFromParent();
2503  }
2504
2505  // Number of classes defined.
2506  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2507        Classes.size()));
2508  // Number of categories defined
2509  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2510        Categories.size()));
2511  // Create an array of classes, then categories, then static object instances
2512  Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2513  //  NULL-terminated list of static object instances (mainly constant strings)
2514  Classes.push_back(Statics);
2515  Classes.push_back(NULLPtr);
2516  llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2517  Elements.push_back(ClassList);
2518  // Construct the symbol table
2519  llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2520
2521  // The symbol table is contained in a module which has some version-checking
2522  // constants
2523  llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2524      PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2525      (RuntimeVersion >= 10) ? IntTy : NULL, NULL);
2526  Elements.clear();
2527  // Runtime version, used for ABI compatibility checking.
2528  Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2529  // sizeof(ModuleTy)
2530  llvm::DataLayout td(&TheModule);
2531  Elements.push_back(
2532    llvm::ConstantInt::get(LongTy,
2533                           td.getTypeSizeInBits(ModuleTy) /
2534                             CGM.getContext().getCharWidth()));
2535
2536  // The path to the source file where this module was declared
2537  SourceManager &SM = CGM.getContext().getSourceManager();
2538  const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2539  std::string path =
2540    std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2541  Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2542  Elements.push_back(SymTab);
2543
2544  if (RuntimeVersion >= 10)
2545    switch (CGM.getLangOpts().getGC()) {
2546      case LangOptions::GCOnly:
2547        Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2548        break;
2549      case LangOptions::NonGC:
2550        if (CGM.getLangOpts().ObjCAutoRefCount)
2551          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2552        else
2553          Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2554        break;
2555      case LangOptions::HybridGC:
2556          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2557        break;
2558    }
2559
2560  llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2561
2562  // Create the load function calling the runtime entry point with the module
2563  // structure
2564  llvm::Function * LoadFunction = llvm::Function::Create(
2565      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2566      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2567      &TheModule);
2568  llvm::BasicBlock *EntryBB =
2569      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2570  CGBuilderTy Builder(VMContext);
2571  Builder.SetInsertPoint(EntryBB);
2572
2573  llvm::FunctionType *FT =
2574    llvm::FunctionType::get(Builder.getVoidTy(),
2575                            llvm::PointerType::getUnqual(ModuleTy), true);
2576  llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2577  Builder.CreateCall(Register, Module);
2578
2579  if (!ClassAliases.empty()) {
2580    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2581    llvm::FunctionType *RegisterAliasTy =
2582      llvm::FunctionType::get(Builder.getVoidTy(),
2583                              ArgTypes, false);
2584    llvm::Function *RegisterAlias = llvm::Function::Create(
2585      RegisterAliasTy,
2586      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2587      &TheModule);
2588    llvm::BasicBlock *AliasBB =
2589      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2590    llvm::BasicBlock *NoAliasBB =
2591      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2592
2593    // Branch based on whether the runtime provided class_registerAlias_np()
2594    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2595            llvm::Constant::getNullValue(RegisterAlias->getType()));
2596    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2597
2598    // The true branch (has alias registration fucntion):
2599    Builder.SetInsertPoint(AliasBB);
2600    // Emit alias registration calls:
2601    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2602       iter != ClassAliases.end(); ++iter) {
2603       llvm::Constant *TheClass =
2604         TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2605            true);
2606       if (0 != TheClass) {
2607         TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2608         Builder.CreateCall2(RegisterAlias, TheClass,
2609            MakeConstantString(iter->second));
2610       }
2611    }
2612    // Jump to end:
2613    Builder.CreateBr(NoAliasBB);
2614
2615    // Missing alias registration function, just return from the function:
2616    Builder.SetInsertPoint(NoAliasBB);
2617  }
2618  Builder.CreateRetVoid();
2619
2620  return LoadFunction;
2621}
2622
2623llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2624                                          const ObjCContainerDecl *CD) {
2625  const ObjCCategoryImplDecl *OCD =
2626    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2627  StringRef CategoryName = OCD ? OCD->getName() : "";
2628  StringRef ClassName = CD->getName();
2629  Selector MethodName = OMD->getSelector();
2630  bool isClassMethod = !OMD->isInstanceMethod();
2631
2632  CodeGenTypes &Types = CGM.getTypes();
2633  llvm::FunctionType *MethodTy =
2634    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2635  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2636      MethodName, isClassMethod);
2637
2638  llvm::Function *Method
2639    = llvm::Function::Create(MethodTy,
2640                             llvm::GlobalValue::InternalLinkage,
2641                             FunctionName,
2642                             &TheModule);
2643  return Method;
2644}
2645
2646llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2647  return GetPropertyFn;
2648}
2649
2650llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2651  return SetPropertyFn;
2652}
2653
2654llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2655                                                           bool copy) {
2656  return 0;
2657}
2658
2659llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2660  return GetStructPropertyFn;
2661}
2662llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2663  return SetStructPropertyFn;
2664}
2665llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2666  return 0;
2667}
2668llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2669  return 0;
2670}
2671
2672llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2673  return EnumerationMutationFn;
2674}
2675
2676void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2677                                     const ObjCAtSynchronizedStmt &S) {
2678  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2679}
2680
2681
2682void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2683                            const ObjCAtTryStmt &S) {
2684  // Unlike the Apple non-fragile runtimes, which also uses
2685  // unwind-based zero cost exceptions, the GNU Objective C runtime's
2686  // EH support isn't a veneer over C++ EH.  Instead, exception
2687  // objects are created by objc_exception_throw and destroyed by
2688  // the personality function; this avoids the need for bracketing
2689  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2690  // (or even _Unwind_DeleteException), but probably doesn't
2691  // interoperate very well with foreign exceptions.
2692  //
2693  // In Objective-C++ mode, we actually emit something equivalent to the C++
2694  // exception handler.
2695  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2696  return ;
2697}
2698
2699void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2700                              const ObjCAtThrowStmt &S,
2701                              bool ClearInsertionPoint) {
2702  llvm::Value *ExceptionAsObject;
2703
2704  if (const Expr *ThrowExpr = S.getThrowExpr()) {
2705    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2706    ExceptionAsObject = Exception;
2707  } else {
2708    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2709           "Unexpected rethrow outside @catch block.");
2710    ExceptionAsObject = CGF.ObjCEHValueStack.back();
2711  }
2712  ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2713  llvm::CallSite Throw =
2714      CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2715  Throw.setDoesNotReturn();
2716  CGF.Builder.CreateUnreachable();
2717  if (ClearInsertionPoint)
2718    CGF.Builder.ClearInsertionPoint();
2719}
2720
2721llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2722                                          llvm::Value *AddrWeakObj) {
2723  CGBuilderTy &B = CGF.Builder;
2724  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2725  return B.CreateCall(WeakReadFn, AddrWeakObj);
2726}
2727
2728void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2729                                   llvm::Value *src, llvm::Value *dst) {
2730  CGBuilderTy &B = CGF.Builder;
2731  src = EnforceType(B, src, IdTy);
2732  dst = EnforceType(B, dst, PtrToIdTy);
2733  B.CreateCall2(WeakAssignFn, src, dst);
2734}
2735
2736void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2737                                     llvm::Value *src, llvm::Value *dst,
2738                                     bool threadlocal) {
2739  CGBuilderTy &B = CGF.Builder;
2740  src = EnforceType(B, src, IdTy);
2741  dst = EnforceType(B, dst, PtrToIdTy);
2742  if (!threadlocal)
2743    B.CreateCall2(GlobalAssignFn, src, dst);
2744  else
2745    // FIXME. Add threadloca assign API
2746    llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2747}
2748
2749void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2750                                   llvm::Value *src, llvm::Value *dst,
2751                                   llvm::Value *ivarOffset) {
2752  CGBuilderTy &B = CGF.Builder;
2753  src = EnforceType(B, src, IdTy);
2754  dst = EnforceType(B, dst, IdTy);
2755  B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2756}
2757
2758void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2759                                         llvm::Value *src, llvm::Value *dst) {
2760  CGBuilderTy &B = CGF.Builder;
2761  src = EnforceType(B, src, IdTy);
2762  dst = EnforceType(B, dst, PtrToIdTy);
2763  B.CreateCall2(StrongCastAssignFn, src, dst);
2764}
2765
2766void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2767                                         llvm::Value *DestPtr,
2768                                         llvm::Value *SrcPtr,
2769                                         llvm::Value *Size) {
2770  CGBuilderTy &B = CGF.Builder;
2771  DestPtr = EnforceType(B, DestPtr, PtrTy);
2772  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2773
2774  B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2775}
2776
2777llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2778                              const ObjCInterfaceDecl *ID,
2779                              const ObjCIvarDecl *Ivar) {
2780  const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2781    + '.' + Ivar->getNameAsString();
2782  // Emit the variable and initialize it with what we think the correct value
2783  // is.  This allows code compiled with non-fragile ivars to work correctly
2784  // when linked against code which isn't (most of the time).
2785  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2786  if (!IvarOffsetPointer) {
2787    // This will cause a run-time crash if we accidentally use it.  A value of
2788    // 0 would seem more sensible, but will silently overwrite the isa pointer
2789    // causing a great deal of confusion.
2790    uint64_t Offset = -1;
2791    // We can't call ComputeIvarBaseOffset() here if we have the
2792    // implementation, because it will create an invalid ASTRecordLayout object
2793    // that we are then stuck with forever, so we only initialize the ivar
2794    // offset variable with a guess if we only have the interface.  The
2795    // initializer will be reset later anyway, when we are generating the class
2796    // description.
2797    if (!CGM.getContext().getObjCImplementation(
2798              const_cast<ObjCInterfaceDecl *>(ID)))
2799      Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2800
2801    llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2802                             /*isSigned*/true);
2803    // Don't emit the guess in non-PIC code because the linker will not be able
2804    // to replace it with the real version for a library.  In non-PIC code you
2805    // must compile with the fragile ABI if you want to use ivars from a
2806    // GCC-compiled class.
2807    if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2808      llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2809            Int32Ty, false,
2810            llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2811      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2812            IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2813            IvarOffsetGV, Name);
2814    } else {
2815      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2816              llvm::Type::getInt32PtrTy(VMContext), false,
2817              llvm::GlobalValue::ExternalLinkage, 0, Name);
2818    }
2819  }
2820  return IvarOffsetPointer;
2821}
2822
2823LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2824                                       QualType ObjectTy,
2825                                       llvm::Value *BaseValue,
2826                                       const ObjCIvarDecl *Ivar,
2827                                       unsigned CVRQualifiers) {
2828  const ObjCInterfaceDecl *ID =
2829    ObjectTy->getAs<ObjCObjectType>()->getInterface();
2830  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2831                                  EmitIvarOffset(CGF, ID, Ivar));
2832}
2833
2834static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2835                                                  const ObjCInterfaceDecl *OID,
2836                                                  const ObjCIvarDecl *OIVD) {
2837  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2838       next = next->getNextIvar()) {
2839    if (OIVD == next)
2840      return OID;
2841  }
2842
2843  // Otherwise check in the super class.
2844  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2845    return FindIvarInterface(Context, Super, OIVD);
2846
2847  return 0;
2848}
2849
2850llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2851                         const ObjCInterfaceDecl *Interface,
2852                         const ObjCIvarDecl *Ivar) {
2853  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2854    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2855    if (RuntimeVersion < 10)
2856      return CGF.Builder.CreateZExtOrBitCast(
2857          CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2858                  ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2859          PtrDiffTy);
2860    std::string name = "__objc_ivar_offset_value_" +
2861      Interface->getNameAsString() +"." + Ivar->getNameAsString();
2862    llvm::Value *Offset = TheModule.getGlobalVariable(name);
2863    if (!Offset)
2864      Offset = new llvm::GlobalVariable(TheModule, IntTy,
2865          false, llvm::GlobalValue::LinkOnceAnyLinkage,
2866          llvm::Constant::getNullValue(IntTy), name);
2867    Offset = CGF.Builder.CreateLoad(Offset);
2868    if (Offset->getType() != PtrDiffTy)
2869      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2870    return Offset;
2871  }
2872  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2873  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2874}
2875
2876CGObjCRuntime *
2877clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2878  switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2879  case ObjCRuntime::GNUstep:
2880    return new CGObjCGNUstep(CGM);
2881
2882  case ObjCRuntime::GCC:
2883    return new CGObjCGCC(CGM);
2884
2885  case ObjCRuntime::ObjFW:
2886    return new CGObjCObjFW(CGM);
2887
2888  case ObjCRuntime::FragileMacOSX:
2889  case ObjCRuntime::MacOSX:
2890  case ObjCRuntime::iOS:
2891    llvm_unreachable("these runtimes are not GNU runtimes");
2892  }
2893  llvm_unreachable("bad runtime");
2894}
2895