CGExpr.cpp revision 263508
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static void
175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                     const Expr *E, llvm::Value *ReferenceTemporary) {
177  // Objective-C++ ARC:
178  //   If we are binding a reference to a temporary that has ownership, we
179  //   need to perform retain/release operations on the temporary.
180  //
181  // FIXME: This should be looking at E, not M.
182  if (CGF.getLangOpts().ObjCAutoRefCount &&
183      M->getType()->isObjCLifetimeType()) {
184    QualType ObjCARCReferenceLifetimeType = M->getType();
185    switch (Qualifiers::ObjCLifetime Lifetime =
186                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187    case Qualifiers::OCL_None:
188    case Qualifiers::OCL_ExplicitNone:
189      // Carry on to normal cleanup handling.
190      break;
191
192    case Qualifiers::OCL_Autoreleasing:
193      // Nothing to do; cleaned up by an autorelease pool.
194      return;
195
196    case Qualifiers::OCL_Strong:
197    case Qualifiers::OCL_Weak:
198      switch (StorageDuration Duration = M->getStorageDuration()) {
199      case SD_Static:
200        // Note: we intentionally do not register a cleanup to release
201        // the object on program termination.
202        return;
203
204      case SD_Thread:
205        // FIXME: We should probably register a cleanup in this case.
206        return;
207
208      case SD_Automatic:
209      case SD_FullExpression:
210        assert(!ObjCARCReferenceLifetimeType->isArrayType());
211        CodeGenFunction::Destroyer *Destroy;
212        CleanupKind CleanupKind;
213        if (Lifetime == Qualifiers::OCL_Strong) {
214          const ValueDecl *VD = M->getExtendingDecl();
215          bool Precise =
216              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217          CleanupKind = CGF.getARCCleanupKind();
218          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                            : &CodeGenFunction::destroyARCStrongImprecise;
220        } else {
221          // __weak objects always get EH cleanups; otherwise, exceptions
222          // could cause really nasty crashes instead of mere leaks.
223          CleanupKind = NormalAndEHCleanup;
224          Destroy = &CodeGenFunction::destroyARCWeak;
225        }
226        if (Duration == SD_FullExpression)
227          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                          ObjCARCReferenceLifetimeType, *Destroy,
229                          CleanupKind & EHCleanup);
230        else
231          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                          ObjCARCReferenceLifetimeType,
233                                          *Destroy, CleanupKind & EHCleanup);
234        return;
235
236      case SD_Dynamic:
237        llvm_unreachable("temporary cannot have dynamic storage duration");
238      }
239      llvm_unreachable("unknown storage duration");
240    }
241  }
242
243  CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244  if (const RecordType *RT =
245          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246    // Get the destructor for the reference temporary.
247    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248    if (!ClassDecl->hasTrivialDestructor())
249      ReferenceTemporaryDtor = ClassDecl->getDestructor();
250  }
251
252  if (!ReferenceTemporaryDtor)
253    return;
254
255  // Call the destructor for the temporary.
256  switch (M->getStorageDuration()) {
257  case SD_Static:
258  case SD_Thread: {
259    llvm::Constant *CleanupFn;
260    llvm::Constant *CleanupArg;
261    if (E->getType()->isArrayType()) {
262      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263          cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
265          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
266      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
267    } else {
268      CleanupFn =
269        CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
270      CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
271    }
272    CGF.CGM.getCXXABI().registerGlobalDtor(
273        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
274    break;
275  }
276
277  case SD_FullExpression:
278    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
279                    CodeGenFunction::destroyCXXObject,
280                    CGF.getLangOpts().Exceptions);
281    break;
282
283  case SD_Automatic:
284    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
285                                    ReferenceTemporary, E->getType(),
286                                    CodeGenFunction::destroyCXXObject,
287                                    CGF.getLangOpts().Exceptions);
288    break;
289
290  case SD_Dynamic:
291    llvm_unreachable("temporary cannot have dynamic storage duration");
292  }
293}
294
295static llvm::Value *
296createReferenceTemporary(CodeGenFunction &CGF,
297                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
298  switch (M->getStorageDuration()) {
299  case SD_FullExpression:
300  case SD_Automatic:
301    return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
302
303  case SD_Thread:
304  case SD_Static:
305    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
306
307  case SD_Dynamic:
308    llvm_unreachable("temporary can't have dynamic storage duration");
309  }
310  llvm_unreachable("unknown storage duration");
311}
312
313LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
314                                           const MaterializeTemporaryExpr *M) {
315  const Expr *E = M->GetTemporaryExpr();
316
317  if (getLangOpts().ObjCAutoRefCount &&
318      M->getType()->isObjCLifetimeType() &&
319      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
320      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
321    // FIXME: Fold this into the general case below.
322    llvm::Value *Object = createReferenceTemporary(*this, M, E);
323    LValue RefTempDst = MakeAddrLValue(Object, M->getType());
324
325    if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
326      // We should not have emitted the initializer for this temporary as a
327      // constant.
328      assert(!Var->hasInitializer());
329      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
330    }
331
332    EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
333
334    pushTemporaryCleanup(*this, M, E, Object);
335    return RefTempDst;
336  }
337
338  SmallVector<const Expr *, 2> CommaLHSs;
339  SmallVector<SubobjectAdjustment, 2> Adjustments;
340  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
341
342  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
343    EmitIgnoredExpr(CommaLHSs[I]);
344
345  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
346    if (opaque->getType()->isRecordType()) {
347      assert(Adjustments.empty());
348      return EmitOpaqueValueLValue(opaque);
349    }
350  }
351
352  // Create and initialize the reference temporary.
353  llvm::Value *Object = createReferenceTemporary(*this, M, E);
354  if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
355    // If the temporary is a global and has a constant initializer, we may
356    // have already initialized it.
357    if (!Var->hasInitializer()) {
358      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
359      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
360    }
361  } else {
362    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
363  }
364  pushTemporaryCleanup(*this, M, E, Object);
365
366  // Perform derived-to-base casts and/or field accesses, to get from the
367  // temporary object we created (and, potentially, for which we extended
368  // the lifetime) to the subobject we're binding the reference to.
369  for (unsigned I = Adjustments.size(); I != 0; --I) {
370    SubobjectAdjustment &Adjustment = Adjustments[I-1];
371    switch (Adjustment.Kind) {
372    case SubobjectAdjustment::DerivedToBaseAdjustment:
373      Object =
374          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
375                                Adjustment.DerivedToBase.BasePath->path_begin(),
376                                Adjustment.DerivedToBase.BasePath->path_end(),
377                                /*NullCheckValue=*/ false);
378      break;
379
380    case SubobjectAdjustment::FieldAdjustment: {
381      LValue LV = MakeAddrLValue(Object, E->getType());
382      LV = EmitLValueForField(LV, Adjustment.Field);
383      assert(LV.isSimple() &&
384             "materialized temporary field is not a simple lvalue");
385      Object = LV.getAddress();
386      break;
387    }
388
389    case SubobjectAdjustment::MemberPointerAdjustment: {
390      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
391      Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
392                    *this, Object, Ptr, Adjustment.Ptr.MPT);
393      break;
394    }
395    }
396  }
397
398  return MakeAddrLValue(Object, M->getType());
399}
400
401RValue
402CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
403  // Emit the expression as an lvalue.
404  LValue LV = EmitLValue(E);
405  assert(LV.isSimple());
406  llvm::Value *Value = LV.getAddress();
407
408  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409    // C++11 [dcl.ref]p5 (as amended by core issue 453):
410    //   If a glvalue to which a reference is directly bound designates neither
411    //   an existing object or function of an appropriate type nor a region of
412    //   storage of suitable size and alignment to contain an object of the
413    //   reference's type, the behavior is undefined.
414    QualType Ty = E->getType();
415    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416  }
417
418  return RValue::get(Value);
419}
420
421
422/// getAccessedFieldNo - Given an encoded value and a result number, return the
423/// input field number being accessed.
424unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                             const llvm::Constant *Elts) {
426  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427      ->getZExtValue();
428}
429
430/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                    llvm::Value *High) {
433  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434  llvm::Value *K47 = Builder.getInt64(47);
435  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439  return Builder.CreateMul(B1, KMul);
440}
441
442void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                    llvm::Value *Address,
444                                    QualType Ty, CharUnits Alignment) {
445  if (!SanitizePerformTypeCheck)
446    return;
447
448  // Don't check pointers outside the default address space. The null check
449  // isn't correct, the object-size check isn't supported by LLVM, and we can't
450  // communicate the addresses to the runtime handler for the vptr check.
451  if (Address->getType()->getPointerAddressSpace())
452    return;
453
454  llvm::Value *Cond = 0;
455  llvm::BasicBlock *Done = 0;
456
457  if (SanOpts->Null) {
458    // The glvalue must not be an empty glvalue.
459    Cond = Builder.CreateICmpNE(
460        Address, llvm::Constant::getNullValue(Address->getType()));
461
462    if (TCK == TCK_DowncastPointer) {
463      // When performing a pointer downcast, it's OK if the value is null.
464      // Skip the remaining checks in that case.
465      Done = createBasicBlock("null");
466      llvm::BasicBlock *Rest = createBasicBlock("not.null");
467      Builder.CreateCondBr(Cond, Rest, Done);
468      EmitBlock(Rest);
469      Cond = 0;
470    }
471  }
472
473  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475
476    // The glvalue must refer to a large enough storage region.
477    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478    //        to check this.
479    // FIXME: Get object address space
480    llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
481    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
482    llvm::Value *Min = Builder.getFalse();
483    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
484    llvm::Value *LargeEnough =
485        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
486                              llvm::ConstantInt::get(IntPtrTy, Size));
487    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
488  }
489
490  uint64_t AlignVal = 0;
491
492  if (SanOpts->Alignment) {
493    AlignVal = Alignment.getQuantity();
494    if (!Ty->isIncompleteType() && !AlignVal)
495      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
496
497    // The glvalue must be suitably aligned.
498    if (AlignVal) {
499      llvm::Value *Align =
500          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
501                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
502      llvm::Value *Aligned =
503        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
504      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
505    }
506  }
507
508  if (Cond) {
509    llvm::Constant *StaticData[] = {
510      EmitCheckSourceLocation(Loc),
511      EmitCheckTypeDescriptor(Ty),
512      llvm::ConstantInt::get(SizeTy, AlignVal),
513      llvm::ConstantInt::get(Int8Ty, TCK)
514    };
515    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
516  }
517
518  // If possible, check that the vptr indicates that there is a subobject of
519  // type Ty at offset zero within this object.
520  //
521  // C++11 [basic.life]p5,6:
522  //   [For storage which does not refer to an object within its lifetime]
523  //   The program has undefined behavior if:
524  //    -- the [pointer or glvalue] is used to access a non-static data member
525  //       or call a non-static member function
526  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
527  if (SanOpts->Vptr &&
528      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
529       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
530      RD && RD->hasDefinition() && RD->isDynamicClass()) {
531    // Compute a hash of the mangled name of the type.
532    //
533    // FIXME: This is not guaranteed to be deterministic! Move to a
534    //        fingerprinting mechanism once LLVM provides one. For the time
535    //        being the implementation happens to be deterministic.
536    SmallString<64> MangledName;
537    llvm::raw_svector_ostream Out(MangledName);
538    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
539                                                     Out);
540    llvm::hash_code TypeHash = hash_value(Out.str());
541
542    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
543    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
544    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
545    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
546    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
547    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
548
549    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
550    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
551
552    // Look the hash up in our cache.
553    const int CacheSize = 128;
554    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
555    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
556                                                   "__ubsan_vptr_type_cache");
557    llvm::Value *Slot = Builder.CreateAnd(Hash,
558                                          llvm::ConstantInt::get(IntPtrTy,
559                                                                 CacheSize-1));
560    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
561    llvm::Value *CacheVal =
562      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
563
564    // If the hash isn't in the cache, call a runtime handler to perform the
565    // hard work of checking whether the vptr is for an object of the right
566    // type. This will either fill in the cache and return, or produce a
567    // diagnostic.
568    llvm::Constant *StaticData[] = {
569      EmitCheckSourceLocation(Loc),
570      EmitCheckTypeDescriptor(Ty),
571      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
572      llvm::ConstantInt::get(Int8Ty, TCK)
573    };
574    llvm::Value *DynamicData[] = { Address, Hash };
575    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
576              "dynamic_type_cache_miss", StaticData, DynamicData,
577              CRK_AlwaysRecoverable);
578  }
579
580  if (Done) {
581    Builder.CreateBr(Done);
582    EmitBlock(Done);
583  }
584}
585
586/// Determine whether this expression refers to a flexible array member in a
587/// struct. We disable array bounds checks for such members.
588static bool isFlexibleArrayMemberExpr(const Expr *E) {
589  // For compatibility with existing code, we treat arrays of length 0 or
590  // 1 as flexible array members.
591  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
592  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
593    if (CAT->getSize().ugt(1))
594      return false;
595  } else if (!isa<IncompleteArrayType>(AT))
596    return false;
597
598  E = E->IgnoreParens();
599
600  // A flexible array member must be the last member in the class.
601  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
602    // FIXME: If the base type of the member expr is not FD->getParent(),
603    // this should not be treated as a flexible array member access.
604    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
605      RecordDecl::field_iterator FI(
606          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
607      return ++FI == FD->getParent()->field_end();
608    }
609  }
610
611  return false;
612}
613
614/// If Base is known to point to the start of an array, return the length of
615/// that array. Return 0 if the length cannot be determined.
616static llvm::Value *getArrayIndexingBound(
617    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
618  // For the vector indexing extension, the bound is the number of elements.
619  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
620    IndexedType = Base->getType();
621    return CGF.Builder.getInt32(VT->getNumElements());
622  }
623
624  Base = Base->IgnoreParens();
625
626  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
627    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
628        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
629      IndexedType = CE->getSubExpr()->getType();
630      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
631      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
632        return CGF.Builder.getInt(CAT->getSize());
633      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
634        return CGF.getVLASize(VAT).first;
635    }
636  }
637
638  return 0;
639}
640
641void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
642                                      llvm::Value *Index, QualType IndexType,
643                                      bool Accessed) {
644  assert(SanOpts->ArrayBounds &&
645         "should not be called unless adding bounds checks");
646
647  QualType IndexedType;
648  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
649  if (!Bound)
650    return;
651
652  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
653  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
654  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
655
656  llvm::Constant *StaticData[] = {
657    EmitCheckSourceLocation(E->getExprLoc()),
658    EmitCheckTypeDescriptor(IndexedType),
659    EmitCheckTypeDescriptor(IndexType)
660  };
661  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
662                                : Builder.CreateICmpULE(IndexVal, BoundVal);
663  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
664}
665
666
667CodeGenFunction::ComplexPairTy CodeGenFunction::
668EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
669                         bool isInc, bool isPre) {
670  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
671
672  llvm::Value *NextVal;
673  if (isa<llvm::IntegerType>(InVal.first->getType())) {
674    uint64_t AmountVal = isInc ? 1 : -1;
675    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
676
677    // Add the inc/dec to the real part.
678    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
679  } else {
680    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
681    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
682    if (!isInc)
683      FVal.changeSign();
684    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
685
686    // Add the inc/dec to the real part.
687    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
688  }
689
690  ComplexPairTy IncVal(NextVal, InVal.second);
691
692  // Store the updated result through the lvalue.
693  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
694
695  // If this is a postinc, return the value read from memory, otherwise use the
696  // updated value.
697  return isPre ? IncVal : InVal;
698}
699
700
701//===----------------------------------------------------------------------===//
702//                         LValue Expression Emission
703//===----------------------------------------------------------------------===//
704
705RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
706  if (Ty->isVoidType())
707    return RValue::get(0);
708
709  switch (getEvaluationKind(Ty)) {
710  case TEK_Complex: {
711    llvm::Type *EltTy =
712      ConvertType(Ty->castAs<ComplexType>()->getElementType());
713    llvm::Value *U = llvm::UndefValue::get(EltTy);
714    return RValue::getComplex(std::make_pair(U, U));
715  }
716
717  // If this is a use of an undefined aggregate type, the aggregate must have an
718  // identifiable address.  Just because the contents of the value are undefined
719  // doesn't mean that the address can't be taken and compared.
720  case TEK_Aggregate: {
721    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
722    return RValue::getAggregate(DestPtr);
723  }
724
725  case TEK_Scalar:
726    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
727  }
728  llvm_unreachable("bad evaluation kind");
729}
730
731RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
732                                              const char *Name) {
733  ErrorUnsupported(E, Name);
734  return GetUndefRValue(E->getType());
735}
736
737LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
738                                              const char *Name) {
739  ErrorUnsupported(E, Name);
740  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
741  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
742}
743
744LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
745  LValue LV;
746  if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
747    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
748  else
749    LV = EmitLValue(E);
750  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
751    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
752                  E->getType(), LV.getAlignment());
753  return LV;
754}
755
756/// EmitLValue - Emit code to compute a designator that specifies the location
757/// of the expression.
758///
759/// This can return one of two things: a simple address or a bitfield reference.
760/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
761/// an LLVM pointer type.
762///
763/// If this returns a bitfield reference, nothing about the pointee type of the
764/// LLVM value is known: For example, it may not be a pointer to an integer.
765///
766/// If this returns a normal address, and if the lvalue's C type is fixed size,
767/// this method guarantees that the returned pointer type will point to an LLVM
768/// type of the same size of the lvalue's type.  If the lvalue has a variable
769/// length type, this is not possible.
770///
771LValue CodeGenFunction::EmitLValue(const Expr *E) {
772  switch (E->getStmtClass()) {
773  default: return EmitUnsupportedLValue(E, "l-value expression");
774
775  case Expr::ObjCPropertyRefExprClass:
776    llvm_unreachable("cannot emit a property reference directly");
777
778  case Expr::ObjCSelectorExprClass:
779    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
780  case Expr::ObjCIsaExprClass:
781    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
782  case Expr::BinaryOperatorClass:
783    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
784  case Expr::CompoundAssignOperatorClass:
785    if (!E->getType()->isAnyComplexType())
786      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
787    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
788  case Expr::CallExprClass:
789  case Expr::CXXMemberCallExprClass:
790  case Expr::CXXOperatorCallExprClass:
791  case Expr::UserDefinedLiteralClass:
792    return EmitCallExprLValue(cast<CallExpr>(E));
793  case Expr::VAArgExprClass:
794    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
795  case Expr::DeclRefExprClass:
796    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
797  case Expr::ParenExprClass:
798    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
799  case Expr::GenericSelectionExprClass:
800    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
801  case Expr::PredefinedExprClass:
802    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
803  case Expr::StringLiteralClass:
804    return EmitStringLiteralLValue(cast<StringLiteral>(E));
805  case Expr::ObjCEncodeExprClass:
806    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
807  case Expr::PseudoObjectExprClass:
808    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
809  case Expr::InitListExprClass:
810    return EmitInitListLValue(cast<InitListExpr>(E));
811  case Expr::CXXTemporaryObjectExprClass:
812  case Expr::CXXConstructExprClass:
813    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
814  case Expr::CXXBindTemporaryExprClass:
815    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
816  case Expr::CXXUuidofExprClass:
817    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
818  case Expr::LambdaExprClass:
819    return EmitLambdaLValue(cast<LambdaExpr>(E));
820
821  case Expr::ExprWithCleanupsClass: {
822    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
823    enterFullExpression(cleanups);
824    RunCleanupsScope Scope(*this);
825    return EmitLValue(cleanups->getSubExpr());
826  }
827
828  case Expr::CXXDefaultArgExprClass:
829    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
830  case Expr::CXXDefaultInitExprClass: {
831    CXXDefaultInitExprScope Scope(*this);
832    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
833  }
834  case Expr::CXXTypeidExprClass:
835    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
836
837  case Expr::ObjCMessageExprClass:
838    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
839  case Expr::ObjCIvarRefExprClass:
840    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
841  case Expr::StmtExprClass:
842    return EmitStmtExprLValue(cast<StmtExpr>(E));
843  case Expr::UnaryOperatorClass:
844    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
845  case Expr::ArraySubscriptExprClass:
846    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
847  case Expr::ExtVectorElementExprClass:
848    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
849  case Expr::MemberExprClass:
850    return EmitMemberExpr(cast<MemberExpr>(E));
851  case Expr::CompoundLiteralExprClass:
852    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
853  case Expr::ConditionalOperatorClass:
854    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
855  case Expr::BinaryConditionalOperatorClass:
856    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
857  case Expr::ChooseExprClass:
858    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
859  case Expr::OpaqueValueExprClass:
860    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
861  case Expr::SubstNonTypeTemplateParmExprClass:
862    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
863  case Expr::ImplicitCastExprClass:
864  case Expr::CStyleCastExprClass:
865  case Expr::CXXFunctionalCastExprClass:
866  case Expr::CXXStaticCastExprClass:
867  case Expr::CXXDynamicCastExprClass:
868  case Expr::CXXReinterpretCastExprClass:
869  case Expr::CXXConstCastExprClass:
870  case Expr::ObjCBridgedCastExprClass:
871    return EmitCastLValue(cast<CastExpr>(E));
872
873  case Expr::MaterializeTemporaryExprClass:
874    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
875  }
876}
877
878/// Given an object of the given canonical type, can we safely copy a
879/// value out of it based on its initializer?
880static bool isConstantEmittableObjectType(QualType type) {
881  assert(type.isCanonical());
882  assert(!type->isReferenceType());
883
884  // Must be const-qualified but non-volatile.
885  Qualifiers qs = type.getLocalQualifiers();
886  if (!qs.hasConst() || qs.hasVolatile()) return false;
887
888  // Otherwise, all object types satisfy this except C++ classes with
889  // mutable subobjects or non-trivial copy/destroy behavior.
890  if (const RecordType *RT = dyn_cast<RecordType>(type))
891    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
892      if (RD->hasMutableFields() || !RD->isTrivial())
893        return false;
894
895  return true;
896}
897
898/// Can we constant-emit a load of a reference to a variable of the
899/// given type?  This is different from predicates like
900/// Decl::isUsableInConstantExpressions because we do want it to apply
901/// in situations that don't necessarily satisfy the language's rules
902/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
903/// to do this with const float variables even if those variables
904/// aren't marked 'constexpr'.
905enum ConstantEmissionKind {
906  CEK_None,
907  CEK_AsReferenceOnly,
908  CEK_AsValueOrReference,
909  CEK_AsValueOnly
910};
911static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
912  type = type.getCanonicalType();
913  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
914    if (isConstantEmittableObjectType(ref->getPointeeType()))
915      return CEK_AsValueOrReference;
916    return CEK_AsReferenceOnly;
917  }
918  if (isConstantEmittableObjectType(type))
919    return CEK_AsValueOnly;
920  return CEK_None;
921}
922
923/// Try to emit a reference to the given value without producing it as
924/// an l-value.  This is actually more than an optimization: we can't
925/// produce an l-value for variables that we never actually captured
926/// in a block or lambda, which means const int variables or constexpr
927/// literals or similar.
928CodeGenFunction::ConstantEmission
929CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
930  ValueDecl *value = refExpr->getDecl();
931
932  // The value needs to be an enum constant or a constant variable.
933  ConstantEmissionKind CEK;
934  if (isa<ParmVarDecl>(value)) {
935    CEK = CEK_None;
936  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
937    CEK = checkVarTypeForConstantEmission(var->getType());
938  } else if (isa<EnumConstantDecl>(value)) {
939    CEK = CEK_AsValueOnly;
940  } else {
941    CEK = CEK_None;
942  }
943  if (CEK == CEK_None) return ConstantEmission();
944
945  Expr::EvalResult result;
946  bool resultIsReference;
947  QualType resultType;
948
949  // It's best to evaluate all the way as an r-value if that's permitted.
950  if (CEK != CEK_AsReferenceOnly &&
951      refExpr->EvaluateAsRValue(result, getContext())) {
952    resultIsReference = false;
953    resultType = refExpr->getType();
954
955  // Otherwise, try to evaluate as an l-value.
956  } else if (CEK != CEK_AsValueOnly &&
957             refExpr->EvaluateAsLValue(result, getContext())) {
958    resultIsReference = true;
959    resultType = value->getType();
960
961  // Failure.
962  } else {
963    return ConstantEmission();
964  }
965
966  // In any case, if the initializer has side-effects, abandon ship.
967  if (result.HasSideEffects)
968    return ConstantEmission();
969
970  // Emit as a constant.
971  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
972
973  // Make sure we emit a debug reference to the global variable.
974  // This should probably fire even for
975  if (isa<VarDecl>(value)) {
976    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
977      EmitDeclRefExprDbgValue(refExpr, C);
978  } else {
979    assert(isa<EnumConstantDecl>(value));
980    EmitDeclRefExprDbgValue(refExpr, C);
981  }
982
983  // If we emitted a reference constant, we need to dereference that.
984  if (resultIsReference)
985    return ConstantEmission::forReference(C);
986
987  return ConstantEmission::forValue(C);
988}
989
990llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
991                                               SourceLocation Loc) {
992  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
993                          lvalue.getAlignment().getQuantity(),
994                          lvalue.getType(), Loc, lvalue.getTBAAInfo(),
995                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
996}
997
998static bool hasBooleanRepresentation(QualType Ty) {
999  if (Ty->isBooleanType())
1000    return true;
1001
1002  if (const EnumType *ET = Ty->getAs<EnumType>())
1003    return ET->getDecl()->getIntegerType()->isBooleanType();
1004
1005  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1006    return hasBooleanRepresentation(AT->getValueType());
1007
1008  return false;
1009}
1010
1011static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1012                            llvm::APInt &Min, llvm::APInt &End,
1013                            bool StrictEnums) {
1014  const EnumType *ET = Ty->getAs<EnumType>();
1015  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1016                                ET && !ET->getDecl()->isFixed();
1017  bool IsBool = hasBooleanRepresentation(Ty);
1018  if (!IsBool && !IsRegularCPlusPlusEnum)
1019    return false;
1020
1021  if (IsBool) {
1022    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1023    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1024  } else {
1025    const EnumDecl *ED = ET->getDecl();
1026    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1027    unsigned Bitwidth = LTy->getScalarSizeInBits();
1028    unsigned NumNegativeBits = ED->getNumNegativeBits();
1029    unsigned NumPositiveBits = ED->getNumPositiveBits();
1030
1031    if (NumNegativeBits) {
1032      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1033      assert(NumBits <= Bitwidth);
1034      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1035      Min = -End;
1036    } else {
1037      assert(NumPositiveBits <= Bitwidth);
1038      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1039      Min = llvm::APInt(Bitwidth, 0);
1040    }
1041  }
1042  return true;
1043}
1044
1045llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1046  llvm::APInt Min, End;
1047  if (!getRangeForType(*this, Ty, Min, End,
1048                       CGM.getCodeGenOpts().StrictEnums))
1049    return 0;
1050
1051  llvm::MDBuilder MDHelper(getLLVMContext());
1052  return MDHelper.createRange(Min, End);
1053}
1054
1055llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1056                                               unsigned Alignment, QualType Ty,
1057                                               SourceLocation Loc,
1058                                               llvm::MDNode *TBAAInfo,
1059                                               QualType TBAABaseType,
1060                                               uint64_t TBAAOffset) {
1061  // For better performance, handle vector loads differently.
1062  if (Ty->isVectorType()) {
1063    llvm::Value *V;
1064    const llvm::Type *EltTy =
1065    cast<llvm::PointerType>(Addr->getType())->getElementType();
1066
1067    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1068
1069    // Handle vectors of size 3, like size 4 for better performance.
1070    if (VTy->getNumElements() == 3) {
1071
1072      // Bitcast to vec4 type.
1073      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1074                                                         4);
1075      llvm::PointerType *ptVec4Ty =
1076      llvm::PointerType::get(vec4Ty,
1077                             (cast<llvm::PointerType>(
1078                                      Addr->getType()))->getAddressSpace());
1079      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1080                                                "castToVec4");
1081      // Now load value.
1082      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1083
1084      // Shuffle vector to get vec3.
1085      llvm::Constant *Mask[] = {
1086        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1087        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1088        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1089      };
1090
1091      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1092      V = Builder.CreateShuffleVector(LoadVal,
1093                                      llvm::UndefValue::get(vec4Ty),
1094                                      MaskV, "extractVec");
1095      return EmitFromMemory(V, Ty);
1096    }
1097  }
1098
1099  // Atomic operations have to be done on integral types.
1100  if (Ty->isAtomicType()) {
1101    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1102                                     CharUnits::fromQuantity(Alignment),
1103                                     getContext(), TBAAInfo);
1104    return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1105  }
1106
1107  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1108  if (Volatile)
1109    Load->setVolatile(true);
1110  if (Alignment)
1111    Load->setAlignment(Alignment);
1112  if (TBAAInfo) {
1113    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1114                                                      TBAAOffset);
1115    if (TBAAPath)
1116      CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1117  }
1118
1119  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1120      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1121    llvm::APInt Min, End;
1122    if (getRangeForType(*this, Ty, Min, End, true)) {
1123      --End;
1124      llvm::Value *Check;
1125      if (!Min)
1126        Check = Builder.CreateICmpULE(
1127          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1128      else {
1129        llvm::Value *Upper = Builder.CreateICmpSLE(
1130          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1131        llvm::Value *Lower = Builder.CreateICmpSGE(
1132          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1133        Check = Builder.CreateAnd(Upper, Lower);
1134      }
1135      llvm::Constant *StaticArgs[] = {
1136        EmitCheckSourceLocation(Loc),
1137        EmitCheckTypeDescriptor(Ty)
1138      };
1139      EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1140                CRK_Recoverable);
1141    }
1142  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1143    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1144      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1145
1146  return EmitFromMemory(Load, Ty);
1147}
1148
1149llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1150  // Bool has a different representation in memory than in registers.
1151  if (hasBooleanRepresentation(Ty)) {
1152    // This should really always be an i1, but sometimes it's already
1153    // an i8, and it's awkward to track those cases down.
1154    if (Value->getType()->isIntegerTy(1))
1155      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1156    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1157           "wrong value rep of bool");
1158  }
1159
1160  return Value;
1161}
1162
1163llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1164  // Bool has a different representation in memory than in registers.
1165  if (hasBooleanRepresentation(Ty)) {
1166    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1167           "wrong value rep of bool");
1168    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1169  }
1170
1171  return Value;
1172}
1173
1174void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1175                                        bool Volatile, unsigned Alignment,
1176                                        QualType Ty, llvm::MDNode *TBAAInfo,
1177                                        bool isInit, QualType TBAABaseType,
1178                                        uint64_t TBAAOffset) {
1179
1180  // Handle vectors differently to get better performance.
1181  if (Ty->isVectorType()) {
1182    llvm::Type *SrcTy = Value->getType();
1183    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1184    // Handle vec3 special.
1185    if (VecTy->getNumElements() == 3) {
1186      llvm::LLVMContext &VMContext = getLLVMContext();
1187
1188      // Our source is a vec3, do a shuffle vector to make it a vec4.
1189      SmallVector<llvm::Constant*, 4> Mask;
1190      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1191                                            0));
1192      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1193                                            1));
1194      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1195                                            2));
1196      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1197
1198      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1199      Value = Builder.CreateShuffleVector(Value,
1200                                          llvm::UndefValue::get(VecTy),
1201                                          MaskV, "extractVec");
1202      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1203    }
1204    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1205    if (DstPtr->getElementType() != SrcTy) {
1206      llvm::Type *MemTy =
1207      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1208      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1209    }
1210  }
1211
1212  Value = EmitToMemory(Value, Ty);
1213
1214  if (Ty->isAtomicType()) {
1215    EmitAtomicStore(RValue::get(Value),
1216                    LValue::MakeAddr(Addr, Ty,
1217                                     CharUnits::fromQuantity(Alignment),
1218                                     getContext(), TBAAInfo),
1219                    isInit);
1220    return;
1221  }
1222
1223  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1224  if (Alignment)
1225    Store->setAlignment(Alignment);
1226  if (TBAAInfo) {
1227    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1228                                                      TBAAOffset);
1229    if (TBAAPath)
1230      CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1231  }
1232}
1233
1234void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1235                                        bool isInit) {
1236  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1237                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1238                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1239                    lvalue.getTBAAOffset());
1240}
1241
1242/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1243/// method emits the address of the lvalue, then loads the result as an rvalue,
1244/// returning the rvalue.
1245RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1246  if (LV.isObjCWeak()) {
1247    // load of a __weak object.
1248    llvm::Value *AddrWeakObj = LV.getAddress();
1249    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1250                                                             AddrWeakObj));
1251  }
1252  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1253    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1254    Object = EmitObjCConsumeObject(LV.getType(), Object);
1255    return RValue::get(Object);
1256  }
1257
1258  if (LV.isSimple()) {
1259    assert(!LV.getType()->isFunctionType());
1260
1261    // Everything needs a load.
1262    return RValue::get(EmitLoadOfScalar(LV, Loc));
1263  }
1264
1265  if (LV.isVectorElt()) {
1266    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1267                                              LV.isVolatileQualified());
1268    Load->setAlignment(LV.getAlignment().getQuantity());
1269    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1270                                                    "vecext"));
1271  }
1272
1273  // If this is a reference to a subset of the elements of a vector, either
1274  // shuffle the input or extract/insert them as appropriate.
1275  if (LV.isExtVectorElt())
1276    return EmitLoadOfExtVectorElementLValue(LV);
1277
1278  assert(LV.isBitField() && "Unknown LValue type!");
1279  return EmitLoadOfBitfieldLValue(LV);
1280}
1281
1282RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1283  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1284
1285  // Get the output type.
1286  llvm::Type *ResLTy = ConvertType(LV.getType());
1287
1288  llvm::Value *Ptr = LV.getBitFieldAddr();
1289  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1290                                        "bf.load");
1291  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1292
1293  if (Info.IsSigned) {
1294    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1295    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1296    if (HighBits)
1297      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1298    if (Info.Offset + HighBits)
1299      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1300  } else {
1301    if (Info.Offset)
1302      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1303    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1304      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1305                                                              Info.Size),
1306                              "bf.clear");
1307  }
1308  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1309
1310  return RValue::get(Val);
1311}
1312
1313// If this is a reference to a subset of the elements of a vector, create an
1314// appropriate shufflevector.
1315RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1316  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1317                                            LV.isVolatileQualified());
1318  Load->setAlignment(LV.getAlignment().getQuantity());
1319  llvm::Value *Vec = Load;
1320
1321  const llvm::Constant *Elts = LV.getExtVectorElts();
1322
1323  // If the result of the expression is a non-vector type, we must be extracting
1324  // a single element.  Just codegen as an extractelement.
1325  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1326  if (!ExprVT) {
1327    unsigned InIdx = getAccessedFieldNo(0, Elts);
1328    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1329    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1330  }
1331
1332  // Always use shuffle vector to try to retain the original program structure
1333  unsigned NumResultElts = ExprVT->getNumElements();
1334
1335  SmallVector<llvm::Constant*, 4> Mask;
1336  for (unsigned i = 0; i != NumResultElts; ++i)
1337    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1338
1339  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1340  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1341                                    MaskV);
1342  return RValue::get(Vec);
1343}
1344
1345
1346
1347/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1348/// lvalue, where both are guaranteed to the have the same type, and that type
1349/// is 'Ty'.
1350void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1351                                             bool isInit) {
1352  if (!Dst.isSimple()) {
1353    if (Dst.isVectorElt()) {
1354      // Read/modify/write the vector, inserting the new element.
1355      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1356                                                Dst.isVolatileQualified());
1357      Load->setAlignment(Dst.getAlignment().getQuantity());
1358      llvm::Value *Vec = Load;
1359      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1360                                        Dst.getVectorIdx(), "vecins");
1361      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1362                                                   Dst.isVolatileQualified());
1363      Store->setAlignment(Dst.getAlignment().getQuantity());
1364      return;
1365    }
1366
1367    // If this is an update of extended vector elements, insert them as
1368    // appropriate.
1369    if (Dst.isExtVectorElt())
1370      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1371
1372    assert(Dst.isBitField() && "Unknown LValue type");
1373    return EmitStoreThroughBitfieldLValue(Src, Dst);
1374  }
1375
1376  // There's special magic for assigning into an ARC-qualified l-value.
1377  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1378    switch (Lifetime) {
1379    case Qualifiers::OCL_None:
1380      llvm_unreachable("present but none");
1381
1382    case Qualifiers::OCL_ExplicitNone:
1383      // nothing special
1384      break;
1385
1386    case Qualifiers::OCL_Strong:
1387      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1388      return;
1389
1390    case Qualifiers::OCL_Weak:
1391      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1392      return;
1393
1394    case Qualifiers::OCL_Autoreleasing:
1395      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1396                                                     Src.getScalarVal()));
1397      // fall into the normal path
1398      break;
1399    }
1400  }
1401
1402  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1403    // load of a __weak object.
1404    llvm::Value *LvalueDst = Dst.getAddress();
1405    llvm::Value *src = Src.getScalarVal();
1406     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1407    return;
1408  }
1409
1410  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1411    // load of a __strong object.
1412    llvm::Value *LvalueDst = Dst.getAddress();
1413    llvm::Value *src = Src.getScalarVal();
1414    if (Dst.isObjCIvar()) {
1415      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1416      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1417      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1418      llvm::Value *dst = RHS;
1419      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1420      llvm::Value *LHS =
1421        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1422      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1423      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1424                                              BytesBetween);
1425    } else if (Dst.isGlobalObjCRef()) {
1426      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1427                                                Dst.isThreadLocalRef());
1428    }
1429    else
1430      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1431    return;
1432  }
1433
1434  assert(Src.isScalar() && "Can't emit an agg store with this method");
1435  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1436}
1437
1438void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1439                                                     llvm::Value **Result) {
1440  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1441  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1442  llvm::Value *Ptr = Dst.getBitFieldAddr();
1443
1444  // Get the source value, truncated to the width of the bit-field.
1445  llvm::Value *SrcVal = Src.getScalarVal();
1446
1447  // Cast the source to the storage type and shift it into place.
1448  SrcVal = Builder.CreateIntCast(SrcVal,
1449                                 Ptr->getType()->getPointerElementType(),
1450                                 /*IsSigned=*/false);
1451  llvm::Value *MaskedVal = SrcVal;
1452
1453  // See if there are other bits in the bitfield's storage we'll need to load
1454  // and mask together with source before storing.
1455  if (Info.StorageSize != Info.Size) {
1456    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1457    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1458                                          "bf.load");
1459    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1460
1461    // Mask the source value as needed.
1462    if (!hasBooleanRepresentation(Dst.getType()))
1463      SrcVal = Builder.CreateAnd(SrcVal,
1464                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1465                                                            Info.Size),
1466                                 "bf.value");
1467    MaskedVal = SrcVal;
1468    if (Info.Offset)
1469      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1470
1471    // Mask out the original value.
1472    Val = Builder.CreateAnd(Val,
1473                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1474                                                     Info.Offset,
1475                                                     Info.Offset + Info.Size),
1476                            "bf.clear");
1477
1478    // Or together the unchanged values and the source value.
1479    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1480  } else {
1481    assert(Info.Offset == 0);
1482  }
1483
1484  // Write the new value back out.
1485  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1486                                               Dst.isVolatileQualified());
1487  Store->setAlignment(Info.StorageAlignment);
1488
1489  // Return the new value of the bit-field, if requested.
1490  if (Result) {
1491    llvm::Value *ResultVal = MaskedVal;
1492
1493    // Sign extend the value if needed.
1494    if (Info.IsSigned) {
1495      assert(Info.Size <= Info.StorageSize);
1496      unsigned HighBits = Info.StorageSize - Info.Size;
1497      if (HighBits) {
1498        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1499        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1500      }
1501    }
1502
1503    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1504                                      "bf.result.cast");
1505    *Result = EmitFromMemory(ResultVal, Dst.getType());
1506  }
1507}
1508
1509void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1510                                                               LValue Dst) {
1511  // This access turns into a read/modify/write of the vector.  Load the input
1512  // value now.
1513  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1514                                            Dst.isVolatileQualified());
1515  Load->setAlignment(Dst.getAlignment().getQuantity());
1516  llvm::Value *Vec = Load;
1517  const llvm::Constant *Elts = Dst.getExtVectorElts();
1518
1519  llvm::Value *SrcVal = Src.getScalarVal();
1520
1521  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1522    unsigned NumSrcElts = VTy->getNumElements();
1523    unsigned NumDstElts =
1524       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1525    if (NumDstElts == NumSrcElts) {
1526      // Use shuffle vector is the src and destination are the same number of
1527      // elements and restore the vector mask since it is on the side it will be
1528      // stored.
1529      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1530      for (unsigned i = 0; i != NumSrcElts; ++i)
1531        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1532
1533      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1534      Vec = Builder.CreateShuffleVector(SrcVal,
1535                                        llvm::UndefValue::get(Vec->getType()),
1536                                        MaskV);
1537    } else if (NumDstElts > NumSrcElts) {
1538      // Extended the source vector to the same length and then shuffle it
1539      // into the destination.
1540      // FIXME: since we're shuffling with undef, can we just use the indices
1541      //        into that?  This could be simpler.
1542      SmallVector<llvm::Constant*, 4> ExtMask;
1543      for (unsigned i = 0; i != NumSrcElts; ++i)
1544        ExtMask.push_back(Builder.getInt32(i));
1545      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1546      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1547      llvm::Value *ExtSrcVal =
1548        Builder.CreateShuffleVector(SrcVal,
1549                                    llvm::UndefValue::get(SrcVal->getType()),
1550                                    ExtMaskV);
1551      // build identity
1552      SmallVector<llvm::Constant*, 4> Mask;
1553      for (unsigned i = 0; i != NumDstElts; ++i)
1554        Mask.push_back(Builder.getInt32(i));
1555
1556      // When the vector size is odd and .odd or .hi is used, the last element
1557      // of the Elts constant array will be one past the size of the vector.
1558      // Ignore the last element here, if it is greater than the mask size.
1559      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1560        NumSrcElts--;
1561
1562      // modify when what gets shuffled in
1563      for (unsigned i = 0; i != NumSrcElts; ++i)
1564        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1565      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1566      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1567    } else {
1568      // We should never shorten the vector
1569      llvm_unreachable("unexpected shorten vector length");
1570    }
1571  } else {
1572    // If the Src is a scalar (not a vector) it must be updating one element.
1573    unsigned InIdx = getAccessedFieldNo(0, Elts);
1574    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1575    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1576  }
1577
1578  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1579                                               Dst.isVolatileQualified());
1580  Store->setAlignment(Dst.getAlignment().getQuantity());
1581}
1582
1583// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1584// generating write-barries API. It is currently a global, ivar,
1585// or neither.
1586static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1587                                 LValue &LV,
1588                                 bool IsMemberAccess=false) {
1589  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1590    return;
1591
1592  if (isa<ObjCIvarRefExpr>(E)) {
1593    QualType ExpTy = E->getType();
1594    if (IsMemberAccess && ExpTy->isPointerType()) {
1595      // If ivar is a structure pointer, assigning to field of
1596      // this struct follows gcc's behavior and makes it a non-ivar
1597      // writer-barrier conservatively.
1598      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1599      if (ExpTy->isRecordType()) {
1600        LV.setObjCIvar(false);
1601        return;
1602      }
1603    }
1604    LV.setObjCIvar(true);
1605    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1606    LV.setBaseIvarExp(Exp->getBase());
1607    LV.setObjCArray(E->getType()->isArrayType());
1608    return;
1609  }
1610
1611  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1612    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1613      if (VD->hasGlobalStorage()) {
1614        LV.setGlobalObjCRef(true);
1615        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1616      }
1617    }
1618    LV.setObjCArray(E->getType()->isArrayType());
1619    return;
1620  }
1621
1622  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1623    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1624    return;
1625  }
1626
1627  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1628    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1629    if (LV.isObjCIvar()) {
1630      // If cast is to a structure pointer, follow gcc's behavior and make it
1631      // a non-ivar write-barrier.
1632      QualType ExpTy = E->getType();
1633      if (ExpTy->isPointerType())
1634        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1635      if (ExpTy->isRecordType())
1636        LV.setObjCIvar(false);
1637    }
1638    return;
1639  }
1640
1641  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1642    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1643    return;
1644  }
1645
1646  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1647    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1648    return;
1649  }
1650
1651  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1652    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1653    return;
1654  }
1655
1656  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1657    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1658    return;
1659  }
1660
1661  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1662    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1663    if (LV.isObjCIvar() && !LV.isObjCArray())
1664      // Using array syntax to assigning to what an ivar points to is not
1665      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1666      LV.setObjCIvar(false);
1667    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1668      // Using array syntax to assigning to what global points to is not
1669      // same as assigning to the global itself. {id *G;} G[i] = 0;
1670      LV.setGlobalObjCRef(false);
1671    return;
1672  }
1673
1674  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1675    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1676    // We don't know if member is an 'ivar', but this flag is looked at
1677    // only in the context of LV.isObjCIvar().
1678    LV.setObjCArray(E->getType()->isArrayType());
1679    return;
1680  }
1681}
1682
1683static llvm::Value *
1684EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1685                                llvm::Value *V, llvm::Type *IRType,
1686                                StringRef Name = StringRef()) {
1687  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1688  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1689}
1690
1691static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1692                                      const Expr *E, const VarDecl *VD) {
1693  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1694  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1695  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1696  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1697  QualType T = E->getType();
1698  LValue LV;
1699  if (VD->getType()->isReferenceType()) {
1700    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1701    LI->setAlignment(Alignment.getQuantity());
1702    V = LI;
1703    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1704  } else {
1705    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1706  }
1707  setObjCGCLValueClass(CGF.getContext(), E, LV);
1708  return LV;
1709}
1710
1711static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1712                                     const Expr *E, const FunctionDecl *FD) {
1713  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1714  if (!FD->hasPrototype()) {
1715    if (const FunctionProtoType *Proto =
1716            FD->getType()->getAs<FunctionProtoType>()) {
1717      // Ugly case: for a K&R-style definition, the type of the definition
1718      // isn't the same as the type of a use.  Correct for this with a
1719      // bitcast.
1720      QualType NoProtoType =
1721          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1722      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1723      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1724    }
1725  }
1726  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1727  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1728}
1729
1730static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1731                                      llvm::Value *ThisValue) {
1732  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1733  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1734  return CGF.EmitLValueForField(LV, FD);
1735}
1736
1737LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1738  const NamedDecl *ND = E->getDecl();
1739  CharUnits Alignment = getContext().getDeclAlign(ND);
1740  QualType T = E->getType();
1741
1742  // A DeclRefExpr for a reference initialized by a constant expression can
1743  // appear without being odr-used. Directly emit the constant initializer.
1744  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1745    const Expr *Init = VD->getAnyInitializer(VD);
1746    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1747        VD->isUsableInConstantExpressions(getContext()) &&
1748        VD->checkInitIsICE()) {
1749      llvm::Constant *Val =
1750        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1751      assert(Val && "failed to emit reference constant expression");
1752      // FIXME: Eventually we will want to emit vector element references.
1753      return MakeAddrLValue(Val, T, Alignment);
1754    }
1755  }
1756
1757  // FIXME: We should be able to assert this for FunctionDecls as well!
1758  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1759  // those with a valid source location.
1760  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1761          !E->getLocation().isValid()) &&
1762         "Should not use decl without marking it used!");
1763
1764  if (ND->hasAttr<WeakRefAttr>()) {
1765    const ValueDecl *VD = cast<ValueDecl>(ND);
1766    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1767    return MakeAddrLValue(Aliasee, T, Alignment);
1768  }
1769
1770  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1771    // Check if this is a global variable.
1772    if (VD->hasLinkage() || VD->isStaticDataMember()) {
1773      // If it's thread_local, emit a call to its wrapper function instead.
1774      if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1775        return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1776      return EmitGlobalVarDeclLValue(*this, E, VD);
1777    }
1778
1779    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1780
1781    llvm::Value *V = LocalDeclMap.lookup(VD);
1782    if (!V && VD->isStaticLocal())
1783      V = CGM.getStaticLocalDeclAddress(VD);
1784
1785    // Use special handling for lambdas.
1786    if (!V) {
1787      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1788        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1789      } else if (CapturedStmtInfo) {
1790        if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1791          return EmitCapturedFieldLValue(*this, FD,
1792                                         CapturedStmtInfo->getContextValue());
1793      }
1794
1795      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1796      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1797                            T, Alignment);
1798    }
1799
1800    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1801
1802    if (isBlockVariable)
1803      V = BuildBlockByrefAddress(V, VD);
1804
1805    LValue LV;
1806    if (VD->getType()->isReferenceType()) {
1807      llvm::LoadInst *LI = Builder.CreateLoad(V);
1808      LI->setAlignment(Alignment.getQuantity());
1809      V = LI;
1810      LV = MakeNaturalAlignAddrLValue(V, T);
1811    } else {
1812      LV = MakeAddrLValue(V, T, Alignment);
1813    }
1814
1815    bool isLocalStorage = VD->hasLocalStorage();
1816
1817    bool NonGCable = isLocalStorage &&
1818                     !VD->getType()->isReferenceType() &&
1819                     !isBlockVariable;
1820    if (NonGCable) {
1821      LV.getQuals().removeObjCGCAttr();
1822      LV.setNonGC(true);
1823    }
1824
1825    bool isImpreciseLifetime =
1826      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1827    if (isImpreciseLifetime)
1828      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1829    setObjCGCLValueClass(getContext(), E, LV);
1830    return LV;
1831  }
1832
1833  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1834    return EmitFunctionDeclLValue(*this, E, FD);
1835
1836  llvm_unreachable("Unhandled DeclRefExpr");
1837}
1838
1839LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1840  // __extension__ doesn't affect lvalue-ness.
1841  if (E->getOpcode() == UO_Extension)
1842    return EmitLValue(E->getSubExpr());
1843
1844  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1845  switch (E->getOpcode()) {
1846  default: llvm_unreachable("Unknown unary operator lvalue!");
1847  case UO_Deref: {
1848    QualType T = E->getSubExpr()->getType()->getPointeeType();
1849    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1850
1851    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1852    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1853
1854    // We should not generate __weak write barrier on indirect reference
1855    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1856    // But, we continue to generate __strong write barrier on indirect write
1857    // into a pointer to object.
1858    if (getLangOpts().ObjC1 &&
1859        getLangOpts().getGC() != LangOptions::NonGC &&
1860        LV.isObjCWeak())
1861      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1862    return LV;
1863  }
1864  case UO_Real:
1865  case UO_Imag: {
1866    LValue LV = EmitLValue(E->getSubExpr());
1867    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1868    llvm::Value *Addr = LV.getAddress();
1869
1870    // __real is valid on scalars.  This is a faster way of testing that.
1871    // __imag can only produce an rvalue on scalars.
1872    if (E->getOpcode() == UO_Real &&
1873        !cast<llvm::PointerType>(Addr->getType())
1874           ->getElementType()->isStructTy()) {
1875      assert(E->getSubExpr()->getType()->isArithmeticType());
1876      return LV;
1877    }
1878
1879    assert(E->getSubExpr()->getType()->isAnyComplexType());
1880
1881    unsigned Idx = E->getOpcode() == UO_Imag;
1882    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1883                                                  Idx, "idx"),
1884                          ExprTy);
1885  }
1886  case UO_PreInc:
1887  case UO_PreDec: {
1888    LValue LV = EmitLValue(E->getSubExpr());
1889    bool isInc = E->getOpcode() == UO_PreInc;
1890
1891    if (E->getType()->isAnyComplexType())
1892      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1893    else
1894      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1895    return LV;
1896  }
1897  }
1898}
1899
1900LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1901  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1902                        E->getType());
1903}
1904
1905LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1906  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1907                        E->getType());
1908}
1909
1910static llvm::Constant*
1911GetAddrOfConstantWideString(StringRef Str,
1912                            const char *GlobalName,
1913                            ASTContext &Context,
1914                            QualType Ty, SourceLocation Loc,
1915                            CodeGenModule &CGM) {
1916
1917  StringLiteral *SL = StringLiteral::Create(Context,
1918                                            Str,
1919                                            StringLiteral::Wide,
1920                                            /*Pascal = */false,
1921                                            Ty, Loc);
1922  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1923  llvm::GlobalVariable *GV =
1924    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1925                             !CGM.getLangOpts().WritableStrings,
1926                             llvm::GlobalValue::PrivateLinkage,
1927                             C, GlobalName);
1928  const unsigned WideAlignment =
1929    Context.getTypeAlignInChars(Ty).getQuantity();
1930  GV->setAlignment(WideAlignment);
1931  return GV;
1932}
1933
1934static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1935                                    SmallString<32>& Target) {
1936  Target.resize(CharByteWidth * (Source.size() + 1));
1937  char *ResultPtr = &Target[0];
1938  const UTF8 *ErrorPtr;
1939  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1940  (void)success;
1941  assert(success);
1942  Target.resize(ResultPtr - &Target[0]);
1943}
1944
1945LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1946  switch (E->getIdentType()) {
1947  default:
1948    return EmitUnsupportedLValue(E, "predefined expression");
1949
1950  case PredefinedExpr::Func:
1951  case PredefinedExpr::Function:
1952  case PredefinedExpr::LFunction:
1953  case PredefinedExpr::FuncDName:
1954  case PredefinedExpr::PrettyFunction: {
1955    PredefinedExpr::IdentType IdentType = E->getIdentType();
1956    std::string GlobalVarName;
1957
1958    switch (IdentType) {
1959    default: llvm_unreachable("Invalid type");
1960    case PredefinedExpr::Func:
1961      GlobalVarName = "__func__.";
1962      break;
1963    case PredefinedExpr::Function:
1964      GlobalVarName = "__FUNCTION__.";
1965      break;
1966    case PredefinedExpr::FuncDName:
1967      GlobalVarName = "__FUNCDNAME__.";
1968      break;
1969    case PredefinedExpr::LFunction:
1970      GlobalVarName = "L__FUNCTION__.";
1971      break;
1972    case PredefinedExpr::PrettyFunction:
1973      GlobalVarName = "__PRETTY_FUNCTION__.";
1974      break;
1975    }
1976
1977    StringRef FnName = CurFn->getName();
1978    if (FnName.startswith("\01"))
1979      FnName = FnName.substr(1);
1980    GlobalVarName += FnName;
1981
1982    // If this is outside of a function use the top level decl.
1983    const Decl *CurDecl = CurCodeDecl;
1984    if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1985      CurDecl = getContext().getTranslationUnitDecl();
1986
1987    const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1988    std::string FunctionName;
1989    if (isa<BlockDecl>(CurDecl)) {
1990      // Blocks use the mangled function name.
1991      // FIXME: ComputeName should handle blocks.
1992      FunctionName = FnName.str();
1993    } else if (isa<CapturedDecl>(CurDecl)) {
1994      // For a captured statement, the function name is its enclosing
1995      // function name not the one compiler generated.
1996      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1997    } else {
1998      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1999      assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2000                 FunctionName.size() &&
2001             "Computed __func__ length differs from type!");
2002    }
2003
2004    llvm::Constant *C;
2005    if (ElemType->isWideCharType()) {
2006      SmallString<32> RawChars;
2007      ConvertUTF8ToWideString(
2008          getContext().getTypeSizeInChars(ElemType).getQuantity(),
2009          FunctionName, RawChars);
2010      C = GetAddrOfConstantWideString(RawChars,
2011                                      GlobalVarName.c_str(),
2012                                      getContext(),
2013                                      E->getType(),
2014                                      E->getLocation(),
2015                                      CGM);
2016    } else {
2017      C = CGM.GetAddrOfConstantCString(FunctionName,
2018                                       GlobalVarName.c_str(),
2019                                       1);
2020    }
2021    return MakeAddrLValue(C, E->getType());
2022  }
2023  }
2024}
2025
2026/// Emit a type description suitable for use by a runtime sanitizer library. The
2027/// format of a type descriptor is
2028///
2029/// \code
2030///   { i16 TypeKind, i16 TypeInfo }
2031/// \endcode
2032///
2033/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2034/// integer, 1 for a floating point value, and -1 for anything else.
2035llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2036  // Only emit each type's descriptor once.
2037  if (llvm::Constant *C = CGM.getTypeDescriptor(T))
2038    return C;
2039
2040  uint16_t TypeKind = -1;
2041  uint16_t TypeInfo = 0;
2042
2043  if (T->isIntegerType()) {
2044    TypeKind = 0;
2045    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2046               (T->isSignedIntegerType() ? 1 : 0);
2047  } else if (T->isFloatingType()) {
2048    TypeKind = 1;
2049    TypeInfo = getContext().getTypeSize(T);
2050  }
2051
2052  // Format the type name as if for a diagnostic, including quotes and
2053  // optionally an 'aka'.
2054  SmallString<32> Buffer;
2055  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2056                                    (intptr_t)T.getAsOpaquePtr(),
2057                                    0, 0, 0, 0, 0, 0, Buffer,
2058                                    ArrayRef<intptr_t>());
2059
2060  llvm::Constant *Components[] = {
2061    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2062    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2063  };
2064  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2065
2066  llvm::GlobalVariable *GV =
2067    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2068                             /*isConstant=*/true,
2069                             llvm::GlobalVariable::PrivateLinkage,
2070                             Descriptor);
2071  GV->setUnnamedAddr(true);
2072
2073  // Remember the descriptor for this type.
2074  CGM.setTypeDescriptor(T, GV);
2075
2076  return GV;
2077}
2078
2079llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2080  llvm::Type *TargetTy = IntPtrTy;
2081
2082  // Floating-point types which fit into intptr_t are bitcast to integers
2083  // and then passed directly (after zero-extension, if necessary).
2084  if (V->getType()->isFloatingPointTy()) {
2085    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2086    if (Bits <= TargetTy->getIntegerBitWidth())
2087      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2088                                                         Bits));
2089  }
2090
2091  // Integers which fit in intptr_t are zero-extended and passed directly.
2092  if (V->getType()->isIntegerTy() &&
2093      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2094    return Builder.CreateZExt(V, TargetTy);
2095
2096  // Pointers are passed directly, everything else is passed by address.
2097  if (!V->getType()->isPointerTy()) {
2098    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2099    Builder.CreateStore(V, Ptr);
2100    V = Ptr;
2101  }
2102  return Builder.CreatePtrToInt(V, TargetTy);
2103}
2104
2105/// \brief Emit a representation of a SourceLocation for passing to a handler
2106/// in a sanitizer runtime library. The format for this data is:
2107/// \code
2108///   struct SourceLocation {
2109///     const char *Filename;
2110///     int32_t Line, Column;
2111///   };
2112/// \endcode
2113/// For an invalid SourceLocation, the Filename pointer is null.
2114llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2115  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2116
2117  llvm::Constant *Data[] = {
2118    PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2119                   : llvm::Constant::getNullValue(Int8PtrTy),
2120    Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2121    Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2122  };
2123
2124  return llvm::ConstantStruct::getAnon(Data);
2125}
2126
2127void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2128                                ArrayRef<llvm::Constant *> StaticArgs,
2129                                ArrayRef<llvm::Value *> DynamicArgs,
2130                                CheckRecoverableKind RecoverKind) {
2131  assert(SanOpts != &SanitizerOptions::Disabled);
2132
2133  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2134    assert (RecoverKind != CRK_AlwaysRecoverable &&
2135            "Runtime call required for AlwaysRecoverable kind!");
2136    return EmitTrapCheck(Checked);
2137  }
2138
2139  llvm::BasicBlock *Cont = createBasicBlock("cont");
2140
2141  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2142
2143  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2144
2145  // Give hint that we very much don't expect to execute the handler
2146  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2147  llvm::MDBuilder MDHelper(getLLVMContext());
2148  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2149  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2150
2151  EmitBlock(Handler);
2152
2153  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2154  llvm::GlobalValue *InfoPtr =
2155      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2156                               llvm::GlobalVariable::PrivateLinkage, Info);
2157  InfoPtr->setUnnamedAddr(true);
2158
2159  SmallVector<llvm::Value *, 4> Args;
2160  SmallVector<llvm::Type *, 4> ArgTypes;
2161  Args.reserve(DynamicArgs.size() + 1);
2162  ArgTypes.reserve(DynamicArgs.size() + 1);
2163
2164  // Handler functions take an i8* pointing to the (handler-specific) static
2165  // information block, followed by a sequence of intptr_t arguments
2166  // representing operand values.
2167  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2168  ArgTypes.push_back(Int8PtrTy);
2169  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2170    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2171    ArgTypes.push_back(IntPtrTy);
2172  }
2173
2174  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2175                 ((RecoverKind == CRK_Recoverable) &&
2176                   CGM.getCodeGenOpts().SanitizeRecover);
2177
2178  llvm::FunctionType *FnType =
2179    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2180  llvm::AttrBuilder B;
2181  if (!Recover) {
2182    B.addAttribute(llvm::Attribute::NoReturn)
2183     .addAttribute(llvm::Attribute::NoUnwind);
2184  }
2185  B.addAttribute(llvm::Attribute::UWTable);
2186
2187  // Checks that have two variants use a suffix to differentiate them
2188  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2189                           !CGM.getCodeGenOpts().SanitizeRecover;
2190  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2191                              (NeedsAbortSuffix? "_abort" : "")).str();
2192  llvm::Value *Fn =
2193    CGM.CreateRuntimeFunction(FnType, FunctionName,
2194                              llvm::AttributeSet::get(getLLVMContext(),
2195                                              llvm::AttributeSet::FunctionIndex,
2196                                                      B));
2197  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2198  if (Recover) {
2199    Builder.CreateBr(Cont);
2200  } else {
2201    HandlerCall->setDoesNotReturn();
2202    Builder.CreateUnreachable();
2203  }
2204
2205  EmitBlock(Cont);
2206}
2207
2208void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2209  llvm::BasicBlock *Cont = createBasicBlock("cont");
2210
2211  // If we're optimizing, collapse all calls to trap down to just one per
2212  // function to save on code size.
2213  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2214    TrapBB = createBasicBlock("trap");
2215    Builder.CreateCondBr(Checked, Cont, TrapBB);
2216    EmitBlock(TrapBB);
2217    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2218    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2219    TrapCall->setDoesNotReturn();
2220    TrapCall->setDoesNotThrow();
2221    Builder.CreateUnreachable();
2222  } else {
2223    Builder.CreateCondBr(Checked, Cont, TrapBB);
2224  }
2225
2226  EmitBlock(Cont);
2227}
2228
2229/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2230/// array to pointer, return the array subexpression.
2231static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2232  // If this isn't just an array->pointer decay, bail out.
2233  const CastExpr *CE = dyn_cast<CastExpr>(E);
2234  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2235    return 0;
2236
2237  // If this is a decay from variable width array, bail out.
2238  const Expr *SubExpr = CE->getSubExpr();
2239  if (SubExpr->getType()->isVariableArrayType())
2240    return 0;
2241
2242  return SubExpr;
2243}
2244
2245LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2246                                               bool Accessed) {
2247  // The index must always be an integer, which is not an aggregate.  Emit it.
2248  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2249  QualType IdxTy  = E->getIdx()->getType();
2250  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2251
2252  if (SanOpts->ArrayBounds)
2253    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2254
2255  // If the base is a vector type, then we are forming a vector element lvalue
2256  // with this subscript.
2257  if (E->getBase()->getType()->isVectorType()) {
2258    // Emit the vector as an lvalue to get its address.
2259    LValue LHS = EmitLValue(E->getBase());
2260    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2261    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2262    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2263                                 E->getBase()->getType(), LHS.getAlignment());
2264  }
2265
2266  // Extend or truncate the index type to 32 or 64-bits.
2267  if (Idx->getType() != IntPtrTy)
2268    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2269
2270  // We know that the pointer points to a type of the correct size, unless the
2271  // size is a VLA or Objective-C interface.
2272  llvm::Value *Address = 0;
2273  CharUnits ArrayAlignment;
2274  if (const VariableArrayType *vla =
2275        getContext().getAsVariableArrayType(E->getType())) {
2276    // The base must be a pointer, which is not an aggregate.  Emit
2277    // it.  It needs to be emitted first in case it's what captures
2278    // the VLA bounds.
2279    Address = EmitScalarExpr(E->getBase());
2280
2281    // The element count here is the total number of non-VLA elements.
2282    llvm::Value *numElements = getVLASize(vla).first;
2283
2284    // Effectively, the multiply by the VLA size is part of the GEP.
2285    // GEP indexes are signed, and scaling an index isn't permitted to
2286    // signed-overflow, so we use the same semantics for our explicit
2287    // multiply.  We suppress this if overflow is not undefined behavior.
2288    if (getLangOpts().isSignedOverflowDefined()) {
2289      Idx = Builder.CreateMul(Idx, numElements);
2290      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2291    } else {
2292      Idx = Builder.CreateNSWMul(Idx, numElements);
2293      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2294    }
2295  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2296    // Indexing over an interface, as in "NSString *P; P[4];"
2297    llvm::Value *InterfaceSize =
2298      llvm::ConstantInt::get(Idx->getType(),
2299          getContext().getTypeSizeInChars(OIT).getQuantity());
2300
2301    Idx = Builder.CreateMul(Idx, InterfaceSize);
2302
2303    // The base must be a pointer, which is not an aggregate.  Emit it.
2304    llvm::Value *Base = EmitScalarExpr(E->getBase());
2305    Address = EmitCastToVoidPtr(Base);
2306    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2307    Address = Builder.CreateBitCast(Address, Base->getType());
2308  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2309    // If this is A[i] where A is an array, the frontend will have decayed the
2310    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2311    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2312    // "gep x, i" here.  Emit one "gep A, 0, i".
2313    assert(Array->getType()->isArrayType() &&
2314           "Array to pointer decay must have array source type!");
2315    LValue ArrayLV;
2316    // For simple multidimensional array indexing, set the 'accessed' flag for
2317    // better bounds-checking of the base expression.
2318    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2319      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2320    else
2321      ArrayLV = EmitLValue(Array);
2322    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2323    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2324    llvm::Value *Args[] = { Zero, Idx };
2325
2326    // Propagate the alignment from the array itself to the result.
2327    ArrayAlignment = ArrayLV.getAlignment();
2328
2329    if (getLangOpts().isSignedOverflowDefined())
2330      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2331    else
2332      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2333  } else {
2334    // The base must be a pointer, which is not an aggregate.  Emit it.
2335    llvm::Value *Base = EmitScalarExpr(E->getBase());
2336    if (getLangOpts().isSignedOverflowDefined())
2337      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2338    else
2339      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2340  }
2341
2342  QualType T = E->getBase()->getType()->getPointeeType();
2343  assert(!T.isNull() &&
2344         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2345
2346
2347  // Limit the alignment to that of the result type.
2348  LValue LV;
2349  if (!ArrayAlignment.isZero()) {
2350    CharUnits Align = getContext().getTypeAlignInChars(T);
2351    ArrayAlignment = std::min(Align, ArrayAlignment);
2352    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2353  } else {
2354    LV = MakeNaturalAlignAddrLValue(Address, T);
2355  }
2356
2357  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2358
2359  if (getLangOpts().ObjC1 &&
2360      getLangOpts().getGC() != LangOptions::NonGC) {
2361    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2362    setObjCGCLValueClass(getContext(), E, LV);
2363  }
2364  return LV;
2365}
2366
2367static
2368llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2369                                       SmallVectorImpl<unsigned> &Elts) {
2370  SmallVector<llvm::Constant*, 4> CElts;
2371  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2372    CElts.push_back(Builder.getInt32(Elts[i]));
2373
2374  return llvm::ConstantVector::get(CElts);
2375}
2376
2377LValue CodeGenFunction::
2378EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2379  // Emit the base vector as an l-value.
2380  LValue Base;
2381
2382  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2383  if (E->isArrow()) {
2384    // If it is a pointer to a vector, emit the address and form an lvalue with
2385    // it.
2386    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2387    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2388    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2389    Base.getQuals().removeObjCGCAttr();
2390  } else if (E->getBase()->isGLValue()) {
2391    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2392    // emit the base as an lvalue.
2393    assert(E->getBase()->getType()->isVectorType());
2394    Base = EmitLValue(E->getBase());
2395  } else {
2396    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2397    assert(E->getBase()->getType()->isVectorType() &&
2398           "Result must be a vector");
2399    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2400
2401    // Store the vector to memory (because LValue wants an address).
2402    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2403    Builder.CreateStore(Vec, VecMem);
2404    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2405  }
2406
2407  QualType type =
2408    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2409
2410  // Encode the element access list into a vector of unsigned indices.
2411  SmallVector<unsigned, 4> Indices;
2412  E->getEncodedElementAccess(Indices);
2413
2414  if (Base.isSimple()) {
2415    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2416    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2417                                    Base.getAlignment());
2418  }
2419  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2420
2421  llvm::Constant *BaseElts = Base.getExtVectorElts();
2422  SmallVector<llvm::Constant *, 4> CElts;
2423
2424  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2425    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2426  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2427  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2428                                  Base.getAlignment());
2429}
2430
2431LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2432  Expr *BaseExpr = E->getBase();
2433
2434  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2435  LValue BaseLV;
2436  if (E->isArrow()) {
2437    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2438    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2439    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2440    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2441  } else
2442    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2443
2444  NamedDecl *ND = E->getMemberDecl();
2445  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2446    LValue LV = EmitLValueForField(BaseLV, Field);
2447    setObjCGCLValueClass(getContext(), E, LV);
2448    return LV;
2449  }
2450
2451  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2452    return EmitGlobalVarDeclLValue(*this, E, VD);
2453
2454  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2455    return EmitFunctionDeclLValue(*this, E, FD);
2456
2457  llvm_unreachable("Unhandled member declaration!");
2458}
2459
2460/// Given that we are currently emitting a lambda, emit an l-value for
2461/// one of its members.
2462LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2463  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2464  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2465  QualType LambdaTagType =
2466    getContext().getTagDeclType(Field->getParent());
2467  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2468  return EmitLValueForField(LambdaLV, Field);
2469}
2470
2471LValue CodeGenFunction::EmitLValueForField(LValue base,
2472                                           const FieldDecl *field) {
2473  if (field->isBitField()) {
2474    const CGRecordLayout &RL =
2475      CGM.getTypes().getCGRecordLayout(field->getParent());
2476    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2477    llvm::Value *Addr = base.getAddress();
2478    unsigned Idx = RL.getLLVMFieldNo(field);
2479    if (Idx != 0)
2480      // For structs, we GEP to the field that the record layout suggests.
2481      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2482    // Get the access type.
2483    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2484      getLLVMContext(), Info.StorageSize,
2485      CGM.getContext().getTargetAddressSpace(base.getType()));
2486    if (Addr->getType() != PtrTy)
2487      Addr = Builder.CreateBitCast(Addr, PtrTy);
2488
2489    QualType fieldType =
2490      field->getType().withCVRQualifiers(base.getVRQualifiers());
2491    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2492  }
2493
2494  const RecordDecl *rec = field->getParent();
2495  QualType type = field->getType();
2496  CharUnits alignment = getContext().getDeclAlign(field);
2497
2498  // FIXME: It should be impossible to have an LValue without alignment for a
2499  // complete type.
2500  if (!base.getAlignment().isZero())
2501    alignment = std::min(alignment, base.getAlignment());
2502
2503  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2504
2505  llvm::Value *addr = base.getAddress();
2506  unsigned cvr = base.getVRQualifiers();
2507  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2508  if (rec->isUnion()) {
2509    // For unions, there is no pointer adjustment.
2510    assert(!type->isReferenceType() && "union has reference member");
2511    // TODO: handle path-aware TBAA for union.
2512    TBAAPath = false;
2513  } else {
2514    // For structs, we GEP to the field that the record layout suggests.
2515    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2516    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2517
2518    // If this is a reference field, load the reference right now.
2519    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2520      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2521      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2522      load->setAlignment(alignment.getQuantity());
2523
2524      // Loading the reference will disable path-aware TBAA.
2525      TBAAPath = false;
2526      if (CGM.shouldUseTBAA()) {
2527        llvm::MDNode *tbaa;
2528        if (mayAlias)
2529          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2530        else
2531          tbaa = CGM.getTBAAInfo(type);
2532        if (tbaa)
2533          CGM.DecorateInstruction(load, tbaa);
2534      }
2535
2536      addr = load;
2537      mayAlias = false;
2538      type = refType->getPointeeType();
2539      if (type->isIncompleteType())
2540        alignment = CharUnits();
2541      else
2542        alignment = getContext().getTypeAlignInChars(type);
2543      cvr = 0; // qualifiers don't recursively apply to referencee
2544    }
2545  }
2546
2547  // Make sure that the address is pointing to the right type.  This is critical
2548  // for both unions and structs.  A union needs a bitcast, a struct element
2549  // will need a bitcast if the LLVM type laid out doesn't match the desired
2550  // type.
2551  addr = EmitBitCastOfLValueToProperType(*this, addr,
2552                                         CGM.getTypes().ConvertTypeForMem(type),
2553                                         field->getName());
2554
2555  if (field->hasAttr<AnnotateAttr>())
2556    addr = EmitFieldAnnotations(field, addr);
2557
2558  LValue LV = MakeAddrLValue(addr, type, alignment);
2559  LV.getQuals().addCVRQualifiers(cvr);
2560  if (TBAAPath) {
2561    const ASTRecordLayout &Layout =
2562        getContext().getASTRecordLayout(field->getParent());
2563    // Set the base type to be the base type of the base LValue and
2564    // update offset to be relative to the base type.
2565    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2566    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2567                     Layout.getFieldOffset(field->getFieldIndex()) /
2568                                           getContext().getCharWidth());
2569  }
2570
2571  // __weak attribute on a field is ignored.
2572  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2573    LV.getQuals().removeObjCGCAttr();
2574
2575  // Fields of may_alias structs act like 'char' for TBAA purposes.
2576  // FIXME: this should get propagated down through anonymous structs
2577  // and unions.
2578  if (mayAlias && LV.getTBAAInfo())
2579    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2580
2581  return LV;
2582}
2583
2584LValue
2585CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2586                                                  const FieldDecl *Field) {
2587  QualType FieldType = Field->getType();
2588
2589  if (!FieldType->isReferenceType())
2590    return EmitLValueForField(Base, Field);
2591
2592  const CGRecordLayout &RL =
2593    CGM.getTypes().getCGRecordLayout(Field->getParent());
2594  unsigned idx = RL.getLLVMFieldNo(Field);
2595  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2596  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2597
2598  // Make sure that the address is pointing to the right type.  This is critical
2599  // for both unions and structs.  A union needs a bitcast, a struct element
2600  // will need a bitcast if the LLVM type laid out doesn't match the desired
2601  // type.
2602  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2603  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2604
2605  CharUnits Alignment = getContext().getDeclAlign(Field);
2606
2607  // FIXME: It should be impossible to have an LValue without alignment for a
2608  // complete type.
2609  if (!Base.getAlignment().isZero())
2610    Alignment = std::min(Alignment, Base.getAlignment());
2611
2612  return MakeAddrLValue(V, FieldType, Alignment);
2613}
2614
2615LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2616  if (E->isFileScope()) {
2617    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2618    return MakeAddrLValue(GlobalPtr, E->getType());
2619  }
2620  if (E->getType()->isVariablyModifiedType())
2621    // make sure to emit the VLA size.
2622    EmitVariablyModifiedType(E->getType());
2623
2624  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2625  const Expr *InitExpr = E->getInitializer();
2626  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2627
2628  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2629                   /*Init*/ true);
2630
2631  return Result;
2632}
2633
2634LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2635  if (!E->isGLValue())
2636    // Initializing an aggregate temporary in C++11: T{...}.
2637    return EmitAggExprToLValue(E);
2638
2639  // An lvalue initializer list must be initializing a reference.
2640  assert(E->getNumInits() == 1 && "reference init with multiple values");
2641  return EmitLValue(E->getInit(0));
2642}
2643
2644LValue CodeGenFunction::
2645EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2646  if (!expr->isGLValue()) {
2647    // ?: here should be an aggregate.
2648    assert(hasAggregateEvaluationKind(expr->getType()) &&
2649           "Unexpected conditional operator!");
2650    return EmitAggExprToLValue(expr);
2651  }
2652
2653  OpaqueValueMapping binding(*this, expr);
2654
2655  const Expr *condExpr = expr->getCond();
2656  bool CondExprBool;
2657  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2658    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2659    if (!CondExprBool) std::swap(live, dead);
2660
2661    if (!ContainsLabel(dead))
2662      return EmitLValue(live);
2663  }
2664
2665  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2666  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2667  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2668
2669  ConditionalEvaluation eval(*this);
2670  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2671
2672  // Any temporaries created here are conditional.
2673  EmitBlock(lhsBlock);
2674  eval.begin(*this);
2675  LValue lhs = EmitLValue(expr->getTrueExpr());
2676  eval.end(*this);
2677
2678  if (!lhs.isSimple())
2679    return EmitUnsupportedLValue(expr, "conditional operator");
2680
2681  lhsBlock = Builder.GetInsertBlock();
2682  Builder.CreateBr(contBlock);
2683
2684  // Any temporaries created here are conditional.
2685  EmitBlock(rhsBlock);
2686  eval.begin(*this);
2687  LValue rhs = EmitLValue(expr->getFalseExpr());
2688  eval.end(*this);
2689  if (!rhs.isSimple())
2690    return EmitUnsupportedLValue(expr, "conditional operator");
2691  rhsBlock = Builder.GetInsertBlock();
2692
2693  EmitBlock(contBlock);
2694
2695  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2696                                         "cond-lvalue");
2697  phi->addIncoming(lhs.getAddress(), lhsBlock);
2698  phi->addIncoming(rhs.getAddress(), rhsBlock);
2699  return MakeAddrLValue(phi, expr->getType());
2700}
2701
2702/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2703/// type. If the cast is to a reference, we can have the usual lvalue result,
2704/// otherwise if a cast is needed by the code generator in an lvalue context,
2705/// then it must mean that we need the address of an aggregate in order to
2706/// access one of its members.  This can happen for all the reasons that casts
2707/// are permitted with aggregate result, including noop aggregate casts, and
2708/// cast from scalar to union.
2709LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2710  switch (E->getCastKind()) {
2711  case CK_ToVoid:
2712  case CK_BitCast:
2713  case CK_ArrayToPointerDecay:
2714  case CK_FunctionToPointerDecay:
2715  case CK_NullToMemberPointer:
2716  case CK_NullToPointer:
2717  case CK_IntegralToPointer:
2718  case CK_PointerToIntegral:
2719  case CK_PointerToBoolean:
2720  case CK_VectorSplat:
2721  case CK_IntegralCast:
2722  case CK_IntegralToBoolean:
2723  case CK_IntegralToFloating:
2724  case CK_FloatingToIntegral:
2725  case CK_FloatingToBoolean:
2726  case CK_FloatingCast:
2727  case CK_FloatingRealToComplex:
2728  case CK_FloatingComplexToReal:
2729  case CK_FloatingComplexToBoolean:
2730  case CK_FloatingComplexCast:
2731  case CK_FloatingComplexToIntegralComplex:
2732  case CK_IntegralRealToComplex:
2733  case CK_IntegralComplexToReal:
2734  case CK_IntegralComplexToBoolean:
2735  case CK_IntegralComplexCast:
2736  case CK_IntegralComplexToFloatingComplex:
2737  case CK_DerivedToBaseMemberPointer:
2738  case CK_BaseToDerivedMemberPointer:
2739  case CK_MemberPointerToBoolean:
2740  case CK_ReinterpretMemberPointer:
2741  case CK_AnyPointerToBlockPointerCast:
2742  case CK_ARCProduceObject:
2743  case CK_ARCConsumeObject:
2744  case CK_ARCReclaimReturnedObject:
2745  case CK_ARCExtendBlockObject:
2746  case CK_CopyAndAutoreleaseBlockObject:
2747    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2748
2749  case CK_Dependent:
2750    llvm_unreachable("dependent cast kind in IR gen!");
2751
2752  case CK_BuiltinFnToFnPtr:
2753    llvm_unreachable("builtin functions are handled elsewhere");
2754
2755  // These are never l-values; just use the aggregate emission code.
2756  case CK_NonAtomicToAtomic:
2757  case CK_AtomicToNonAtomic:
2758    return EmitAggExprToLValue(E);
2759
2760  case CK_Dynamic: {
2761    LValue LV = EmitLValue(E->getSubExpr());
2762    llvm::Value *V = LV.getAddress();
2763    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2764    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2765  }
2766
2767  case CK_ConstructorConversion:
2768  case CK_UserDefinedConversion:
2769  case CK_CPointerToObjCPointerCast:
2770  case CK_BlockPointerToObjCPointerCast:
2771  case CK_NoOp:
2772  case CK_LValueToRValue:
2773    return EmitLValue(E->getSubExpr());
2774
2775  case CK_UncheckedDerivedToBase:
2776  case CK_DerivedToBase: {
2777    const RecordType *DerivedClassTy =
2778      E->getSubExpr()->getType()->getAs<RecordType>();
2779    CXXRecordDecl *DerivedClassDecl =
2780      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2781
2782    LValue LV = EmitLValue(E->getSubExpr());
2783    llvm::Value *This = LV.getAddress();
2784
2785    // Perform the derived-to-base conversion
2786    llvm::Value *Base =
2787      GetAddressOfBaseClass(This, DerivedClassDecl,
2788                            E->path_begin(), E->path_end(),
2789                            /*NullCheckValue=*/false);
2790
2791    return MakeAddrLValue(Base, E->getType());
2792  }
2793  case CK_ToUnion:
2794    return EmitAggExprToLValue(E);
2795  case CK_BaseToDerived: {
2796    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2797    CXXRecordDecl *DerivedClassDecl =
2798      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2799
2800    LValue LV = EmitLValue(E->getSubExpr());
2801
2802    // Perform the base-to-derived conversion
2803    llvm::Value *Derived =
2804      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2805                               E->path_begin(), E->path_end(),
2806                               /*NullCheckValue=*/false);
2807
2808    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2809    // performed and the object is not of the derived type.
2810    if (SanitizePerformTypeCheck)
2811      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2812                    Derived, E->getType());
2813
2814    return MakeAddrLValue(Derived, E->getType());
2815  }
2816  case CK_LValueBitCast: {
2817    // This must be a reinterpret_cast (or c-style equivalent).
2818    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2819
2820    LValue LV = EmitLValue(E->getSubExpr());
2821    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2822                                           ConvertType(CE->getTypeAsWritten()));
2823    return MakeAddrLValue(V, E->getType());
2824  }
2825  case CK_ObjCObjectLValueCast: {
2826    LValue LV = EmitLValue(E->getSubExpr());
2827    QualType ToType = getContext().getLValueReferenceType(E->getType());
2828    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2829                                           ConvertType(ToType));
2830    return MakeAddrLValue(V, E->getType());
2831  }
2832  case CK_ZeroToOCLEvent:
2833    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2834  }
2835
2836  llvm_unreachable("Unhandled lvalue cast kind?");
2837}
2838
2839LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2840  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2841  return getOpaqueLValueMapping(e);
2842}
2843
2844RValue CodeGenFunction::EmitRValueForField(LValue LV,
2845                                           const FieldDecl *FD,
2846                                           SourceLocation Loc) {
2847  QualType FT = FD->getType();
2848  LValue FieldLV = EmitLValueForField(LV, FD);
2849  switch (getEvaluationKind(FT)) {
2850  case TEK_Complex:
2851    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2852  case TEK_Aggregate:
2853    return FieldLV.asAggregateRValue();
2854  case TEK_Scalar:
2855    return EmitLoadOfLValue(FieldLV, Loc);
2856  }
2857  llvm_unreachable("bad evaluation kind");
2858}
2859
2860//===--------------------------------------------------------------------===//
2861//                             Expression Emission
2862//===--------------------------------------------------------------------===//
2863
2864RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2865                                     ReturnValueSlot ReturnValue) {
2866  if (CGDebugInfo *DI = getDebugInfo()) {
2867    SourceLocation Loc = E->getLocStart();
2868    // Force column info to be generated so we can differentiate
2869    // multiple call sites on the same line in the debug info.
2870    const FunctionDecl* Callee = E->getDirectCallee();
2871    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2872    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2873  }
2874
2875  // Builtins never have block type.
2876  if (E->getCallee()->getType()->isBlockPointerType())
2877    return EmitBlockCallExpr(E, ReturnValue);
2878
2879  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2880    return EmitCXXMemberCallExpr(CE, ReturnValue);
2881
2882  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2883    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2884
2885  const Decl *TargetDecl = E->getCalleeDecl();
2886  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2887    if (unsigned builtinID = FD->getBuiltinID())
2888      return EmitBuiltinExpr(FD, builtinID, E);
2889  }
2890
2891  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2892    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2893      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2894
2895  if (const CXXPseudoDestructorExpr *PseudoDtor
2896          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2897    QualType DestroyedType = PseudoDtor->getDestroyedType();
2898    if (getLangOpts().ObjCAutoRefCount &&
2899        DestroyedType->isObjCLifetimeType() &&
2900        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2901         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2902      // Automatic Reference Counting:
2903      //   If the pseudo-expression names a retainable object with weak or
2904      //   strong lifetime, the object shall be released.
2905      Expr *BaseExpr = PseudoDtor->getBase();
2906      llvm::Value *BaseValue = NULL;
2907      Qualifiers BaseQuals;
2908
2909      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2910      if (PseudoDtor->isArrow()) {
2911        BaseValue = EmitScalarExpr(BaseExpr);
2912        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2913        BaseQuals = PTy->getPointeeType().getQualifiers();
2914      } else {
2915        LValue BaseLV = EmitLValue(BaseExpr);
2916        BaseValue = BaseLV.getAddress();
2917        QualType BaseTy = BaseExpr->getType();
2918        BaseQuals = BaseTy.getQualifiers();
2919      }
2920
2921      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2922      case Qualifiers::OCL_None:
2923      case Qualifiers::OCL_ExplicitNone:
2924      case Qualifiers::OCL_Autoreleasing:
2925        break;
2926
2927      case Qualifiers::OCL_Strong:
2928        EmitARCRelease(Builder.CreateLoad(BaseValue,
2929                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2930                       ARCPreciseLifetime);
2931        break;
2932
2933      case Qualifiers::OCL_Weak:
2934        EmitARCDestroyWeak(BaseValue);
2935        break;
2936      }
2937    } else {
2938      // C++ [expr.pseudo]p1:
2939      //   The result shall only be used as the operand for the function call
2940      //   operator (), and the result of such a call has type void. The only
2941      //   effect is the evaluation of the postfix-expression before the dot or
2942      //   arrow.
2943      EmitScalarExpr(E->getCallee());
2944    }
2945
2946    return RValue::get(0);
2947  }
2948
2949  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2950  return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
2951                  ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
2952}
2953
2954LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2955  // Comma expressions just emit their LHS then their RHS as an l-value.
2956  if (E->getOpcode() == BO_Comma) {
2957    EmitIgnoredExpr(E->getLHS());
2958    EnsureInsertPoint();
2959    return EmitLValue(E->getRHS());
2960  }
2961
2962  if (E->getOpcode() == BO_PtrMemD ||
2963      E->getOpcode() == BO_PtrMemI)
2964    return EmitPointerToDataMemberBinaryExpr(E);
2965
2966  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2967
2968  // Note that in all of these cases, __block variables need the RHS
2969  // evaluated first just in case the variable gets moved by the RHS.
2970
2971  switch (getEvaluationKind(E->getType())) {
2972  case TEK_Scalar: {
2973    switch (E->getLHS()->getType().getObjCLifetime()) {
2974    case Qualifiers::OCL_Strong:
2975      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2976
2977    case Qualifiers::OCL_Autoreleasing:
2978      return EmitARCStoreAutoreleasing(E).first;
2979
2980    // No reason to do any of these differently.
2981    case Qualifiers::OCL_None:
2982    case Qualifiers::OCL_ExplicitNone:
2983    case Qualifiers::OCL_Weak:
2984      break;
2985    }
2986
2987    RValue RV = EmitAnyExpr(E->getRHS());
2988    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2989    EmitStoreThroughLValue(RV, LV);
2990    return LV;
2991  }
2992
2993  case TEK_Complex:
2994    return EmitComplexAssignmentLValue(E);
2995
2996  case TEK_Aggregate:
2997    return EmitAggExprToLValue(E);
2998  }
2999  llvm_unreachable("bad evaluation kind");
3000}
3001
3002LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3003  RValue RV = EmitCallExpr(E);
3004
3005  if (!RV.isScalar())
3006    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3007
3008  assert(E->getCallReturnType()->isReferenceType() &&
3009         "Can't have a scalar return unless the return type is a "
3010         "reference type!");
3011
3012  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3013}
3014
3015LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3016  // FIXME: This shouldn't require another copy.
3017  return EmitAggExprToLValue(E);
3018}
3019
3020LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3021  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3022         && "binding l-value to type which needs a temporary");
3023  AggValueSlot Slot = CreateAggTemp(E->getType());
3024  EmitCXXConstructExpr(E, Slot);
3025  return MakeAddrLValue(Slot.getAddr(), E->getType());
3026}
3027
3028LValue
3029CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3030  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3031}
3032
3033llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3034  return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3035                               ConvertType(E->getType())->getPointerTo());
3036}
3037
3038LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3039  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3040}
3041
3042LValue
3043CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3044  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3045  Slot.setExternallyDestructed();
3046  EmitAggExpr(E->getSubExpr(), Slot);
3047  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3048  return MakeAddrLValue(Slot.getAddr(), E->getType());
3049}
3050
3051LValue
3052CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3053  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3054  EmitLambdaExpr(E, Slot);
3055  return MakeAddrLValue(Slot.getAddr(), E->getType());
3056}
3057
3058LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3059  RValue RV = EmitObjCMessageExpr(E);
3060
3061  if (!RV.isScalar())
3062    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3063
3064  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3065         "Can't have a scalar return unless the return type is a "
3066         "reference type!");
3067
3068  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3069}
3070
3071LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3072  llvm::Value *V =
3073    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3074  return MakeAddrLValue(V, E->getType());
3075}
3076
3077llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3078                                             const ObjCIvarDecl *Ivar) {
3079  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3080}
3081
3082LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3083                                          llvm::Value *BaseValue,
3084                                          const ObjCIvarDecl *Ivar,
3085                                          unsigned CVRQualifiers) {
3086  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3087                                                   Ivar, CVRQualifiers);
3088}
3089
3090LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3091  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3092  llvm::Value *BaseValue = 0;
3093  const Expr *BaseExpr = E->getBase();
3094  Qualifiers BaseQuals;
3095  QualType ObjectTy;
3096  if (E->isArrow()) {
3097    BaseValue = EmitScalarExpr(BaseExpr);
3098    ObjectTy = BaseExpr->getType()->getPointeeType();
3099    BaseQuals = ObjectTy.getQualifiers();
3100  } else {
3101    LValue BaseLV = EmitLValue(BaseExpr);
3102    // FIXME: this isn't right for bitfields.
3103    BaseValue = BaseLV.getAddress();
3104    ObjectTy = BaseExpr->getType();
3105    BaseQuals = ObjectTy.getQualifiers();
3106  }
3107
3108  LValue LV =
3109    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3110                      BaseQuals.getCVRQualifiers());
3111  setObjCGCLValueClass(getContext(), E, LV);
3112  return LV;
3113}
3114
3115LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3116  // Can only get l-value for message expression returning aggregate type
3117  RValue RV = EmitAnyExprToTemp(E);
3118  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3119}
3120
3121RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3122                                 SourceLocation CallLoc,
3123                                 ReturnValueSlot ReturnValue,
3124                                 CallExpr::const_arg_iterator ArgBeg,
3125                                 CallExpr::const_arg_iterator ArgEnd,
3126                                 const Decl *TargetDecl) {
3127  // Get the actual function type. The callee type will always be a pointer to
3128  // function type or a block pointer type.
3129  assert(CalleeType->isFunctionPointerType() &&
3130         "Call must have function pointer type!");
3131
3132  CalleeType = getContext().getCanonicalType(CalleeType);
3133
3134  const FunctionType *FnType
3135    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3136
3137  // Force column info to differentiate multiple inlined call sites on
3138  // the same line, analoguous to EmitCallExpr.
3139  bool ForceColumnInfo = false;
3140  if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3141    ForceColumnInfo = FD->isInlineSpecified();
3142
3143  if (getLangOpts().CPlusPlus && SanOpts->Function &&
3144      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3145    if (llvm::Constant *PrefixSig =
3146            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3147      llvm::Constant *FTRTTIConst =
3148          CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3149      llvm::Type *PrefixStructTyElems[] = {
3150        PrefixSig->getType(),
3151        FTRTTIConst->getType()
3152      };
3153      llvm::StructType *PrefixStructTy = llvm::StructType::get(
3154          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3155
3156      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3157          Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3158      llvm::Value *CalleeSigPtr =
3159          Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3160      llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3161      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3162
3163      llvm::BasicBlock *Cont = createBasicBlock("cont");
3164      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3165      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3166
3167      EmitBlock(TypeCheck);
3168      llvm::Value *CalleeRTTIPtr =
3169          Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3170      llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3171      llvm::Value *CalleeRTTIMatch =
3172          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3173      llvm::Constant *StaticData[] = {
3174        EmitCheckSourceLocation(CallLoc),
3175        EmitCheckTypeDescriptor(CalleeType)
3176      };
3177      EmitCheck(CalleeRTTIMatch,
3178                "function_type_mismatch",
3179                StaticData,
3180                Callee,
3181                CRK_Recoverable);
3182
3183      Builder.CreateBr(Cont);
3184      EmitBlock(Cont);
3185    }
3186  }
3187
3188  CallArgList Args;
3189  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3190               ForceColumnInfo);
3191
3192  const CGFunctionInfo &FnInfo =
3193    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3194
3195  // C99 6.5.2.2p6:
3196  //   If the expression that denotes the called function has a type
3197  //   that does not include a prototype, [the default argument
3198  //   promotions are performed]. If the number of arguments does not
3199  //   equal the number of parameters, the behavior is undefined. If
3200  //   the function is defined with a type that includes a prototype,
3201  //   and either the prototype ends with an ellipsis (, ...) or the
3202  //   types of the arguments after promotion are not compatible with
3203  //   the types of the parameters, the behavior is undefined. If the
3204  //   function is defined with a type that does not include a
3205  //   prototype, and the types of the arguments after promotion are
3206  //   not compatible with those of the parameters after promotion,
3207  //   the behavior is undefined [except in some trivial cases].
3208  // That is, in the general case, we should assume that a call
3209  // through an unprototyped function type works like a *non-variadic*
3210  // call.  The way we make this work is to cast to the exact type
3211  // of the promoted arguments.
3212  if (isa<FunctionNoProtoType>(FnType)) {
3213    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3214    CalleeTy = CalleeTy->getPointerTo();
3215    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3216  }
3217
3218  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3219}
3220
3221LValue CodeGenFunction::
3222EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3223  llvm::Value *BaseV;
3224  if (E->getOpcode() == BO_PtrMemI)
3225    BaseV = EmitScalarExpr(E->getLHS());
3226  else
3227    BaseV = EmitLValue(E->getLHS()).getAddress();
3228
3229  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3230
3231  const MemberPointerType *MPT
3232    = E->getRHS()->getType()->getAs<MemberPointerType>();
3233
3234  llvm::Value *AddV =
3235    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3236
3237  return MakeAddrLValue(AddV, MPT->getPointeeType());
3238}
3239
3240/// Given the address of a temporary variable, produce an r-value of
3241/// its type.
3242RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3243                                            QualType type,
3244                                            SourceLocation loc) {
3245  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3246  switch (getEvaluationKind(type)) {
3247  case TEK_Complex:
3248    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3249  case TEK_Aggregate:
3250    return lvalue.asAggregateRValue();
3251  case TEK_Scalar:
3252    return RValue::get(EmitLoadOfScalar(lvalue, loc));
3253  }
3254  llvm_unreachable("bad evaluation kind");
3255}
3256
3257void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3258  assert(Val->getType()->isFPOrFPVectorTy());
3259  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3260    return;
3261
3262  llvm::MDBuilder MDHelper(getLLVMContext());
3263  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3264
3265  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3266}
3267
3268namespace {
3269  struct LValueOrRValue {
3270    LValue LV;
3271    RValue RV;
3272  };
3273}
3274
3275static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3276                                           const PseudoObjectExpr *E,
3277                                           bool forLValue,
3278                                           AggValueSlot slot) {
3279  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3280
3281  // Find the result expression, if any.
3282  const Expr *resultExpr = E->getResultExpr();
3283  LValueOrRValue result;
3284
3285  for (PseudoObjectExpr::const_semantics_iterator
3286         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3287    const Expr *semantic = *i;
3288
3289    // If this semantic expression is an opaque value, bind it
3290    // to the result of its source expression.
3291    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3292
3293      // If this is the result expression, we may need to evaluate
3294      // directly into the slot.
3295      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3296      OVMA opaqueData;
3297      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3298          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3299        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3300
3301        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3302        opaqueData = OVMA::bind(CGF, ov, LV);
3303        result.RV = slot.asRValue();
3304
3305      // Otherwise, emit as normal.
3306      } else {
3307        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3308
3309        // If this is the result, also evaluate the result now.
3310        if (ov == resultExpr) {
3311          if (forLValue)
3312            result.LV = CGF.EmitLValue(ov);
3313          else
3314            result.RV = CGF.EmitAnyExpr(ov, slot);
3315        }
3316      }
3317
3318      opaques.push_back(opaqueData);
3319
3320    // Otherwise, if the expression is the result, evaluate it
3321    // and remember the result.
3322    } else if (semantic == resultExpr) {
3323      if (forLValue)
3324        result.LV = CGF.EmitLValue(semantic);
3325      else
3326        result.RV = CGF.EmitAnyExpr(semantic, slot);
3327
3328    // Otherwise, evaluate the expression in an ignored context.
3329    } else {
3330      CGF.EmitIgnoredExpr(semantic);
3331    }
3332  }
3333
3334  // Unbind all the opaques now.
3335  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3336    opaques[i].unbind(CGF);
3337
3338  return result;
3339}
3340
3341RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3342                                               AggValueSlot slot) {
3343  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3344}
3345
3346LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3347  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3348}
3349