ExprConstant.cpp revision 266715
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27//    too, why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/CharUnits.h"
40#include "clang/AST/Expr.h"
41#include "clang/AST/RecordLayout.h"
42#include "clang/AST/StmtVisitor.h"
43#include "clang/AST/TypeLoc.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using llvm::APSInt;
53using llvm::APFloat;
54
55static bool IsGlobalLValue(APValue::LValueBase B);
56
57namespace {
58  struct LValue;
59  struct CallStackFrame;
60  struct EvalInfo;
61
62  static QualType getType(APValue::LValueBase B) {
63    if (!B) return QualType();
64    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65      return D->getType();
66
67    const Expr *Base = B.get<const Expr*>();
68
69    // For a materialized temporary, the type of the temporary we materialized
70    // may not be the type of the expression.
71    if (const MaterializeTemporaryExpr *MTE =
72            dyn_cast<MaterializeTemporaryExpr>(Base)) {
73      SmallVector<const Expr *, 2> CommaLHSs;
74      SmallVector<SubobjectAdjustment, 2> Adjustments;
75      const Expr *Temp = MTE->GetTemporaryExpr();
76      const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                               Adjustments);
78      // Keep any cv-qualifiers from the reference if we generated a temporary
79      // for it.
80      if (Inner != Temp)
81        return Inner->getType();
82    }
83
84    return Base->getType();
85  }
86
87  /// Get an LValue path entry, which is known to not be an array index, as a
88  /// field or base class.
89  static
90  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91    APValue::BaseOrMemberType Value;
92    Value.setFromOpaqueValue(E.BaseOrMember);
93    return Value;
94  }
95
96  /// Get an LValue path entry, which is known to not be an array index, as a
97  /// field declaration.
98  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100  }
101  /// Get an LValue path entry, which is known to not be an array index, as a
102  /// base class declaration.
103  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105  }
106  /// Determine whether this LValue path entry for a base class names a virtual
107  /// base class.
108  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109    return getAsBaseOrMember(E).getInt();
110  }
111
112  /// Find the path length and type of the most-derived subobject in the given
113  /// path, and find the size of the containing array, if any.
114  static
115  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                    ArrayRef<APValue::LValuePathEntry> Path,
117                                    uint64_t &ArraySize, QualType &Type) {
118    unsigned MostDerivedLength = 0;
119    Type = Base;
120    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121      if (Type->isArrayType()) {
122        const ConstantArrayType *CAT =
123          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124        Type = CAT->getElementType();
125        ArraySize = CAT->getSize().getZExtValue();
126        MostDerivedLength = I + 1;
127      } else if (Type->isAnyComplexType()) {
128        const ComplexType *CT = Type->castAs<ComplexType>();
129        Type = CT->getElementType();
130        ArraySize = 2;
131        MostDerivedLength = I + 1;
132      } else if (const FieldDecl *FD = getAsField(Path[I])) {
133        Type = FD->getType();
134        ArraySize = 0;
135        MostDerivedLength = I + 1;
136      } else {
137        // Path[I] describes a base class.
138        ArraySize = 0;
139      }
140    }
141    return MostDerivedLength;
142  }
143
144  // The order of this enum is important for diagnostics.
145  enum CheckSubobjectKind {
146    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147    CSK_This, CSK_Real, CSK_Imag
148  };
149
150  /// A path from a glvalue to a subobject of that glvalue.
151  struct SubobjectDesignator {
152    /// True if the subobject was named in a manner not supported by C++11. Such
153    /// lvalues can still be folded, but they are not core constant expressions
154    /// and we cannot perform lvalue-to-rvalue conversions on them.
155    bool Invalid : 1;
156
157    /// Is this a pointer one past the end of an object?
158    bool IsOnePastTheEnd : 1;
159
160    /// The length of the path to the most-derived object of which this is a
161    /// subobject.
162    unsigned MostDerivedPathLength : 30;
163
164    /// The size of the array of which the most-derived object is an element, or
165    /// 0 if the most-derived object is not an array element.
166    uint64_t MostDerivedArraySize;
167
168    /// The type of the most derived object referred to by this address.
169    QualType MostDerivedType;
170
171    typedef APValue::LValuePathEntry PathEntry;
172
173    /// The entries on the path from the glvalue to the designated subobject.
174    SmallVector<PathEntry, 8> Entries;
175
176    SubobjectDesignator() : Invalid(true) {}
177
178    explicit SubobjectDesignator(QualType T)
179      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180        MostDerivedArraySize(0), MostDerivedType(T) {}
181
182    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184        MostDerivedPathLength(0), MostDerivedArraySize(0) {
185      if (!Invalid) {
186        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187        ArrayRef<PathEntry> VEntries = V.getLValuePath();
188        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189        if (V.getLValueBase())
190          MostDerivedPathLength =
191              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                       V.getLValuePath(), MostDerivedArraySize,
193                                       MostDerivedType);
194      }
195    }
196
197    void setInvalid() {
198      Invalid = true;
199      Entries.clear();
200    }
201
202    /// Determine whether this is a one-past-the-end pointer.
203    bool isOnePastTheEnd() const {
204      if (IsOnePastTheEnd)
205        return true;
206      if (MostDerivedArraySize &&
207          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208        return true;
209      return false;
210    }
211
212    /// Check that this refers to a valid subobject.
213    bool isValidSubobject() const {
214      if (Invalid)
215        return false;
216      return !isOnePastTheEnd();
217    }
218    /// Check that this refers to a valid subobject, and if not, produce a
219    /// relevant diagnostic and set the designator as invalid.
220    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221
222    /// Update this designator to refer to the first element within this array.
223    void addArrayUnchecked(const ConstantArrayType *CAT) {
224      PathEntry Entry;
225      Entry.ArrayIndex = 0;
226      Entries.push_back(Entry);
227
228      // This is a most-derived object.
229      MostDerivedType = CAT->getElementType();
230      MostDerivedArraySize = CAT->getSize().getZExtValue();
231      MostDerivedPathLength = Entries.size();
232    }
233    /// Update this designator to refer to the given base or member of this
234    /// object.
235    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236      PathEntry Entry;
237      APValue::BaseOrMemberType Value(D, Virtual);
238      Entry.BaseOrMember = Value.getOpaqueValue();
239      Entries.push_back(Entry);
240
241      // If this isn't a base class, it's a new most-derived object.
242      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243        MostDerivedType = FD->getType();
244        MostDerivedArraySize = 0;
245        MostDerivedPathLength = Entries.size();
246      }
247    }
248    /// Update this designator to refer to the given complex component.
249    void addComplexUnchecked(QualType EltTy, bool Imag) {
250      PathEntry Entry;
251      Entry.ArrayIndex = Imag;
252      Entries.push_back(Entry);
253
254      // This is technically a most-derived object, though in practice this
255      // is unlikely to matter.
256      MostDerivedType = EltTy;
257      MostDerivedArraySize = 2;
258      MostDerivedPathLength = Entries.size();
259    }
260    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261    /// Add N to the address of this subobject.
262    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263      if (Invalid) return;
264      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265        Entries.back().ArrayIndex += N;
266        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268          setInvalid();
269        }
270        return;
271      }
272      // [expr.add]p4: For the purposes of these operators, a pointer to a
273      // nonarray object behaves the same as a pointer to the first element of
274      // an array of length one with the type of the object as its element type.
275      if (IsOnePastTheEnd && N == (uint64_t)-1)
276        IsOnePastTheEnd = false;
277      else if (!IsOnePastTheEnd && N == 1)
278        IsOnePastTheEnd = true;
279      else if (N != 0) {
280        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281        setInvalid();
282      }
283    }
284  };
285
286  /// A stack frame in the constexpr call stack.
287  struct CallStackFrame {
288    EvalInfo &Info;
289
290    /// Parent - The caller of this stack frame.
291    CallStackFrame *Caller;
292
293    /// CallLoc - The location of the call expression for this call.
294    SourceLocation CallLoc;
295
296    /// Callee - The function which was called.
297    const FunctionDecl *Callee;
298
299    /// Index - The call index of this call.
300    unsigned Index;
301
302    /// This - The binding for the this pointer in this call, if any.
303    const LValue *This;
304
305    /// Arguments - Parameter bindings for this function call, indexed by
306    /// parameters' function scope indices.
307    APValue *Arguments;
308
309    // Note that we intentionally use std::map here so that references to
310    // values are stable.
311    typedef std::map<const void*, APValue> MapTy;
312    typedef MapTy::const_iterator temp_iterator;
313    /// Temporaries - Temporary lvalues materialized within this stack frame.
314    MapTy Temporaries;
315
316    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317                   const FunctionDecl *Callee, const LValue *This,
318                   APValue *Arguments);
319    ~CallStackFrame();
320
321    APValue *getTemporary(const void *Key) {
322      MapTy::iterator I = Temporaries.find(Key);
323      return I == Temporaries.end() ? 0 : &I->second;
324    }
325    APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326  };
327
328  /// Temporarily override 'this'.
329  class ThisOverrideRAII {
330  public:
331    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332        : Frame(Frame), OldThis(Frame.This) {
333      if (Enable)
334        Frame.This = NewThis;
335    }
336    ~ThisOverrideRAII() {
337      Frame.This = OldThis;
338    }
339  private:
340    CallStackFrame &Frame;
341    const LValue *OldThis;
342  };
343
344  /// A partial diagnostic which we might know in advance that we are not going
345  /// to emit.
346  class OptionalDiagnostic {
347    PartialDiagnostic *Diag;
348
349  public:
350    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
351
352    template<typename T>
353    OptionalDiagnostic &operator<<(const T &v) {
354      if (Diag)
355        *Diag << v;
356      return *this;
357    }
358
359    OptionalDiagnostic &operator<<(const APSInt &I) {
360      if (Diag) {
361        SmallVector<char, 32> Buffer;
362        I.toString(Buffer);
363        *Diag << StringRef(Buffer.data(), Buffer.size());
364      }
365      return *this;
366    }
367
368    OptionalDiagnostic &operator<<(const APFloat &F) {
369      if (Diag) {
370        // FIXME: Force the precision of the source value down so we don't
371        // print digits which are usually useless (we don't really care here if
372        // we truncate a digit by accident in edge cases).  Ideally,
373        // APFloat::toString would automatically print the shortest
374        // representation which rounds to the correct value, but it's a bit
375        // tricky to implement.
376        unsigned precision =
377            llvm::APFloat::semanticsPrecision(F.getSemantics());
378        precision = (precision * 59 + 195) / 196;
379        SmallVector<char, 32> Buffer;
380        F.toString(Buffer, precision);
381        *Diag << StringRef(Buffer.data(), Buffer.size());
382      }
383      return *this;
384    }
385  };
386
387  /// A cleanup, and a flag indicating whether it is lifetime-extended.
388  class Cleanup {
389    llvm::PointerIntPair<APValue*, 1, bool> Value;
390
391  public:
392    Cleanup(APValue *Val, bool IsLifetimeExtended)
393        : Value(Val, IsLifetimeExtended) {}
394
395    bool isLifetimeExtended() const { return Value.getInt(); }
396    void endLifetime() {
397      *Value.getPointer() = APValue();
398    }
399  };
400
401  /// EvalInfo - This is a private struct used by the evaluator to capture
402  /// information about a subexpression as it is folded.  It retains information
403  /// about the AST context, but also maintains information about the folded
404  /// expression.
405  ///
406  /// If an expression could be evaluated, it is still possible it is not a C
407  /// "integer constant expression" or constant expression.  If not, this struct
408  /// captures information about how and why not.
409  ///
410  /// One bit of information passed *into* the request for constant folding
411  /// indicates whether the subexpression is "evaluated" or not according to C
412  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
413  /// evaluate the expression regardless of what the RHS is, but C only allows
414  /// certain things in certain situations.
415  struct EvalInfo {
416    ASTContext &Ctx;
417
418    /// EvalStatus - Contains information about the evaluation.
419    Expr::EvalStatus &EvalStatus;
420
421    /// CurrentCall - The top of the constexpr call stack.
422    CallStackFrame *CurrentCall;
423
424    /// CallStackDepth - The number of calls in the call stack right now.
425    unsigned CallStackDepth;
426
427    /// NextCallIndex - The next call index to assign.
428    unsigned NextCallIndex;
429
430    /// StepsLeft - The remaining number of evaluation steps we're permitted
431    /// to perform. This is essentially a limit for the number of statements
432    /// we will evaluate.
433    unsigned StepsLeft;
434
435    /// BottomFrame - The frame in which evaluation started. This must be
436    /// initialized after CurrentCall and CallStackDepth.
437    CallStackFrame BottomFrame;
438
439    /// A stack of values whose lifetimes end at the end of some surrounding
440    /// evaluation frame.
441    llvm::SmallVector<Cleanup, 16> CleanupStack;
442
443    /// EvaluatingDecl - This is the declaration whose initializer is being
444    /// evaluated, if any.
445    APValue::LValueBase EvaluatingDecl;
446
447    /// EvaluatingDeclValue - This is the value being constructed for the
448    /// declaration whose initializer is being evaluated, if any.
449    APValue *EvaluatingDeclValue;
450
451    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
452    /// notes attached to it will also be stored, otherwise they will not be.
453    bool HasActiveDiagnostic;
454
455    enum EvaluationMode {
456      /// Evaluate as a constant expression. Stop if we find that the expression
457      /// is not a constant expression.
458      EM_ConstantExpression,
459
460      /// Evaluate as a potential constant expression. Keep going if we hit a
461      /// construct that we can't evaluate yet (because we don't yet know the
462      /// value of something) but stop if we hit something that could never be
463      /// a constant expression.
464      EM_PotentialConstantExpression,
465
466      /// Fold the expression to a constant. Stop if we hit a side-effect that
467      /// we can't model.
468      EM_ConstantFold,
469
470      /// Evaluate the expression looking for integer overflow and similar
471      /// issues. Don't worry about side-effects, and try to visit all
472      /// subexpressions.
473      EM_EvaluateForOverflow,
474
475      /// Evaluate in any way we know how. Don't worry about side-effects that
476      /// can't be modeled.
477      EM_IgnoreSideEffects
478    } EvalMode;
479
480    /// Are we checking whether the expression is a potential constant
481    /// expression?
482    bool checkingPotentialConstantExpression() const {
483      return EvalMode == EM_PotentialConstantExpression;
484    }
485
486    /// Are we checking an expression for overflow?
487    // FIXME: We should check for any kind of undefined or suspicious behavior
488    // in such constructs, not just overflow.
489    bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
490
491    EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
492      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
493        CallStackDepth(0), NextCallIndex(1),
494        StepsLeft(getLangOpts().ConstexprStepLimit),
495        BottomFrame(*this, SourceLocation(), 0, 0, 0),
496        EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
497        HasActiveDiagnostic(false), EvalMode(Mode) {}
498
499    void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
500      EvaluatingDecl = Base;
501      EvaluatingDeclValue = &Value;
502    }
503
504    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
505
506    bool CheckCallLimit(SourceLocation Loc) {
507      // Don't perform any constexpr calls (other than the call we're checking)
508      // when checking a potential constant expression.
509      if (checkingPotentialConstantExpression() && CallStackDepth > 1)
510        return false;
511      if (NextCallIndex == 0) {
512        // NextCallIndex has wrapped around.
513        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
514        return false;
515      }
516      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
517        return true;
518      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
519        << getLangOpts().ConstexprCallDepth;
520      return false;
521    }
522
523    CallStackFrame *getCallFrame(unsigned CallIndex) {
524      assert(CallIndex && "no call index in getCallFrame");
525      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
526      // be null in this loop.
527      CallStackFrame *Frame = CurrentCall;
528      while (Frame->Index > CallIndex)
529        Frame = Frame->Caller;
530      return (Frame->Index == CallIndex) ? Frame : 0;
531    }
532
533    bool nextStep(const Stmt *S) {
534      if (!StepsLeft) {
535        Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
536        return false;
537      }
538      --StepsLeft;
539      return true;
540    }
541
542  private:
543    /// Add a diagnostic to the diagnostics list.
544    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
545      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
546      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
547      return EvalStatus.Diag->back().second;
548    }
549
550    /// Add notes containing a call stack to the current point of evaluation.
551    void addCallStack(unsigned Limit);
552
553  public:
554    /// Diagnose that the evaluation cannot be folded.
555    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
556                              = diag::note_invalid_subexpr_in_const_expr,
557                            unsigned ExtraNotes = 0) {
558      if (EvalStatus.Diag) {
559        // If we have a prior diagnostic, it will be noting that the expression
560        // isn't a constant expression. This diagnostic is more important,
561        // unless we require this evaluation to produce a constant expression.
562        //
563        // FIXME: We might want to show both diagnostics to the user in
564        // EM_ConstantFold mode.
565        if (!EvalStatus.Diag->empty()) {
566          switch (EvalMode) {
567          case EM_ConstantFold:
568          case EM_IgnoreSideEffects:
569          case EM_EvaluateForOverflow:
570            if (!EvalStatus.HasSideEffects)
571              break;
572            // We've had side-effects; we want the diagnostic from them, not
573            // some later problem.
574          case EM_ConstantExpression:
575          case EM_PotentialConstantExpression:
576            HasActiveDiagnostic = false;
577            return OptionalDiagnostic();
578          }
579        }
580
581        unsigned CallStackNotes = CallStackDepth - 1;
582        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
583        if (Limit)
584          CallStackNotes = std::min(CallStackNotes, Limit + 1);
585        if (checkingPotentialConstantExpression())
586          CallStackNotes = 0;
587
588        HasActiveDiagnostic = true;
589        EvalStatus.Diag->clear();
590        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
591        addDiag(Loc, DiagId);
592        if (!checkingPotentialConstantExpression())
593          addCallStack(Limit);
594        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
595      }
596      HasActiveDiagnostic = false;
597      return OptionalDiagnostic();
598    }
599
600    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
601                              = diag::note_invalid_subexpr_in_const_expr,
602                            unsigned ExtraNotes = 0) {
603      if (EvalStatus.Diag)
604        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
605      HasActiveDiagnostic = false;
606      return OptionalDiagnostic();
607    }
608
609    /// Diagnose that the evaluation does not produce a C++11 core constant
610    /// expression.
611    ///
612    /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
613    /// EM_PotentialConstantExpression mode and we produce one of these.
614    template<typename LocArg>
615    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
616                                 = diag::note_invalid_subexpr_in_const_expr,
617                               unsigned ExtraNotes = 0) {
618      // Don't override a previous diagnostic. Don't bother collecting
619      // diagnostics if we're evaluating for overflow.
620      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
621        HasActiveDiagnostic = false;
622        return OptionalDiagnostic();
623      }
624      return Diag(Loc, DiagId, ExtraNotes);
625    }
626
627    /// Add a note to a prior diagnostic.
628    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
629      if (!HasActiveDiagnostic)
630        return OptionalDiagnostic();
631      return OptionalDiagnostic(&addDiag(Loc, DiagId));
632    }
633
634    /// Add a stack of notes to a prior diagnostic.
635    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
636      if (HasActiveDiagnostic) {
637        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
638                                Diags.begin(), Diags.end());
639      }
640    }
641
642    /// Should we continue evaluation after encountering a side-effect that we
643    /// couldn't model?
644    bool keepEvaluatingAfterSideEffect() {
645      switch (EvalMode) {
646      case EM_PotentialConstantExpression:
647      case EM_EvaluateForOverflow:
648      case EM_IgnoreSideEffects:
649        return true;
650
651      case EM_ConstantExpression:
652      case EM_ConstantFold:
653        return false;
654      }
655      llvm_unreachable("Missed EvalMode case");
656    }
657
658    /// Note that we have had a side-effect, and determine whether we should
659    /// keep evaluating.
660    bool noteSideEffect() {
661      EvalStatus.HasSideEffects = true;
662      return keepEvaluatingAfterSideEffect();
663    }
664
665    /// Should we continue evaluation as much as possible after encountering a
666    /// construct which can't be reduced to a value?
667    bool keepEvaluatingAfterFailure() {
668      if (!StepsLeft)
669        return false;
670
671      switch (EvalMode) {
672      case EM_PotentialConstantExpression:
673      case EM_EvaluateForOverflow:
674        return true;
675
676      case EM_ConstantExpression:
677      case EM_ConstantFold:
678      case EM_IgnoreSideEffects:
679        return false;
680      }
681      llvm_unreachable("Missed EvalMode case");
682    }
683  };
684
685  /// Object used to treat all foldable expressions as constant expressions.
686  struct FoldConstant {
687    EvalInfo &Info;
688    bool Enabled;
689    bool HadNoPriorDiags;
690    EvalInfo::EvaluationMode OldMode;
691
692    explicit FoldConstant(EvalInfo &Info, bool Enabled)
693      : Info(Info),
694        Enabled(Enabled),
695        HadNoPriorDiags(Info.EvalStatus.Diag &&
696                        Info.EvalStatus.Diag->empty() &&
697                        !Info.EvalStatus.HasSideEffects),
698        OldMode(Info.EvalMode) {
699      if (Enabled && Info.EvalMode == EvalInfo::EM_ConstantExpression)
700        Info.EvalMode = EvalInfo::EM_ConstantFold;
701    }
702    void keepDiagnostics() { Enabled = false; }
703    ~FoldConstant() {
704      if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
705          !Info.EvalStatus.HasSideEffects)
706        Info.EvalStatus.Diag->clear();
707      Info.EvalMode = OldMode;
708    }
709  };
710
711  /// RAII object used to suppress diagnostics and side-effects from a
712  /// speculative evaluation.
713  class SpeculativeEvaluationRAII {
714    EvalInfo &Info;
715    Expr::EvalStatus Old;
716
717  public:
718    SpeculativeEvaluationRAII(EvalInfo &Info,
719                              SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
720      : Info(Info), Old(Info.EvalStatus) {
721      Info.EvalStatus.Diag = NewDiag;
722      // If we're speculatively evaluating, we may have skipped over some
723      // evaluations and missed out a side effect.
724      Info.EvalStatus.HasSideEffects = true;
725    }
726    ~SpeculativeEvaluationRAII() {
727      Info.EvalStatus = Old;
728    }
729  };
730
731  /// RAII object wrapping a full-expression or block scope, and handling
732  /// the ending of the lifetime of temporaries created within it.
733  template<bool IsFullExpression>
734  class ScopeRAII {
735    EvalInfo &Info;
736    unsigned OldStackSize;
737  public:
738    ScopeRAII(EvalInfo &Info)
739        : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
740    ~ScopeRAII() {
741      // Body moved to a static method to encourage the compiler to inline away
742      // instances of this class.
743      cleanup(Info, OldStackSize);
744    }
745  private:
746    static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
747      unsigned NewEnd = OldStackSize;
748      for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
749           I != N; ++I) {
750        if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
751          // Full-expression cleanup of a lifetime-extended temporary: nothing
752          // to do, just move this cleanup to the right place in the stack.
753          std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
754          ++NewEnd;
755        } else {
756          // End the lifetime of the object.
757          Info.CleanupStack[I].endLifetime();
758        }
759      }
760      Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
761                              Info.CleanupStack.end());
762    }
763  };
764  typedef ScopeRAII<false> BlockScopeRAII;
765  typedef ScopeRAII<true> FullExpressionRAII;
766}
767
768bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
769                                         CheckSubobjectKind CSK) {
770  if (Invalid)
771    return false;
772  if (isOnePastTheEnd()) {
773    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
774      << CSK;
775    setInvalid();
776    return false;
777  }
778  return true;
779}
780
781void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
782                                                    const Expr *E, uint64_t N) {
783  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
784    Info.CCEDiag(E, diag::note_constexpr_array_index)
785      << static_cast<int>(N) << /*array*/ 0
786      << static_cast<unsigned>(MostDerivedArraySize);
787  else
788    Info.CCEDiag(E, diag::note_constexpr_array_index)
789      << static_cast<int>(N) << /*non-array*/ 1;
790  setInvalid();
791}
792
793CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
794                               const FunctionDecl *Callee, const LValue *This,
795                               APValue *Arguments)
796    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
797      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
798  Info.CurrentCall = this;
799  ++Info.CallStackDepth;
800}
801
802CallStackFrame::~CallStackFrame() {
803  assert(Info.CurrentCall == this && "calls retired out of order");
804  --Info.CallStackDepth;
805  Info.CurrentCall = Caller;
806}
807
808APValue &CallStackFrame::createTemporary(const void *Key,
809                                         bool IsLifetimeExtended) {
810  APValue &Result = Temporaries[Key];
811  assert(Result.isUninit() && "temporary created multiple times");
812  Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
813  return Result;
814}
815
816static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
817
818void EvalInfo::addCallStack(unsigned Limit) {
819  // Determine which calls to skip, if any.
820  unsigned ActiveCalls = CallStackDepth - 1;
821  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
822  if (Limit && Limit < ActiveCalls) {
823    SkipStart = Limit / 2 + Limit % 2;
824    SkipEnd = ActiveCalls - Limit / 2;
825  }
826
827  // Walk the call stack and add the diagnostics.
828  unsigned CallIdx = 0;
829  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
830       Frame = Frame->Caller, ++CallIdx) {
831    // Skip this call?
832    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
833      if (CallIdx == SkipStart) {
834        // Note that we're skipping calls.
835        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
836          << unsigned(ActiveCalls - Limit);
837      }
838      continue;
839    }
840
841    SmallVector<char, 128> Buffer;
842    llvm::raw_svector_ostream Out(Buffer);
843    describeCall(Frame, Out);
844    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
845  }
846}
847
848namespace {
849  struct ComplexValue {
850  private:
851    bool IsInt;
852
853  public:
854    APSInt IntReal, IntImag;
855    APFloat FloatReal, FloatImag;
856
857    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
858
859    void makeComplexFloat() { IsInt = false; }
860    bool isComplexFloat() const { return !IsInt; }
861    APFloat &getComplexFloatReal() { return FloatReal; }
862    APFloat &getComplexFloatImag() { return FloatImag; }
863
864    void makeComplexInt() { IsInt = true; }
865    bool isComplexInt() const { return IsInt; }
866    APSInt &getComplexIntReal() { return IntReal; }
867    APSInt &getComplexIntImag() { return IntImag; }
868
869    void moveInto(APValue &v) const {
870      if (isComplexFloat())
871        v = APValue(FloatReal, FloatImag);
872      else
873        v = APValue(IntReal, IntImag);
874    }
875    void setFrom(const APValue &v) {
876      assert(v.isComplexFloat() || v.isComplexInt());
877      if (v.isComplexFloat()) {
878        makeComplexFloat();
879        FloatReal = v.getComplexFloatReal();
880        FloatImag = v.getComplexFloatImag();
881      } else {
882        makeComplexInt();
883        IntReal = v.getComplexIntReal();
884        IntImag = v.getComplexIntImag();
885      }
886    }
887  };
888
889  struct LValue {
890    APValue::LValueBase Base;
891    CharUnits Offset;
892    unsigned CallIndex;
893    SubobjectDesignator Designator;
894
895    const APValue::LValueBase getLValueBase() const { return Base; }
896    CharUnits &getLValueOffset() { return Offset; }
897    const CharUnits &getLValueOffset() const { return Offset; }
898    unsigned getLValueCallIndex() const { return CallIndex; }
899    SubobjectDesignator &getLValueDesignator() { return Designator; }
900    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
901
902    void moveInto(APValue &V) const {
903      if (Designator.Invalid)
904        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
905      else
906        V = APValue(Base, Offset, Designator.Entries,
907                    Designator.IsOnePastTheEnd, CallIndex);
908    }
909    void setFrom(ASTContext &Ctx, const APValue &V) {
910      assert(V.isLValue());
911      Base = V.getLValueBase();
912      Offset = V.getLValueOffset();
913      CallIndex = V.getLValueCallIndex();
914      Designator = SubobjectDesignator(Ctx, V);
915    }
916
917    void set(APValue::LValueBase B, unsigned I = 0) {
918      Base = B;
919      Offset = CharUnits::Zero();
920      CallIndex = I;
921      Designator = SubobjectDesignator(getType(B));
922    }
923
924    // Check that this LValue is not based on a null pointer. If it is, produce
925    // a diagnostic and mark the designator as invalid.
926    bool checkNullPointer(EvalInfo &Info, const Expr *E,
927                          CheckSubobjectKind CSK) {
928      if (Designator.Invalid)
929        return false;
930      if (!Base) {
931        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
932          << CSK;
933        Designator.setInvalid();
934        return false;
935      }
936      return true;
937    }
938
939    // Check this LValue refers to an object. If not, set the designator to be
940    // invalid and emit a diagnostic.
941    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
942      // Outside C++11, do not build a designator referring to a subobject of
943      // any object: we won't use such a designator for anything.
944      if (!Info.getLangOpts().CPlusPlus11)
945        Designator.setInvalid();
946      return checkNullPointer(Info, E, CSK) &&
947             Designator.checkSubobject(Info, E, CSK);
948    }
949
950    void addDecl(EvalInfo &Info, const Expr *E,
951                 const Decl *D, bool Virtual = false) {
952      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
953        Designator.addDeclUnchecked(D, Virtual);
954    }
955    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
956      if (checkSubobject(Info, E, CSK_ArrayToPointer))
957        Designator.addArrayUnchecked(CAT);
958    }
959    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
960      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
961        Designator.addComplexUnchecked(EltTy, Imag);
962    }
963    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
964      if (checkNullPointer(Info, E, CSK_ArrayIndex))
965        Designator.adjustIndex(Info, E, N);
966    }
967  };
968
969  struct MemberPtr {
970    MemberPtr() {}
971    explicit MemberPtr(const ValueDecl *Decl) :
972      DeclAndIsDerivedMember(Decl, false), Path() {}
973
974    /// The member or (direct or indirect) field referred to by this member
975    /// pointer, or 0 if this is a null member pointer.
976    const ValueDecl *getDecl() const {
977      return DeclAndIsDerivedMember.getPointer();
978    }
979    /// Is this actually a member of some type derived from the relevant class?
980    bool isDerivedMember() const {
981      return DeclAndIsDerivedMember.getInt();
982    }
983    /// Get the class which the declaration actually lives in.
984    const CXXRecordDecl *getContainingRecord() const {
985      return cast<CXXRecordDecl>(
986          DeclAndIsDerivedMember.getPointer()->getDeclContext());
987    }
988
989    void moveInto(APValue &V) const {
990      V = APValue(getDecl(), isDerivedMember(), Path);
991    }
992    void setFrom(const APValue &V) {
993      assert(V.isMemberPointer());
994      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
995      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
996      Path.clear();
997      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
998      Path.insert(Path.end(), P.begin(), P.end());
999    }
1000
1001    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1002    /// whether the member is a member of some class derived from the class type
1003    /// of the member pointer.
1004    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1005    /// Path - The path of base/derived classes from the member declaration's
1006    /// class (exclusive) to the class type of the member pointer (inclusive).
1007    SmallVector<const CXXRecordDecl*, 4> Path;
1008
1009    /// Perform a cast towards the class of the Decl (either up or down the
1010    /// hierarchy).
1011    bool castBack(const CXXRecordDecl *Class) {
1012      assert(!Path.empty());
1013      const CXXRecordDecl *Expected;
1014      if (Path.size() >= 2)
1015        Expected = Path[Path.size() - 2];
1016      else
1017        Expected = getContainingRecord();
1018      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1019        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1020        // if B does not contain the original member and is not a base or
1021        // derived class of the class containing the original member, the result
1022        // of the cast is undefined.
1023        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1024        // (D::*). We consider that to be a language defect.
1025        return false;
1026      }
1027      Path.pop_back();
1028      return true;
1029    }
1030    /// Perform a base-to-derived member pointer cast.
1031    bool castToDerived(const CXXRecordDecl *Derived) {
1032      if (!getDecl())
1033        return true;
1034      if (!isDerivedMember()) {
1035        Path.push_back(Derived);
1036        return true;
1037      }
1038      if (!castBack(Derived))
1039        return false;
1040      if (Path.empty())
1041        DeclAndIsDerivedMember.setInt(false);
1042      return true;
1043    }
1044    /// Perform a derived-to-base member pointer cast.
1045    bool castToBase(const CXXRecordDecl *Base) {
1046      if (!getDecl())
1047        return true;
1048      if (Path.empty())
1049        DeclAndIsDerivedMember.setInt(true);
1050      if (isDerivedMember()) {
1051        Path.push_back(Base);
1052        return true;
1053      }
1054      return castBack(Base);
1055    }
1056  };
1057
1058  /// Compare two member pointers, which are assumed to be of the same type.
1059  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1060    if (!LHS.getDecl() || !RHS.getDecl())
1061      return !LHS.getDecl() && !RHS.getDecl();
1062    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1063      return false;
1064    return LHS.Path == RHS.Path;
1065  }
1066}
1067
1068static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1069static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1070                            const LValue &This, const Expr *E,
1071                            bool AllowNonLiteralTypes = false);
1072static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1073static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1074static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1075                                  EvalInfo &Info);
1076static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1077static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
1078static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1079                                    EvalInfo &Info);
1080static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1081static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1082static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1083
1084//===----------------------------------------------------------------------===//
1085// Misc utilities
1086//===----------------------------------------------------------------------===//
1087
1088/// Produce a string describing the given constexpr call.
1089static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1090  unsigned ArgIndex = 0;
1091  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1092                      !isa<CXXConstructorDecl>(Frame->Callee) &&
1093                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1094
1095  if (!IsMemberCall)
1096    Out << *Frame->Callee << '(';
1097
1098  if (Frame->This && IsMemberCall) {
1099    APValue Val;
1100    Frame->This->moveInto(Val);
1101    Val.printPretty(Out, Frame->Info.Ctx,
1102                    Frame->This->Designator.MostDerivedType);
1103    // FIXME: Add parens around Val if needed.
1104    Out << "->" << *Frame->Callee << '(';
1105    IsMemberCall = false;
1106  }
1107
1108  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1109       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1110    if (ArgIndex > (unsigned)IsMemberCall)
1111      Out << ", ";
1112
1113    const ParmVarDecl *Param = *I;
1114    const APValue &Arg = Frame->Arguments[ArgIndex];
1115    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1116
1117    if (ArgIndex == 0 && IsMemberCall)
1118      Out << "->" << *Frame->Callee << '(';
1119  }
1120
1121  Out << ')';
1122}
1123
1124/// Evaluate an expression to see if it had side-effects, and discard its
1125/// result.
1126/// \return \c true if the caller should keep evaluating.
1127static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1128  APValue Scratch;
1129  if (!Evaluate(Scratch, Info, E))
1130    // We don't need the value, but we might have skipped a side effect here.
1131    return Info.noteSideEffect();
1132  return true;
1133}
1134
1135/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1136/// return its existing value.
1137static int64_t getExtValue(const APSInt &Value) {
1138  return Value.isSigned() ? Value.getSExtValue()
1139                          : static_cast<int64_t>(Value.getZExtValue());
1140}
1141
1142/// Should this call expression be treated as a string literal?
1143static bool IsStringLiteralCall(const CallExpr *E) {
1144  unsigned Builtin = E->isBuiltinCall();
1145  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1146          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1147}
1148
1149static bool IsGlobalLValue(APValue::LValueBase B) {
1150  // C++11 [expr.const]p3 An address constant expression is a prvalue core
1151  // constant expression of pointer type that evaluates to...
1152
1153  // ... a null pointer value, or a prvalue core constant expression of type
1154  // std::nullptr_t.
1155  if (!B) return true;
1156
1157  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1158    // ... the address of an object with static storage duration,
1159    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1160      return VD->hasGlobalStorage();
1161    // ... the address of a function,
1162    return isa<FunctionDecl>(D);
1163  }
1164
1165  const Expr *E = B.get<const Expr*>();
1166  switch (E->getStmtClass()) {
1167  default:
1168    return false;
1169  case Expr::CompoundLiteralExprClass: {
1170    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1171    return CLE->isFileScope() && CLE->isLValue();
1172  }
1173  case Expr::MaterializeTemporaryExprClass:
1174    // A materialized temporary might have been lifetime-extended to static
1175    // storage duration.
1176    return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1177  // A string literal has static storage duration.
1178  case Expr::StringLiteralClass:
1179  case Expr::PredefinedExprClass:
1180  case Expr::ObjCStringLiteralClass:
1181  case Expr::ObjCEncodeExprClass:
1182  case Expr::CXXTypeidExprClass:
1183  case Expr::CXXUuidofExprClass:
1184    return true;
1185  case Expr::CallExprClass:
1186    return IsStringLiteralCall(cast<CallExpr>(E));
1187  // For GCC compatibility, &&label has static storage duration.
1188  case Expr::AddrLabelExprClass:
1189    return true;
1190  // A Block literal expression may be used as the initialization value for
1191  // Block variables at global or local static scope.
1192  case Expr::BlockExprClass:
1193    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1194  case Expr::ImplicitValueInitExprClass:
1195    // FIXME:
1196    // We can never form an lvalue with an implicit value initialization as its
1197    // base through expression evaluation, so these only appear in one case: the
1198    // implicit variable declaration we invent when checking whether a constexpr
1199    // constructor can produce a constant expression. We must assume that such
1200    // an expression might be a global lvalue.
1201    return true;
1202  }
1203}
1204
1205static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1206  assert(Base && "no location for a null lvalue");
1207  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1208  if (VD)
1209    Info.Note(VD->getLocation(), diag::note_declared_at);
1210  else
1211    Info.Note(Base.get<const Expr*>()->getExprLoc(),
1212              diag::note_constexpr_temporary_here);
1213}
1214
1215/// Check that this reference or pointer core constant expression is a valid
1216/// value for an address or reference constant expression. Return true if we
1217/// can fold this expression, whether or not it's a constant expression.
1218static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1219                                          QualType Type, const LValue &LVal) {
1220  bool IsReferenceType = Type->isReferenceType();
1221
1222  APValue::LValueBase Base = LVal.getLValueBase();
1223  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1224
1225  // Check that the object is a global. Note that the fake 'this' object we
1226  // manufacture when checking potential constant expressions is conservatively
1227  // assumed to be global here.
1228  if (!IsGlobalLValue(Base)) {
1229    if (Info.getLangOpts().CPlusPlus11) {
1230      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1231      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1232        << IsReferenceType << !Designator.Entries.empty()
1233        << !!VD << VD;
1234      NoteLValueLocation(Info, Base);
1235    } else {
1236      Info.Diag(Loc);
1237    }
1238    // Don't allow references to temporaries to escape.
1239    return false;
1240  }
1241  assert((Info.checkingPotentialConstantExpression() ||
1242          LVal.getLValueCallIndex() == 0) &&
1243         "have call index for global lvalue");
1244
1245  // Check if this is a thread-local variable.
1246  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1247    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1248      if (Var->getTLSKind())
1249        return false;
1250    }
1251  }
1252
1253  // Allow address constant expressions to be past-the-end pointers. This is
1254  // an extension: the standard requires them to point to an object.
1255  if (!IsReferenceType)
1256    return true;
1257
1258  // A reference constant expression must refer to an object.
1259  if (!Base) {
1260    // FIXME: diagnostic
1261    Info.CCEDiag(Loc);
1262    return true;
1263  }
1264
1265  // Does this refer one past the end of some object?
1266  if (Designator.isOnePastTheEnd()) {
1267    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1268    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1269      << !Designator.Entries.empty() << !!VD << VD;
1270    NoteLValueLocation(Info, Base);
1271  }
1272
1273  return true;
1274}
1275
1276/// Check that this core constant expression is of literal type, and if not,
1277/// produce an appropriate diagnostic.
1278static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1279                             const LValue *This = 0) {
1280  if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1281    return true;
1282
1283  // C++1y: A constant initializer for an object o [...] may also invoke
1284  // constexpr constructors for o and its subobjects even if those objects
1285  // are of non-literal class types.
1286  if (Info.getLangOpts().CPlusPlus1y && This &&
1287      Info.EvaluatingDecl == This->getLValueBase())
1288    return true;
1289
1290  // Prvalue constant expressions must be of literal types.
1291  if (Info.getLangOpts().CPlusPlus11)
1292    Info.Diag(E, diag::note_constexpr_nonliteral)
1293      << E->getType();
1294  else
1295    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1296  return false;
1297}
1298
1299/// Check that this core constant expression value is a valid value for a
1300/// constant expression. If not, report an appropriate diagnostic. Does not
1301/// check that the expression is of literal type.
1302static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1303                                    QualType Type, const APValue &Value) {
1304  if (Value.isUninit()) {
1305    Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1306      << true << Type;
1307    return false;
1308  }
1309
1310  // Core issue 1454: For a literal constant expression of array or class type,
1311  // each subobject of its value shall have been initialized by a constant
1312  // expression.
1313  if (Value.isArray()) {
1314    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1315    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1316      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1317                                   Value.getArrayInitializedElt(I)))
1318        return false;
1319    }
1320    if (!Value.hasArrayFiller())
1321      return true;
1322    return CheckConstantExpression(Info, DiagLoc, EltTy,
1323                                   Value.getArrayFiller());
1324  }
1325  if (Value.isUnion() && Value.getUnionField()) {
1326    return CheckConstantExpression(Info, DiagLoc,
1327                                   Value.getUnionField()->getType(),
1328                                   Value.getUnionValue());
1329  }
1330  if (Value.isStruct()) {
1331    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1332    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1333      unsigned BaseIndex = 0;
1334      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1335             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1336        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1337                                     Value.getStructBase(BaseIndex)))
1338          return false;
1339      }
1340    }
1341    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1342         I != E; ++I) {
1343      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1344                                   Value.getStructField(I->getFieldIndex())))
1345        return false;
1346    }
1347  }
1348
1349  if (Value.isLValue()) {
1350    LValue LVal;
1351    LVal.setFrom(Info.Ctx, Value);
1352    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1353  }
1354
1355  // Everything else is fine.
1356  return true;
1357}
1358
1359const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1360  return LVal.Base.dyn_cast<const ValueDecl*>();
1361}
1362
1363static bool IsLiteralLValue(const LValue &Value) {
1364  if (Value.CallIndex)
1365    return false;
1366  const Expr *E = Value.Base.dyn_cast<const Expr*>();
1367  return E && !isa<MaterializeTemporaryExpr>(E);
1368}
1369
1370static bool IsWeakLValue(const LValue &Value) {
1371  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1372  return Decl && Decl->isWeak();
1373}
1374
1375static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1376  // A null base expression indicates a null pointer.  These are always
1377  // evaluatable, and they are false unless the offset is zero.
1378  if (!Value.getLValueBase()) {
1379    Result = !Value.getLValueOffset().isZero();
1380    return true;
1381  }
1382
1383  // We have a non-null base.  These are generally known to be true, but if it's
1384  // a weak declaration it can be null at runtime.
1385  Result = true;
1386  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1387  return !Decl || !Decl->isWeak();
1388}
1389
1390static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1391  switch (Val.getKind()) {
1392  case APValue::Uninitialized:
1393    return false;
1394  case APValue::Int:
1395    Result = Val.getInt().getBoolValue();
1396    return true;
1397  case APValue::Float:
1398    Result = !Val.getFloat().isZero();
1399    return true;
1400  case APValue::ComplexInt:
1401    Result = Val.getComplexIntReal().getBoolValue() ||
1402             Val.getComplexIntImag().getBoolValue();
1403    return true;
1404  case APValue::ComplexFloat:
1405    Result = !Val.getComplexFloatReal().isZero() ||
1406             !Val.getComplexFloatImag().isZero();
1407    return true;
1408  case APValue::LValue:
1409    return EvalPointerValueAsBool(Val, Result);
1410  case APValue::MemberPointer:
1411    Result = Val.getMemberPointerDecl();
1412    return true;
1413  case APValue::Vector:
1414  case APValue::Array:
1415  case APValue::Struct:
1416  case APValue::Union:
1417  case APValue::AddrLabelDiff:
1418    return false;
1419  }
1420
1421  llvm_unreachable("unknown APValue kind");
1422}
1423
1424static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1425                                       EvalInfo &Info) {
1426  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1427  APValue Val;
1428  if (!Evaluate(Val, Info, E))
1429    return false;
1430  return HandleConversionToBool(Val, Result);
1431}
1432
1433template<typename T>
1434static void HandleOverflow(EvalInfo &Info, const Expr *E,
1435                           const T &SrcValue, QualType DestType) {
1436  Info.CCEDiag(E, diag::note_constexpr_overflow)
1437    << SrcValue << DestType;
1438}
1439
1440static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1441                                 QualType SrcType, const APFloat &Value,
1442                                 QualType DestType, APSInt &Result) {
1443  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1444  // Determine whether we are converting to unsigned or signed.
1445  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1446
1447  Result = APSInt(DestWidth, !DestSigned);
1448  bool ignored;
1449  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1450      & APFloat::opInvalidOp)
1451    HandleOverflow(Info, E, Value, DestType);
1452  return true;
1453}
1454
1455static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1456                                   QualType SrcType, QualType DestType,
1457                                   APFloat &Result) {
1458  APFloat Value = Result;
1459  bool ignored;
1460  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1461                     APFloat::rmNearestTiesToEven, &ignored)
1462      & APFloat::opOverflow)
1463    HandleOverflow(Info, E, Value, DestType);
1464  return true;
1465}
1466
1467static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1468                                 QualType DestType, QualType SrcType,
1469                                 APSInt &Value) {
1470  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1471  APSInt Result = Value;
1472  // Figure out if this is a truncate, extend or noop cast.
1473  // If the input is signed, do a sign extend, noop, or truncate.
1474  Result = Result.extOrTrunc(DestWidth);
1475  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1476  return Result;
1477}
1478
1479static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1480                                 QualType SrcType, const APSInt &Value,
1481                                 QualType DestType, APFloat &Result) {
1482  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1483  if (Result.convertFromAPInt(Value, Value.isSigned(),
1484                              APFloat::rmNearestTiesToEven)
1485      & APFloat::opOverflow)
1486    HandleOverflow(Info, E, Value, DestType);
1487  return true;
1488}
1489
1490static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1491                                  APValue &Value, const FieldDecl *FD) {
1492  assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1493
1494  if (!Value.isInt()) {
1495    // Trying to store a pointer-cast-to-integer into a bitfield.
1496    // FIXME: In this case, we should provide the diagnostic for casting
1497    // a pointer to an integer.
1498    assert(Value.isLValue() && "integral value neither int nor lvalue?");
1499    Info.Diag(E);
1500    return false;
1501  }
1502
1503  APSInt &Int = Value.getInt();
1504  unsigned OldBitWidth = Int.getBitWidth();
1505  unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1506  if (NewBitWidth < OldBitWidth)
1507    Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1508  return true;
1509}
1510
1511static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1512                                  llvm::APInt &Res) {
1513  APValue SVal;
1514  if (!Evaluate(SVal, Info, E))
1515    return false;
1516  if (SVal.isInt()) {
1517    Res = SVal.getInt();
1518    return true;
1519  }
1520  if (SVal.isFloat()) {
1521    Res = SVal.getFloat().bitcastToAPInt();
1522    return true;
1523  }
1524  if (SVal.isVector()) {
1525    QualType VecTy = E->getType();
1526    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1527    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1528    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1529    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1530    Res = llvm::APInt::getNullValue(VecSize);
1531    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1532      APValue &Elt = SVal.getVectorElt(i);
1533      llvm::APInt EltAsInt;
1534      if (Elt.isInt()) {
1535        EltAsInt = Elt.getInt();
1536      } else if (Elt.isFloat()) {
1537        EltAsInt = Elt.getFloat().bitcastToAPInt();
1538      } else {
1539        // Don't try to handle vectors of anything other than int or float
1540        // (not sure if it's possible to hit this case).
1541        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1542        return false;
1543      }
1544      unsigned BaseEltSize = EltAsInt.getBitWidth();
1545      if (BigEndian)
1546        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1547      else
1548        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1549    }
1550    return true;
1551  }
1552  // Give up if the input isn't an int, float, or vector.  For example, we
1553  // reject "(v4i16)(intptr_t)&a".
1554  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1555  return false;
1556}
1557
1558/// Perform the given integer operation, which is known to need at most BitWidth
1559/// bits, and check for overflow in the original type (if that type was not an
1560/// unsigned type).
1561template<typename Operation>
1562static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1563                                   const APSInt &LHS, const APSInt &RHS,
1564                                   unsigned BitWidth, Operation Op) {
1565  if (LHS.isUnsigned())
1566    return Op(LHS, RHS);
1567
1568  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1569  APSInt Result = Value.trunc(LHS.getBitWidth());
1570  if (Result.extend(BitWidth) != Value) {
1571    if (Info.checkingForOverflow())
1572      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1573        diag::warn_integer_constant_overflow)
1574          << Result.toString(10) << E->getType();
1575    else
1576      HandleOverflow(Info, E, Value, E->getType());
1577  }
1578  return Result;
1579}
1580
1581/// Perform the given binary integer operation.
1582static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1583                              BinaryOperatorKind Opcode, APSInt RHS,
1584                              APSInt &Result) {
1585  switch (Opcode) {
1586  default:
1587    Info.Diag(E);
1588    return false;
1589  case BO_Mul:
1590    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1591                                  std::multiplies<APSInt>());
1592    return true;
1593  case BO_Add:
1594    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1595                                  std::plus<APSInt>());
1596    return true;
1597  case BO_Sub:
1598    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1599                                  std::minus<APSInt>());
1600    return true;
1601  case BO_And: Result = LHS & RHS; return true;
1602  case BO_Xor: Result = LHS ^ RHS; return true;
1603  case BO_Or:  Result = LHS | RHS; return true;
1604  case BO_Div:
1605  case BO_Rem:
1606    if (RHS == 0) {
1607      Info.Diag(E, diag::note_expr_divide_by_zero);
1608      return false;
1609    }
1610    // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1611    if (RHS.isNegative() && RHS.isAllOnesValue() &&
1612        LHS.isSigned() && LHS.isMinSignedValue())
1613      HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1614    Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1615    return true;
1616  case BO_Shl: {
1617    if (Info.getLangOpts().OpenCL)
1618      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1619      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1620                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1621                    RHS.isUnsigned());
1622    else if (RHS.isSigned() && RHS.isNegative()) {
1623      // During constant-folding, a negative shift is an opposite shift. Such
1624      // a shift is not a constant expression.
1625      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1626      RHS = -RHS;
1627      goto shift_right;
1628    }
1629  shift_left:
1630    // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1631    // the shifted type.
1632    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1633    if (SA != RHS) {
1634      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1635        << RHS << E->getType() << LHS.getBitWidth();
1636    } else if (LHS.isSigned()) {
1637      // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1638      // operand, and must not overflow the corresponding unsigned type.
1639      if (LHS.isNegative())
1640        Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1641      else if (LHS.countLeadingZeros() < SA)
1642        Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1643    }
1644    Result = LHS << SA;
1645    return true;
1646  }
1647  case BO_Shr: {
1648    if (Info.getLangOpts().OpenCL)
1649      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1650      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1651                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1652                    RHS.isUnsigned());
1653    else if (RHS.isSigned() && RHS.isNegative()) {
1654      // During constant-folding, a negative shift is an opposite shift. Such a
1655      // shift is not a constant expression.
1656      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1657      RHS = -RHS;
1658      goto shift_left;
1659    }
1660  shift_right:
1661    // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1662    // shifted type.
1663    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1664    if (SA != RHS)
1665      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1666        << RHS << E->getType() << LHS.getBitWidth();
1667    Result = LHS >> SA;
1668    return true;
1669  }
1670
1671  case BO_LT: Result = LHS < RHS; return true;
1672  case BO_GT: Result = LHS > RHS; return true;
1673  case BO_LE: Result = LHS <= RHS; return true;
1674  case BO_GE: Result = LHS >= RHS; return true;
1675  case BO_EQ: Result = LHS == RHS; return true;
1676  case BO_NE: Result = LHS != RHS; return true;
1677  }
1678}
1679
1680/// Perform the given binary floating-point operation, in-place, on LHS.
1681static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1682                                  APFloat &LHS, BinaryOperatorKind Opcode,
1683                                  const APFloat &RHS) {
1684  switch (Opcode) {
1685  default:
1686    Info.Diag(E);
1687    return false;
1688  case BO_Mul:
1689    LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1690    break;
1691  case BO_Add:
1692    LHS.add(RHS, APFloat::rmNearestTiesToEven);
1693    break;
1694  case BO_Sub:
1695    LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1696    break;
1697  case BO_Div:
1698    LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1699    break;
1700  }
1701
1702  if (LHS.isInfinity() || LHS.isNaN())
1703    Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1704  return true;
1705}
1706
1707/// Cast an lvalue referring to a base subobject to a derived class, by
1708/// truncating the lvalue's path to the given length.
1709static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1710                               const RecordDecl *TruncatedType,
1711                               unsigned TruncatedElements) {
1712  SubobjectDesignator &D = Result.Designator;
1713
1714  // Check we actually point to a derived class object.
1715  if (TruncatedElements == D.Entries.size())
1716    return true;
1717  assert(TruncatedElements >= D.MostDerivedPathLength &&
1718         "not casting to a derived class");
1719  if (!Result.checkSubobject(Info, E, CSK_Derived))
1720    return false;
1721
1722  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1723  const RecordDecl *RD = TruncatedType;
1724  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1725    if (RD->isInvalidDecl()) return false;
1726    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1727    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1728    if (isVirtualBaseClass(D.Entries[I]))
1729      Result.Offset -= Layout.getVBaseClassOffset(Base);
1730    else
1731      Result.Offset -= Layout.getBaseClassOffset(Base);
1732    RD = Base;
1733  }
1734  D.Entries.resize(TruncatedElements);
1735  return true;
1736}
1737
1738static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1739                                   const CXXRecordDecl *Derived,
1740                                   const CXXRecordDecl *Base,
1741                                   const ASTRecordLayout *RL = 0) {
1742  if (!RL) {
1743    if (Derived->isInvalidDecl()) return false;
1744    RL = &Info.Ctx.getASTRecordLayout(Derived);
1745  }
1746
1747  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1748  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1749  return true;
1750}
1751
1752static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1753                             const CXXRecordDecl *DerivedDecl,
1754                             const CXXBaseSpecifier *Base) {
1755  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1756
1757  if (!Base->isVirtual())
1758    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1759
1760  SubobjectDesignator &D = Obj.Designator;
1761  if (D.Invalid)
1762    return false;
1763
1764  // Extract most-derived object and corresponding type.
1765  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1766  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1767    return false;
1768
1769  // Find the virtual base class.
1770  if (DerivedDecl->isInvalidDecl()) return false;
1771  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1772  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1773  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1774  return true;
1775}
1776
1777static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1778                                 QualType Type, LValue &Result) {
1779  for (CastExpr::path_const_iterator PathI = E->path_begin(),
1780                                     PathE = E->path_end();
1781       PathI != PathE; ++PathI) {
1782    if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1783                          *PathI))
1784      return false;
1785    Type = (*PathI)->getType();
1786  }
1787  return true;
1788}
1789
1790/// Update LVal to refer to the given field, which must be a member of the type
1791/// currently described by LVal.
1792static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1793                               const FieldDecl *FD,
1794                               const ASTRecordLayout *RL = 0) {
1795  if (!RL) {
1796    if (FD->getParent()->isInvalidDecl()) return false;
1797    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1798  }
1799
1800  unsigned I = FD->getFieldIndex();
1801  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1802  LVal.addDecl(Info, E, FD);
1803  return true;
1804}
1805
1806/// Update LVal to refer to the given indirect field.
1807static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1808                                       LValue &LVal,
1809                                       const IndirectFieldDecl *IFD) {
1810  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1811                                         CE = IFD->chain_end(); C != CE; ++C)
1812    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1813      return false;
1814  return true;
1815}
1816
1817/// Get the size of the given type in char units.
1818static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1819                         QualType Type, CharUnits &Size) {
1820  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1821  // extension.
1822  if (Type->isVoidType() || Type->isFunctionType()) {
1823    Size = CharUnits::One();
1824    return true;
1825  }
1826
1827  if (!Type->isConstantSizeType()) {
1828    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1829    // FIXME: Better diagnostic.
1830    Info.Diag(Loc);
1831    return false;
1832  }
1833
1834  Size = Info.Ctx.getTypeSizeInChars(Type);
1835  return true;
1836}
1837
1838/// Update a pointer value to model pointer arithmetic.
1839/// \param Info - Information about the ongoing evaluation.
1840/// \param E - The expression being evaluated, for diagnostic purposes.
1841/// \param LVal - The pointer value to be updated.
1842/// \param EltTy - The pointee type represented by LVal.
1843/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1844static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1845                                        LValue &LVal, QualType EltTy,
1846                                        int64_t Adjustment) {
1847  CharUnits SizeOfPointee;
1848  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1849    return false;
1850
1851  // Compute the new offset in the appropriate width.
1852  LVal.Offset += Adjustment * SizeOfPointee;
1853  LVal.adjustIndex(Info, E, Adjustment);
1854  return true;
1855}
1856
1857/// Update an lvalue to refer to a component of a complex number.
1858/// \param Info - Information about the ongoing evaluation.
1859/// \param LVal - The lvalue to be updated.
1860/// \param EltTy - The complex number's component type.
1861/// \param Imag - False for the real component, true for the imaginary.
1862static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1863                                       LValue &LVal, QualType EltTy,
1864                                       bool Imag) {
1865  if (Imag) {
1866    CharUnits SizeOfComponent;
1867    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1868      return false;
1869    LVal.Offset += SizeOfComponent;
1870  }
1871  LVal.addComplex(Info, E, EltTy, Imag);
1872  return true;
1873}
1874
1875/// Try to evaluate the initializer for a variable declaration.
1876///
1877/// \param Info   Information about the ongoing evaluation.
1878/// \param E      An expression to be used when printing diagnostics.
1879/// \param VD     The variable whose initializer should be obtained.
1880/// \param Frame  The frame in which the variable was created. Must be null
1881///               if this variable is not local to the evaluation.
1882/// \param Result Filled in with a pointer to the value of the variable.
1883static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1884                                const VarDecl *VD, CallStackFrame *Frame,
1885                                APValue *&Result) {
1886  // If this is a parameter to an active constexpr function call, perform
1887  // argument substitution.
1888  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1889    // Assume arguments of a potential constant expression are unknown
1890    // constant expressions.
1891    if (Info.checkingPotentialConstantExpression())
1892      return false;
1893    if (!Frame || !Frame->Arguments) {
1894      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1895      return false;
1896    }
1897    Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1898    return true;
1899  }
1900
1901  // If this is a local variable, dig out its value.
1902  if (Frame) {
1903    Result = Frame->getTemporary(VD);
1904    assert(Result && "missing value for local variable");
1905    return true;
1906  }
1907
1908  // Dig out the initializer, and use the declaration which it's attached to.
1909  const Expr *Init = VD->getAnyInitializer(VD);
1910  if (!Init || Init->isValueDependent()) {
1911    // If we're checking a potential constant expression, the variable could be
1912    // initialized later.
1913    if (!Info.checkingPotentialConstantExpression())
1914      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1915    return false;
1916  }
1917
1918  // If we're currently evaluating the initializer of this declaration, use that
1919  // in-flight value.
1920  if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1921    Result = Info.EvaluatingDeclValue;
1922    return true;
1923  }
1924
1925  // Never evaluate the initializer of a weak variable. We can't be sure that
1926  // this is the definition which will be used.
1927  if (VD->isWeak()) {
1928    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1929    return false;
1930  }
1931
1932  // Check that we can fold the initializer. In C++, we will have already done
1933  // this in the cases where it matters for conformance.
1934  SmallVector<PartialDiagnosticAt, 8> Notes;
1935  if (!VD->evaluateValue(Notes)) {
1936    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1937              Notes.size() + 1) << VD;
1938    Info.Note(VD->getLocation(), diag::note_declared_at);
1939    Info.addNotes(Notes);
1940    return false;
1941  } else if (!VD->checkInitIsICE()) {
1942    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1943                 Notes.size() + 1) << VD;
1944    Info.Note(VD->getLocation(), diag::note_declared_at);
1945    Info.addNotes(Notes);
1946  }
1947
1948  Result = VD->getEvaluatedValue();
1949  return true;
1950}
1951
1952static bool IsConstNonVolatile(QualType T) {
1953  Qualifiers Quals = T.getQualifiers();
1954  return Quals.hasConst() && !Quals.hasVolatile();
1955}
1956
1957/// Get the base index of the given base class within an APValue representing
1958/// the given derived class.
1959static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1960                             const CXXRecordDecl *Base) {
1961  Base = Base->getCanonicalDecl();
1962  unsigned Index = 0;
1963  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1964         E = Derived->bases_end(); I != E; ++I, ++Index) {
1965    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1966      return Index;
1967  }
1968
1969  llvm_unreachable("base class missing from derived class's bases list");
1970}
1971
1972/// Extract the value of a character from a string literal.
1973static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1974                                            uint64_t Index) {
1975  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1976  const StringLiteral *S = cast<StringLiteral>(Lit);
1977  const ConstantArrayType *CAT =
1978      Info.Ctx.getAsConstantArrayType(S->getType());
1979  assert(CAT && "string literal isn't an array");
1980  QualType CharType = CAT->getElementType();
1981  assert(CharType->isIntegerType() && "unexpected character type");
1982
1983  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1984               CharType->isUnsignedIntegerType());
1985  if (Index < S->getLength())
1986    Value = S->getCodeUnit(Index);
1987  return Value;
1988}
1989
1990// Expand a string literal into an array of characters.
1991static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
1992                                APValue &Result) {
1993  const StringLiteral *S = cast<StringLiteral>(Lit);
1994  const ConstantArrayType *CAT =
1995      Info.Ctx.getAsConstantArrayType(S->getType());
1996  assert(CAT && "string literal isn't an array");
1997  QualType CharType = CAT->getElementType();
1998  assert(CharType->isIntegerType() && "unexpected character type");
1999
2000  unsigned Elts = CAT->getSize().getZExtValue();
2001  Result = APValue(APValue::UninitArray(),
2002                   std::min(S->getLength(), Elts), Elts);
2003  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2004               CharType->isUnsignedIntegerType());
2005  if (Result.hasArrayFiller())
2006    Result.getArrayFiller() = APValue(Value);
2007  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2008    Value = S->getCodeUnit(I);
2009    Result.getArrayInitializedElt(I) = APValue(Value);
2010  }
2011}
2012
2013// Expand an array so that it has more than Index filled elements.
2014static void expandArray(APValue &Array, unsigned Index) {
2015  unsigned Size = Array.getArraySize();
2016  assert(Index < Size);
2017
2018  // Always at least double the number of elements for which we store a value.
2019  unsigned OldElts = Array.getArrayInitializedElts();
2020  unsigned NewElts = std::max(Index+1, OldElts * 2);
2021  NewElts = std::min(Size, std::max(NewElts, 8u));
2022
2023  // Copy the data across.
2024  APValue NewValue(APValue::UninitArray(), NewElts, Size);
2025  for (unsigned I = 0; I != OldElts; ++I)
2026    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2027  for (unsigned I = OldElts; I != NewElts; ++I)
2028    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2029  if (NewValue.hasArrayFiller())
2030    NewValue.getArrayFiller() = Array.getArrayFiller();
2031  Array.swap(NewValue);
2032}
2033
2034/// Kinds of access we can perform on an object, for diagnostics.
2035enum AccessKinds {
2036  AK_Read,
2037  AK_Assign,
2038  AK_Increment,
2039  AK_Decrement
2040};
2041
2042/// A handle to a complete object (an object that is not a subobject of
2043/// another object).
2044struct CompleteObject {
2045  /// The value of the complete object.
2046  APValue *Value;
2047  /// The type of the complete object.
2048  QualType Type;
2049
2050  CompleteObject() : Value(0) {}
2051  CompleteObject(APValue *Value, QualType Type)
2052      : Value(Value), Type(Type) {
2053    assert(Value && "missing value for complete object");
2054  }
2055
2056  LLVM_EXPLICIT operator bool() const { return Value; }
2057};
2058
2059/// Find the designated sub-object of an rvalue.
2060template<typename SubobjectHandler>
2061typename SubobjectHandler::result_type
2062findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2063              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2064  if (Sub.Invalid)
2065    // A diagnostic will have already been produced.
2066    return handler.failed();
2067  if (Sub.isOnePastTheEnd()) {
2068    if (Info.getLangOpts().CPlusPlus11)
2069      Info.Diag(E, diag::note_constexpr_access_past_end)
2070        << handler.AccessKind;
2071    else
2072      Info.Diag(E);
2073    return handler.failed();
2074  }
2075
2076  APValue *O = Obj.Value;
2077  QualType ObjType = Obj.Type;
2078  const FieldDecl *LastField = 0;
2079
2080  // Walk the designator's path to find the subobject.
2081  for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2082    if (O->isUninit()) {
2083      if (!Info.checkingPotentialConstantExpression())
2084        Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2085      return handler.failed();
2086    }
2087
2088    if (I == N) {
2089      if (!handler.found(*O, ObjType))
2090        return false;
2091
2092      // If we modified a bit-field, truncate it to the right width.
2093      if (handler.AccessKind != AK_Read &&
2094          LastField && LastField->isBitField() &&
2095          !truncateBitfieldValue(Info, E, *O, LastField))
2096        return false;
2097
2098      return true;
2099    }
2100
2101    LastField = 0;
2102    if (ObjType->isArrayType()) {
2103      // Next subobject is an array element.
2104      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2105      assert(CAT && "vla in literal type?");
2106      uint64_t Index = Sub.Entries[I].ArrayIndex;
2107      if (CAT->getSize().ule(Index)) {
2108        // Note, it should not be possible to form a pointer with a valid
2109        // designator which points more than one past the end of the array.
2110        if (Info.getLangOpts().CPlusPlus11)
2111          Info.Diag(E, diag::note_constexpr_access_past_end)
2112            << handler.AccessKind;
2113        else
2114          Info.Diag(E);
2115        return handler.failed();
2116      }
2117
2118      ObjType = CAT->getElementType();
2119
2120      // An array object is represented as either an Array APValue or as an
2121      // LValue which refers to a string literal.
2122      if (O->isLValue()) {
2123        assert(I == N - 1 && "extracting subobject of character?");
2124        assert(!O->hasLValuePath() || O->getLValuePath().empty());
2125        if (handler.AccessKind != AK_Read)
2126          expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2127                              *O);
2128        else
2129          return handler.foundString(*O, ObjType, Index);
2130      }
2131
2132      if (O->getArrayInitializedElts() > Index)
2133        O = &O->getArrayInitializedElt(Index);
2134      else if (handler.AccessKind != AK_Read) {
2135        expandArray(*O, Index);
2136        O = &O->getArrayInitializedElt(Index);
2137      } else
2138        O = &O->getArrayFiller();
2139    } else if (ObjType->isAnyComplexType()) {
2140      // Next subobject is a complex number.
2141      uint64_t Index = Sub.Entries[I].ArrayIndex;
2142      if (Index > 1) {
2143        if (Info.getLangOpts().CPlusPlus11)
2144          Info.Diag(E, diag::note_constexpr_access_past_end)
2145            << handler.AccessKind;
2146        else
2147          Info.Diag(E);
2148        return handler.failed();
2149      }
2150
2151      bool WasConstQualified = ObjType.isConstQualified();
2152      ObjType = ObjType->castAs<ComplexType>()->getElementType();
2153      if (WasConstQualified)
2154        ObjType.addConst();
2155
2156      assert(I == N - 1 && "extracting subobject of scalar?");
2157      if (O->isComplexInt()) {
2158        return handler.found(Index ? O->getComplexIntImag()
2159                                   : O->getComplexIntReal(), ObjType);
2160      } else {
2161        assert(O->isComplexFloat());
2162        return handler.found(Index ? O->getComplexFloatImag()
2163                                   : O->getComplexFloatReal(), ObjType);
2164      }
2165    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2166      if (Field->isMutable() && handler.AccessKind == AK_Read) {
2167        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2168          << Field;
2169        Info.Note(Field->getLocation(), diag::note_declared_at);
2170        return handler.failed();
2171      }
2172
2173      // Next subobject is a class, struct or union field.
2174      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2175      if (RD->isUnion()) {
2176        const FieldDecl *UnionField = O->getUnionField();
2177        if (!UnionField ||
2178            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2179          Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2180            << handler.AccessKind << Field << !UnionField << UnionField;
2181          return handler.failed();
2182        }
2183        O = &O->getUnionValue();
2184      } else
2185        O = &O->getStructField(Field->getFieldIndex());
2186
2187      bool WasConstQualified = ObjType.isConstQualified();
2188      ObjType = Field->getType();
2189      if (WasConstQualified && !Field->isMutable())
2190        ObjType.addConst();
2191
2192      if (ObjType.isVolatileQualified()) {
2193        if (Info.getLangOpts().CPlusPlus) {
2194          // FIXME: Include a description of the path to the volatile subobject.
2195          Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2196            << handler.AccessKind << 2 << Field;
2197          Info.Note(Field->getLocation(), diag::note_declared_at);
2198        } else {
2199          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2200        }
2201        return handler.failed();
2202      }
2203
2204      LastField = Field;
2205    } else {
2206      // Next subobject is a base class.
2207      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2208      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2209      O = &O->getStructBase(getBaseIndex(Derived, Base));
2210
2211      bool WasConstQualified = ObjType.isConstQualified();
2212      ObjType = Info.Ctx.getRecordType(Base);
2213      if (WasConstQualified)
2214        ObjType.addConst();
2215    }
2216  }
2217}
2218
2219namespace {
2220struct ExtractSubobjectHandler {
2221  EvalInfo &Info;
2222  APValue &Result;
2223
2224  static const AccessKinds AccessKind = AK_Read;
2225
2226  typedef bool result_type;
2227  bool failed() { return false; }
2228  bool found(APValue &Subobj, QualType SubobjType) {
2229    Result = Subobj;
2230    return true;
2231  }
2232  bool found(APSInt &Value, QualType SubobjType) {
2233    Result = APValue(Value);
2234    return true;
2235  }
2236  bool found(APFloat &Value, QualType SubobjType) {
2237    Result = APValue(Value);
2238    return true;
2239  }
2240  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2241    Result = APValue(extractStringLiteralCharacter(
2242        Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2243    return true;
2244  }
2245};
2246} // end anonymous namespace
2247
2248const AccessKinds ExtractSubobjectHandler::AccessKind;
2249
2250/// Extract the designated sub-object of an rvalue.
2251static bool extractSubobject(EvalInfo &Info, const Expr *E,
2252                             const CompleteObject &Obj,
2253                             const SubobjectDesignator &Sub,
2254                             APValue &Result) {
2255  ExtractSubobjectHandler Handler = { Info, Result };
2256  return findSubobject(Info, E, Obj, Sub, Handler);
2257}
2258
2259namespace {
2260struct ModifySubobjectHandler {
2261  EvalInfo &Info;
2262  APValue &NewVal;
2263  const Expr *E;
2264
2265  typedef bool result_type;
2266  static const AccessKinds AccessKind = AK_Assign;
2267
2268  bool checkConst(QualType QT) {
2269    // Assigning to a const object has undefined behavior.
2270    if (QT.isConstQualified()) {
2271      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2272      return false;
2273    }
2274    return true;
2275  }
2276
2277  bool failed() { return false; }
2278  bool found(APValue &Subobj, QualType SubobjType) {
2279    if (!checkConst(SubobjType))
2280      return false;
2281    // We've been given ownership of NewVal, so just swap it in.
2282    Subobj.swap(NewVal);
2283    return true;
2284  }
2285  bool found(APSInt &Value, QualType SubobjType) {
2286    if (!checkConst(SubobjType))
2287      return false;
2288    if (!NewVal.isInt()) {
2289      // Maybe trying to write a cast pointer value into a complex?
2290      Info.Diag(E);
2291      return false;
2292    }
2293    Value = NewVal.getInt();
2294    return true;
2295  }
2296  bool found(APFloat &Value, QualType SubobjType) {
2297    if (!checkConst(SubobjType))
2298      return false;
2299    Value = NewVal.getFloat();
2300    return true;
2301  }
2302  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2303    llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2304  }
2305};
2306} // end anonymous namespace
2307
2308const AccessKinds ModifySubobjectHandler::AccessKind;
2309
2310/// Update the designated sub-object of an rvalue to the given value.
2311static bool modifySubobject(EvalInfo &Info, const Expr *E,
2312                            const CompleteObject &Obj,
2313                            const SubobjectDesignator &Sub,
2314                            APValue &NewVal) {
2315  ModifySubobjectHandler Handler = { Info, NewVal, E };
2316  return findSubobject(Info, E, Obj, Sub, Handler);
2317}
2318
2319/// Find the position where two subobject designators diverge, or equivalently
2320/// the length of the common initial subsequence.
2321static unsigned FindDesignatorMismatch(QualType ObjType,
2322                                       const SubobjectDesignator &A,
2323                                       const SubobjectDesignator &B,
2324                                       bool &WasArrayIndex) {
2325  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2326  for (/**/; I != N; ++I) {
2327    if (!ObjType.isNull() &&
2328        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2329      // Next subobject is an array element.
2330      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2331        WasArrayIndex = true;
2332        return I;
2333      }
2334      if (ObjType->isAnyComplexType())
2335        ObjType = ObjType->castAs<ComplexType>()->getElementType();
2336      else
2337        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2338    } else {
2339      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2340        WasArrayIndex = false;
2341        return I;
2342      }
2343      if (const FieldDecl *FD = getAsField(A.Entries[I]))
2344        // Next subobject is a field.
2345        ObjType = FD->getType();
2346      else
2347        // Next subobject is a base class.
2348        ObjType = QualType();
2349    }
2350  }
2351  WasArrayIndex = false;
2352  return I;
2353}
2354
2355/// Determine whether the given subobject designators refer to elements of the
2356/// same array object.
2357static bool AreElementsOfSameArray(QualType ObjType,
2358                                   const SubobjectDesignator &A,
2359                                   const SubobjectDesignator &B) {
2360  if (A.Entries.size() != B.Entries.size())
2361    return false;
2362
2363  bool IsArray = A.MostDerivedArraySize != 0;
2364  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2365    // A is a subobject of the array element.
2366    return false;
2367
2368  // If A (and B) designates an array element, the last entry will be the array
2369  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2370  // of length 1' case, and the entire path must match.
2371  bool WasArrayIndex;
2372  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2373  return CommonLength >= A.Entries.size() - IsArray;
2374}
2375
2376/// Find the complete object to which an LValue refers.
2377CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2378                                  const LValue &LVal, QualType LValType) {
2379  if (!LVal.Base) {
2380    Info.Diag(E, diag::note_constexpr_access_null) << AK;
2381    return CompleteObject();
2382  }
2383
2384  CallStackFrame *Frame = 0;
2385  if (LVal.CallIndex) {
2386    Frame = Info.getCallFrame(LVal.CallIndex);
2387    if (!Frame) {
2388      Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2389        << AK << LVal.Base.is<const ValueDecl*>();
2390      NoteLValueLocation(Info, LVal.Base);
2391      return CompleteObject();
2392    }
2393  }
2394
2395  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2396  // is not a constant expression (even if the object is non-volatile). We also
2397  // apply this rule to C++98, in order to conform to the expected 'volatile'
2398  // semantics.
2399  if (LValType.isVolatileQualified()) {
2400    if (Info.getLangOpts().CPlusPlus)
2401      Info.Diag(E, diag::note_constexpr_access_volatile_type)
2402        << AK << LValType;
2403    else
2404      Info.Diag(E);
2405    return CompleteObject();
2406  }
2407
2408  // Compute value storage location and type of base object.
2409  APValue *BaseVal = 0;
2410  QualType BaseType = getType(LVal.Base);
2411
2412  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2413    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2414    // In C++11, constexpr, non-volatile variables initialized with constant
2415    // expressions are constant expressions too. Inside constexpr functions,
2416    // parameters are constant expressions even if they're non-const.
2417    // In C++1y, objects local to a constant expression (those with a Frame) are
2418    // both readable and writable inside constant expressions.
2419    // In C, such things can also be folded, although they are not ICEs.
2420    const VarDecl *VD = dyn_cast<VarDecl>(D);
2421    if (VD) {
2422      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2423        VD = VDef;
2424    }
2425    if (!VD || VD->isInvalidDecl()) {
2426      Info.Diag(E);
2427      return CompleteObject();
2428    }
2429
2430    // Accesses of volatile-qualified objects are not allowed.
2431    if (BaseType.isVolatileQualified()) {
2432      if (Info.getLangOpts().CPlusPlus) {
2433        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2434          << AK << 1 << VD;
2435        Info.Note(VD->getLocation(), diag::note_declared_at);
2436      } else {
2437        Info.Diag(E);
2438      }
2439      return CompleteObject();
2440    }
2441
2442    // Unless we're looking at a local variable or argument in a constexpr call,
2443    // the variable we're reading must be const.
2444    if (!Frame) {
2445      if (Info.getLangOpts().CPlusPlus1y &&
2446          VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2447        // OK, we can read and modify an object if we're in the process of
2448        // evaluating its initializer, because its lifetime began in this
2449        // evaluation.
2450      } else if (AK != AK_Read) {
2451        // All the remaining cases only permit reading.
2452        Info.Diag(E, diag::note_constexpr_modify_global);
2453        return CompleteObject();
2454      } else if (VD->isConstexpr()) {
2455        // OK, we can read this variable.
2456      } else if (BaseType->isIntegralOrEnumerationType()) {
2457        if (!BaseType.isConstQualified()) {
2458          if (Info.getLangOpts().CPlusPlus) {
2459            Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2460            Info.Note(VD->getLocation(), diag::note_declared_at);
2461          } else {
2462            Info.Diag(E);
2463          }
2464          return CompleteObject();
2465        }
2466      } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2467        // We support folding of const floating-point types, in order to make
2468        // static const data members of such types (supported as an extension)
2469        // more useful.
2470        if (Info.getLangOpts().CPlusPlus11) {
2471          Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2472          Info.Note(VD->getLocation(), diag::note_declared_at);
2473        } else {
2474          Info.CCEDiag(E);
2475        }
2476      } else {
2477        // FIXME: Allow folding of values of any literal type in all languages.
2478        if (Info.getLangOpts().CPlusPlus11) {
2479          Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2480          Info.Note(VD->getLocation(), diag::note_declared_at);
2481        } else {
2482          Info.Diag(E);
2483        }
2484        return CompleteObject();
2485      }
2486    }
2487
2488    if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2489      return CompleteObject();
2490  } else {
2491    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2492
2493    if (!Frame) {
2494      if (const MaterializeTemporaryExpr *MTE =
2495              dyn_cast<MaterializeTemporaryExpr>(Base)) {
2496        assert(MTE->getStorageDuration() == SD_Static &&
2497               "should have a frame for a non-global materialized temporary");
2498
2499        // Per C++1y [expr.const]p2:
2500        //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2501        //   - a [...] glvalue of integral or enumeration type that refers to
2502        //     a non-volatile const object [...]
2503        //   [...]
2504        //   - a [...] glvalue of literal type that refers to a non-volatile
2505        //     object whose lifetime began within the evaluation of e.
2506        //
2507        // C++11 misses the 'began within the evaluation of e' check and
2508        // instead allows all temporaries, including things like:
2509        //   int &&r = 1;
2510        //   int x = ++r;
2511        //   constexpr int k = r;
2512        // Therefore we use the C++1y rules in C++11 too.
2513        const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2514        const ValueDecl *ED = MTE->getExtendingDecl();
2515        if (!(BaseType.isConstQualified() &&
2516              BaseType->isIntegralOrEnumerationType()) &&
2517            !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2518          Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2519          Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2520          return CompleteObject();
2521        }
2522
2523        BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2524        assert(BaseVal && "got reference to unevaluated temporary");
2525      } else {
2526        Info.Diag(E);
2527        return CompleteObject();
2528      }
2529    } else {
2530      BaseVal = Frame->getTemporary(Base);
2531      assert(BaseVal && "missing value for temporary");
2532    }
2533
2534    // Volatile temporary objects cannot be accessed in constant expressions.
2535    if (BaseType.isVolatileQualified()) {
2536      if (Info.getLangOpts().CPlusPlus) {
2537        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2538          << AK << 0;
2539        Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2540      } else {
2541        Info.Diag(E);
2542      }
2543      return CompleteObject();
2544    }
2545  }
2546
2547  // During the construction of an object, it is not yet 'const'.
2548  // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2549  // and this doesn't do quite the right thing for const subobjects of the
2550  // object under construction.
2551  if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2552    BaseType = Info.Ctx.getCanonicalType(BaseType);
2553    BaseType.removeLocalConst();
2554  }
2555
2556  // In C++1y, we can't safely access any mutable state when we might be
2557  // evaluating after an unmodeled side effect or an evaluation failure.
2558  //
2559  // FIXME: Not all local state is mutable. Allow local constant subobjects
2560  // to be read here (but take care with 'mutable' fields).
2561  if (Frame && Info.getLangOpts().CPlusPlus1y &&
2562      (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2563    return CompleteObject();
2564
2565  return CompleteObject(BaseVal, BaseType);
2566}
2567
2568/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2569/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2570/// glvalue referred to by an entity of reference type.
2571///
2572/// \param Info - Information about the ongoing evaluation.
2573/// \param Conv - The expression for which we are performing the conversion.
2574///               Used for diagnostics.
2575/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2576///               case of a non-class type).
2577/// \param LVal - The glvalue on which we are attempting to perform this action.
2578/// \param RVal - The produced value will be placed here.
2579static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2580                                           QualType Type,
2581                                           const LValue &LVal, APValue &RVal) {
2582  if (LVal.Designator.Invalid)
2583    return false;
2584
2585  // Check for special cases where there is no existing APValue to look at.
2586  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2587  if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2588      !Type.isVolatileQualified()) {
2589    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2590      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2591      // initializer until now for such expressions. Such an expression can't be
2592      // an ICE in C, so this only matters for fold.
2593      assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2594      if (Type.isVolatileQualified()) {
2595        Info.Diag(Conv);
2596        return false;
2597      }
2598      APValue Lit;
2599      if (!Evaluate(Lit, Info, CLE->getInitializer()))
2600        return false;
2601      CompleteObject LitObj(&Lit, Base->getType());
2602      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2603    } else if (isa<StringLiteral>(Base)) {
2604      // We represent a string literal array as an lvalue pointing at the
2605      // corresponding expression, rather than building an array of chars.
2606      // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2607      APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2608      CompleteObject StrObj(&Str, Base->getType());
2609      return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2610    }
2611  }
2612
2613  CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2614  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2615}
2616
2617/// Perform an assignment of Val to LVal. Takes ownership of Val.
2618static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2619                             QualType LValType, APValue &Val) {
2620  if (LVal.Designator.Invalid)
2621    return false;
2622
2623  if (!Info.getLangOpts().CPlusPlus1y) {
2624    Info.Diag(E);
2625    return false;
2626  }
2627
2628  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2629  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2630}
2631
2632static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2633  return T->isSignedIntegerType() &&
2634         Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2635}
2636
2637namespace {
2638struct CompoundAssignSubobjectHandler {
2639  EvalInfo &Info;
2640  const Expr *E;
2641  QualType PromotedLHSType;
2642  BinaryOperatorKind Opcode;
2643  const APValue &RHS;
2644
2645  static const AccessKinds AccessKind = AK_Assign;
2646
2647  typedef bool result_type;
2648
2649  bool checkConst(QualType QT) {
2650    // Assigning to a const object has undefined behavior.
2651    if (QT.isConstQualified()) {
2652      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2653      return false;
2654    }
2655    return true;
2656  }
2657
2658  bool failed() { return false; }
2659  bool found(APValue &Subobj, QualType SubobjType) {
2660    switch (Subobj.getKind()) {
2661    case APValue::Int:
2662      return found(Subobj.getInt(), SubobjType);
2663    case APValue::Float:
2664      return found(Subobj.getFloat(), SubobjType);
2665    case APValue::ComplexInt:
2666    case APValue::ComplexFloat:
2667      // FIXME: Implement complex compound assignment.
2668      Info.Diag(E);
2669      return false;
2670    case APValue::LValue:
2671      return foundPointer(Subobj, SubobjType);
2672    default:
2673      // FIXME: can this happen?
2674      Info.Diag(E);
2675      return false;
2676    }
2677  }
2678  bool found(APSInt &Value, QualType SubobjType) {
2679    if (!checkConst(SubobjType))
2680      return false;
2681
2682    if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2683      // We don't support compound assignment on integer-cast-to-pointer
2684      // values.
2685      Info.Diag(E);
2686      return false;
2687    }
2688
2689    APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2690                                    SubobjType, Value);
2691    if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2692      return false;
2693    Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2694    return true;
2695  }
2696  bool found(APFloat &Value, QualType SubobjType) {
2697    return checkConst(SubobjType) &&
2698           HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2699                                  Value) &&
2700           handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2701           HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2702  }
2703  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2704    if (!checkConst(SubobjType))
2705      return false;
2706
2707    QualType PointeeType;
2708    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2709      PointeeType = PT->getPointeeType();
2710
2711    if (PointeeType.isNull() || !RHS.isInt() ||
2712        (Opcode != BO_Add && Opcode != BO_Sub)) {
2713      Info.Diag(E);
2714      return false;
2715    }
2716
2717    int64_t Offset = getExtValue(RHS.getInt());
2718    if (Opcode == BO_Sub)
2719      Offset = -Offset;
2720
2721    LValue LVal;
2722    LVal.setFrom(Info.Ctx, Subobj);
2723    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2724      return false;
2725    LVal.moveInto(Subobj);
2726    return true;
2727  }
2728  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2729    llvm_unreachable("shouldn't encounter string elements here");
2730  }
2731};
2732} // end anonymous namespace
2733
2734const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2735
2736/// Perform a compound assignment of LVal <op>= RVal.
2737static bool handleCompoundAssignment(
2738    EvalInfo &Info, const Expr *E,
2739    const LValue &LVal, QualType LValType, QualType PromotedLValType,
2740    BinaryOperatorKind Opcode, const APValue &RVal) {
2741  if (LVal.Designator.Invalid)
2742    return false;
2743
2744  if (!Info.getLangOpts().CPlusPlus1y) {
2745    Info.Diag(E);
2746    return false;
2747  }
2748
2749  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2750  CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2751                                             RVal };
2752  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2753}
2754
2755namespace {
2756struct IncDecSubobjectHandler {
2757  EvalInfo &Info;
2758  const Expr *E;
2759  AccessKinds AccessKind;
2760  APValue *Old;
2761
2762  typedef bool result_type;
2763
2764  bool checkConst(QualType QT) {
2765    // Assigning to a const object has undefined behavior.
2766    if (QT.isConstQualified()) {
2767      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2768      return false;
2769    }
2770    return true;
2771  }
2772
2773  bool failed() { return false; }
2774  bool found(APValue &Subobj, QualType SubobjType) {
2775    // Stash the old value. Also clear Old, so we don't clobber it later
2776    // if we're post-incrementing a complex.
2777    if (Old) {
2778      *Old = Subobj;
2779      Old = 0;
2780    }
2781
2782    switch (Subobj.getKind()) {
2783    case APValue::Int:
2784      return found(Subobj.getInt(), SubobjType);
2785    case APValue::Float:
2786      return found(Subobj.getFloat(), SubobjType);
2787    case APValue::ComplexInt:
2788      return found(Subobj.getComplexIntReal(),
2789                   SubobjType->castAs<ComplexType>()->getElementType()
2790                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2791    case APValue::ComplexFloat:
2792      return found(Subobj.getComplexFloatReal(),
2793                   SubobjType->castAs<ComplexType>()->getElementType()
2794                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2795    case APValue::LValue:
2796      return foundPointer(Subobj, SubobjType);
2797    default:
2798      // FIXME: can this happen?
2799      Info.Diag(E);
2800      return false;
2801    }
2802  }
2803  bool found(APSInt &Value, QualType SubobjType) {
2804    if (!checkConst(SubobjType))
2805      return false;
2806
2807    if (!SubobjType->isIntegerType()) {
2808      // We don't support increment / decrement on integer-cast-to-pointer
2809      // values.
2810      Info.Diag(E);
2811      return false;
2812    }
2813
2814    if (Old) *Old = APValue(Value);
2815
2816    // bool arithmetic promotes to int, and the conversion back to bool
2817    // doesn't reduce mod 2^n, so special-case it.
2818    if (SubobjType->isBooleanType()) {
2819      if (AccessKind == AK_Increment)
2820        Value = 1;
2821      else
2822        Value = !Value;
2823      return true;
2824    }
2825
2826    bool WasNegative = Value.isNegative();
2827    if (AccessKind == AK_Increment) {
2828      ++Value;
2829
2830      if (!WasNegative && Value.isNegative() &&
2831          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2832        APSInt ActualValue(Value, /*IsUnsigned*/true);
2833        HandleOverflow(Info, E, ActualValue, SubobjType);
2834      }
2835    } else {
2836      --Value;
2837
2838      if (WasNegative && !Value.isNegative() &&
2839          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2840        unsigned BitWidth = Value.getBitWidth();
2841        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2842        ActualValue.setBit(BitWidth);
2843        HandleOverflow(Info, E, ActualValue, SubobjType);
2844      }
2845    }
2846    return true;
2847  }
2848  bool found(APFloat &Value, QualType SubobjType) {
2849    if (!checkConst(SubobjType))
2850      return false;
2851
2852    if (Old) *Old = APValue(Value);
2853
2854    APFloat One(Value.getSemantics(), 1);
2855    if (AccessKind == AK_Increment)
2856      Value.add(One, APFloat::rmNearestTiesToEven);
2857    else
2858      Value.subtract(One, APFloat::rmNearestTiesToEven);
2859    return true;
2860  }
2861  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2862    if (!checkConst(SubobjType))
2863      return false;
2864
2865    QualType PointeeType;
2866    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2867      PointeeType = PT->getPointeeType();
2868    else {
2869      Info.Diag(E);
2870      return false;
2871    }
2872
2873    LValue LVal;
2874    LVal.setFrom(Info.Ctx, Subobj);
2875    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2876                                     AccessKind == AK_Increment ? 1 : -1))
2877      return false;
2878    LVal.moveInto(Subobj);
2879    return true;
2880  }
2881  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2882    llvm_unreachable("shouldn't encounter string elements here");
2883  }
2884};
2885} // end anonymous namespace
2886
2887/// Perform an increment or decrement on LVal.
2888static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2889                         QualType LValType, bool IsIncrement, APValue *Old) {
2890  if (LVal.Designator.Invalid)
2891    return false;
2892
2893  if (!Info.getLangOpts().CPlusPlus1y) {
2894    Info.Diag(E);
2895    return false;
2896  }
2897
2898  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2899  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2900  IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2901  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2902}
2903
2904/// Build an lvalue for the object argument of a member function call.
2905static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2906                                   LValue &This) {
2907  if (Object->getType()->isPointerType())
2908    return EvaluatePointer(Object, This, Info);
2909
2910  if (Object->isGLValue())
2911    return EvaluateLValue(Object, This, Info);
2912
2913  if (Object->getType()->isLiteralType(Info.Ctx))
2914    return EvaluateTemporary(Object, This, Info);
2915
2916  return false;
2917}
2918
2919/// HandleMemberPointerAccess - Evaluate a member access operation and build an
2920/// lvalue referring to the result.
2921///
2922/// \param Info - Information about the ongoing evaluation.
2923/// \param LV - An lvalue referring to the base of the member pointer.
2924/// \param RHS - The member pointer expression.
2925/// \param IncludeMember - Specifies whether the member itself is included in
2926///        the resulting LValue subobject designator. This is not possible when
2927///        creating a bound member function.
2928/// \return The field or method declaration to which the member pointer refers,
2929///         or 0 if evaluation fails.
2930static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2931                                                  QualType LVType,
2932                                                  LValue &LV,
2933                                                  const Expr *RHS,
2934                                                  bool IncludeMember = true) {
2935  MemberPtr MemPtr;
2936  if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2937    return 0;
2938
2939  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2940  // member value, the behavior is undefined.
2941  if (!MemPtr.getDecl()) {
2942    // FIXME: Specific diagnostic.
2943    Info.Diag(RHS);
2944    return 0;
2945  }
2946
2947  if (MemPtr.isDerivedMember()) {
2948    // This is a member of some derived class. Truncate LV appropriately.
2949    // The end of the derived-to-base path for the base object must match the
2950    // derived-to-base path for the member pointer.
2951    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2952        LV.Designator.Entries.size()) {
2953      Info.Diag(RHS);
2954      return 0;
2955    }
2956    unsigned PathLengthToMember =
2957        LV.Designator.Entries.size() - MemPtr.Path.size();
2958    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
2959      const CXXRecordDecl *LVDecl = getAsBaseClass(
2960          LV.Designator.Entries[PathLengthToMember + I]);
2961      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
2962      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
2963        Info.Diag(RHS);
2964        return 0;
2965      }
2966    }
2967
2968    // Truncate the lvalue to the appropriate derived class.
2969    if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
2970                            PathLengthToMember))
2971      return 0;
2972  } else if (!MemPtr.Path.empty()) {
2973    // Extend the LValue path with the member pointer's path.
2974    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
2975                                  MemPtr.Path.size() + IncludeMember);
2976
2977    // Walk down to the appropriate base class.
2978    if (const PointerType *PT = LVType->getAs<PointerType>())
2979      LVType = PT->getPointeeType();
2980    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
2981    assert(RD && "member pointer access on non-class-type expression");
2982    // The first class in the path is that of the lvalue.
2983    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
2984      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
2985      if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
2986        return 0;
2987      RD = Base;
2988    }
2989    // Finally cast to the class containing the member.
2990    if (!HandleLValueDirectBase(Info, RHS, LV, RD,
2991                                MemPtr.getContainingRecord()))
2992      return 0;
2993  }
2994
2995  // Add the member. Note that we cannot build bound member functions here.
2996  if (IncludeMember) {
2997    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
2998      if (!HandleLValueMember(Info, RHS, LV, FD))
2999        return 0;
3000    } else if (const IndirectFieldDecl *IFD =
3001                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3002      if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3003        return 0;
3004    } else {
3005      llvm_unreachable("can't construct reference to bound member function");
3006    }
3007  }
3008
3009  return MemPtr.getDecl();
3010}
3011
3012static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3013                                                  const BinaryOperator *BO,
3014                                                  LValue &LV,
3015                                                  bool IncludeMember = true) {
3016  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3017
3018  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3019    if (Info.keepEvaluatingAfterFailure()) {
3020      MemberPtr MemPtr;
3021      EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3022    }
3023    return 0;
3024  }
3025
3026  return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3027                                   BO->getRHS(), IncludeMember);
3028}
3029
3030/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3031/// the provided lvalue, which currently refers to the base object.
3032static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3033                                    LValue &Result) {
3034  SubobjectDesignator &D = Result.Designator;
3035  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3036    return false;
3037
3038  QualType TargetQT = E->getType();
3039  if (const PointerType *PT = TargetQT->getAs<PointerType>())
3040    TargetQT = PT->getPointeeType();
3041
3042  // Check this cast lands within the final derived-to-base subobject path.
3043  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3044    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3045      << D.MostDerivedType << TargetQT;
3046    return false;
3047  }
3048
3049  // Check the type of the final cast. We don't need to check the path,
3050  // since a cast can only be formed if the path is unique.
3051  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3052  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3053  const CXXRecordDecl *FinalType;
3054  if (NewEntriesSize == D.MostDerivedPathLength)
3055    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3056  else
3057    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3058  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3059    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3060      << D.MostDerivedType << TargetQT;
3061    return false;
3062  }
3063
3064  // Truncate the lvalue to the appropriate derived class.
3065  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3066}
3067
3068namespace {
3069enum EvalStmtResult {
3070  /// Evaluation failed.
3071  ESR_Failed,
3072  /// Hit a 'return' statement.
3073  ESR_Returned,
3074  /// Evaluation succeeded.
3075  ESR_Succeeded,
3076  /// Hit a 'continue' statement.
3077  ESR_Continue,
3078  /// Hit a 'break' statement.
3079  ESR_Break,
3080  /// Still scanning for 'case' or 'default' statement.
3081  ESR_CaseNotFound
3082};
3083}
3084
3085static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3086  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3087    // We don't need to evaluate the initializer for a static local.
3088    if (!VD->hasLocalStorage())
3089      return true;
3090
3091    LValue Result;
3092    Result.set(VD, Info.CurrentCall->Index);
3093    APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3094
3095    if (!VD->getInit()) {
3096      Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3097        << false << VD->getType();
3098      Val = APValue();
3099      return false;
3100    }
3101
3102    if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
3103      // Wipe out any partially-computed value, to allow tracking that this
3104      // evaluation failed.
3105      Val = APValue();
3106      return false;
3107    }
3108  }
3109
3110  return true;
3111}
3112
3113/// Evaluate a condition (either a variable declaration or an expression).
3114static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3115                         const Expr *Cond, bool &Result) {
3116  FullExpressionRAII Scope(Info);
3117  if (CondDecl && !EvaluateDecl(Info, CondDecl))
3118    return false;
3119  return EvaluateAsBooleanCondition(Cond, Result, Info);
3120}
3121
3122static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3123                                   const Stmt *S, const SwitchCase *SC = 0);
3124
3125/// Evaluate the body of a loop, and translate the result as appropriate.
3126static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3127                                       const Stmt *Body,
3128                                       const SwitchCase *Case = 0) {
3129  BlockScopeRAII Scope(Info);
3130  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3131  case ESR_Break:
3132    return ESR_Succeeded;
3133  case ESR_Succeeded:
3134  case ESR_Continue:
3135    return ESR_Continue;
3136  case ESR_Failed:
3137  case ESR_Returned:
3138  case ESR_CaseNotFound:
3139    return ESR;
3140  }
3141  llvm_unreachable("Invalid EvalStmtResult!");
3142}
3143
3144/// Evaluate a switch statement.
3145static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3146                                     const SwitchStmt *SS) {
3147  BlockScopeRAII Scope(Info);
3148
3149  // Evaluate the switch condition.
3150  APSInt Value;
3151  {
3152    FullExpressionRAII Scope(Info);
3153    if (SS->getConditionVariable() &&
3154        !EvaluateDecl(Info, SS->getConditionVariable()))
3155      return ESR_Failed;
3156    if (!EvaluateInteger(SS->getCond(), Value, Info))
3157      return ESR_Failed;
3158  }
3159
3160  // Find the switch case corresponding to the value of the condition.
3161  // FIXME: Cache this lookup.
3162  const SwitchCase *Found = 0;
3163  for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3164       SC = SC->getNextSwitchCase()) {
3165    if (isa<DefaultStmt>(SC)) {
3166      Found = SC;
3167      continue;
3168    }
3169
3170    const CaseStmt *CS = cast<CaseStmt>(SC);
3171    APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3172    APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3173                              : LHS;
3174    if (LHS <= Value && Value <= RHS) {
3175      Found = SC;
3176      break;
3177    }
3178  }
3179
3180  if (!Found)
3181    return ESR_Succeeded;
3182
3183  // Search the switch body for the switch case and evaluate it from there.
3184  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3185  case ESR_Break:
3186    return ESR_Succeeded;
3187  case ESR_Succeeded:
3188  case ESR_Continue:
3189  case ESR_Failed:
3190  case ESR_Returned:
3191    return ESR;
3192  case ESR_CaseNotFound:
3193    // This can only happen if the switch case is nested within a statement
3194    // expression. We have no intention of supporting that.
3195    Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3196    return ESR_Failed;
3197  }
3198  llvm_unreachable("Invalid EvalStmtResult!");
3199}
3200
3201// Evaluate a statement.
3202static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3203                                   const Stmt *S, const SwitchCase *Case) {
3204  if (!Info.nextStep(S))
3205    return ESR_Failed;
3206
3207  // If we're hunting down a 'case' or 'default' label, recurse through
3208  // substatements until we hit the label.
3209  if (Case) {
3210    // FIXME: We don't start the lifetime of objects whose initialization we
3211    // jump over. However, such objects must be of class type with a trivial
3212    // default constructor that initialize all subobjects, so must be empty,
3213    // so this almost never matters.
3214    switch (S->getStmtClass()) {
3215    case Stmt::CompoundStmtClass:
3216      // FIXME: Precompute which substatement of a compound statement we
3217      // would jump to, and go straight there rather than performing a
3218      // linear scan each time.
3219    case Stmt::LabelStmtClass:
3220    case Stmt::AttributedStmtClass:
3221    case Stmt::DoStmtClass:
3222      break;
3223
3224    case Stmt::CaseStmtClass:
3225    case Stmt::DefaultStmtClass:
3226      if (Case == S)
3227        Case = 0;
3228      break;
3229
3230    case Stmt::IfStmtClass: {
3231      // FIXME: Precompute which side of an 'if' we would jump to, and go
3232      // straight there rather than scanning both sides.
3233      const IfStmt *IS = cast<IfStmt>(S);
3234
3235      // Wrap the evaluation in a block scope, in case it's a DeclStmt
3236      // preceded by our switch label.
3237      BlockScopeRAII Scope(Info);
3238
3239      EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3240      if (ESR != ESR_CaseNotFound || !IS->getElse())
3241        return ESR;
3242      return EvaluateStmt(Result, Info, IS->getElse(), Case);
3243    }
3244
3245    case Stmt::WhileStmtClass: {
3246      EvalStmtResult ESR =
3247          EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3248      if (ESR != ESR_Continue)
3249        return ESR;
3250      break;
3251    }
3252
3253    case Stmt::ForStmtClass: {
3254      const ForStmt *FS = cast<ForStmt>(S);
3255      EvalStmtResult ESR =
3256          EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3257      if (ESR != ESR_Continue)
3258        return ESR;
3259      if (FS->getInc()) {
3260        FullExpressionRAII IncScope(Info);
3261        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3262          return ESR_Failed;
3263      }
3264      break;
3265    }
3266
3267    case Stmt::DeclStmtClass:
3268      // FIXME: If the variable has initialization that can't be jumped over,
3269      // bail out of any immediately-surrounding compound-statement too.
3270    default:
3271      return ESR_CaseNotFound;
3272    }
3273  }
3274
3275  switch (S->getStmtClass()) {
3276  default:
3277    if (const Expr *E = dyn_cast<Expr>(S)) {
3278      // Don't bother evaluating beyond an expression-statement which couldn't
3279      // be evaluated.
3280      FullExpressionRAII Scope(Info);
3281      if (!EvaluateIgnoredValue(Info, E))
3282        return ESR_Failed;
3283      return ESR_Succeeded;
3284    }
3285
3286    Info.Diag(S->getLocStart());
3287    return ESR_Failed;
3288
3289  case Stmt::NullStmtClass:
3290    return ESR_Succeeded;
3291
3292  case Stmt::DeclStmtClass: {
3293    const DeclStmt *DS = cast<DeclStmt>(S);
3294    for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
3295           DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
3296      // Each declaration initialization is its own full-expression.
3297      // FIXME: This isn't quite right; if we're performing aggregate
3298      // initialization, each braced subexpression is its own full-expression.
3299      FullExpressionRAII Scope(Info);
3300      if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
3301        return ESR_Failed;
3302    }
3303    return ESR_Succeeded;
3304  }
3305
3306  case Stmt::ReturnStmtClass: {
3307    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3308    FullExpressionRAII Scope(Info);
3309    if (RetExpr && !Evaluate(Result, Info, RetExpr))
3310      return ESR_Failed;
3311    return ESR_Returned;
3312  }
3313
3314  case Stmt::CompoundStmtClass: {
3315    BlockScopeRAII Scope(Info);
3316
3317    const CompoundStmt *CS = cast<CompoundStmt>(S);
3318    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
3319           BE = CS->body_end(); BI != BE; ++BI) {
3320      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
3321      if (ESR == ESR_Succeeded)
3322        Case = 0;
3323      else if (ESR != ESR_CaseNotFound)
3324        return ESR;
3325    }
3326    return Case ? ESR_CaseNotFound : ESR_Succeeded;
3327  }
3328
3329  case Stmt::IfStmtClass: {
3330    const IfStmt *IS = cast<IfStmt>(S);
3331
3332    // Evaluate the condition, as either a var decl or as an expression.
3333    BlockScopeRAII Scope(Info);
3334    bool Cond;
3335    if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3336      return ESR_Failed;
3337
3338    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3339      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3340      if (ESR != ESR_Succeeded)
3341        return ESR;
3342    }
3343    return ESR_Succeeded;
3344  }
3345
3346  case Stmt::WhileStmtClass: {
3347    const WhileStmt *WS = cast<WhileStmt>(S);
3348    while (true) {
3349      BlockScopeRAII Scope(Info);
3350      bool Continue;
3351      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3352                        Continue))
3353        return ESR_Failed;
3354      if (!Continue)
3355        break;
3356
3357      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3358      if (ESR != ESR_Continue)
3359        return ESR;
3360    }
3361    return ESR_Succeeded;
3362  }
3363
3364  case Stmt::DoStmtClass: {
3365    const DoStmt *DS = cast<DoStmt>(S);
3366    bool Continue;
3367    do {
3368      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3369      if (ESR != ESR_Continue)
3370        return ESR;
3371      Case = 0;
3372
3373      FullExpressionRAII CondScope(Info);
3374      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3375        return ESR_Failed;
3376    } while (Continue);
3377    return ESR_Succeeded;
3378  }
3379
3380  case Stmt::ForStmtClass: {
3381    const ForStmt *FS = cast<ForStmt>(S);
3382    BlockScopeRAII Scope(Info);
3383    if (FS->getInit()) {
3384      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3385      if (ESR != ESR_Succeeded)
3386        return ESR;
3387    }
3388    while (true) {
3389      BlockScopeRAII Scope(Info);
3390      bool Continue = true;
3391      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3392                                         FS->getCond(), Continue))
3393        return ESR_Failed;
3394      if (!Continue)
3395        break;
3396
3397      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3398      if (ESR != ESR_Continue)
3399        return ESR;
3400
3401      if (FS->getInc()) {
3402        FullExpressionRAII IncScope(Info);
3403        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3404          return ESR_Failed;
3405      }
3406    }
3407    return ESR_Succeeded;
3408  }
3409
3410  case Stmt::CXXForRangeStmtClass: {
3411    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3412    BlockScopeRAII Scope(Info);
3413
3414    // Initialize the __range variable.
3415    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3416    if (ESR != ESR_Succeeded)
3417      return ESR;
3418
3419    // Create the __begin and __end iterators.
3420    ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3421    if (ESR != ESR_Succeeded)
3422      return ESR;
3423
3424    while (true) {
3425      // Condition: __begin != __end.
3426      {
3427        bool Continue = true;
3428        FullExpressionRAII CondExpr(Info);
3429        if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3430          return ESR_Failed;
3431        if (!Continue)
3432          break;
3433      }
3434
3435      // User's variable declaration, initialized by *__begin.
3436      BlockScopeRAII InnerScope(Info);
3437      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3438      if (ESR != ESR_Succeeded)
3439        return ESR;
3440
3441      // Loop body.
3442      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3443      if (ESR != ESR_Continue)
3444        return ESR;
3445
3446      // Increment: ++__begin
3447      if (!EvaluateIgnoredValue(Info, FS->getInc()))
3448        return ESR_Failed;
3449    }
3450
3451    return ESR_Succeeded;
3452  }
3453
3454  case Stmt::SwitchStmtClass:
3455    return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3456
3457  case Stmt::ContinueStmtClass:
3458    return ESR_Continue;
3459
3460  case Stmt::BreakStmtClass:
3461    return ESR_Break;
3462
3463  case Stmt::LabelStmtClass:
3464    return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3465
3466  case Stmt::AttributedStmtClass:
3467    // As a general principle, C++11 attributes can be ignored without
3468    // any semantic impact.
3469    return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3470                        Case);
3471
3472  case Stmt::CaseStmtClass:
3473  case Stmt::DefaultStmtClass:
3474    return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3475  }
3476}
3477
3478/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3479/// default constructor. If so, we'll fold it whether or not it's marked as
3480/// constexpr. If it is marked as constexpr, we will never implicitly define it,
3481/// so we need special handling.
3482static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3483                                           const CXXConstructorDecl *CD,
3484                                           bool IsValueInitialization) {
3485  if (!CD->isTrivial() || !CD->isDefaultConstructor())
3486    return false;
3487
3488  // Value-initialization does not call a trivial default constructor, so such a
3489  // call is a core constant expression whether or not the constructor is
3490  // constexpr.
3491  if (!CD->isConstexpr() && !IsValueInitialization) {
3492    if (Info.getLangOpts().CPlusPlus11) {
3493      // FIXME: If DiagDecl is an implicitly-declared special member function,
3494      // we should be much more explicit about why it's not constexpr.
3495      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3496        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3497      Info.Note(CD->getLocation(), diag::note_declared_at);
3498    } else {
3499      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3500    }
3501  }
3502  return true;
3503}
3504
3505/// CheckConstexprFunction - Check that a function can be called in a constant
3506/// expression.
3507static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3508                                   const FunctionDecl *Declaration,
3509                                   const FunctionDecl *Definition) {
3510  // Potential constant expressions can contain calls to declared, but not yet
3511  // defined, constexpr functions.
3512  if (Info.checkingPotentialConstantExpression() && !Definition &&
3513      Declaration->isConstexpr())
3514    return false;
3515
3516  // Bail out with no diagnostic if the function declaration itself is invalid.
3517  // We will have produced a relevant diagnostic while parsing it.
3518  if (Declaration->isInvalidDecl())
3519    return false;
3520
3521  // Can we evaluate this function call?
3522  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3523    return true;
3524
3525  if (Info.getLangOpts().CPlusPlus11) {
3526    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3527    // FIXME: If DiagDecl is an implicitly-declared special member function, we
3528    // should be much more explicit about why it's not constexpr.
3529    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3530      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3531      << DiagDecl;
3532    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3533  } else {
3534    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3535  }
3536  return false;
3537}
3538
3539namespace {
3540typedef SmallVector<APValue, 8> ArgVector;
3541}
3542
3543/// EvaluateArgs - Evaluate the arguments to a function call.
3544static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3545                         EvalInfo &Info) {
3546  bool Success = true;
3547  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3548       I != E; ++I) {
3549    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3550      // If we're checking for a potential constant expression, evaluate all
3551      // initializers even if some of them fail.
3552      if (!Info.keepEvaluatingAfterFailure())
3553        return false;
3554      Success = false;
3555    }
3556  }
3557  return Success;
3558}
3559
3560/// Evaluate a function call.
3561static bool HandleFunctionCall(SourceLocation CallLoc,
3562                               const FunctionDecl *Callee, const LValue *This,
3563                               ArrayRef<const Expr*> Args, const Stmt *Body,
3564                               EvalInfo &Info, APValue &Result) {
3565  ArgVector ArgValues(Args.size());
3566  if (!EvaluateArgs(Args, ArgValues, Info))
3567    return false;
3568
3569  if (!Info.CheckCallLimit(CallLoc))
3570    return false;
3571
3572  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3573
3574  // For a trivial copy or move assignment, perform an APValue copy. This is
3575  // essential for unions, where the operations performed by the assignment
3576  // operator cannot be represented as statements.
3577  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3578  if (MD && MD->isDefaulted() && MD->isTrivial()) {
3579    assert(This &&
3580           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3581    LValue RHS;
3582    RHS.setFrom(Info.Ctx, ArgValues[0]);
3583    APValue RHSValue;
3584    if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3585                                        RHS, RHSValue))
3586      return false;
3587    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3588                          RHSValue))
3589      return false;
3590    This->moveInto(Result);
3591    return true;
3592  }
3593
3594  EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3595  if (ESR == ESR_Succeeded) {
3596    if (Callee->getResultType()->isVoidType())
3597      return true;
3598    Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3599  }
3600  return ESR == ESR_Returned;
3601}
3602
3603/// Evaluate a constructor call.
3604static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3605                                  ArrayRef<const Expr*> Args,
3606                                  const CXXConstructorDecl *Definition,
3607                                  EvalInfo &Info, APValue &Result) {
3608  ArgVector ArgValues(Args.size());
3609  if (!EvaluateArgs(Args, ArgValues, Info))
3610    return false;
3611
3612  if (!Info.CheckCallLimit(CallLoc))
3613    return false;
3614
3615  const CXXRecordDecl *RD = Definition->getParent();
3616  if (RD->getNumVBases()) {
3617    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3618    return false;
3619  }
3620
3621  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3622
3623  // If it's a delegating constructor, just delegate.
3624  if (Definition->isDelegatingConstructor()) {
3625    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3626    {
3627      FullExpressionRAII InitScope(Info);
3628      if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3629        return false;
3630    }
3631    return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3632  }
3633
3634  // For a trivial copy or move constructor, perform an APValue copy. This is
3635  // essential for unions, where the operations performed by the constructor
3636  // cannot be represented by ctor-initializers.
3637  if (Definition->isDefaulted() &&
3638      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3639       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3640    LValue RHS;
3641    RHS.setFrom(Info.Ctx, ArgValues[0]);
3642    return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3643                                          RHS, Result);
3644  }
3645
3646  // Reserve space for the struct members.
3647  if (!RD->isUnion() && Result.isUninit())
3648    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3649                     std::distance(RD->field_begin(), RD->field_end()));
3650
3651  if (RD->isInvalidDecl()) return false;
3652  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3653
3654  // A scope for temporaries lifetime-extended by reference members.
3655  BlockScopeRAII LifetimeExtendedScope(Info);
3656
3657  bool Success = true;
3658  unsigned BasesSeen = 0;
3659#ifndef NDEBUG
3660  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3661#endif
3662  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
3663       E = Definition->init_end(); I != E; ++I) {
3664    LValue Subobject = This;
3665    APValue *Value = &Result;
3666
3667    // Determine the subobject to initialize.
3668    FieldDecl *FD = 0;
3669    if ((*I)->isBaseInitializer()) {
3670      QualType BaseType((*I)->getBaseClass(), 0);
3671#ifndef NDEBUG
3672      // Non-virtual base classes are initialized in the order in the class
3673      // definition. We have already checked for virtual base classes.
3674      assert(!BaseIt->isVirtual() && "virtual base for literal type");
3675      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3676             "base class initializers not in expected order");
3677      ++BaseIt;
3678#endif
3679      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
3680                                  BaseType->getAsCXXRecordDecl(), &Layout))
3681        return false;
3682      Value = &Result.getStructBase(BasesSeen++);
3683    } else if ((FD = (*I)->getMember())) {
3684      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
3685        return false;
3686      if (RD->isUnion()) {
3687        Result = APValue(FD);
3688        Value = &Result.getUnionValue();
3689      } else {
3690        Value = &Result.getStructField(FD->getFieldIndex());
3691      }
3692    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
3693      // Walk the indirect field decl's chain to find the object to initialize,
3694      // and make sure we've initialized every step along it.
3695      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
3696                                             CE = IFD->chain_end();
3697           C != CE; ++C) {
3698        FD = cast<FieldDecl>(*C);
3699        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3700        // Switch the union field if it differs. This happens if we had
3701        // preceding zero-initialization, and we're now initializing a union
3702        // subobject other than the first.
3703        // FIXME: In this case, the values of the other subobjects are
3704        // specified, since zero-initialization sets all padding bits to zero.
3705        if (Value->isUninit() ||
3706            (Value->isUnion() && Value->getUnionField() != FD)) {
3707          if (CD->isUnion())
3708            *Value = APValue(FD);
3709          else
3710            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3711                             std::distance(CD->field_begin(), CD->field_end()));
3712        }
3713        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
3714          return false;
3715        if (CD->isUnion())
3716          Value = &Value->getUnionValue();
3717        else
3718          Value = &Value->getStructField(FD->getFieldIndex());
3719      }
3720    } else {
3721      llvm_unreachable("unknown base initializer kind");
3722    }
3723
3724    FullExpressionRAII InitScope(Info);
3725    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit()) ||
3726        (FD && FD->isBitField() && !truncateBitfieldValue(Info, (*I)->getInit(),
3727                                                          *Value, FD))) {
3728      // If we're checking for a potential constant expression, evaluate all
3729      // initializers even if some of them fail.
3730      if (!Info.keepEvaluatingAfterFailure())
3731        return false;
3732      Success = false;
3733    }
3734  }
3735
3736  return Success &&
3737         EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3738}
3739
3740//===----------------------------------------------------------------------===//
3741// Generic Evaluation
3742//===----------------------------------------------------------------------===//
3743namespace {
3744
3745// FIXME: RetTy is always bool. Remove it.
3746template <class Derived, typename RetTy=bool>
3747class ExprEvaluatorBase
3748  : public ConstStmtVisitor<Derived, RetTy> {
3749private:
3750  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
3751    return static_cast<Derived*>(this)->Success(V, E);
3752  }
3753  RetTy DerivedZeroInitialization(const Expr *E) {
3754    return static_cast<Derived*>(this)->ZeroInitialization(E);
3755  }
3756
3757  // Check whether a conditional operator with a non-constant condition is a
3758  // potential constant expression. If neither arm is a potential constant
3759  // expression, then the conditional operator is not either.
3760  template<typename ConditionalOperator>
3761  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3762    assert(Info.checkingPotentialConstantExpression());
3763
3764    // Speculatively evaluate both arms.
3765    {
3766      SmallVector<PartialDiagnosticAt, 8> Diag;
3767      SpeculativeEvaluationRAII Speculate(Info, &Diag);
3768
3769      StmtVisitorTy::Visit(E->getFalseExpr());
3770      if (Diag.empty())
3771        return;
3772
3773      Diag.clear();
3774      StmtVisitorTy::Visit(E->getTrueExpr());
3775      if (Diag.empty())
3776        return;
3777    }
3778
3779    Error(E, diag::note_constexpr_conditional_never_const);
3780  }
3781
3782
3783  template<typename ConditionalOperator>
3784  bool HandleConditionalOperator(const ConditionalOperator *E) {
3785    bool BoolResult;
3786    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3787      if (Info.checkingPotentialConstantExpression())
3788        CheckPotentialConstantConditional(E);
3789      return false;
3790    }
3791
3792    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3793    return StmtVisitorTy::Visit(EvalExpr);
3794  }
3795
3796protected:
3797  EvalInfo &Info;
3798  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
3799  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3800
3801  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3802    return Info.CCEDiag(E, D);
3803  }
3804
3805  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
3806
3807public:
3808  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3809
3810  EvalInfo &getEvalInfo() { return Info; }
3811
3812  /// Report an evaluation error. This should only be called when an error is
3813  /// first discovered. When propagating an error, just return false.
3814  bool Error(const Expr *E, diag::kind D) {
3815    Info.Diag(E, D);
3816    return false;
3817  }
3818  bool Error(const Expr *E) {
3819    return Error(E, diag::note_invalid_subexpr_in_const_expr);
3820  }
3821
3822  RetTy VisitStmt(const Stmt *) {
3823    llvm_unreachable("Expression evaluator should not be called on stmts");
3824  }
3825  RetTy VisitExpr(const Expr *E) {
3826    return Error(E);
3827  }
3828
3829  RetTy VisitParenExpr(const ParenExpr *E)
3830    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3831  RetTy VisitUnaryExtension(const UnaryOperator *E)
3832    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3833  RetTy VisitUnaryPlus(const UnaryOperator *E)
3834    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3835  RetTy VisitChooseExpr(const ChooseExpr *E)
3836    { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
3837  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3838    { return StmtVisitorTy::Visit(E->getResultExpr()); }
3839  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3840    { return StmtVisitorTy::Visit(E->getReplacement()); }
3841  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3842    { return StmtVisitorTy::Visit(E->getExpr()); }
3843  RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
3844    // The initializer may not have been parsed yet, or might be erroneous.
3845    if (!E->getExpr())
3846      return Error(E);
3847    return StmtVisitorTy::Visit(E->getExpr());
3848  }
3849  // We cannot create any objects for which cleanups are required, so there is
3850  // nothing to do here; all cleanups must come from unevaluated subexpressions.
3851  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
3852    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3853
3854  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3855    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3856    return static_cast<Derived*>(this)->VisitCastExpr(E);
3857  }
3858  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3859    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3860    return static_cast<Derived*>(this)->VisitCastExpr(E);
3861  }
3862
3863  RetTy VisitBinaryOperator(const BinaryOperator *E) {
3864    switch (E->getOpcode()) {
3865    default:
3866      return Error(E);
3867
3868    case BO_Comma:
3869      VisitIgnoredValue(E->getLHS());
3870      return StmtVisitorTy::Visit(E->getRHS());
3871
3872    case BO_PtrMemD:
3873    case BO_PtrMemI: {
3874      LValue Obj;
3875      if (!HandleMemberPointerAccess(Info, E, Obj))
3876        return false;
3877      APValue Result;
3878      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3879        return false;
3880      return DerivedSuccess(Result, E);
3881    }
3882    }
3883  }
3884
3885  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3886    // Evaluate and cache the common expression. We treat it as a temporary,
3887    // even though it's not quite the same thing.
3888    if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3889                  Info, E->getCommon()))
3890      return false;
3891
3892    return HandleConditionalOperator(E);
3893  }
3894
3895  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
3896    bool IsBcpCall = false;
3897    // If the condition (ignoring parens) is a __builtin_constant_p call,
3898    // the result is a constant expression if it can be folded without
3899    // side-effects. This is an important GNU extension. See GCC PR38377
3900    // for discussion.
3901    if (const CallExpr *CallCE =
3902          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3903      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
3904        IsBcpCall = true;
3905
3906    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3907    // constant expression; we can't check whether it's potentially foldable.
3908    if (Info.checkingPotentialConstantExpression() && IsBcpCall)
3909      return false;
3910
3911    FoldConstant Fold(Info, IsBcpCall);
3912    if (!HandleConditionalOperator(E)) {
3913      Fold.keepDiagnostics();
3914      return false;
3915    }
3916
3917    return true;
3918  }
3919
3920  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3921    if (APValue *Value = Info.CurrentCall->getTemporary(E))
3922      return DerivedSuccess(*Value, E);
3923
3924    const Expr *Source = E->getSourceExpr();
3925    if (!Source)
3926      return Error(E);
3927    if (Source == E) { // sanity checking.
3928      assert(0 && "OpaqueValueExpr recursively refers to itself");
3929      return Error(E);
3930    }
3931    return StmtVisitorTy::Visit(Source);
3932  }
3933
3934  RetTy VisitCallExpr(const CallExpr *E) {
3935    const Expr *Callee = E->getCallee()->IgnoreParens();
3936    QualType CalleeType = Callee->getType();
3937
3938    const FunctionDecl *FD = 0;
3939    LValue *This = 0, ThisVal;
3940    ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3941    bool HasQualifier = false;
3942
3943    // Extract function decl and 'this' pointer from the callee.
3944    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3945      const ValueDecl *Member = 0;
3946      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3947        // Explicit bound member calls, such as x.f() or p->g();
3948        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3949          return false;
3950        Member = ME->getMemberDecl();
3951        This = &ThisVal;
3952        HasQualifier = ME->hasQualifier();
3953      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3954        // Indirect bound member calls ('.*' or '->*').
3955        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3956        if (!Member) return false;
3957        This = &ThisVal;
3958      } else
3959        return Error(Callee);
3960
3961      FD = dyn_cast<FunctionDecl>(Member);
3962      if (!FD)
3963        return Error(Callee);
3964    } else if (CalleeType->isFunctionPointerType()) {
3965      LValue Call;
3966      if (!EvaluatePointer(Callee, Call, Info))
3967        return false;
3968
3969      if (!Call.getLValueOffset().isZero())
3970        return Error(Callee);
3971      FD = dyn_cast_or_null<FunctionDecl>(
3972                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
3973      if (!FD)
3974        return Error(Callee);
3975
3976      // Overloaded operator calls to member functions are represented as normal
3977      // calls with '*this' as the first argument.
3978      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3979      if (MD && !MD->isStatic()) {
3980        // FIXME: When selecting an implicit conversion for an overloaded
3981        // operator delete, we sometimes try to evaluate calls to conversion
3982        // operators without a 'this' parameter!
3983        if (Args.empty())
3984          return Error(E);
3985
3986        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
3987          return false;
3988        This = &ThisVal;
3989        Args = Args.slice(1);
3990      }
3991
3992      // Don't call function pointers which have been cast to some other type.
3993      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
3994        return Error(E);
3995    } else
3996      return Error(E);
3997
3998    if (This && !This->checkSubobject(Info, E, CSK_This))
3999      return false;
4000
4001    // DR1358 allows virtual constexpr functions in some cases. Don't allow
4002    // calls to such functions in constant expressions.
4003    if (This && !HasQualifier &&
4004        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4005      return Error(E, diag::note_constexpr_virtual_call);
4006
4007    const FunctionDecl *Definition = 0;
4008    Stmt *Body = FD->getBody(Definition);
4009    APValue Result;
4010
4011    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4012        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
4013                            Info, Result))
4014      return false;
4015
4016    return DerivedSuccess(Result, E);
4017  }
4018
4019  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4020    return StmtVisitorTy::Visit(E->getInitializer());
4021  }
4022  RetTy VisitInitListExpr(const InitListExpr *E) {
4023    if (E->getNumInits() == 0)
4024      return DerivedZeroInitialization(E);
4025    if (E->getNumInits() == 1)
4026      return StmtVisitorTy::Visit(E->getInit(0));
4027    return Error(E);
4028  }
4029  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4030    return DerivedZeroInitialization(E);
4031  }
4032  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4033    return DerivedZeroInitialization(E);
4034  }
4035  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4036    return DerivedZeroInitialization(E);
4037  }
4038
4039  /// A member expression where the object is a prvalue is itself a prvalue.
4040  RetTy VisitMemberExpr(const MemberExpr *E) {
4041    assert(!E->isArrow() && "missing call to bound member function?");
4042
4043    APValue Val;
4044    if (!Evaluate(Val, Info, E->getBase()))
4045      return false;
4046
4047    QualType BaseTy = E->getBase()->getType();
4048
4049    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4050    if (!FD) return Error(E);
4051    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4052    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4053           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4054
4055    CompleteObject Obj(&Val, BaseTy);
4056    SubobjectDesignator Designator(BaseTy);
4057    Designator.addDeclUnchecked(FD);
4058
4059    APValue Result;
4060    return extractSubobject(Info, E, Obj, Designator, Result) &&
4061           DerivedSuccess(Result, E);
4062  }
4063
4064  RetTy VisitCastExpr(const CastExpr *E) {
4065    switch (E->getCastKind()) {
4066    default:
4067      break;
4068
4069    case CK_AtomicToNonAtomic: {
4070      APValue AtomicVal;
4071      if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4072        return false;
4073      return DerivedSuccess(AtomicVal, E);
4074    }
4075
4076    case CK_NoOp:
4077    case CK_UserDefinedConversion:
4078      return StmtVisitorTy::Visit(E->getSubExpr());
4079
4080    case CK_LValueToRValue: {
4081      LValue LVal;
4082      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4083        return false;
4084      APValue RVal;
4085      // Note, we use the subexpression's type in order to retain cv-qualifiers.
4086      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4087                                          LVal, RVal))
4088        return false;
4089      return DerivedSuccess(RVal, E);
4090    }
4091    }
4092
4093    return Error(E);
4094  }
4095
4096  RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
4097    return VisitUnaryPostIncDec(UO);
4098  }
4099  RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
4100    return VisitUnaryPostIncDec(UO);
4101  }
4102  RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
4103    if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4104      return Error(UO);
4105
4106    LValue LVal;
4107    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4108      return false;
4109    APValue RVal;
4110    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4111                      UO->isIncrementOp(), &RVal))
4112      return false;
4113    return DerivedSuccess(RVal, UO);
4114  }
4115
4116  RetTy VisitStmtExpr(const StmtExpr *E) {
4117    // We will have checked the full-expressions inside the statement expression
4118    // when they were completed, and don't need to check them again now.
4119    if (Info.checkingForOverflow())
4120      return Error(E);
4121
4122    BlockScopeRAII Scope(Info);
4123    const CompoundStmt *CS = E->getSubStmt();
4124    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4125                                           BE = CS->body_end();
4126         /**/; ++BI) {
4127      if (BI + 1 == BE) {
4128        const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4129        if (!FinalExpr) {
4130          Info.Diag((*BI)->getLocStart(),
4131                    diag::note_constexpr_stmt_expr_unsupported);
4132          return false;
4133        }
4134        return this->Visit(FinalExpr);
4135      }
4136
4137      APValue ReturnValue;
4138      EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4139      if (ESR != ESR_Succeeded) {
4140        // FIXME: If the statement-expression terminated due to 'return',
4141        // 'break', or 'continue', it would be nice to propagate that to
4142        // the outer statement evaluation rather than bailing out.
4143        if (ESR != ESR_Failed)
4144          Info.Diag((*BI)->getLocStart(),
4145                    diag::note_constexpr_stmt_expr_unsupported);
4146        return false;
4147      }
4148    }
4149  }
4150
4151  /// Visit a value which is evaluated, but whose value is ignored.
4152  void VisitIgnoredValue(const Expr *E) {
4153    EvaluateIgnoredValue(Info, E);
4154  }
4155};
4156
4157}
4158
4159//===----------------------------------------------------------------------===//
4160// Common base class for lvalue and temporary evaluation.
4161//===----------------------------------------------------------------------===//
4162namespace {
4163template<class Derived>
4164class LValueExprEvaluatorBase
4165  : public ExprEvaluatorBase<Derived, bool> {
4166protected:
4167  LValue &Result;
4168  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4169  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
4170
4171  bool Success(APValue::LValueBase B) {
4172    Result.set(B);
4173    return true;
4174  }
4175
4176public:
4177  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4178    ExprEvaluatorBaseTy(Info), Result(Result) {}
4179
4180  bool Success(const APValue &V, const Expr *E) {
4181    Result.setFrom(this->Info.Ctx, V);
4182    return true;
4183  }
4184
4185  bool VisitMemberExpr(const MemberExpr *E) {
4186    // Handle non-static data members.
4187    QualType BaseTy;
4188    if (E->isArrow()) {
4189      if (!EvaluatePointer(E->getBase(), Result, this->Info))
4190        return false;
4191      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4192    } else if (E->getBase()->isRValue()) {
4193      assert(E->getBase()->getType()->isRecordType());
4194      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4195        return false;
4196      BaseTy = E->getBase()->getType();
4197    } else {
4198      if (!this->Visit(E->getBase()))
4199        return false;
4200      BaseTy = E->getBase()->getType();
4201    }
4202
4203    const ValueDecl *MD = E->getMemberDecl();
4204    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4205      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4206             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4207      (void)BaseTy;
4208      if (!HandleLValueMember(this->Info, E, Result, FD))
4209        return false;
4210    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4211      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4212        return false;
4213    } else
4214      return this->Error(E);
4215
4216    if (MD->getType()->isReferenceType()) {
4217      APValue RefValue;
4218      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4219                                          RefValue))
4220        return false;
4221      return Success(RefValue, E);
4222    }
4223    return true;
4224  }
4225
4226  bool VisitBinaryOperator(const BinaryOperator *E) {
4227    switch (E->getOpcode()) {
4228    default:
4229      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4230
4231    case BO_PtrMemD:
4232    case BO_PtrMemI:
4233      return HandleMemberPointerAccess(this->Info, E, Result);
4234    }
4235  }
4236
4237  bool VisitCastExpr(const CastExpr *E) {
4238    switch (E->getCastKind()) {
4239    default:
4240      return ExprEvaluatorBaseTy::VisitCastExpr(E);
4241
4242    case CK_DerivedToBase:
4243    case CK_UncheckedDerivedToBase:
4244      if (!this->Visit(E->getSubExpr()))
4245        return false;
4246
4247      // Now figure out the necessary offset to add to the base LV to get from
4248      // the derived class to the base class.
4249      return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4250                                  Result);
4251    }
4252  }
4253};
4254}
4255
4256//===----------------------------------------------------------------------===//
4257// LValue Evaluation
4258//
4259// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4260// function designators (in C), decl references to void objects (in C), and
4261// temporaries (if building with -Wno-address-of-temporary).
4262//
4263// LValue evaluation produces values comprising a base expression of one of the
4264// following types:
4265// - Declarations
4266//  * VarDecl
4267//  * FunctionDecl
4268// - Literals
4269//  * CompoundLiteralExpr in C
4270//  * StringLiteral
4271//  * CXXTypeidExpr
4272//  * PredefinedExpr
4273//  * ObjCStringLiteralExpr
4274//  * ObjCEncodeExpr
4275//  * AddrLabelExpr
4276//  * BlockExpr
4277//  * CallExpr for a MakeStringConstant builtin
4278// - Locals and temporaries
4279//  * MaterializeTemporaryExpr
4280//  * Any Expr, with a CallIndex indicating the function in which the temporary
4281//    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4282//    from the AST (FIXME).
4283//  * A MaterializeTemporaryExpr that has static storage duration, with no
4284//    CallIndex, for a lifetime-extended temporary.
4285// plus an offset in bytes.
4286//===----------------------------------------------------------------------===//
4287namespace {
4288class LValueExprEvaluator
4289  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4290public:
4291  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4292    LValueExprEvaluatorBaseTy(Info, Result) {}
4293
4294  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4295  bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4296
4297  bool VisitDeclRefExpr(const DeclRefExpr *E);
4298  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4299  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4300  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4301  bool VisitMemberExpr(const MemberExpr *E);
4302  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
4303  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4304  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4305  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4306  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4307  bool VisitUnaryDeref(const UnaryOperator *E);
4308  bool VisitUnaryReal(const UnaryOperator *E);
4309  bool VisitUnaryImag(const UnaryOperator *E);
4310  bool VisitUnaryPreInc(const UnaryOperator *UO) {
4311    return VisitUnaryPreIncDec(UO);
4312  }
4313  bool VisitUnaryPreDec(const UnaryOperator *UO) {
4314    return VisitUnaryPreIncDec(UO);
4315  }
4316  bool VisitBinAssign(const BinaryOperator *BO);
4317  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4318
4319  bool VisitCastExpr(const CastExpr *E) {
4320    switch (E->getCastKind()) {
4321    default:
4322      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4323
4324    case CK_LValueBitCast:
4325      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4326      if (!Visit(E->getSubExpr()))
4327        return false;
4328      Result.Designator.setInvalid();
4329      return true;
4330
4331    case CK_BaseToDerived:
4332      if (!Visit(E->getSubExpr()))
4333        return false;
4334      return HandleBaseToDerivedCast(Info, E, Result);
4335    }
4336  }
4337};
4338} // end anonymous namespace
4339
4340/// Evaluate an expression as an lvalue. This can be legitimately called on
4341/// expressions which are not glvalues, in two cases:
4342///  * function designators in C, and
4343///  * "extern void" objects
4344static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4345  assert(E->isGLValue() || E->getType()->isFunctionType() ||
4346         E->getType()->isVoidType());
4347  return LValueExprEvaluator(Info, Result).Visit(E);
4348}
4349
4350bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4351  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4352    return Success(FD);
4353  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4354    return VisitVarDecl(E, VD);
4355  return Error(E);
4356}
4357
4358bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4359  CallStackFrame *Frame = 0;
4360  if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4361    Frame = Info.CurrentCall;
4362
4363  if (!VD->getType()->isReferenceType()) {
4364    if (Frame) {
4365      Result.set(VD, Frame->Index);
4366      return true;
4367    }
4368    return Success(VD);
4369  }
4370
4371  APValue *V;
4372  if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4373    return false;
4374  if (V->isUninit()) {
4375    if (!Info.checkingPotentialConstantExpression())
4376      Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4377    return false;
4378  }
4379  return Success(*V, E);
4380}
4381
4382bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4383    const MaterializeTemporaryExpr *E) {
4384  // Walk through the expression to find the materialized temporary itself.
4385  SmallVector<const Expr *, 2> CommaLHSs;
4386  SmallVector<SubobjectAdjustment, 2> Adjustments;
4387  const Expr *Inner = E->GetTemporaryExpr()->
4388      skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4389
4390  // If we passed any comma operators, evaluate their LHSs.
4391  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4392    if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4393      return false;
4394
4395  // A materialized temporary with static storage duration can appear within the
4396  // result of a constant expression evaluation, so we need to preserve its
4397  // value for use outside this evaluation.
4398  APValue *Value;
4399  if (E->getStorageDuration() == SD_Static) {
4400    Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4401    *Value = APValue();
4402    Result.set(E);
4403  } else {
4404    Value = &Info.CurrentCall->
4405        createTemporary(E, E->getStorageDuration() == SD_Automatic);
4406    Result.set(E, Info.CurrentCall->Index);
4407  }
4408
4409  QualType Type = Inner->getType();
4410
4411  // Materialize the temporary itself.
4412  if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4413      (E->getStorageDuration() == SD_Static &&
4414       !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4415    *Value = APValue();
4416    return false;
4417  }
4418
4419  // Adjust our lvalue to refer to the desired subobject.
4420  for (unsigned I = Adjustments.size(); I != 0; /**/) {
4421    --I;
4422    switch (Adjustments[I].Kind) {
4423    case SubobjectAdjustment::DerivedToBaseAdjustment:
4424      if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4425                                Type, Result))
4426        return false;
4427      Type = Adjustments[I].DerivedToBase.BasePath->getType();
4428      break;
4429
4430    case SubobjectAdjustment::FieldAdjustment:
4431      if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4432        return false;
4433      Type = Adjustments[I].Field->getType();
4434      break;
4435
4436    case SubobjectAdjustment::MemberPointerAdjustment:
4437      if (!HandleMemberPointerAccess(this->Info, Type, Result,
4438                                     Adjustments[I].Ptr.RHS))
4439        return false;
4440      Type = Adjustments[I].Ptr.MPT->getPointeeType();
4441      break;
4442    }
4443  }
4444
4445  return true;
4446}
4447
4448bool
4449LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4450  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4451  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4452  // only see this when folding in C, so there's no standard to follow here.
4453  return Success(E);
4454}
4455
4456bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4457  if (!E->isPotentiallyEvaluated())
4458    return Success(E);
4459
4460  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4461    << E->getExprOperand()->getType()
4462    << E->getExprOperand()->getSourceRange();
4463  return false;
4464}
4465
4466bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4467  return Success(E);
4468}
4469
4470bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4471  // Handle static data members.
4472  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4473    VisitIgnoredValue(E->getBase());
4474    return VisitVarDecl(E, VD);
4475  }
4476
4477  // Handle static member functions.
4478  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4479    if (MD->isStatic()) {
4480      VisitIgnoredValue(E->getBase());
4481      return Success(MD);
4482    }
4483  }
4484
4485  // Handle non-static data members.
4486  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4487}
4488
4489bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4490  // FIXME: Deal with vectors as array subscript bases.
4491  if (E->getBase()->getType()->isVectorType())
4492    return Error(E);
4493
4494  if (!EvaluatePointer(E->getBase(), Result, Info))
4495    return false;
4496
4497  APSInt Index;
4498  if (!EvaluateInteger(E->getIdx(), Index, Info))
4499    return false;
4500
4501  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4502                                     getExtValue(Index));
4503}
4504
4505bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4506  return EvaluatePointer(E->getSubExpr(), Result, Info);
4507}
4508
4509bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4510  if (!Visit(E->getSubExpr()))
4511    return false;
4512  // __real is a no-op on scalar lvalues.
4513  if (E->getSubExpr()->getType()->isAnyComplexType())
4514    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4515  return true;
4516}
4517
4518bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4519  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4520         "lvalue __imag__ on scalar?");
4521  if (!Visit(E->getSubExpr()))
4522    return false;
4523  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4524  return true;
4525}
4526
4527bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4528  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4529    return Error(UO);
4530
4531  if (!this->Visit(UO->getSubExpr()))
4532    return false;
4533
4534  return handleIncDec(
4535      this->Info, UO, Result, UO->getSubExpr()->getType(),
4536      UO->isIncrementOp(), 0);
4537}
4538
4539bool LValueExprEvaluator::VisitCompoundAssignOperator(
4540    const CompoundAssignOperator *CAO) {
4541  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4542    return Error(CAO);
4543
4544  APValue RHS;
4545
4546  // The overall lvalue result is the result of evaluating the LHS.
4547  if (!this->Visit(CAO->getLHS())) {
4548    if (Info.keepEvaluatingAfterFailure())
4549      Evaluate(RHS, this->Info, CAO->getRHS());
4550    return false;
4551  }
4552
4553  if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4554    return false;
4555
4556  return handleCompoundAssignment(
4557      this->Info, CAO,
4558      Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4559      CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4560}
4561
4562bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4563  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4564    return Error(E);
4565
4566  APValue NewVal;
4567
4568  if (!this->Visit(E->getLHS())) {
4569    if (Info.keepEvaluatingAfterFailure())
4570      Evaluate(NewVal, this->Info, E->getRHS());
4571    return false;
4572  }
4573
4574  if (!Evaluate(NewVal, this->Info, E->getRHS()))
4575    return false;
4576
4577  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4578                          NewVal);
4579}
4580
4581//===----------------------------------------------------------------------===//
4582// Pointer Evaluation
4583//===----------------------------------------------------------------------===//
4584
4585namespace {
4586class PointerExprEvaluator
4587  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
4588  LValue &Result;
4589
4590  bool Success(const Expr *E) {
4591    Result.set(E);
4592    return true;
4593  }
4594public:
4595
4596  PointerExprEvaluator(EvalInfo &info, LValue &Result)
4597    : ExprEvaluatorBaseTy(info), Result(Result) {}
4598
4599  bool Success(const APValue &V, const Expr *E) {
4600    Result.setFrom(Info.Ctx, V);
4601    return true;
4602  }
4603  bool ZeroInitialization(const Expr *E) {
4604    return Success((Expr*)0);
4605  }
4606
4607  bool VisitBinaryOperator(const BinaryOperator *E);
4608  bool VisitCastExpr(const CastExpr* E);
4609  bool VisitUnaryAddrOf(const UnaryOperator *E);
4610  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4611      { return Success(E); }
4612  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4613      { return Success(E); }
4614  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4615      { return Success(E); }
4616  bool VisitCallExpr(const CallExpr *E);
4617  bool VisitBlockExpr(const BlockExpr *E) {
4618    if (!E->getBlockDecl()->hasCaptures())
4619      return Success(E);
4620    return Error(E);
4621  }
4622  bool VisitCXXThisExpr(const CXXThisExpr *E) {
4623    // Can't look at 'this' when checking a potential constant expression.
4624    if (Info.checkingPotentialConstantExpression())
4625      return false;
4626    if (!Info.CurrentCall->This)
4627      return Error(E);
4628    Result = *Info.CurrentCall->This;
4629    return true;
4630  }
4631
4632  // FIXME: Missing: @protocol, @selector
4633};
4634} // end anonymous namespace
4635
4636static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4637  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4638  return PointerExprEvaluator(Info, Result).Visit(E);
4639}
4640
4641bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4642  if (E->getOpcode() != BO_Add &&
4643      E->getOpcode() != BO_Sub)
4644    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4645
4646  const Expr *PExp = E->getLHS();
4647  const Expr *IExp = E->getRHS();
4648  if (IExp->getType()->isPointerType())
4649    std::swap(PExp, IExp);
4650
4651  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4652  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4653    return false;
4654
4655  llvm::APSInt Offset;
4656  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4657    return false;
4658
4659  int64_t AdditionalOffset = getExtValue(Offset);
4660  if (E->getOpcode() == BO_Sub)
4661    AdditionalOffset = -AdditionalOffset;
4662
4663  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4664  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4665                                     AdditionalOffset);
4666}
4667
4668bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4669  return EvaluateLValue(E->getSubExpr(), Result, Info);
4670}
4671
4672bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4673  const Expr* SubExpr = E->getSubExpr();
4674
4675  switch (E->getCastKind()) {
4676  default:
4677    break;
4678
4679  case CK_BitCast:
4680  case CK_CPointerToObjCPointerCast:
4681  case CK_BlockPointerToObjCPointerCast:
4682  case CK_AnyPointerToBlockPointerCast:
4683    if (!Visit(SubExpr))
4684      return false;
4685    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4686    // permitted in constant expressions in C++11. Bitcasts from cv void* are
4687    // also static_casts, but we disallow them as a resolution to DR1312.
4688    if (!E->getType()->isVoidPointerType()) {
4689      Result.Designator.setInvalid();
4690      if (SubExpr->getType()->isVoidPointerType())
4691        CCEDiag(E, diag::note_constexpr_invalid_cast)
4692          << 3 << SubExpr->getType();
4693      else
4694        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4695    }
4696    return true;
4697
4698  case CK_DerivedToBase:
4699  case CK_UncheckedDerivedToBase:
4700    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4701      return false;
4702    if (!Result.Base && Result.Offset.isZero())
4703      return true;
4704
4705    // Now figure out the necessary offset to add to the base LV to get from
4706    // the derived class to the base class.
4707    return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4708                                  castAs<PointerType>()->getPointeeType(),
4709                                Result);
4710
4711  case CK_BaseToDerived:
4712    if (!Visit(E->getSubExpr()))
4713      return false;
4714    if (!Result.Base && Result.Offset.isZero())
4715      return true;
4716    return HandleBaseToDerivedCast(Info, E, Result);
4717
4718  case CK_NullToPointer:
4719    VisitIgnoredValue(E->getSubExpr());
4720    return ZeroInitialization(E);
4721
4722  case CK_IntegralToPointer: {
4723    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4724
4725    APValue Value;
4726    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4727      break;
4728
4729    if (Value.isInt()) {
4730      unsigned Size = Info.Ctx.getTypeSize(E->getType());
4731      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4732      Result.Base = (Expr*)0;
4733      Result.Offset = CharUnits::fromQuantity(N);
4734      Result.CallIndex = 0;
4735      Result.Designator.setInvalid();
4736      return true;
4737    } else {
4738      // Cast is of an lvalue, no need to change value.
4739      Result.setFrom(Info.Ctx, Value);
4740      return true;
4741    }
4742  }
4743  case CK_ArrayToPointerDecay:
4744    if (SubExpr->isGLValue()) {
4745      if (!EvaluateLValue(SubExpr, Result, Info))
4746        return false;
4747    } else {
4748      Result.set(SubExpr, Info.CurrentCall->Index);
4749      if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4750                           Info, Result, SubExpr))
4751        return false;
4752    }
4753    // The result is a pointer to the first element of the array.
4754    if (const ConstantArrayType *CAT
4755          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4756      Result.addArray(Info, E, CAT);
4757    else
4758      Result.Designator.setInvalid();
4759    return true;
4760
4761  case CK_FunctionToPointerDecay:
4762    return EvaluateLValue(SubExpr, Result, Info);
4763  }
4764
4765  return ExprEvaluatorBaseTy::VisitCastExpr(E);
4766}
4767
4768bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4769  if (IsStringLiteralCall(E))
4770    return Success(E);
4771
4772  switch (E->isBuiltinCall()) {
4773  case Builtin::BI__builtin_addressof:
4774    return EvaluateLValue(E->getArg(0), Result, Info);
4775
4776  default:
4777    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4778  }
4779}
4780
4781//===----------------------------------------------------------------------===//
4782// Member Pointer Evaluation
4783//===----------------------------------------------------------------------===//
4784
4785namespace {
4786class MemberPointerExprEvaluator
4787  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
4788  MemberPtr &Result;
4789
4790  bool Success(const ValueDecl *D) {
4791    Result = MemberPtr(D);
4792    return true;
4793  }
4794public:
4795
4796  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4797    : ExprEvaluatorBaseTy(Info), Result(Result) {}
4798
4799  bool Success(const APValue &V, const Expr *E) {
4800    Result.setFrom(V);
4801    return true;
4802  }
4803  bool ZeroInitialization(const Expr *E) {
4804    return Success((const ValueDecl*)0);
4805  }
4806
4807  bool VisitCastExpr(const CastExpr *E);
4808  bool VisitUnaryAddrOf(const UnaryOperator *E);
4809};
4810} // end anonymous namespace
4811
4812static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4813                                  EvalInfo &Info) {
4814  assert(E->isRValue() && E->getType()->isMemberPointerType());
4815  return MemberPointerExprEvaluator(Info, Result).Visit(E);
4816}
4817
4818bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4819  switch (E->getCastKind()) {
4820  default:
4821    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4822
4823  case CK_NullToMemberPointer:
4824    VisitIgnoredValue(E->getSubExpr());
4825    return ZeroInitialization(E);
4826
4827  case CK_BaseToDerivedMemberPointer: {
4828    if (!Visit(E->getSubExpr()))
4829      return false;
4830    if (E->path_empty())
4831      return true;
4832    // Base-to-derived member pointer casts store the path in derived-to-base
4833    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4834    // the wrong end of the derived->base arc, so stagger the path by one class.
4835    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4836    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4837         PathI != PathE; ++PathI) {
4838      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4839      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4840      if (!Result.castToDerived(Derived))
4841        return Error(E);
4842    }
4843    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4844    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4845      return Error(E);
4846    return true;
4847  }
4848
4849  case CK_DerivedToBaseMemberPointer:
4850    if (!Visit(E->getSubExpr()))
4851      return false;
4852    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4853         PathE = E->path_end(); PathI != PathE; ++PathI) {
4854      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4855      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4856      if (!Result.castToBase(Base))
4857        return Error(E);
4858    }
4859    return true;
4860  }
4861}
4862
4863bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4864  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4865  // member can be formed.
4866  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4867}
4868
4869//===----------------------------------------------------------------------===//
4870// Record Evaluation
4871//===----------------------------------------------------------------------===//
4872
4873namespace {
4874  class RecordExprEvaluator
4875  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
4876    const LValue &This;
4877    APValue &Result;
4878  public:
4879
4880    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4881      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4882
4883    bool Success(const APValue &V, const Expr *E) {
4884      Result = V;
4885      return true;
4886    }
4887    bool ZeroInitialization(const Expr *E);
4888
4889    bool VisitCastExpr(const CastExpr *E);
4890    bool VisitInitListExpr(const InitListExpr *E);
4891    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4892    bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4893  };
4894}
4895
4896/// Perform zero-initialization on an object of non-union class type.
4897/// C++11 [dcl.init]p5:
4898///  To zero-initialize an object or reference of type T means:
4899///    [...]
4900///    -- if T is a (possibly cv-qualified) non-union class type,
4901///       each non-static data member and each base-class subobject is
4902///       zero-initialized
4903static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4904                                          const RecordDecl *RD,
4905                                          const LValue &This, APValue &Result) {
4906  assert(!RD->isUnion() && "Expected non-union class type");
4907  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4908  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4909                   std::distance(RD->field_begin(), RD->field_end()));
4910
4911  if (RD->isInvalidDecl()) return false;
4912  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4913
4914  if (CD) {
4915    unsigned Index = 0;
4916    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4917           End = CD->bases_end(); I != End; ++I, ++Index) {
4918      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4919      LValue Subobject = This;
4920      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4921        return false;
4922      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4923                                         Result.getStructBase(Index)))
4924        return false;
4925    }
4926  }
4927
4928  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
4929       I != End; ++I) {
4930    // -- if T is a reference type, no initialization is performed.
4931    if (I->getType()->isReferenceType())
4932      continue;
4933
4934    LValue Subobject = This;
4935    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
4936      return false;
4937
4938    ImplicitValueInitExpr VIE(I->getType());
4939    if (!EvaluateInPlace(
4940          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4941      return false;
4942  }
4943
4944  return true;
4945}
4946
4947bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4948  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4949  if (RD->isInvalidDecl()) return false;
4950  if (RD->isUnion()) {
4951    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4952    // object's first non-static named data member is zero-initialized
4953    RecordDecl::field_iterator I = RD->field_begin();
4954    if (I == RD->field_end()) {
4955      Result = APValue((const FieldDecl*)0);
4956      return true;
4957    }
4958
4959    LValue Subobject = This;
4960    if (!HandleLValueMember(Info, E, Subobject, *I))
4961      return false;
4962    Result = APValue(*I);
4963    ImplicitValueInitExpr VIE(I->getType());
4964    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
4965  }
4966
4967  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
4968    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
4969    return false;
4970  }
4971
4972  return HandleClassZeroInitialization(Info, E, RD, This, Result);
4973}
4974
4975bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
4976  switch (E->getCastKind()) {
4977  default:
4978    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4979
4980  case CK_ConstructorConversion:
4981    return Visit(E->getSubExpr());
4982
4983  case CK_DerivedToBase:
4984  case CK_UncheckedDerivedToBase: {
4985    APValue DerivedObject;
4986    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
4987      return false;
4988    if (!DerivedObject.isStruct())
4989      return Error(E->getSubExpr());
4990
4991    // Derived-to-base rvalue conversion: just slice off the derived part.
4992    APValue *Value = &DerivedObject;
4993    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
4994    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4995         PathE = E->path_end(); PathI != PathE; ++PathI) {
4996      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
4997      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4998      Value = &Value->getStructBase(getBaseIndex(RD, Base));
4999      RD = Base;
5000    }
5001    Result = *Value;
5002    return true;
5003  }
5004  }
5005}
5006
5007bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5008  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5009  if (RD->isInvalidDecl()) return false;
5010  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5011
5012  if (RD->isUnion()) {
5013    const FieldDecl *Field = E->getInitializedFieldInUnion();
5014    Result = APValue(Field);
5015    if (!Field)
5016      return true;
5017
5018    // If the initializer list for a union does not contain any elements, the
5019    // first element of the union is value-initialized.
5020    // FIXME: The element should be initialized from an initializer list.
5021    //        Is this difference ever observable for initializer lists which
5022    //        we don't build?
5023    ImplicitValueInitExpr VIE(Field->getType());
5024    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5025
5026    LValue Subobject = This;
5027    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5028      return false;
5029
5030    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5031    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5032                                  isa<CXXDefaultInitExpr>(InitExpr));
5033
5034    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5035  }
5036
5037  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5038         "initializer list for class with base classes");
5039  Result = APValue(APValue::UninitStruct(), 0,
5040                   std::distance(RD->field_begin(), RD->field_end()));
5041  unsigned ElementNo = 0;
5042  bool Success = true;
5043  for (RecordDecl::field_iterator Field = RD->field_begin(),
5044       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
5045    // Anonymous bit-fields are not considered members of the class for
5046    // purposes of aggregate initialization.
5047    if (Field->isUnnamedBitfield())
5048      continue;
5049
5050    LValue Subobject = This;
5051
5052    bool HaveInit = ElementNo < E->getNumInits();
5053
5054    // FIXME: Diagnostics here should point to the end of the initializer
5055    // list, not the start.
5056    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5057                            Subobject, *Field, &Layout))
5058      return false;
5059
5060    // Perform an implicit value-initialization for members beyond the end of
5061    // the initializer list.
5062    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5063    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5064
5065    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5066    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5067                                  isa<CXXDefaultInitExpr>(Init));
5068
5069    APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5070    if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5071        (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5072                                                       FieldVal, *Field))) {
5073      if (!Info.keepEvaluatingAfterFailure())
5074        return false;
5075      Success = false;
5076    }
5077  }
5078
5079  return Success;
5080}
5081
5082bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5083  const CXXConstructorDecl *FD = E->getConstructor();
5084  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5085
5086  bool ZeroInit = E->requiresZeroInitialization();
5087  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5088    // If we've already performed zero-initialization, we're already done.
5089    if (!Result.isUninit())
5090      return true;
5091
5092    // We can get here in two different ways:
5093    //  1) We're performing value-initialization, and should zero-initialize
5094    //     the object, or
5095    //  2) We're performing default-initialization of an object with a trivial
5096    //     constexpr default constructor, in which case we should start the
5097    //     lifetimes of all the base subobjects (there can be no data member
5098    //     subobjects in this case) per [basic.life]p1.
5099    // Either way, ZeroInitialization is appropriate.
5100    return ZeroInitialization(E);
5101  }
5102
5103  const FunctionDecl *Definition = 0;
5104  FD->getBody(Definition);
5105
5106  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5107    return false;
5108
5109  // Avoid materializing a temporary for an elidable copy/move constructor.
5110  if (E->isElidable() && !ZeroInit)
5111    if (const MaterializeTemporaryExpr *ME
5112          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5113      return Visit(ME->GetTemporaryExpr());
5114
5115  if (ZeroInit && !ZeroInitialization(E))
5116    return false;
5117
5118  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5119  return HandleConstructorCall(E->getExprLoc(), This, Args,
5120                               cast<CXXConstructorDecl>(Definition), Info,
5121                               Result);
5122}
5123
5124bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5125    const CXXStdInitializerListExpr *E) {
5126  const ConstantArrayType *ArrayType =
5127      Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5128
5129  LValue Array;
5130  if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5131    return false;
5132
5133  // Get a pointer to the first element of the array.
5134  Array.addArray(Info, E, ArrayType);
5135
5136  // FIXME: Perform the checks on the field types in SemaInit.
5137  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5138  RecordDecl::field_iterator Field = Record->field_begin();
5139  if (Field == Record->field_end())
5140    return Error(E);
5141
5142  // Start pointer.
5143  if (!Field->getType()->isPointerType() ||
5144      !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5145                            ArrayType->getElementType()))
5146    return Error(E);
5147
5148  // FIXME: What if the initializer_list type has base classes, etc?
5149  Result = APValue(APValue::UninitStruct(), 0, 2);
5150  Array.moveInto(Result.getStructField(0));
5151
5152  if (++Field == Record->field_end())
5153    return Error(E);
5154
5155  if (Field->getType()->isPointerType() &&
5156      Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5157                           ArrayType->getElementType())) {
5158    // End pointer.
5159    if (!HandleLValueArrayAdjustment(Info, E, Array,
5160                                     ArrayType->getElementType(),
5161                                     ArrayType->getSize().getZExtValue()))
5162      return false;
5163    Array.moveInto(Result.getStructField(1));
5164  } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5165    // Length.
5166    Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5167  else
5168    return Error(E);
5169
5170  if (++Field != Record->field_end())
5171    return Error(E);
5172
5173  return true;
5174}
5175
5176static bool EvaluateRecord(const Expr *E, const LValue &This,
5177                           APValue &Result, EvalInfo &Info) {
5178  assert(E->isRValue() && E->getType()->isRecordType() &&
5179         "can't evaluate expression as a record rvalue");
5180  return RecordExprEvaluator(Info, This, Result).Visit(E);
5181}
5182
5183//===----------------------------------------------------------------------===//
5184// Temporary Evaluation
5185//
5186// Temporaries are represented in the AST as rvalues, but generally behave like
5187// lvalues. The full-object of which the temporary is a subobject is implicitly
5188// materialized so that a reference can bind to it.
5189//===----------------------------------------------------------------------===//
5190namespace {
5191class TemporaryExprEvaluator
5192  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5193public:
5194  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5195    LValueExprEvaluatorBaseTy(Info, Result) {}
5196
5197  /// Visit an expression which constructs the value of this temporary.
5198  bool VisitConstructExpr(const Expr *E) {
5199    Result.set(E, Info.CurrentCall->Index);
5200    return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5201                           Info, Result, E);
5202  }
5203
5204  bool VisitCastExpr(const CastExpr *E) {
5205    switch (E->getCastKind()) {
5206    default:
5207      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5208
5209    case CK_ConstructorConversion:
5210      return VisitConstructExpr(E->getSubExpr());
5211    }
5212  }
5213  bool VisitInitListExpr(const InitListExpr *E) {
5214    return VisitConstructExpr(E);
5215  }
5216  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5217    return VisitConstructExpr(E);
5218  }
5219  bool VisitCallExpr(const CallExpr *E) {
5220    return VisitConstructExpr(E);
5221  }
5222};
5223} // end anonymous namespace
5224
5225/// Evaluate an expression of record type as a temporary.
5226static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5227  assert(E->isRValue() && E->getType()->isRecordType());
5228  return TemporaryExprEvaluator(Info, Result).Visit(E);
5229}
5230
5231//===----------------------------------------------------------------------===//
5232// Vector Evaluation
5233//===----------------------------------------------------------------------===//
5234
5235namespace {
5236  class VectorExprEvaluator
5237  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
5238    APValue &Result;
5239  public:
5240
5241    VectorExprEvaluator(EvalInfo &info, APValue &Result)
5242      : ExprEvaluatorBaseTy(info), Result(Result) {}
5243
5244    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5245      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5246      // FIXME: remove this APValue copy.
5247      Result = APValue(V.data(), V.size());
5248      return true;
5249    }
5250    bool Success(const APValue &V, const Expr *E) {
5251      assert(V.isVector());
5252      Result = V;
5253      return true;
5254    }
5255    bool ZeroInitialization(const Expr *E);
5256
5257    bool VisitUnaryReal(const UnaryOperator *E)
5258      { return Visit(E->getSubExpr()); }
5259    bool VisitCastExpr(const CastExpr* E);
5260    bool VisitInitListExpr(const InitListExpr *E);
5261    bool VisitUnaryImag(const UnaryOperator *E);
5262    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5263    //                 binary comparisons, binary and/or/xor,
5264    //                 shufflevector, ExtVectorElementExpr
5265  };
5266} // end anonymous namespace
5267
5268static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5269  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5270  return VectorExprEvaluator(Info, Result).Visit(E);
5271}
5272
5273bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5274  const VectorType *VTy = E->getType()->castAs<VectorType>();
5275  unsigned NElts = VTy->getNumElements();
5276
5277  const Expr *SE = E->getSubExpr();
5278  QualType SETy = SE->getType();
5279
5280  switch (E->getCastKind()) {
5281  case CK_VectorSplat: {
5282    APValue Val = APValue();
5283    if (SETy->isIntegerType()) {
5284      APSInt IntResult;
5285      if (!EvaluateInteger(SE, IntResult, Info))
5286         return false;
5287      Val = APValue(IntResult);
5288    } else if (SETy->isRealFloatingType()) {
5289       APFloat F(0.0);
5290       if (!EvaluateFloat(SE, F, Info))
5291         return false;
5292       Val = APValue(F);
5293    } else {
5294      return Error(E);
5295    }
5296
5297    // Splat and create vector APValue.
5298    SmallVector<APValue, 4> Elts(NElts, Val);
5299    return Success(Elts, E);
5300  }
5301  case CK_BitCast: {
5302    // Evaluate the operand into an APInt we can extract from.
5303    llvm::APInt SValInt;
5304    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5305      return false;
5306    // Extract the elements
5307    QualType EltTy = VTy->getElementType();
5308    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5309    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5310    SmallVector<APValue, 4> Elts;
5311    if (EltTy->isRealFloatingType()) {
5312      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5313      unsigned FloatEltSize = EltSize;
5314      if (&Sem == &APFloat::x87DoubleExtended)
5315        FloatEltSize = 80;
5316      for (unsigned i = 0; i < NElts; i++) {
5317        llvm::APInt Elt;
5318        if (BigEndian)
5319          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5320        else
5321          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5322        Elts.push_back(APValue(APFloat(Sem, Elt)));
5323      }
5324    } else if (EltTy->isIntegerType()) {
5325      for (unsigned i = 0; i < NElts; i++) {
5326        llvm::APInt Elt;
5327        if (BigEndian)
5328          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5329        else
5330          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5331        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5332      }
5333    } else {
5334      return Error(E);
5335    }
5336    return Success(Elts, E);
5337  }
5338  default:
5339    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5340  }
5341}
5342
5343bool
5344VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5345  const VectorType *VT = E->getType()->castAs<VectorType>();
5346  unsigned NumInits = E->getNumInits();
5347  unsigned NumElements = VT->getNumElements();
5348
5349  QualType EltTy = VT->getElementType();
5350  SmallVector<APValue, 4> Elements;
5351
5352  // The number of initializers can be less than the number of
5353  // vector elements. For OpenCL, this can be due to nested vector
5354  // initialization. For GCC compatibility, missing trailing elements
5355  // should be initialized with zeroes.
5356  unsigned CountInits = 0, CountElts = 0;
5357  while (CountElts < NumElements) {
5358    // Handle nested vector initialization.
5359    if (CountInits < NumInits
5360        && E->getInit(CountInits)->getType()->isVectorType()) {
5361      APValue v;
5362      if (!EvaluateVector(E->getInit(CountInits), v, Info))
5363        return Error(E);
5364      unsigned vlen = v.getVectorLength();
5365      for (unsigned j = 0; j < vlen; j++)
5366        Elements.push_back(v.getVectorElt(j));
5367      CountElts += vlen;
5368    } else if (EltTy->isIntegerType()) {
5369      llvm::APSInt sInt(32);
5370      if (CountInits < NumInits) {
5371        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5372          return false;
5373      } else // trailing integer zero.
5374        sInt = Info.Ctx.MakeIntValue(0, EltTy);
5375      Elements.push_back(APValue(sInt));
5376      CountElts++;
5377    } else {
5378      llvm::APFloat f(0.0);
5379      if (CountInits < NumInits) {
5380        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5381          return false;
5382      } else // trailing float zero.
5383        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5384      Elements.push_back(APValue(f));
5385      CountElts++;
5386    }
5387    CountInits++;
5388  }
5389  return Success(Elements, E);
5390}
5391
5392bool
5393VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5394  const VectorType *VT = E->getType()->getAs<VectorType>();
5395  QualType EltTy = VT->getElementType();
5396  APValue ZeroElement;
5397  if (EltTy->isIntegerType())
5398    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5399  else
5400    ZeroElement =
5401        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5402
5403  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5404  return Success(Elements, E);
5405}
5406
5407bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5408  VisitIgnoredValue(E->getSubExpr());
5409  return ZeroInitialization(E);
5410}
5411
5412//===----------------------------------------------------------------------===//
5413// Array Evaluation
5414//===----------------------------------------------------------------------===//
5415
5416namespace {
5417  class ArrayExprEvaluator
5418  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
5419    const LValue &This;
5420    APValue &Result;
5421  public:
5422
5423    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5424      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5425
5426    bool Success(const APValue &V, const Expr *E) {
5427      assert((V.isArray() || V.isLValue()) &&
5428             "expected array or string literal");
5429      Result = V;
5430      return true;
5431    }
5432
5433    bool ZeroInitialization(const Expr *E) {
5434      const ConstantArrayType *CAT =
5435          Info.Ctx.getAsConstantArrayType(E->getType());
5436      if (!CAT)
5437        return Error(E);
5438
5439      Result = APValue(APValue::UninitArray(), 0,
5440                       CAT->getSize().getZExtValue());
5441      if (!Result.hasArrayFiller()) return true;
5442
5443      // Zero-initialize all elements.
5444      LValue Subobject = This;
5445      Subobject.addArray(Info, E, CAT);
5446      ImplicitValueInitExpr VIE(CAT->getElementType());
5447      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5448    }
5449
5450    bool VisitInitListExpr(const InitListExpr *E);
5451    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5452    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5453                               const LValue &Subobject,
5454                               APValue *Value, QualType Type);
5455  };
5456} // end anonymous namespace
5457
5458static bool EvaluateArray(const Expr *E, const LValue &This,
5459                          APValue &Result, EvalInfo &Info) {
5460  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5461  return ArrayExprEvaluator(Info, This, Result).Visit(E);
5462}
5463
5464bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5465  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5466  if (!CAT)
5467    return Error(E);
5468
5469  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5470  // an appropriately-typed string literal enclosed in braces.
5471  if (E->isStringLiteralInit()) {
5472    LValue LV;
5473    if (!EvaluateLValue(E->getInit(0), LV, Info))
5474      return false;
5475    APValue Val;
5476    LV.moveInto(Val);
5477    return Success(Val, E);
5478  }
5479
5480  bool Success = true;
5481
5482  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5483         "zero-initialized array shouldn't have any initialized elts");
5484  APValue Filler;
5485  if (Result.isArray() && Result.hasArrayFiller())
5486    Filler = Result.getArrayFiller();
5487
5488  unsigned NumEltsToInit = E->getNumInits();
5489  unsigned NumElts = CAT->getSize().getZExtValue();
5490  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
5491
5492  // If the initializer might depend on the array index, run it for each
5493  // array element. For now, just whitelist non-class value-initialization.
5494  if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5495    NumEltsToInit = NumElts;
5496
5497  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5498
5499  // If the array was previously zero-initialized, preserve the
5500  // zero-initialized values.
5501  if (!Filler.isUninit()) {
5502    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5503      Result.getArrayInitializedElt(I) = Filler;
5504    if (Result.hasArrayFiller())
5505      Result.getArrayFiller() = Filler;
5506  }
5507
5508  LValue Subobject = This;
5509  Subobject.addArray(Info, E, CAT);
5510  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5511    const Expr *Init =
5512        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5513    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5514                         Info, Subobject, Init) ||
5515        !HandleLValueArrayAdjustment(Info, Init, Subobject,
5516                                     CAT->getElementType(), 1)) {
5517      if (!Info.keepEvaluatingAfterFailure())
5518        return false;
5519      Success = false;
5520    }
5521  }
5522
5523  if (!Result.hasArrayFiller())
5524    return Success;
5525
5526  // If we get here, we have a trivial filler, which we can just evaluate
5527  // once and splat over the rest of the array elements.
5528  assert(FillerExpr && "no array filler for incomplete init list");
5529  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5530                         FillerExpr) && Success;
5531}
5532
5533bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5534  return VisitCXXConstructExpr(E, This, &Result, E->getType());
5535}
5536
5537bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5538                                               const LValue &Subobject,
5539                                               APValue *Value,
5540                                               QualType Type) {
5541  bool HadZeroInit = !Value->isUninit();
5542
5543  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5544    unsigned N = CAT->getSize().getZExtValue();
5545
5546    // Preserve the array filler if we had prior zero-initialization.
5547    APValue Filler =
5548      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5549                                             : APValue();
5550
5551    *Value = APValue(APValue::UninitArray(), N, N);
5552
5553    if (HadZeroInit)
5554      for (unsigned I = 0; I != N; ++I)
5555        Value->getArrayInitializedElt(I) = Filler;
5556
5557    // Initialize the elements.
5558    LValue ArrayElt = Subobject;
5559    ArrayElt.addArray(Info, E, CAT);
5560    for (unsigned I = 0; I != N; ++I)
5561      if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5562                                 CAT->getElementType()) ||
5563          !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5564                                       CAT->getElementType(), 1))
5565        return false;
5566
5567    return true;
5568  }
5569
5570  if (!Type->isRecordType())
5571    return Error(E);
5572
5573  const CXXConstructorDecl *FD = E->getConstructor();
5574
5575  bool ZeroInit = E->requiresZeroInitialization();
5576  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5577    if (HadZeroInit)
5578      return true;
5579
5580    // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5581    ImplicitValueInitExpr VIE(Type);
5582    return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5583  }
5584
5585  const FunctionDecl *Definition = 0;
5586  FD->getBody(Definition);
5587
5588  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5589    return false;
5590
5591  if (ZeroInit && !HadZeroInit) {
5592    ImplicitValueInitExpr VIE(Type);
5593    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5594      return false;
5595  }
5596
5597  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5598  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5599                               cast<CXXConstructorDecl>(Definition),
5600                               Info, *Value);
5601}
5602
5603//===----------------------------------------------------------------------===//
5604// Integer Evaluation
5605//
5606// As a GNU extension, we support casting pointers to sufficiently-wide integer
5607// types and back in constant folding. Integer values are thus represented
5608// either as an integer-valued APValue, or as an lvalue-valued APValue.
5609//===----------------------------------------------------------------------===//
5610
5611namespace {
5612class IntExprEvaluator
5613  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
5614  APValue &Result;
5615public:
5616  IntExprEvaluator(EvalInfo &info, APValue &result)
5617    : ExprEvaluatorBaseTy(info), Result(result) {}
5618
5619  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5620    assert(E->getType()->isIntegralOrEnumerationType() &&
5621           "Invalid evaluation result.");
5622    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5623           "Invalid evaluation result.");
5624    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5625           "Invalid evaluation result.");
5626    Result = APValue(SI);
5627    return true;
5628  }
5629  bool Success(const llvm::APSInt &SI, const Expr *E) {
5630    return Success(SI, E, Result);
5631  }
5632
5633  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5634    assert(E->getType()->isIntegralOrEnumerationType() &&
5635           "Invalid evaluation result.");
5636    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5637           "Invalid evaluation result.");
5638    Result = APValue(APSInt(I));
5639    Result.getInt().setIsUnsigned(
5640                            E->getType()->isUnsignedIntegerOrEnumerationType());
5641    return true;
5642  }
5643  bool Success(const llvm::APInt &I, const Expr *E) {
5644    return Success(I, E, Result);
5645  }
5646
5647  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5648    assert(E->getType()->isIntegralOrEnumerationType() &&
5649           "Invalid evaluation result.");
5650    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5651    return true;
5652  }
5653  bool Success(uint64_t Value, const Expr *E) {
5654    return Success(Value, E, Result);
5655  }
5656
5657  bool Success(CharUnits Size, const Expr *E) {
5658    return Success(Size.getQuantity(), E);
5659  }
5660
5661  bool Success(const APValue &V, const Expr *E) {
5662    if (V.isLValue() || V.isAddrLabelDiff()) {
5663      Result = V;
5664      return true;
5665    }
5666    return Success(V.getInt(), E);
5667  }
5668
5669  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5670
5671  //===--------------------------------------------------------------------===//
5672  //                            Visitor Methods
5673  //===--------------------------------------------------------------------===//
5674
5675  bool VisitIntegerLiteral(const IntegerLiteral *E) {
5676    return Success(E->getValue(), E);
5677  }
5678  bool VisitCharacterLiteral(const CharacterLiteral *E) {
5679    return Success(E->getValue(), E);
5680  }
5681
5682  bool CheckReferencedDecl(const Expr *E, const Decl *D);
5683  bool VisitDeclRefExpr(const DeclRefExpr *E) {
5684    if (CheckReferencedDecl(E, E->getDecl()))
5685      return true;
5686
5687    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5688  }
5689  bool VisitMemberExpr(const MemberExpr *E) {
5690    if (CheckReferencedDecl(E, E->getMemberDecl())) {
5691      VisitIgnoredValue(E->getBase());
5692      return true;
5693    }
5694
5695    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5696  }
5697
5698  bool VisitCallExpr(const CallExpr *E);
5699  bool VisitBinaryOperator(const BinaryOperator *E);
5700  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5701  bool VisitUnaryOperator(const UnaryOperator *E);
5702
5703  bool VisitCastExpr(const CastExpr* E);
5704  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5705
5706  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5707    return Success(E->getValue(), E);
5708  }
5709
5710  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5711    return Success(E->getValue(), E);
5712  }
5713
5714  // Note, GNU defines __null as an integer, not a pointer.
5715  bool VisitGNUNullExpr(const GNUNullExpr *E) {
5716    return ZeroInitialization(E);
5717  }
5718
5719  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
5720    return Success(E->getValue(), E);
5721  }
5722
5723  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
5724    return Success(E->getValue(), E);
5725  }
5726
5727  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5728    return Success(E->getValue(), E);
5729  }
5730
5731  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5732    return Success(E->getValue(), E);
5733  }
5734
5735  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5736    return Success(E->getValue(), E);
5737  }
5738
5739  bool VisitUnaryReal(const UnaryOperator *E);
5740  bool VisitUnaryImag(const UnaryOperator *E);
5741
5742  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5743  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5744
5745private:
5746  CharUnits GetAlignOfExpr(const Expr *E);
5747  CharUnits GetAlignOfType(QualType T);
5748  static QualType GetObjectType(APValue::LValueBase B);
5749  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5750  // FIXME: Missing: array subscript of vector, member of vector
5751};
5752} // end anonymous namespace
5753
5754/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5755/// produce either the integer value or a pointer.
5756///
5757/// GCC has a heinous extension which folds casts between pointer types and
5758/// pointer-sized integral types. We support this by allowing the evaluation of
5759/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5760/// Some simple arithmetic on such values is supported (they are treated much
5761/// like char*).
5762static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5763                                    EvalInfo &Info) {
5764  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5765  return IntExprEvaluator(Info, Result).Visit(E);
5766}
5767
5768static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5769  APValue Val;
5770  if (!EvaluateIntegerOrLValue(E, Val, Info))
5771    return false;
5772  if (!Val.isInt()) {
5773    // FIXME: It would be better to produce the diagnostic for casting
5774    //        a pointer to an integer.
5775    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5776    return false;
5777  }
5778  Result = Val.getInt();
5779  return true;
5780}
5781
5782/// Check whether the given declaration can be directly converted to an integral
5783/// rvalue. If not, no diagnostic is produced; there are other things we can
5784/// try.
5785bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5786  // Enums are integer constant exprs.
5787  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5788    // Check for signedness/width mismatches between E type and ECD value.
5789    bool SameSign = (ECD->getInitVal().isSigned()
5790                     == E->getType()->isSignedIntegerOrEnumerationType());
5791    bool SameWidth = (ECD->getInitVal().getBitWidth()
5792                      == Info.Ctx.getIntWidth(E->getType()));
5793    if (SameSign && SameWidth)
5794      return Success(ECD->getInitVal(), E);
5795    else {
5796      // Get rid of mismatch (otherwise Success assertions will fail)
5797      // by computing a new value matching the type of E.
5798      llvm::APSInt Val = ECD->getInitVal();
5799      if (!SameSign)
5800        Val.setIsSigned(!ECD->getInitVal().isSigned());
5801      if (!SameWidth)
5802        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5803      return Success(Val, E);
5804    }
5805  }
5806  return false;
5807}
5808
5809/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5810/// as GCC.
5811static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5812  // The following enum mimics the values returned by GCC.
5813  // FIXME: Does GCC differ between lvalue and rvalue references here?
5814  enum gcc_type_class {
5815    no_type_class = -1,
5816    void_type_class, integer_type_class, char_type_class,
5817    enumeral_type_class, boolean_type_class,
5818    pointer_type_class, reference_type_class, offset_type_class,
5819    real_type_class, complex_type_class,
5820    function_type_class, method_type_class,
5821    record_type_class, union_type_class,
5822    array_type_class, string_type_class,
5823    lang_type_class
5824  };
5825
5826  // If no argument was supplied, default to "no_type_class". This isn't
5827  // ideal, however it is what gcc does.
5828  if (E->getNumArgs() == 0)
5829    return no_type_class;
5830
5831  QualType ArgTy = E->getArg(0)->getType();
5832  if (ArgTy->isVoidType())
5833    return void_type_class;
5834  else if (ArgTy->isEnumeralType())
5835    return enumeral_type_class;
5836  else if (ArgTy->isBooleanType())
5837    return boolean_type_class;
5838  else if (ArgTy->isCharType())
5839    return string_type_class; // gcc doesn't appear to use char_type_class
5840  else if (ArgTy->isIntegerType())
5841    return integer_type_class;
5842  else if (ArgTy->isPointerType())
5843    return pointer_type_class;
5844  else if (ArgTy->isReferenceType())
5845    return reference_type_class;
5846  else if (ArgTy->isRealType())
5847    return real_type_class;
5848  else if (ArgTy->isComplexType())
5849    return complex_type_class;
5850  else if (ArgTy->isFunctionType())
5851    return function_type_class;
5852  else if (ArgTy->isStructureOrClassType())
5853    return record_type_class;
5854  else if (ArgTy->isUnionType())
5855    return union_type_class;
5856  else if (ArgTy->isArrayType())
5857    return array_type_class;
5858  else if (ArgTy->isUnionType())
5859    return union_type_class;
5860  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
5861    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5862}
5863
5864/// EvaluateBuiltinConstantPForLValue - Determine the result of
5865/// __builtin_constant_p when applied to the given lvalue.
5866///
5867/// An lvalue is only "constant" if it is a pointer or reference to the first
5868/// character of a string literal.
5869template<typename LValue>
5870static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5871  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5872  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5873}
5874
5875/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5876/// GCC as we can manage.
5877static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5878  QualType ArgType = Arg->getType();
5879
5880  // __builtin_constant_p always has one operand. The rules which gcc follows
5881  // are not precisely documented, but are as follows:
5882  //
5883  //  - If the operand is of integral, floating, complex or enumeration type,
5884  //    and can be folded to a known value of that type, it returns 1.
5885  //  - If the operand and can be folded to a pointer to the first character
5886  //    of a string literal (or such a pointer cast to an integral type), it
5887  //    returns 1.
5888  //
5889  // Otherwise, it returns 0.
5890  //
5891  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5892  // its support for this does not currently work.
5893  if (ArgType->isIntegralOrEnumerationType()) {
5894    Expr::EvalResult Result;
5895    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5896      return false;
5897
5898    APValue &V = Result.Val;
5899    if (V.getKind() == APValue::Int)
5900      return true;
5901
5902    return EvaluateBuiltinConstantPForLValue(V);
5903  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5904    return Arg->isEvaluatable(Ctx);
5905  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5906    LValue LV;
5907    Expr::EvalStatus Status;
5908    EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
5909    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5910                          : EvaluatePointer(Arg, LV, Info)) &&
5911        !Status.HasSideEffects)
5912      return EvaluateBuiltinConstantPForLValue(LV);
5913  }
5914
5915  // Anything else isn't considered to be sufficiently constant.
5916  return false;
5917}
5918
5919/// Retrieves the "underlying object type" of the given expression,
5920/// as used by __builtin_object_size.
5921QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5922  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5923    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5924      return VD->getType();
5925  } else if (const Expr *E = B.get<const Expr*>()) {
5926    if (isa<CompoundLiteralExpr>(E))
5927      return E->getType();
5928  }
5929
5930  return QualType();
5931}
5932
5933bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5934  LValue Base;
5935
5936  {
5937    // The operand of __builtin_object_size is never evaluated for side-effects.
5938    // If there are any, but we can determine the pointed-to object anyway, then
5939    // ignore the side-effects.
5940    SpeculativeEvaluationRAII SpeculativeEval(Info);
5941    if (!EvaluatePointer(E->getArg(0), Base, Info))
5942      return false;
5943  }
5944
5945  // If we can prove the base is null, lower to zero now.
5946  if (!Base.getLValueBase()) return Success(0, E);
5947
5948  QualType T = GetObjectType(Base.getLValueBase());
5949  if (T.isNull() ||
5950      T->isIncompleteType() ||
5951      T->isFunctionType() ||
5952      T->isVariablyModifiedType() ||
5953      T->isDependentType())
5954    return Error(E);
5955
5956  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5957  CharUnits Offset = Base.getLValueOffset();
5958
5959  if (!Offset.isNegative() && Offset <= Size)
5960    Size -= Offset;
5961  else
5962    Size = CharUnits::Zero();
5963  return Success(Size, E);
5964}
5965
5966bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
5967  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
5968  default:
5969    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5970
5971  case Builtin::BI__builtin_object_size: {
5972    if (TryEvaluateBuiltinObjectSize(E))
5973      return true;
5974
5975    // If evaluating the argument has side-effects, we can't determine the size
5976    // of the object, and so we lower it to unknown now. CodeGen relies on us to
5977    // handle all cases where the expression has side-effects.
5978    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
5979      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
5980        return Success(-1ULL, E);
5981      return Success(0, E);
5982    }
5983
5984    // Expression had no side effects, but we couldn't statically determine the
5985    // size of the referenced object.
5986    return Error(E);
5987  }
5988
5989  case Builtin::BI__builtin_bswap16:
5990  case Builtin::BI__builtin_bswap32:
5991  case Builtin::BI__builtin_bswap64: {
5992    APSInt Val;
5993    if (!EvaluateInteger(E->getArg(0), Val, Info))
5994      return false;
5995
5996    return Success(Val.byteSwap(), E);
5997  }
5998
5999  case Builtin::BI__builtin_classify_type:
6000    return Success(EvaluateBuiltinClassifyType(E), E);
6001
6002  // FIXME: BI__builtin_clrsb
6003  // FIXME: BI__builtin_clrsbl
6004  // FIXME: BI__builtin_clrsbll
6005
6006  case Builtin::BI__builtin_clz:
6007  case Builtin::BI__builtin_clzl:
6008  case Builtin::BI__builtin_clzll: {
6009    APSInt Val;
6010    if (!EvaluateInteger(E->getArg(0), Val, Info))
6011      return false;
6012    if (!Val)
6013      return Error(E);
6014
6015    return Success(Val.countLeadingZeros(), E);
6016  }
6017
6018  case Builtin::BI__builtin_constant_p:
6019    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6020
6021  case Builtin::BI__builtin_ctz:
6022  case Builtin::BI__builtin_ctzl:
6023  case Builtin::BI__builtin_ctzll: {
6024    APSInt Val;
6025    if (!EvaluateInteger(E->getArg(0), Val, Info))
6026      return false;
6027    if (!Val)
6028      return Error(E);
6029
6030    return Success(Val.countTrailingZeros(), E);
6031  }
6032
6033  case Builtin::BI__builtin_eh_return_data_regno: {
6034    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6035    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6036    return Success(Operand, E);
6037  }
6038
6039  case Builtin::BI__builtin_expect:
6040    return Visit(E->getArg(0));
6041
6042  case Builtin::BI__builtin_ffs:
6043  case Builtin::BI__builtin_ffsl:
6044  case Builtin::BI__builtin_ffsll: {
6045    APSInt Val;
6046    if (!EvaluateInteger(E->getArg(0), Val, Info))
6047      return false;
6048
6049    unsigned N = Val.countTrailingZeros();
6050    return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6051  }
6052
6053  case Builtin::BI__builtin_fpclassify: {
6054    APFloat Val(0.0);
6055    if (!EvaluateFloat(E->getArg(5), Val, Info))
6056      return false;
6057    unsigned Arg;
6058    switch (Val.getCategory()) {
6059    case APFloat::fcNaN: Arg = 0; break;
6060    case APFloat::fcInfinity: Arg = 1; break;
6061    case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6062    case APFloat::fcZero: Arg = 4; break;
6063    }
6064    return Visit(E->getArg(Arg));
6065  }
6066
6067  case Builtin::BI__builtin_isinf_sign: {
6068    APFloat Val(0.0);
6069    return EvaluateFloat(E->getArg(0), Val, Info) &&
6070           Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6071  }
6072
6073  case Builtin::BI__builtin_isinf: {
6074    APFloat Val(0.0);
6075    return EvaluateFloat(E->getArg(0), Val, Info) &&
6076           Success(Val.isInfinity() ? 1 : 0, E);
6077  }
6078
6079  case Builtin::BI__builtin_isfinite: {
6080    APFloat Val(0.0);
6081    return EvaluateFloat(E->getArg(0), Val, Info) &&
6082           Success(Val.isFinite() ? 1 : 0, E);
6083  }
6084
6085  case Builtin::BI__builtin_isnan: {
6086    APFloat Val(0.0);
6087    return EvaluateFloat(E->getArg(0), Val, Info) &&
6088           Success(Val.isNaN() ? 1 : 0, E);
6089  }
6090
6091  case Builtin::BI__builtin_isnormal: {
6092    APFloat Val(0.0);
6093    return EvaluateFloat(E->getArg(0), Val, Info) &&
6094           Success(Val.isNormal() ? 1 : 0, E);
6095  }
6096
6097  case Builtin::BI__builtin_parity:
6098  case Builtin::BI__builtin_parityl:
6099  case Builtin::BI__builtin_parityll: {
6100    APSInt Val;
6101    if (!EvaluateInteger(E->getArg(0), Val, Info))
6102      return false;
6103
6104    return Success(Val.countPopulation() % 2, E);
6105  }
6106
6107  case Builtin::BI__builtin_popcount:
6108  case Builtin::BI__builtin_popcountl:
6109  case Builtin::BI__builtin_popcountll: {
6110    APSInt Val;
6111    if (!EvaluateInteger(E->getArg(0), Val, Info))
6112      return false;
6113
6114    return Success(Val.countPopulation(), E);
6115  }
6116
6117  case Builtin::BIstrlen:
6118    // A call to strlen is not a constant expression.
6119    if (Info.getLangOpts().CPlusPlus11)
6120      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6121        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6122    else
6123      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6124    // Fall through.
6125  case Builtin::BI__builtin_strlen: {
6126    // As an extension, we support __builtin_strlen() as a constant expression,
6127    // and support folding strlen() to a constant.
6128    LValue String;
6129    if (!EvaluatePointer(E->getArg(0), String, Info))
6130      return false;
6131
6132    // Fast path: if it's a string literal, search the string value.
6133    if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6134            String.getLValueBase().dyn_cast<const Expr *>())) {
6135      // The string literal may have embedded null characters. Find the first
6136      // one and truncate there.
6137      StringRef Str = S->getBytes();
6138      int64_t Off = String.Offset.getQuantity();
6139      if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6140          S->getCharByteWidth() == 1) {
6141        Str = Str.substr(Off);
6142
6143        StringRef::size_type Pos = Str.find(0);
6144        if (Pos != StringRef::npos)
6145          Str = Str.substr(0, Pos);
6146
6147        return Success(Str.size(), E);
6148      }
6149
6150      // Fall through to slow path to issue appropriate diagnostic.
6151    }
6152
6153    // Slow path: scan the bytes of the string looking for the terminating 0.
6154    QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6155    for (uint64_t Strlen = 0; /**/; ++Strlen) {
6156      APValue Char;
6157      if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6158          !Char.isInt())
6159        return false;
6160      if (!Char.getInt())
6161        return Success(Strlen, E);
6162      if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6163        return false;
6164    }
6165  }
6166
6167  case Builtin::BI__atomic_always_lock_free:
6168  case Builtin::BI__atomic_is_lock_free:
6169  case Builtin::BI__c11_atomic_is_lock_free: {
6170    APSInt SizeVal;
6171    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6172      return false;
6173
6174    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6175    // of two less than the maximum inline atomic width, we know it is
6176    // lock-free.  If the size isn't a power of two, or greater than the
6177    // maximum alignment where we promote atomics, we know it is not lock-free
6178    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6179    // the answer can only be determined at runtime; for example, 16-byte
6180    // atomics have lock-free implementations on some, but not all,
6181    // x86-64 processors.
6182
6183    // Check power-of-two.
6184    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6185    if (Size.isPowerOfTwo()) {
6186      // Check against inlining width.
6187      unsigned InlineWidthBits =
6188          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6189      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6190        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6191            Size == CharUnits::One() ||
6192            E->getArg(1)->isNullPointerConstant(Info.Ctx,
6193                                                Expr::NPC_NeverValueDependent))
6194          // OK, we will inline appropriately-aligned operations of this size,
6195          // and _Atomic(T) is appropriately-aligned.
6196          return Success(1, E);
6197
6198        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6199          castAs<PointerType>()->getPointeeType();
6200        if (!PointeeType->isIncompleteType() &&
6201            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6202          // OK, we will inline operations on this object.
6203          return Success(1, E);
6204        }
6205      }
6206    }
6207
6208    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6209        Success(0, E) : Error(E);
6210  }
6211  }
6212}
6213
6214static bool HasSameBase(const LValue &A, const LValue &B) {
6215  if (!A.getLValueBase())
6216    return !B.getLValueBase();
6217  if (!B.getLValueBase())
6218    return false;
6219
6220  if (A.getLValueBase().getOpaqueValue() !=
6221      B.getLValueBase().getOpaqueValue()) {
6222    const Decl *ADecl = GetLValueBaseDecl(A);
6223    if (!ADecl)
6224      return false;
6225    const Decl *BDecl = GetLValueBaseDecl(B);
6226    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6227      return false;
6228  }
6229
6230  return IsGlobalLValue(A.getLValueBase()) ||
6231         A.getLValueCallIndex() == B.getLValueCallIndex();
6232}
6233
6234namespace {
6235
6236/// \brief Data recursive integer evaluator of certain binary operators.
6237///
6238/// We use a data recursive algorithm for binary operators so that we are able
6239/// to handle extreme cases of chained binary operators without causing stack
6240/// overflow.
6241class DataRecursiveIntBinOpEvaluator {
6242  struct EvalResult {
6243    APValue Val;
6244    bool Failed;
6245
6246    EvalResult() : Failed(false) { }
6247
6248    void swap(EvalResult &RHS) {
6249      Val.swap(RHS.Val);
6250      Failed = RHS.Failed;
6251      RHS.Failed = false;
6252    }
6253  };
6254
6255  struct Job {
6256    const Expr *E;
6257    EvalResult LHSResult; // meaningful only for binary operator expression.
6258    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6259
6260    Job() : StoredInfo(0) { }
6261    void startSpeculativeEval(EvalInfo &Info) {
6262      OldEvalStatus = Info.EvalStatus;
6263      Info.EvalStatus.Diag = 0;
6264      StoredInfo = &Info;
6265    }
6266    ~Job() {
6267      if (StoredInfo) {
6268        StoredInfo->EvalStatus = OldEvalStatus;
6269      }
6270    }
6271  private:
6272    EvalInfo *StoredInfo; // non-null if status changed.
6273    Expr::EvalStatus OldEvalStatus;
6274  };
6275
6276  SmallVector<Job, 16> Queue;
6277
6278  IntExprEvaluator &IntEval;
6279  EvalInfo &Info;
6280  APValue &FinalResult;
6281
6282public:
6283  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6284    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6285
6286  /// \brief True if \param E is a binary operator that we are going to handle
6287  /// data recursively.
6288  /// We handle binary operators that are comma, logical, or that have operands
6289  /// with integral or enumeration type.
6290  static bool shouldEnqueue(const BinaryOperator *E) {
6291    return E->getOpcode() == BO_Comma ||
6292           E->isLogicalOp() ||
6293           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6294            E->getRHS()->getType()->isIntegralOrEnumerationType());
6295  }
6296
6297  bool Traverse(const BinaryOperator *E) {
6298    enqueue(E);
6299    EvalResult PrevResult;
6300    while (!Queue.empty())
6301      process(PrevResult);
6302
6303    if (PrevResult.Failed) return false;
6304
6305    FinalResult.swap(PrevResult.Val);
6306    return true;
6307  }
6308
6309private:
6310  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6311    return IntEval.Success(Value, E, Result);
6312  }
6313  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6314    return IntEval.Success(Value, E, Result);
6315  }
6316  bool Error(const Expr *E) {
6317    return IntEval.Error(E);
6318  }
6319  bool Error(const Expr *E, diag::kind D) {
6320    return IntEval.Error(E, D);
6321  }
6322
6323  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6324    return Info.CCEDiag(E, D);
6325  }
6326
6327  // \brief Returns true if visiting the RHS is necessary, false otherwise.
6328  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6329                         bool &SuppressRHSDiags);
6330
6331  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6332                  const BinaryOperator *E, APValue &Result);
6333
6334  void EvaluateExpr(const Expr *E, EvalResult &Result) {
6335    Result.Failed = !Evaluate(Result.Val, Info, E);
6336    if (Result.Failed)
6337      Result.Val = APValue();
6338  }
6339
6340  void process(EvalResult &Result);
6341
6342  void enqueue(const Expr *E) {
6343    E = E->IgnoreParens();
6344    Queue.resize(Queue.size()+1);
6345    Queue.back().E = E;
6346    Queue.back().Kind = Job::AnyExprKind;
6347  }
6348};
6349
6350}
6351
6352bool DataRecursiveIntBinOpEvaluator::
6353       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6354                         bool &SuppressRHSDiags) {
6355  if (E->getOpcode() == BO_Comma) {
6356    // Ignore LHS but note if we could not evaluate it.
6357    if (LHSResult.Failed)
6358      return Info.noteSideEffect();
6359    return true;
6360  }
6361
6362  if (E->isLogicalOp()) {
6363    bool LHSAsBool;
6364    if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
6365      // We were able to evaluate the LHS, see if we can get away with not
6366      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6367      if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
6368        Success(LHSAsBool, E, LHSResult.Val);
6369        return false; // Ignore RHS
6370      }
6371    } else {
6372      LHSResult.Failed = true;
6373
6374      // Since we weren't able to evaluate the left hand side, it
6375      // must have had side effects.
6376      if (!Info.noteSideEffect())
6377        return false;
6378
6379      // We can't evaluate the LHS; however, sometimes the result
6380      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6381      // Don't ignore RHS and suppress diagnostics from this arm.
6382      SuppressRHSDiags = true;
6383    }
6384
6385    return true;
6386  }
6387
6388  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6389         E->getRHS()->getType()->isIntegralOrEnumerationType());
6390
6391  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6392    return false; // Ignore RHS;
6393
6394  return true;
6395}
6396
6397bool DataRecursiveIntBinOpEvaluator::
6398       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6399                  const BinaryOperator *E, APValue &Result) {
6400  if (E->getOpcode() == BO_Comma) {
6401    if (RHSResult.Failed)
6402      return false;
6403    Result = RHSResult.Val;
6404    return true;
6405  }
6406
6407  if (E->isLogicalOp()) {
6408    bool lhsResult, rhsResult;
6409    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6410    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6411
6412    if (LHSIsOK) {
6413      if (RHSIsOK) {
6414        if (E->getOpcode() == BO_LOr)
6415          return Success(lhsResult || rhsResult, E, Result);
6416        else
6417          return Success(lhsResult && rhsResult, E, Result);
6418      }
6419    } else {
6420      if (RHSIsOK) {
6421        // We can't evaluate the LHS; however, sometimes the result
6422        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6423        if (rhsResult == (E->getOpcode() == BO_LOr))
6424          return Success(rhsResult, E, Result);
6425      }
6426    }
6427
6428    return false;
6429  }
6430
6431  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6432         E->getRHS()->getType()->isIntegralOrEnumerationType());
6433
6434  if (LHSResult.Failed || RHSResult.Failed)
6435    return false;
6436
6437  const APValue &LHSVal = LHSResult.Val;
6438  const APValue &RHSVal = RHSResult.Val;
6439
6440  // Handle cases like (unsigned long)&a + 4.
6441  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6442    Result = LHSVal;
6443    CharUnits AdditionalOffset =
6444        CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
6445    if (E->getOpcode() == BO_Add)
6446      Result.getLValueOffset() += AdditionalOffset;
6447    else
6448      Result.getLValueOffset() -= AdditionalOffset;
6449    return true;
6450  }
6451
6452  // Handle cases like 4 + (unsigned long)&a
6453  if (E->getOpcode() == BO_Add &&
6454      RHSVal.isLValue() && LHSVal.isInt()) {
6455    Result = RHSVal;
6456    Result.getLValueOffset() +=
6457        CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
6458    return true;
6459  }
6460
6461  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6462    // Handle (intptr_t)&&A - (intptr_t)&&B.
6463    if (!LHSVal.getLValueOffset().isZero() ||
6464        !RHSVal.getLValueOffset().isZero())
6465      return false;
6466    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6467    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6468    if (!LHSExpr || !RHSExpr)
6469      return false;
6470    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6471    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6472    if (!LHSAddrExpr || !RHSAddrExpr)
6473      return false;
6474    // Make sure both labels come from the same function.
6475    if (LHSAddrExpr->getLabel()->getDeclContext() !=
6476        RHSAddrExpr->getLabel()->getDeclContext())
6477      return false;
6478    Result = APValue(LHSAddrExpr, RHSAddrExpr);
6479    return true;
6480  }
6481
6482  // All the remaining cases expect both operands to be an integer
6483  if (!LHSVal.isInt() || !RHSVal.isInt())
6484    return Error(E);
6485
6486  // Set up the width and signedness manually, in case it can't be deduced
6487  // from the operation we're performing.
6488  // FIXME: Don't do this in the cases where we can deduce it.
6489  APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6490               E->getType()->isUnsignedIntegerOrEnumerationType());
6491  if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6492                         RHSVal.getInt(), Value))
6493    return false;
6494  return Success(Value, E, Result);
6495}
6496
6497void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6498  Job &job = Queue.back();
6499
6500  switch (job.Kind) {
6501    case Job::AnyExprKind: {
6502      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6503        if (shouldEnqueue(Bop)) {
6504          job.Kind = Job::BinOpKind;
6505          enqueue(Bop->getLHS());
6506          return;
6507        }
6508      }
6509
6510      EvaluateExpr(job.E, Result);
6511      Queue.pop_back();
6512      return;
6513    }
6514
6515    case Job::BinOpKind: {
6516      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6517      bool SuppressRHSDiags = false;
6518      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6519        Queue.pop_back();
6520        return;
6521      }
6522      if (SuppressRHSDiags)
6523        job.startSpeculativeEval(Info);
6524      job.LHSResult.swap(Result);
6525      job.Kind = Job::BinOpVisitedLHSKind;
6526      enqueue(Bop->getRHS());
6527      return;
6528    }
6529
6530    case Job::BinOpVisitedLHSKind: {
6531      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6532      EvalResult RHS;
6533      RHS.swap(Result);
6534      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6535      Queue.pop_back();
6536      return;
6537    }
6538  }
6539
6540  llvm_unreachable("Invalid Job::Kind!");
6541}
6542
6543bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6544  if (E->isAssignmentOp())
6545    return Error(E);
6546
6547  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6548    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6549
6550  QualType LHSTy = E->getLHS()->getType();
6551  QualType RHSTy = E->getRHS()->getType();
6552
6553  if (LHSTy->isAnyComplexType()) {
6554    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6555    ComplexValue LHS, RHS;
6556
6557    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6558    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6559      return false;
6560
6561    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6562      return false;
6563
6564    if (LHS.isComplexFloat()) {
6565      APFloat::cmpResult CR_r =
6566        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6567      APFloat::cmpResult CR_i =
6568        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6569
6570      if (E->getOpcode() == BO_EQ)
6571        return Success((CR_r == APFloat::cmpEqual &&
6572                        CR_i == APFloat::cmpEqual), E);
6573      else {
6574        assert(E->getOpcode() == BO_NE &&
6575               "Invalid complex comparison.");
6576        return Success(((CR_r == APFloat::cmpGreaterThan ||
6577                         CR_r == APFloat::cmpLessThan ||
6578                         CR_r == APFloat::cmpUnordered) ||
6579                        (CR_i == APFloat::cmpGreaterThan ||
6580                         CR_i == APFloat::cmpLessThan ||
6581                         CR_i == APFloat::cmpUnordered)), E);
6582      }
6583    } else {
6584      if (E->getOpcode() == BO_EQ)
6585        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6586                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6587      else {
6588        assert(E->getOpcode() == BO_NE &&
6589               "Invalid compex comparison.");
6590        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6591                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6592      }
6593    }
6594  }
6595
6596  if (LHSTy->isRealFloatingType() &&
6597      RHSTy->isRealFloatingType()) {
6598    APFloat RHS(0.0), LHS(0.0);
6599
6600    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6601    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6602      return false;
6603
6604    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6605      return false;
6606
6607    APFloat::cmpResult CR = LHS.compare(RHS);
6608
6609    switch (E->getOpcode()) {
6610    default:
6611      llvm_unreachable("Invalid binary operator!");
6612    case BO_LT:
6613      return Success(CR == APFloat::cmpLessThan, E);
6614    case BO_GT:
6615      return Success(CR == APFloat::cmpGreaterThan, E);
6616    case BO_LE:
6617      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6618    case BO_GE:
6619      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6620                     E);
6621    case BO_EQ:
6622      return Success(CR == APFloat::cmpEqual, E);
6623    case BO_NE:
6624      return Success(CR == APFloat::cmpGreaterThan
6625                     || CR == APFloat::cmpLessThan
6626                     || CR == APFloat::cmpUnordered, E);
6627    }
6628  }
6629
6630  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6631    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6632      LValue LHSValue, RHSValue;
6633
6634      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6635      if (!LHSOK && Info.keepEvaluatingAfterFailure())
6636        return false;
6637
6638      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6639        return false;
6640
6641      // Reject differing bases from the normal codepath; we special-case
6642      // comparisons to null.
6643      if (!HasSameBase(LHSValue, RHSValue)) {
6644        if (E->getOpcode() == BO_Sub) {
6645          // Handle &&A - &&B.
6646          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6647            return false;
6648          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6649          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6650          if (!LHSExpr || !RHSExpr)
6651            return false;
6652          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6653          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6654          if (!LHSAddrExpr || !RHSAddrExpr)
6655            return false;
6656          // Make sure both labels come from the same function.
6657          if (LHSAddrExpr->getLabel()->getDeclContext() !=
6658              RHSAddrExpr->getLabel()->getDeclContext())
6659            return false;
6660          Result = APValue(LHSAddrExpr, RHSAddrExpr);
6661          return true;
6662        }
6663        // Inequalities and subtractions between unrelated pointers have
6664        // unspecified or undefined behavior.
6665        if (!E->isEqualityOp())
6666          return Error(E);
6667        // A constant address may compare equal to the address of a symbol.
6668        // The one exception is that address of an object cannot compare equal
6669        // to a null pointer constant.
6670        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6671            (!RHSValue.Base && !RHSValue.Offset.isZero()))
6672          return Error(E);
6673        // It's implementation-defined whether distinct literals will have
6674        // distinct addresses. In clang, the result of such a comparison is
6675        // unspecified, so it is not a constant expression. However, we do know
6676        // that the address of a literal will be non-null.
6677        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6678            LHSValue.Base && RHSValue.Base)
6679          return Error(E);
6680        // We can't tell whether weak symbols will end up pointing to the same
6681        // object.
6682        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6683          return Error(E);
6684        // Pointers with different bases cannot represent the same object.
6685        // (Note that clang defaults to -fmerge-all-constants, which can
6686        // lead to inconsistent results for comparisons involving the address
6687        // of a constant; this generally doesn't matter in practice.)
6688        return Success(E->getOpcode() == BO_NE, E);
6689      }
6690
6691      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6692      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6693
6694      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6695      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6696
6697      if (E->getOpcode() == BO_Sub) {
6698        // C++11 [expr.add]p6:
6699        //   Unless both pointers point to elements of the same array object, or
6700        //   one past the last element of the array object, the behavior is
6701        //   undefined.
6702        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6703            !AreElementsOfSameArray(getType(LHSValue.Base),
6704                                    LHSDesignator, RHSDesignator))
6705          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6706
6707        QualType Type = E->getLHS()->getType();
6708        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6709
6710        CharUnits ElementSize;
6711        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6712          return false;
6713
6714        // As an extension, a type may have zero size (empty struct or union in
6715        // C, array of zero length). Pointer subtraction in such cases has
6716        // undefined behavior, so is not constant.
6717        if (ElementSize.isZero()) {
6718          Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
6719            << ElementType;
6720          return false;
6721        }
6722
6723        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6724        // and produce incorrect results when it overflows. Such behavior
6725        // appears to be non-conforming, but is common, so perhaps we should
6726        // assume the standard intended for such cases to be undefined behavior
6727        // and check for them.
6728
6729        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6730        // overflow in the final conversion to ptrdiff_t.
6731        APSInt LHS(
6732          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6733        APSInt RHS(
6734          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6735        APSInt ElemSize(
6736          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6737        APSInt TrueResult = (LHS - RHS) / ElemSize;
6738        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6739
6740        if (Result.extend(65) != TrueResult)
6741          HandleOverflow(Info, E, TrueResult, E->getType());
6742        return Success(Result, E);
6743      }
6744
6745      // C++11 [expr.rel]p3:
6746      //   Pointers to void (after pointer conversions) can be compared, with a
6747      //   result defined as follows: If both pointers represent the same
6748      //   address or are both the null pointer value, the result is true if the
6749      //   operator is <= or >= and false otherwise; otherwise the result is
6750      //   unspecified.
6751      // We interpret this as applying to pointers to *cv* void.
6752      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6753          E->isRelationalOp())
6754        CCEDiag(E, diag::note_constexpr_void_comparison);
6755
6756      // C++11 [expr.rel]p2:
6757      // - If two pointers point to non-static data members of the same object,
6758      //   or to subobjects or array elements fo such members, recursively, the
6759      //   pointer to the later declared member compares greater provided the
6760      //   two members have the same access control and provided their class is
6761      //   not a union.
6762      //   [...]
6763      // - Otherwise pointer comparisons are unspecified.
6764      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6765          E->isRelationalOp()) {
6766        bool WasArrayIndex;
6767        unsigned Mismatch =
6768          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6769                                 RHSDesignator, WasArrayIndex);
6770        // At the point where the designators diverge, the comparison has a
6771        // specified value if:
6772        //  - we are comparing array indices
6773        //  - we are comparing fields of a union, or fields with the same access
6774        // Otherwise, the result is unspecified and thus the comparison is not a
6775        // constant expression.
6776        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6777            Mismatch < RHSDesignator.Entries.size()) {
6778          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6779          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6780          if (!LF && !RF)
6781            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6782          else if (!LF)
6783            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6784              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6785              << RF->getParent() << RF;
6786          else if (!RF)
6787            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6788              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6789              << LF->getParent() << LF;
6790          else if (!LF->getParent()->isUnion() &&
6791                   LF->getAccess() != RF->getAccess())
6792            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6793              << LF << LF->getAccess() << RF << RF->getAccess()
6794              << LF->getParent();
6795        }
6796      }
6797
6798      // The comparison here must be unsigned, and performed with the same
6799      // width as the pointer.
6800      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6801      uint64_t CompareLHS = LHSOffset.getQuantity();
6802      uint64_t CompareRHS = RHSOffset.getQuantity();
6803      assert(PtrSize <= 64 && "Unexpected pointer width");
6804      uint64_t Mask = ~0ULL >> (64 - PtrSize);
6805      CompareLHS &= Mask;
6806      CompareRHS &= Mask;
6807
6808      // If there is a base and this is a relational operator, we can only
6809      // compare pointers within the object in question; otherwise, the result
6810      // depends on where the object is located in memory.
6811      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6812        QualType BaseTy = getType(LHSValue.Base);
6813        if (BaseTy->isIncompleteType())
6814          return Error(E);
6815        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6816        uint64_t OffsetLimit = Size.getQuantity();
6817        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6818          return Error(E);
6819      }
6820
6821      switch (E->getOpcode()) {
6822      default: llvm_unreachable("missing comparison operator");
6823      case BO_LT: return Success(CompareLHS < CompareRHS, E);
6824      case BO_GT: return Success(CompareLHS > CompareRHS, E);
6825      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6826      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6827      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6828      case BO_NE: return Success(CompareLHS != CompareRHS, E);
6829      }
6830    }
6831  }
6832
6833  if (LHSTy->isMemberPointerType()) {
6834    assert(E->isEqualityOp() && "unexpected member pointer operation");
6835    assert(RHSTy->isMemberPointerType() && "invalid comparison");
6836
6837    MemberPtr LHSValue, RHSValue;
6838
6839    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6840    if (!LHSOK && Info.keepEvaluatingAfterFailure())
6841      return false;
6842
6843    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6844      return false;
6845
6846    // C++11 [expr.eq]p2:
6847    //   If both operands are null, they compare equal. Otherwise if only one is
6848    //   null, they compare unequal.
6849    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6850      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6851      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6852    }
6853
6854    //   Otherwise if either is a pointer to a virtual member function, the
6855    //   result is unspecified.
6856    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6857      if (MD->isVirtual())
6858        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6859    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6860      if (MD->isVirtual())
6861        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6862
6863    //   Otherwise they compare equal if and only if they would refer to the
6864    //   same member of the same most derived object or the same subobject if
6865    //   they were dereferenced with a hypothetical object of the associated
6866    //   class type.
6867    bool Equal = LHSValue == RHSValue;
6868    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6869  }
6870
6871  if (LHSTy->isNullPtrType()) {
6872    assert(E->isComparisonOp() && "unexpected nullptr operation");
6873    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6874    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6875    // are compared, the result is true of the operator is <=, >= or ==, and
6876    // false otherwise.
6877    BinaryOperator::Opcode Opcode = E->getOpcode();
6878    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6879  }
6880
6881  assert((!LHSTy->isIntegralOrEnumerationType() ||
6882          !RHSTy->isIntegralOrEnumerationType()) &&
6883         "DataRecursiveIntBinOpEvaluator should have handled integral types");
6884  // We can't continue from here for non-integral types.
6885  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6886}
6887
6888CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6889  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
6890  //   result shall be the alignment of the referenced type."
6891  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6892    T = Ref->getPointeeType();
6893
6894  // __alignof is defined to return the preferred alignment.
6895  return Info.Ctx.toCharUnitsFromBits(
6896    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6897}
6898
6899CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6900  E = E->IgnoreParens();
6901
6902  // The kinds of expressions that we have special-case logic here for
6903  // should be kept up to date with the special checks for those
6904  // expressions in Sema.
6905
6906  // alignof decl is always accepted, even if it doesn't make sense: we default
6907  // to 1 in those cases.
6908  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6909    return Info.Ctx.getDeclAlign(DRE->getDecl(),
6910                                 /*RefAsPointee*/true);
6911
6912  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6913    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6914                                 /*RefAsPointee*/true);
6915
6916  return GetAlignOfType(E->getType());
6917}
6918
6919
6920/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6921/// a result as the expression's type.
6922bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6923                                    const UnaryExprOrTypeTraitExpr *E) {
6924  switch(E->getKind()) {
6925  case UETT_AlignOf: {
6926    if (E->isArgumentType())
6927      return Success(GetAlignOfType(E->getArgumentType()), E);
6928    else
6929      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6930  }
6931
6932  case UETT_VecStep: {
6933    QualType Ty = E->getTypeOfArgument();
6934
6935    if (Ty->isVectorType()) {
6936      unsigned n = Ty->castAs<VectorType>()->getNumElements();
6937
6938      // The vec_step built-in functions that take a 3-component
6939      // vector return 4. (OpenCL 1.1 spec 6.11.12)
6940      if (n == 3)
6941        n = 4;
6942
6943      return Success(n, E);
6944    } else
6945      return Success(1, E);
6946  }
6947
6948  case UETT_SizeOf: {
6949    QualType SrcTy = E->getTypeOfArgument();
6950    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
6951    //   the result is the size of the referenced type."
6952    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
6953      SrcTy = Ref->getPointeeType();
6954
6955    CharUnits Sizeof;
6956    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
6957      return false;
6958    return Success(Sizeof, E);
6959  }
6960  }
6961
6962  llvm_unreachable("unknown expr/type trait");
6963}
6964
6965bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
6966  CharUnits Result;
6967  unsigned n = OOE->getNumComponents();
6968  if (n == 0)
6969    return Error(OOE);
6970  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
6971  for (unsigned i = 0; i != n; ++i) {
6972    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
6973    switch (ON.getKind()) {
6974    case OffsetOfExpr::OffsetOfNode::Array: {
6975      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
6976      APSInt IdxResult;
6977      if (!EvaluateInteger(Idx, IdxResult, Info))
6978        return false;
6979      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
6980      if (!AT)
6981        return Error(OOE);
6982      CurrentType = AT->getElementType();
6983      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
6984      Result += IdxResult.getSExtValue() * ElementSize;
6985      break;
6986    }
6987
6988    case OffsetOfExpr::OffsetOfNode::Field: {
6989      FieldDecl *MemberDecl = ON.getField();
6990      const RecordType *RT = CurrentType->getAs<RecordType>();
6991      if (!RT)
6992        return Error(OOE);
6993      RecordDecl *RD = RT->getDecl();
6994      if (RD->isInvalidDecl()) return false;
6995      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6996      unsigned i = MemberDecl->getFieldIndex();
6997      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
6998      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
6999      CurrentType = MemberDecl->getType().getNonReferenceType();
7000      break;
7001    }
7002
7003    case OffsetOfExpr::OffsetOfNode::Identifier:
7004      llvm_unreachable("dependent __builtin_offsetof");
7005
7006    case OffsetOfExpr::OffsetOfNode::Base: {
7007      CXXBaseSpecifier *BaseSpec = ON.getBase();
7008      if (BaseSpec->isVirtual())
7009        return Error(OOE);
7010
7011      // Find the layout of the class whose base we are looking into.
7012      const RecordType *RT = CurrentType->getAs<RecordType>();
7013      if (!RT)
7014        return Error(OOE);
7015      RecordDecl *RD = RT->getDecl();
7016      if (RD->isInvalidDecl()) return false;
7017      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7018
7019      // Find the base class itself.
7020      CurrentType = BaseSpec->getType();
7021      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7022      if (!BaseRT)
7023        return Error(OOE);
7024
7025      // Add the offset to the base.
7026      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7027      break;
7028    }
7029    }
7030  }
7031  return Success(Result, OOE);
7032}
7033
7034bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7035  switch (E->getOpcode()) {
7036  default:
7037    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7038    // See C99 6.6p3.
7039    return Error(E);
7040  case UO_Extension:
7041    // FIXME: Should extension allow i-c-e extension expressions in its scope?
7042    // If so, we could clear the diagnostic ID.
7043    return Visit(E->getSubExpr());
7044  case UO_Plus:
7045    // The result is just the value.
7046    return Visit(E->getSubExpr());
7047  case UO_Minus: {
7048    if (!Visit(E->getSubExpr()))
7049      return false;
7050    if (!Result.isInt()) return Error(E);
7051    const APSInt &Value = Result.getInt();
7052    if (Value.isSigned() && Value.isMinSignedValue())
7053      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7054                     E->getType());
7055    return Success(-Value, E);
7056  }
7057  case UO_Not: {
7058    if (!Visit(E->getSubExpr()))
7059      return false;
7060    if (!Result.isInt()) return Error(E);
7061    return Success(~Result.getInt(), E);
7062  }
7063  case UO_LNot: {
7064    bool bres;
7065    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7066      return false;
7067    return Success(!bres, E);
7068  }
7069  }
7070}
7071
7072/// HandleCast - This is used to evaluate implicit or explicit casts where the
7073/// result type is integer.
7074bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7075  const Expr *SubExpr = E->getSubExpr();
7076  QualType DestType = E->getType();
7077  QualType SrcType = SubExpr->getType();
7078
7079  switch (E->getCastKind()) {
7080  case CK_BaseToDerived:
7081  case CK_DerivedToBase:
7082  case CK_UncheckedDerivedToBase:
7083  case CK_Dynamic:
7084  case CK_ToUnion:
7085  case CK_ArrayToPointerDecay:
7086  case CK_FunctionToPointerDecay:
7087  case CK_NullToPointer:
7088  case CK_NullToMemberPointer:
7089  case CK_BaseToDerivedMemberPointer:
7090  case CK_DerivedToBaseMemberPointer:
7091  case CK_ReinterpretMemberPointer:
7092  case CK_ConstructorConversion:
7093  case CK_IntegralToPointer:
7094  case CK_ToVoid:
7095  case CK_VectorSplat:
7096  case CK_IntegralToFloating:
7097  case CK_FloatingCast:
7098  case CK_CPointerToObjCPointerCast:
7099  case CK_BlockPointerToObjCPointerCast:
7100  case CK_AnyPointerToBlockPointerCast:
7101  case CK_ObjCObjectLValueCast:
7102  case CK_FloatingRealToComplex:
7103  case CK_FloatingComplexToReal:
7104  case CK_FloatingComplexCast:
7105  case CK_FloatingComplexToIntegralComplex:
7106  case CK_IntegralRealToComplex:
7107  case CK_IntegralComplexCast:
7108  case CK_IntegralComplexToFloatingComplex:
7109  case CK_BuiltinFnToFnPtr:
7110  case CK_ZeroToOCLEvent:
7111  case CK_NonAtomicToAtomic:
7112    llvm_unreachable("invalid cast kind for integral value");
7113
7114  case CK_BitCast:
7115  case CK_Dependent:
7116  case CK_LValueBitCast:
7117  case CK_ARCProduceObject:
7118  case CK_ARCConsumeObject:
7119  case CK_ARCReclaimReturnedObject:
7120  case CK_ARCExtendBlockObject:
7121  case CK_CopyAndAutoreleaseBlockObject:
7122    return Error(E);
7123
7124  case CK_UserDefinedConversion:
7125  case CK_LValueToRValue:
7126  case CK_AtomicToNonAtomic:
7127  case CK_NoOp:
7128    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7129
7130  case CK_MemberPointerToBoolean:
7131  case CK_PointerToBoolean:
7132  case CK_IntegralToBoolean:
7133  case CK_FloatingToBoolean:
7134  case CK_FloatingComplexToBoolean:
7135  case CK_IntegralComplexToBoolean: {
7136    bool BoolResult;
7137    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7138      return false;
7139    return Success(BoolResult, E);
7140  }
7141
7142  case CK_IntegralCast: {
7143    if (!Visit(SubExpr))
7144      return false;
7145
7146    if (!Result.isInt()) {
7147      // Allow casts of address-of-label differences if they are no-ops
7148      // or narrowing.  (The narrowing case isn't actually guaranteed to
7149      // be constant-evaluatable except in some narrow cases which are hard
7150      // to detect here.  We let it through on the assumption the user knows
7151      // what they are doing.)
7152      if (Result.isAddrLabelDiff())
7153        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7154      // Only allow casts of lvalues if they are lossless.
7155      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7156    }
7157
7158    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7159                                      Result.getInt()), E);
7160  }
7161
7162  case CK_PointerToIntegral: {
7163    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7164
7165    LValue LV;
7166    if (!EvaluatePointer(SubExpr, LV, Info))
7167      return false;
7168
7169    if (LV.getLValueBase()) {
7170      // Only allow based lvalue casts if they are lossless.
7171      // FIXME: Allow a larger integer size than the pointer size, and allow
7172      // narrowing back down to pointer width in subsequent integral casts.
7173      // FIXME: Check integer type's active bits, not its type size.
7174      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7175        return Error(E);
7176
7177      LV.Designator.setInvalid();
7178      LV.moveInto(Result);
7179      return true;
7180    }
7181
7182    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7183                                         SrcType);
7184    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7185  }
7186
7187  case CK_IntegralComplexToReal: {
7188    ComplexValue C;
7189    if (!EvaluateComplex(SubExpr, C, Info))
7190      return false;
7191    return Success(C.getComplexIntReal(), E);
7192  }
7193
7194  case CK_FloatingToIntegral: {
7195    APFloat F(0.0);
7196    if (!EvaluateFloat(SubExpr, F, Info))
7197      return false;
7198
7199    APSInt Value;
7200    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7201      return false;
7202    return Success(Value, E);
7203  }
7204  }
7205
7206  llvm_unreachable("unknown cast resulting in integral value");
7207}
7208
7209bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7210  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7211    ComplexValue LV;
7212    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7213      return false;
7214    if (!LV.isComplexInt())
7215      return Error(E);
7216    return Success(LV.getComplexIntReal(), E);
7217  }
7218
7219  return Visit(E->getSubExpr());
7220}
7221
7222bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7223  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7224    ComplexValue LV;
7225    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7226      return false;
7227    if (!LV.isComplexInt())
7228      return Error(E);
7229    return Success(LV.getComplexIntImag(), E);
7230  }
7231
7232  VisitIgnoredValue(E->getSubExpr());
7233  return Success(0, E);
7234}
7235
7236bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7237  return Success(E->getPackLength(), E);
7238}
7239
7240bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7241  return Success(E->getValue(), E);
7242}
7243
7244//===----------------------------------------------------------------------===//
7245// Float Evaluation
7246//===----------------------------------------------------------------------===//
7247
7248namespace {
7249class FloatExprEvaluator
7250  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
7251  APFloat &Result;
7252public:
7253  FloatExprEvaluator(EvalInfo &info, APFloat &result)
7254    : ExprEvaluatorBaseTy(info), Result(result) {}
7255
7256  bool Success(const APValue &V, const Expr *e) {
7257    Result = V.getFloat();
7258    return true;
7259  }
7260
7261  bool ZeroInitialization(const Expr *E) {
7262    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7263    return true;
7264  }
7265
7266  bool VisitCallExpr(const CallExpr *E);
7267
7268  bool VisitUnaryOperator(const UnaryOperator *E);
7269  bool VisitBinaryOperator(const BinaryOperator *E);
7270  bool VisitFloatingLiteral(const FloatingLiteral *E);
7271  bool VisitCastExpr(const CastExpr *E);
7272
7273  bool VisitUnaryReal(const UnaryOperator *E);
7274  bool VisitUnaryImag(const UnaryOperator *E);
7275
7276  // FIXME: Missing: array subscript of vector, member of vector
7277};
7278} // end anonymous namespace
7279
7280static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7281  assert(E->isRValue() && E->getType()->isRealFloatingType());
7282  return FloatExprEvaluator(Info, Result).Visit(E);
7283}
7284
7285static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7286                                  QualType ResultTy,
7287                                  const Expr *Arg,
7288                                  bool SNaN,
7289                                  llvm::APFloat &Result) {
7290  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7291  if (!S) return false;
7292
7293  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7294
7295  llvm::APInt fill;
7296
7297  // Treat empty strings as if they were zero.
7298  if (S->getString().empty())
7299    fill = llvm::APInt(32, 0);
7300  else if (S->getString().getAsInteger(0, fill))
7301    return false;
7302
7303  if (SNaN)
7304    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7305  else
7306    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7307  return true;
7308}
7309
7310bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7311  switch (E->isBuiltinCall()) {
7312  default:
7313    return ExprEvaluatorBaseTy::VisitCallExpr(E);
7314
7315  case Builtin::BI__builtin_huge_val:
7316  case Builtin::BI__builtin_huge_valf:
7317  case Builtin::BI__builtin_huge_vall:
7318  case Builtin::BI__builtin_inf:
7319  case Builtin::BI__builtin_inff:
7320  case Builtin::BI__builtin_infl: {
7321    const llvm::fltSemantics &Sem =
7322      Info.Ctx.getFloatTypeSemantics(E->getType());
7323    Result = llvm::APFloat::getInf(Sem);
7324    return true;
7325  }
7326
7327  case Builtin::BI__builtin_nans:
7328  case Builtin::BI__builtin_nansf:
7329  case Builtin::BI__builtin_nansl:
7330    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7331                               true, Result))
7332      return Error(E);
7333    return true;
7334
7335  case Builtin::BI__builtin_nan:
7336  case Builtin::BI__builtin_nanf:
7337  case Builtin::BI__builtin_nanl:
7338    // If this is __builtin_nan() turn this into a nan, otherwise we
7339    // can't constant fold it.
7340    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7341                               false, Result))
7342      return Error(E);
7343    return true;
7344
7345  case Builtin::BI__builtin_fabs:
7346  case Builtin::BI__builtin_fabsf:
7347  case Builtin::BI__builtin_fabsl:
7348    if (!EvaluateFloat(E->getArg(0), Result, Info))
7349      return false;
7350
7351    if (Result.isNegative())
7352      Result.changeSign();
7353    return true;
7354
7355  // FIXME: Builtin::BI__builtin_powi
7356  // FIXME: Builtin::BI__builtin_powif
7357  // FIXME: Builtin::BI__builtin_powil
7358
7359  case Builtin::BI__builtin_copysign:
7360  case Builtin::BI__builtin_copysignf:
7361  case Builtin::BI__builtin_copysignl: {
7362    APFloat RHS(0.);
7363    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7364        !EvaluateFloat(E->getArg(1), RHS, Info))
7365      return false;
7366    Result.copySign(RHS);
7367    return true;
7368  }
7369  }
7370}
7371
7372bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7373  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7374    ComplexValue CV;
7375    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7376      return false;
7377    Result = CV.FloatReal;
7378    return true;
7379  }
7380
7381  return Visit(E->getSubExpr());
7382}
7383
7384bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7385  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7386    ComplexValue CV;
7387    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7388      return false;
7389    Result = CV.FloatImag;
7390    return true;
7391  }
7392
7393  VisitIgnoredValue(E->getSubExpr());
7394  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7395  Result = llvm::APFloat::getZero(Sem);
7396  return true;
7397}
7398
7399bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7400  switch (E->getOpcode()) {
7401  default: return Error(E);
7402  case UO_Plus:
7403    return EvaluateFloat(E->getSubExpr(), Result, Info);
7404  case UO_Minus:
7405    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7406      return false;
7407    Result.changeSign();
7408    return true;
7409  }
7410}
7411
7412bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7413  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7414    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7415
7416  APFloat RHS(0.0);
7417  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7418  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7419    return false;
7420  return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7421         handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7422}
7423
7424bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7425  Result = E->getValue();
7426  return true;
7427}
7428
7429bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7430  const Expr* SubExpr = E->getSubExpr();
7431
7432  switch (E->getCastKind()) {
7433  default:
7434    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7435
7436  case CK_IntegralToFloating: {
7437    APSInt IntResult;
7438    return EvaluateInteger(SubExpr, IntResult, Info) &&
7439           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7440                                E->getType(), Result);
7441  }
7442
7443  case CK_FloatingCast: {
7444    if (!Visit(SubExpr))
7445      return false;
7446    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7447                                  Result);
7448  }
7449
7450  case CK_FloatingComplexToReal: {
7451    ComplexValue V;
7452    if (!EvaluateComplex(SubExpr, V, Info))
7453      return false;
7454    Result = V.getComplexFloatReal();
7455    return true;
7456  }
7457  }
7458}
7459
7460//===----------------------------------------------------------------------===//
7461// Complex Evaluation (for float and integer)
7462//===----------------------------------------------------------------------===//
7463
7464namespace {
7465class ComplexExprEvaluator
7466  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
7467  ComplexValue &Result;
7468
7469public:
7470  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7471    : ExprEvaluatorBaseTy(info), Result(Result) {}
7472
7473  bool Success(const APValue &V, const Expr *e) {
7474    Result.setFrom(V);
7475    return true;
7476  }
7477
7478  bool ZeroInitialization(const Expr *E);
7479
7480  //===--------------------------------------------------------------------===//
7481  //                            Visitor Methods
7482  //===--------------------------------------------------------------------===//
7483
7484  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7485  bool VisitCastExpr(const CastExpr *E);
7486  bool VisitBinaryOperator(const BinaryOperator *E);
7487  bool VisitUnaryOperator(const UnaryOperator *E);
7488  bool VisitInitListExpr(const InitListExpr *E);
7489};
7490} // end anonymous namespace
7491
7492static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7493                            EvalInfo &Info) {
7494  assert(E->isRValue() && E->getType()->isAnyComplexType());
7495  return ComplexExprEvaluator(Info, Result).Visit(E);
7496}
7497
7498bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7499  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7500  if (ElemTy->isRealFloatingType()) {
7501    Result.makeComplexFloat();
7502    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7503    Result.FloatReal = Zero;
7504    Result.FloatImag = Zero;
7505  } else {
7506    Result.makeComplexInt();
7507    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7508    Result.IntReal = Zero;
7509    Result.IntImag = Zero;
7510  }
7511  return true;
7512}
7513
7514bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7515  const Expr* SubExpr = E->getSubExpr();
7516
7517  if (SubExpr->getType()->isRealFloatingType()) {
7518    Result.makeComplexFloat();
7519    APFloat &Imag = Result.FloatImag;
7520    if (!EvaluateFloat(SubExpr, Imag, Info))
7521      return false;
7522
7523    Result.FloatReal = APFloat(Imag.getSemantics());
7524    return true;
7525  } else {
7526    assert(SubExpr->getType()->isIntegerType() &&
7527           "Unexpected imaginary literal.");
7528
7529    Result.makeComplexInt();
7530    APSInt &Imag = Result.IntImag;
7531    if (!EvaluateInteger(SubExpr, Imag, Info))
7532      return false;
7533
7534    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7535    return true;
7536  }
7537}
7538
7539bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7540
7541  switch (E->getCastKind()) {
7542  case CK_BitCast:
7543  case CK_BaseToDerived:
7544  case CK_DerivedToBase:
7545  case CK_UncheckedDerivedToBase:
7546  case CK_Dynamic:
7547  case CK_ToUnion:
7548  case CK_ArrayToPointerDecay:
7549  case CK_FunctionToPointerDecay:
7550  case CK_NullToPointer:
7551  case CK_NullToMemberPointer:
7552  case CK_BaseToDerivedMemberPointer:
7553  case CK_DerivedToBaseMemberPointer:
7554  case CK_MemberPointerToBoolean:
7555  case CK_ReinterpretMemberPointer:
7556  case CK_ConstructorConversion:
7557  case CK_IntegralToPointer:
7558  case CK_PointerToIntegral:
7559  case CK_PointerToBoolean:
7560  case CK_ToVoid:
7561  case CK_VectorSplat:
7562  case CK_IntegralCast:
7563  case CK_IntegralToBoolean:
7564  case CK_IntegralToFloating:
7565  case CK_FloatingToIntegral:
7566  case CK_FloatingToBoolean:
7567  case CK_FloatingCast:
7568  case CK_CPointerToObjCPointerCast:
7569  case CK_BlockPointerToObjCPointerCast:
7570  case CK_AnyPointerToBlockPointerCast:
7571  case CK_ObjCObjectLValueCast:
7572  case CK_FloatingComplexToReal:
7573  case CK_FloatingComplexToBoolean:
7574  case CK_IntegralComplexToReal:
7575  case CK_IntegralComplexToBoolean:
7576  case CK_ARCProduceObject:
7577  case CK_ARCConsumeObject:
7578  case CK_ARCReclaimReturnedObject:
7579  case CK_ARCExtendBlockObject:
7580  case CK_CopyAndAutoreleaseBlockObject:
7581  case CK_BuiltinFnToFnPtr:
7582  case CK_ZeroToOCLEvent:
7583  case CK_NonAtomicToAtomic:
7584    llvm_unreachable("invalid cast kind for complex value");
7585
7586  case CK_LValueToRValue:
7587  case CK_AtomicToNonAtomic:
7588  case CK_NoOp:
7589    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7590
7591  case CK_Dependent:
7592  case CK_LValueBitCast:
7593  case CK_UserDefinedConversion:
7594    return Error(E);
7595
7596  case CK_FloatingRealToComplex: {
7597    APFloat &Real = Result.FloatReal;
7598    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7599      return false;
7600
7601    Result.makeComplexFloat();
7602    Result.FloatImag = APFloat(Real.getSemantics());
7603    return true;
7604  }
7605
7606  case CK_FloatingComplexCast: {
7607    if (!Visit(E->getSubExpr()))
7608      return false;
7609
7610    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7611    QualType From
7612      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7613
7614    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7615           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7616  }
7617
7618  case CK_FloatingComplexToIntegralComplex: {
7619    if (!Visit(E->getSubExpr()))
7620      return false;
7621
7622    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7623    QualType From
7624      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7625    Result.makeComplexInt();
7626    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7627                                To, Result.IntReal) &&
7628           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7629                                To, Result.IntImag);
7630  }
7631
7632  case CK_IntegralRealToComplex: {
7633    APSInt &Real = Result.IntReal;
7634    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7635      return false;
7636
7637    Result.makeComplexInt();
7638    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7639    return true;
7640  }
7641
7642  case CK_IntegralComplexCast: {
7643    if (!Visit(E->getSubExpr()))
7644      return false;
7645
7646    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7647    QualType From
7648      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7649
7650    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7651    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7652    return true;
7653  }
7654
7655  case CK_IntegralComplexToFloatingComplex: {
7656    if (!Visit(E->getSubExpr()))
7657      return false;
7658
7659    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7660    QualType From
7661      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7662    Result.makeComplexFloat();
7663    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7664                                To, Result.FloatReal) &&
7665           HandleIntToFloatCast(Info, E, From, Result.IntImag,
7666                                To, Result.FloatImag);
7667  }
7668  }
7669
7670  llvm_unreachable("unknown cast resulting in complex value");
7671}
7672
7673bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7674  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7675    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7676
7677  bool LHSOK = Visit(E->getLHS());
7678  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7679    return false;
7680
7681  ComplexValue RHS;
7682  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7683    return false;
7684
7685  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7686         "Invalid operands to binary operator.");
7687  switch (E->getOpcode()) {
7688  default: return Error(E);
7689  case BO_Add:
7690    if (Result.isComplexFloat()) {
7691      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7692                                       APFloat::rmNearestTiesToEven);
7693      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7694                                       APFloat::rmNearestTiesToEven);
7695    } else {
7696      Result.getComplexIntReal() += RHS.getComplexIntReal();
7697      Result.getComplexIntImag() += RHS.getComplexIntImag();
7698    }
7699    break;
7700  case BO_Sub:
7701    if (Result.isComplexFloat()) {
7702      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7703                                            APFloat::rmNearestTiesToEven);
7704      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7705                                            APFloat::rmNearestTiesToEven);
7706    } else {
7707      Result.getComplexIntReal() -= RHS.getComplexIntReal();
7708      Result.getComplexIntImag() -= RHS.getComplexIntImag();
7709    }
7710    break;
7711  case BO_Mul:
7712    if (Result.isComplexFloat()) {
7713      ComplexValue LHS = Result;
7714      APFloat &LHS_r = LHS.getComplexFloatReal();
7715      APFloat &LHS_i = LHS.getComplexFloatImag();
7716      APFloat &RHS_r = RHS.getComplexFloatReal();
7717      APFloat &RHS_i = RHS.getComplexFloatImag();
7718
7719      APFloat Tmp = LHS_r;
7720      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7721      Result.getComplexFloatReal() = Tmp;
7722      Tmp = LHS_i;
7723      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7724      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7725
7726      Tmp = LHS_r;
7727      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7728      Result.getComplexFloatImag() = Tmp;
7729      Tmp = LHS_i;
7730      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7731      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7732    } else {
7733      ComplexValue LHS = Result;
7734      Result.getComplexIntReal() =
7735        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7736         LHS.getComplexIntImag() * RHS.getComplexIntImag());
7737      Result.getComplexIntImag() =
7738        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7739         LHS.getComplexIntImag() * RHS.getComplexIntReal());
7740    }
7741    break;
7742  case BO_Div:
7743    if (Result.isComplexFloat()) {
7744      ComplexValue LHS = Result;
7745      APFloat &LHS_r = LHS.getComplexFloatReal();
7746      APFloat &LHS_i = LHS.getComplexFloatImag();
7747      APFloat &RHS_r = RHS.getComplexFloatReal();
7748      APFloat &RHS_i = RHS.getComplexFloatImag();
7749      APFloat &Res_r = Result.getComplexFloatReal();
7750      APFloat &Res_i = Result.getComplexFloatImag();
7751
7752      APFloat Den = RHS_r;
7753      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7754      APFloat Tmp = RHS_i;
7755      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7756      Den.add(Tmp, APFloat::rmNearestTiesToEven);
7757
7758      Res_r = LHS_r;
7759      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7760      Tmp = LHS_i;
7761      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7762      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7763      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7764
7765      Res_i = LHS_i;
7766      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7767      Tmp = LHS_r;
7768      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7769      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7770      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7771    } else {
7772      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7773        return Error(E, diag::note_expr_divide_by_zero);
7774
7775      ComplexValue LHS = Result;
7776      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7777        RHS.getComplexIntImag() * RHS.getComplexIntImag();
7778      Result.getComplexIntReal() =
7779        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7780         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7781      Result.getComplexIntImag() =
7782        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7783         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7784    }
7785    break;
7786  }
7787
7788  return true;
7789}
7790
7791bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7792  // Get the operand value into 'Result'.
7793  if (!Visit(E->getSubExpr()))
7794    return false;
7795
7796  switch (E->getOpcode()) {
7797  default:
7798    return Error(E);
7799  case UO_Extension:
7800    return true;
7801  case UO_Plus:
7802    // The result is always just the subexpr.
7803    return true;
7804  case UO_Minus:
7805    if (Result.isComplexFloat()) {
7806      Result.getComplexFloatReal().changeSign();
7807      Result.getComplexFloatImag().changeSign();
7808    }
7809    else {
7810      Result.getComplexIntReal() = -Result.getComplexIntReal();
7811      Result.getComplexIntImag() = -Result.getComplexIntImag();
7812    }
7813    return true;
7814  case UO_Not:
7815    if (Result.isComplexFloat())
7816      Result.getComplexFloatImag().changeSign();
7817    else
7818      Result.getComplexIntImag() = -Result.getComplexIntImag();
7819    return true;
7820  }
7821}
7822
7823bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7824  if (E->getNumInits() == 2) {
7825    if (E->getType()->isComplexType()) {
7826      Result.makeComplexFloat();
7827      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7828        return false;
7829      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7830        return false;
7831    } else {
7832      Result.makeComplexInt();
7833      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7834        return false;
7835      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7836        return false;
7837    }
7838    return true;
7839  }
7840  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7841}
7842
7843//===----------------------------------------------------------------------===//
7844// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7845// implicit conversion.
7846//===----------------------------------------------------------------------===//
7847
7848namespace {
7849class AtomicExprEvaluator :
7850    public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
7851  APValue &Result;
7852public:
7853  AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7854      : ExprEvaluatorBaseTy(Info), Result(Result) {}
7855
7856  bool Success(const APValue &V, const Expr *E) {
7857    Result = V;
7858    return true;
7859  }
7860
7861  bool ZeroInitialization(const Expr *E) {
7862    ImplicitValueInitExpr VIE(
7863        E->getType()->castAs<AtomicType>()->getValueType());
7864    return Evaluate(Result, Info, &VIE);
7865  }
7866
7867  bool VisitCastExpr(const CastExpr *E) {
7868    switch (E->getCastKind()) {
7869    default:
7870      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7871    case CK_NonAtomicToAtomic:
7872      return Evaluate(Result, Info, E->getSubExpr());
7873    }
7874  }
7875};
7876} // end anonymous namespace
7877
7878static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7879  assert(E->isRValue() && E->getType()->isAtomicType());
7880  return AtomicExprEvaluator(Info, Result).Visit(E);
7881}
7882
7883//===----------------------------------------------------------------------===//
7884// Void expression evaluation, primarily for a cast to void on the LHS of a
7885// comma operator
7886//===----------------------------------------------------------------------===//
7887
7888namespace {
7889class VoidExprEvaluator
7890  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
7891public:
7892  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7893
7894  bool Success(const APValue &V, const Expr *e) { return true; }
7895
7896  bool VisitCastExpr(const CastExpr *E) {
7897    switch (E->getCastKind()) {
7898    default:
7899      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7900    case CK_ToVoid:
7901      VisitIgnoredValue(E->getSubExpr());
7902      return true;
7903    }
7904  }
7905};
7906} // end anonymous namespace
7907
7908static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7909  assert(E->isRValue() && E->getType()->isVoidType());
7910  return VoidExprEvaluator(Info).Visit(E);
7911}
7912
7913//===----------------------------------------------------------------------===//
7914// Top level Expr::EvaluateAsRValue method.
7915//===----------------------------------------------------------------------===//
7916
7917static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7918  // In C, function designators are not lvalues, but we evaluate them as if they
7919  // are.
7920  QualType T = E->getType();
7921  if (E->isGLValue() || T->isFunctionType()) {
7922    LValue LV;
7923    if (!EvaluateLValue(E, LV, Info))
7924      return false;
7925    LV.moveInto(Result);
7926  } else if (T->isVectorType()) {
7927    if (!EvaluateVector(E, Result, Info))
7928      return false;
7929  } else if (T->isIntegralOrEnumerationType()) {
7930    if (!IntExprEvaluator(Info, Result).Visit(E))
7931      return false;
7932  } else if (T->hasPointerRepresentation()) {
7933    LValue LV;
7934    if (!EvaluatePointer(E, LV, Info))
7935      return false;
7936    LV.moveInto(Result);
7937  } else if (T->isRealFloatingType()) {
7938    llvm::APFloat F(0.0);
7939    if (!EvaluateFloat(E, F, Info))
7940      return false;
7941    Result = APValue(F);
7942  } else if (T->isAnyComplexType()) {
7943    ComplexValue C;
7944    if (!EvaluateComplex(E, C, Info))
7945      return false;
7946    C.moveInto(Result);
7947  } else if (T->isMemberPointerType()) {
7948    MemberPtr P;
7949    if (!EvaluateMemberPointer(E, P, Info))
7950      return false;
7951    P.moveInto(Result);
7952    return true;
7953  } else if (T->isArrayType()) {
7954    LValue LV;
7955    LV.set(E, Info.CurrentCall->Index);
7956    APValue &Value = Info.CurrentCall->createTemporary(E, false);
7957    if (!EvaluateArray(E, LV, Value, Info))
7958      return false;
7959    Result = Value;
7960  } else if (T->isRecordType()) {
7961    LValue LV;
7962    LV.set(E, Info.CurrentCall->Index);
7963    APValue &Value = Info.CurrentCall->createTemporary(E, false);
7964    if (!EvaluateRecord(E, LV, Value, Info))
7965      return false;
7966    Result = Value;
7967  } else if (T->isVoidType()) {
7968    if (!Info.getLangOpts().CPlusPlus11)
7969      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
7970        << E->getType();
7971    if (!EvaluateVoid(E, Info))
7972      return false;
7973  } else if (T->isAtomicType()) {
7974    if (!EvaluateAtomic(E, Result, Info))
7975      return false;
7976  } else if (Info.getLangOpts().CPlusPlus11) {
7977    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
7978    return false;
7979  } else {
7980    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
7981    return false;
7982  }
7983
7984  return true;
7985}
7986
7987/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
7988/// cases, the in-place evaluation is essential, since later initializers for
7989/// an object can indirectly refer to subobjects which were initialized earlier.
7990static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
7991                            const Expr *E, bool AllowNonLiteralTypes) {
7992  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
7993    return false;
7994
7995  if (E->isRValue()) {
7996    // Evaluate arrays and record types in-place, so that later initializers can
7997    // refer to earlier-initialized members of the object.
7998    if (E->getType()->isArrayType())
7999      return EvaluateArray(E, This, Result, Info);
8000    else if (E->getType()->isRecordType())
8001      return EvaluateRecord(E, This, Result, Info);
8002  }
8003
8004  // For any other type, in-place evaluation is unimportant.
8005  return Evaluate(Result, Info, E);
8006}
8007
8008/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8009/// lvalue-to-rvalue cast if it is an lvalue.
8010static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8011  if (!CheckLiteralType(Info, E))
8012    return false;
8013
8014  if (!::Evaluate(Result, Info, E))
8015    return false;
8016
8017  if (E->isGLValue()) {
8018    LValue LV;
8019    LV.setFrom(Info.Ctx, Result);
8020    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8021      return false;
8022  }
8023
8024  // Check this core constant expression is a constant expression.
8025  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8026}
8027
8028static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8029                                 const ASTContext &Ctx, bool &IsConst) {
8030  // Fast-path evaluations of integer literals, since we sometimes see files
8031  // containing vast quantities of these.
8032  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8033    Result.Val = APValue(APSInt(L->getValue(),
8034                                L->getType()->isUnsignedIntegerType()));
8035    IsConst = true;
8036    return true;
8037  }
8038
8039  // FIXME: Evaluating values of large array and record types can cause
8040  // performance problems. Only do so in C++11 for now.
8041  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8042                          Exp->getType()->isRecordType()) &&
8043      !Ctx.getLangOpts().CPlusPlus11) {
8044    IsConst = false;
8045    return true;
8046  }
8047  return false;
8048}
8049
8050
8051/// EvaluateAsRValue - Return true if this is a constant which we can fold using
8052/// any crazy technique (that has nothing to do with language standards) that
8053/// we want to.  If this function returns true, it returns the folded constant
8054/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8055/// will be applied to the result.
8056bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8057  bool IsConst;
8058  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8059    return IsConst;
8060
8061  EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8062  return ::EvaluateAsRValue(Info, this, Result.Val);
8063}
8064
8065bool Expr::EvaluateAsBooleanCondition(bool &Result,
8066                                      const ASTContext &Ctx) const {
8067  EvalResult Scratch;
8068  return EvaluateAsRValue(Scratch, Ctx) &&
8069         HandleConversionToBool(Scratch.Val, Result);
8070}
8071
8072bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8073                         SideEffectsKind AllowSideEffects) const {
8074  if (!getType()->isIntegralOrEnumerationType())
8075    return false;
8076
8077  EvalResult ExprResult;
8078  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8079      (!AllowSideEffects && ExprResult.HasSideEffects))
8080    return false;
8081
8082  Result = ExprResult.Val.getInt();
8083  return true;
8084}
8085
8086bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8087  EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8088
8089  LValue LV;
8090  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8091      !CheckLValueConstantExpression(Info, getExprLoc(),
8092                                     Ctx.getLValueReferenceType(getType()), LV))
8093    return false;
8094
8095  LV.moveInto(Result.Val);
8096  return true;
8097}
8098
8099bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8100                                 const VarDecl *VD,
8101                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8102  // FIXME: Evaluating initializers for large array and record types can cause
8103  // performance problems. Only do so in C++11 for now.
8104  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8105      !Ctx.getLangOpts().CPlusPlus11)
8106    return false;
8107
8108  Expr::EvalStatus EStatus;
8109  EStatus.Diag = &Notes;
8110
8111  EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
8112  InitInfo.setEvaluatingDecl(VD, Value);
8113
8114  LValue LVal;
8115  LVal.set(VD);
8116
8117  // C++11 [basic.start.init]p2:
8118  //  Variables with static storage duration or thread storage duration shall be
8119  //  zero-initialized before any other initialization takes place.
8120  // This behavior is not present in C.
8121  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8122      !VD->getType()->isReferenceType()) {
8123    ImplicitValueInitExpr VIE(VD->getType());
8124    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8125                         /*AllowNonLiteralTypes=*/true))
8126      return false;
8127  }
8128
8129  if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8130                       /*AllowNonLiteralTypes=*/true) ||
8131      EStatus.HasSideEffects)
8132    return false;
8133
8134  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8135                                 Value);
8136}
8137
8138/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8139/// constant folded, but discard the result.
8140bool Expr::isEvaluatable(const ASTContext &Ctx) const {
8141  EvalResult Result;
8142  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
8143}
8144
8145APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8146                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8147  EvalResult EvalResult;
8148  EvalResult.Diag = Diag;
8149  bool Result = EvaluateAsRValue(EvalResult, Ctx);
8150  (void)Result;
8151  assert(Result && "Could not evaluate expression");
8152  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8153
8154  return EvalResult.Val.getInt();
8155}
8156
8157void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8158  bool IsConst;
8159  EvalResult EvalResult;
8160  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8161    EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8162    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8163  }
8164}
8165
8166bool Expr::EvalResult::isGlobalLValue() const {
8167  assert(Val.isLValue());
8168  return IsGlobalLValue(Val.getLValueBase());
8169}
8170
8171
8172/// isIntegerConstantExpr - this recursive routine will test if an expression is
8173/// an integer constant expression.
8174
8175/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8176/// comma, etc
8177
8178// CheckICE - This function does the fundamental ICE checking: the returned
8179// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8180// and a (possibly null) SourceLocation indicating the location of the problem.
8181//
8182// Note that to reduce code duplication, this helper does no evaluation
8183// itself; the caller checks whether the expression is evaluatable, and
8184// in the rare cases where CheckICE actually cares about the evaluated
8185// value, it calls into Evalute.
8186
8187namespace {
8188
8189enum ICEKind {
8190  /// This expression is an ICE.
8191  IK_ICE,
8192  /// This expression is not an ICE, but if it isn't evaluated, it's
8193  /// a legal subexpression for an ICE. This return value is used to handle
8194  /// the comma operator in C99 mode, and non-constant subexpressions.
8195  IK_ICEIfUnevaluated,
8196  /// This expression is not an ICE, and is not a legal subexpression for one.
8197  IK_NotICE
8198};
8199
8200struct ICEDiag {
8201  ICEKind Kind;
8202  SourceLocation Loc;
8203
8204  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8205};
8206
8207}
8208
8209static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8210
8211static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8212
8213static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
8214  Expr::EvalResult EVResult;
8215  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8216      !EVResult.Val.isInt())
8217    return ICEDiag(IK_NotICE, E->getLocStart());
8218
8219  return NoDiag();
8220}
8221
8222static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
8223  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8224  if (!E->getType()->isIntegralOrEnumerationType())
8225    return ICEDiag(IK_NotICE, E->getLocStart());
8226
8227  switch (E->getStmtClass()) {
8228#define ABSTRACT_STMT(Node)
8229#define STMT(Node, Base) case Expr::Node##Class:
8230#define EXPR(Node, Base)
8231#include "clang/AST/StmtNodes.inc"
8232  case Expr::PredefinedExprClass:
8233  case Expr::FloatingLiteralClass:
8234  case Expr::ImaginaryLiteralClass:
8235  case Expr::StringLiteralClass:
8236  case Expr::ArraySubscriptExprClass:
8237  case Expr::MemberExprClass:
8238  case Expr::CompoundAssignOperatorClass:
8239  case Expr::CompoundLiteralExprClass:
8240  case Expr::ExtVectorElementExprClass:
8241  case Expr::DesignatedInitExprClass:
8242  case Expr::ImplicitValueInitExprClass:
8243  case Expr::ParenListExprClass:
8244  case Expr::VAArgExprClass:
8245  case Expr::AddrLabelExprClass:
8246  case Expr::StmtExprClass:
8247  case Expr::CXXMemberCallExprClass:
8248  case Expr::CUDAKernelCallExprClass:
8249  case Expr::CXXDynamicCastExprClass:
8250  case Expr::CXXTypeidExprClass:
8251  case Expr::CXXUuidofExprClass:
8252  case Expr::MSPropertyRefExprClass:
8253  case Expr::CXXNullPtrLiteralExprClass:
8254  case Expr::UserDefinedLiteralClass:
8255  case Expr::CXXThisExprClass:
8256  case Expr::CXXThrowExprClass:
8257  case Expr::CXXNewExprClass:
8258  case Expr::CXXDeleteExprClass:
8259  case Expr::CXXPseudoDestructorExprClass:
8260  case Expr::UnresolvedLookupExprClass:
8261  case Expr::DependentScopeDeclRefExprClass:
8262  case Expr::CXXConstructExprClass:
8263  case Expr::CXXStdInitializerListExprClass:
8264  case Expr::CXXBindTemporaryExprClass:
8265  case Expr::ExprWithCleanupsClass:
8266  case Expr::CXXTemporaryObjectExprClass:
8267  case Expr::CXXUnresolvedConstructExprClass:
8268  case Expr::CXXDependentScopeMemberExprClass:
8269  case Expr::UnresolvedMemberExprClass:
8270  case Expr::ObjCStringLiteralClass:
8271  case Expr::ObjCBoxedExprClass:
8272  case Expr::ObjCArrayLiteralClass:
8273  case Expr::ObjCDictionaryLiteralClass:
8274  case Expr::ObjCEncodeExprClass:
8275  case Expr::ObjCMessageExprClass:
8276  case Expr::ObjCSelectorExprClass:
8277  case Expr::ObjCProtocolExprClass:
8278  case Expr::ObjCIvarRefExprClass:
8279  case Expr::ObjCPropertyRefExprClass:
8280  case Expr::ObjCSubscriptRefExprClass:
8281  case Expr::ObjCIsaExprClass:
8282  case Expr::ShuffleVectorExprClass:
8283  case Expr::ConvertVectorExprClass:
8284  case Expr::BlockExprClass:
8285  case Expr::NoStmtClass:
8286  case Expr::OpaqueValueExprClass:
8287  case Expr::PackExpansionExprClass:
8288  case Expr::SubstNonTypeTemplateParmPackExprClass:
8289  case Expr::FunctionParmPackExprClass:
8290  case Expr::AsTypeExprClass:
8291  case Expr::ObjCIndirectCopyRestoreExprClass:
8292  case Expr::MaterializeTemporaryExprClass:
8293  case Expr::PseudoObjectExprClass:
8294  case Expr::AtomicExprClass:
8295  case Expr::InitListExprClass:
8296  case Expr::LambdaExprClass:
8297    return ICEDiag(IK_NotICE, E->getLocStart());
8298
8299  case Expr::SizeOfPackExprClass:
8300  case Expr::GNUNullExprClass:
8301    // GCC considers the GNU __null value to be an integral constant expression.
8302    return NoDiag();
8303
8304  case Expr::SubstNonTypeTemplateParmExprClass:
8305    return
8306      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8307
8308  case Expr::ParenExprClass:
8309    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8310  case Expr::GenericSelectionExprClass:
8311    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8312  case Expr::IntegerLiteralClass:
8313  case Expr::CharacterLiteralClass:
8314  case Expr::ObjCBoolLiteralExprClass:
8315  case Expr::CXXBoolLiteralExprClass:
8316  case Expr::CXXScalarValueInitExprClass:
8317  case Expr::UnaryTypeTraitExprClass:
8318  case Expr::BinaryTypeTraitExprClass:
8319  case Expr::TypeTraitExprClass:
8320  case Expr::ArrayTypeTraitExprClass:
8321  case Expr::ExpressionTraitExprClass:
8322  case Expr::CXXNoexceptExprClass:
8323    return NoDiag();
8324  case Expr::CallExprClass:
8325  case Expr::CXXOperatorCallExprClass: {
8326    // C99 6.6/3 allows function calls within unevaluated subexpressions of
8327    // constant expressions, but they can never be ICEs because an ICE cannot
8328    // contain an operand of (pointer to) function type.
8329    const CallExpr *CE = cast<CallExpr>(E);
8330    if (CE->isBuiltinCall())
8331      return CheckEvalInICE(E, Ctx);
8332    return ICEDiag(IK_NotICE, E->getLocStart());
8333  }
8334  case Expr::DeclRefExprClass: {
8335    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8336      return NoDiag();
8337    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8338    if (Ctx.getLangOpts().CPlusPlus &&
8339        D && IsConstNonVolatile(D->getType())) {
8340      // Parameter variables are never constants.  Without this check,
8341      // getAnyInitializer() can find a default argument, which leads
8342      // to chaos.
8343      if (isa<ParmVarDecl>(D))
8344        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8345
8346      // C++ 7.1.5.1p2
8347      //   A variable of non-volatile const-qualified integral or enumeration
8348      //   type initialized by an ICE can be used in ICEs.
8349      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8350        if (!Dcl->getType()->isIntegralOrEnumerationType())
8351          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8352
8353        const VarDecl *VD;
8354        // Look for a declaration of this variable that has an initializer, and
8355        // check whether it is an ICE.
8356        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8357          return NoDiag();
8358        else
8359          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8360      }
8361    }
8362    return ICEDiag(IK_NotICE, E->getLocStart());
8363  }
8364  case Expr::UnaryOperatorClass: {
8365    const UnaryOperator *Exp = cast<UnaryOperator>(E);
8366    switch (Exp->getOpcode()) {
8367    case UO_PostInc:
8368    case UO_PostDec:
8369    case UO_PreInc:
8370    case UO_PreDec:
8371    case UO_AddrOf:
8372    case UO_Deref:
8373      // C99 6.6/3 allows increment and decrement within unevaluated
8374      // subexpressions of constant expressions, but they can never be ICEs
8375      // because an ICE cannot contain an lvalue operand.
8376      return ICEDiag(IK_NotICE, E->getLocStart());
8377    case UO_Extension:
8378    case UO_LNot:
8379    case UO_Plus:
8380    case UO_Minus:
8381    case UO_Not:
8382    case UO_Real:
8383    case UO_Imag:
8384      return CheckICE(Exp->getSubExpr(), Ctx);
8385    }
8386
8387    // OffsetOf falls through here.
8388  }
8389  case Expr::OffsetOfExprClass: {
8390    // Note that per C99, offsetof must be an ICE. And AFAIK, using
8391    // EvaluateAsRValue matches the proposed gcc behavior for cases like
8392    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8393    // compliance: we should warn earlier for offsetof expressions with
8394    // array subscripts that aren't ICEs, and if the array subscripts
8395    // are ICEs, the value of the offsetof must be an integer constant.
8396    return CheckEvalInICE(E, Ctx);
8397  }
8398  case Expr::UnaryExprOrTypeTraitExprClass: {
8399    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8400    if ((Exp->getKind() ==  UETT_SizeOf) &&
8401        Exp->getTypeOfArgument()->isVariableArrayType())
8402      return ICEDiag(IK_NotICE, E->getLocStart());
8403    return NoDiag();
8404  }
8405  case Expr::BinaryOperatorClass: {
8406    const BinaryOperator *Exp = cast<BinaryOperator>(E);
8407    switch (Exp->getOpcode()) {
8408    case BO_PtrMemD:
8409    case BO_PtrMemI:
8410    case BO_Assign:
8411    case BO_MulAssign:
8412    case BO_DivAssign:
8413    case BO_RemAssign:
8414    case BO_AddAssign:
8415    case BO_SubAssign:
8416    case BO_ShlAssign:
8417    case BO_ShrAssign:
8418    case BO_AndAssign:
8419    case BO_XorAssign:
8420    case BO_OrAssign:
8421      // C99 6.6/3 allows assignments within unevaluated subexpressions of
8422      // constant expressions, but they can never be ICEs because an ICE cannot
8423      // contain an lvalue operand.
8424      return ICEDiag(IK_NotICE, E->getLocStart());
8425
8426    case BO_Mul:
8427    case BO_Div:
8428    case BO_Rem:
8429    case BO_Add:
8430    case BO_Sub:
8431    case BO_Shl:
8432    case BO_Shr:
8433    case BO_LT:
8434    case BO_GT:
8435    case BO_LE:
8436    case BO_GE:
8437    case BO_EQ:
8438    case BO_NE:
8439    case BO_And:
8440    case BO_Xor:
8441    case BO_Or:
8442    case BO_Comma: {
8443      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8444      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8445      if (Exp->getOpcode() == BO_Div ||
8446          Exp->getOpcode() == BO_Rem) {
8447        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8448        // we don't evaluate one.
8449        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8450          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8451          if (REval == 0)
8452            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8453          if (REval.isSigned() && REval.isAllOnesValue()) {
8454            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8455            if (LEval.isMinSignedValue())
8456              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8457          }
8458        }
8459      }
8460      if (Exp->getOpcode() == BO_Comma) {
8461        if (Ctx.getLangOpts().C99) {
8462          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8463          // if it isn't evaluated.
8464          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8465            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8466        } else {
8467          // In both C89 and C++, commas in ICEs are illegal.
8468          return ICEDiag(IK_NotICE, E->getLocStart());
8469        }
8470      }
8471      return Worst(LHSResult, RHSResult);
8472    }
8473    case BO_LAnd:
8474    case BO_LOr: {
8475      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8476      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8477      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8478        // Rare case where the RHS has a comma "side-effect"; we need
8479        // to actually check the condition to see whether the side
8480        // with the comma is evaluated.
8481        if ((Exp->getOpcode() == BO_LAnd) !=
8482            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8483          return RHSResult;
8484        return NoDiag();
8485      }
8486
8487      return Worst(LHSResult, RHSResult);
8488    }
8489    }
8490  }
8491  case Expr::ImplicitCastExprClass:
8492  case Expr::CStyleCastExprClass:
8493  case Expr::CXXFunctionalCastExprClass:
8494  case Expr::CXXStaticCastExprClass:
8495  case Expr::CXXReinterpretCastExprClass:
8496  case Expr::CXXConstCastExprClass:
8497  case Expr::ObjCBridgedCastExprClass: {
8498    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8499    if (isa<ExplicitCastExpr>(E)) {
8500      if (const FloatingLiteral *FL
8501            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8502        unsigned DestWidth = Ctx.getIntWidth(E->getType());
8503        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8504        APSInt IgnoredVal(DestWidth, !DestSigned);
8505        bool Ignored;
8506        // If the value does not fit in the destination type, the behavior is
8507        // undefined, so we are not required to treat it as a constant
8508        // expression.
8509        if (FL->getValue().convertToInteger(IgnoredVal,
8510                                            llvm::APFloat::rmTowardZero,
8511                                            &Ignored) & APFloat::opInvalidOp)
8512          return ICEDiag(IK_NotICE, E->getLocStart());
8513        return NoDiag();
8514      }
8515    }
8516    switch (cast<CastExpr>(E)->getCastKind()) {
8517    case CK_LValueToRValue:
8518    case CK_AtomicToNonAtomic:
8519    case CK_NonAtomicToAtomic:
8520    case CK_NoOp:
8521    case CK_IntegralToBoolean:
8522    case CK_IntegralCast:
8523      return CheckICE(SubExpr, Ctx);
8524    default:
8525      return ICEDiag(IK_NotICE, E->getLocStart());
8526    }
8527  }
8528  case Expr::BinaryConditionalOperatorClass: {
8529    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8530    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8531    if (CommonResult.Kind == IK_NotICE) return CommonResult;
8532    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8533    if (FalseResult.Kind == IK_NotICE) return FalseResult;
8534    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8535    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8536        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8537    return FalseResult;
8538  }
8539  case Expr::ConditionalOperatorClass: {
8540    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8541    // If the condition (ignoring parens) is a __builtin_constant_p call,
8542    // then only the true side is actually considered in an integer constant
8543    // expression, and it is fully evaluated.  This is an important GNU
8544    // extension.  See GCC PR38377 for discussion.
8545    if (const CallExpr *CallCE
8546        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8547      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
8548        return CheckEvalInICE(E, Ctx);
8549    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8550    if (CondResult.Kind == IK_NotICE)
8551      return CondResult;
8552
8553    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8554    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8555
8556    if (TrueResult.Kind == IK_NotICE)
8557      return TrueResult;
8558    if (FalseResult.Kind == IK_NotICE)
8559      return FalseResult;
8560    if (CondResult.Kind == IK_ICEIfUnevaluated)
8561      return CondResult;
8562    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8563      return NoDiag();
8564    // Rare case where the diagnostics depend on which side is evaluated
8565    // Note that if we get here, CondResult is 0, and at least one of
8566    // TrueResult and FalseResult is non-zero.
8567    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8568      return FalseResult;
8569    return TrueResult;
8570  }
8571  case Expr::CXXDefaultArgExprClass:
8572    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8573  case Expr::CXXDefaultInitExprClass:
8574    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8575  case Expr::ChooseExprClass: {
8576    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8577  }
8578  }
8579
8580  llvm_unreachable("Invalid StmtClass!");
8581}
8582
8583/// Evaluate an expression as a C++11 integral constant expression.
8584static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
8585                                                    const Expr *E,
8586                                                    llvm::APSInt *Value,
8587                                                    SourceLocation *Loc) {
8588  if (!E->getType()->isIntegralOrEnumerationType()) {
8589    if (Loc) *Loc = E->getExprLoc();
8590    return false;
8591  }
8592
8593  APValue Result;
8594  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8595    return false;
8596
8597  assert(Result.isInt() && "pointer cast to int is not an ICE");
8598  if (Value) *Value = Result.getInt();
8599  return true;
8600}
8601
8602bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
8603                                 SourceLocation *Loc) const {
8604  if (Ctx.getLangOpts().CPlusPlus11)
8605    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
8606
8607  ICEDiag D = CheckICE(this, Ctx);
8608  if (D.Kind != IK_ICE) {
8609    if (Loc) *Loc = D.Loc;
8610    return false;
8611  }
8612  return true;
8613}
8614
8615bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
8616                                 SourceLocation *Loc, bool isEvaluated) const {
8617  if (Ctx.getLangOpts().CPlusPlus11)
8618    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8619
8620  if (!isIntegerConstantExpr(Ctx, Loc))
8621    return false;
8622  if (!EvaluateAsInt(Value, Ctx))
8623    llvm_unreachable("ICE cannot be evaluated!");
8624  return true;
8625}
8626
8627bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
8628  return CheckICE(this, Ctx).Kind == IK_ICE;
8629}
8630
8631bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
8632                               SourceLocation *Loc) const {
8633  // We support this checking in C++98 mode in order to diagnose compatibility
8634  // issues.
8635  assert(Ctx.getLangOpts().CPlusPlus);
8636
8637  // Build evaluation settings.
8638  Expr::EvalStatus Status;
8639  SmallVector<PartialDiagnosticAt, 8> Diags;
8640  Status.Diag = &Diags;
8641  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
8642
8643  APValue Scratch;
8644  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8645
8646  if (!Diags.empty()) {
8647    IsConstExpr = false;
8648    if (Loc) *Loc = Diags[0].first;
8649  } else if (!IsConstExpr) {
8650    // FIXME: This shouldn't happen.
8651    if (Loc) *Loc = getExprLoc();
8652  }
8653
8654  return IsConstExpr;
8655}
8656
8657bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8658                                   SmallVectorImpl<
8659                                     PartialDiagnosticAt> &Diags) {
8660  // FIXME: It would be useful to check constexpr function templates, but at the
8661  // moment the constant expression evaluator cannot cope with the non-rigorous
8662  // ASTs which we build for dependent expressions.
8663  if (FD->isDependentContext())
8664    return true;
8665
8666  Expr::EvalStatus Status;
8667  Status.Diag = &Diags;
8668
8669  EvalInfo Info(FD->getASTContext(), Status,
8670                EvalInfo::EM_PotentialConstantExpression);
8671
8672  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8673  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
8674
8675  // Fabricate an arbitrary expression on the stack and pretend that it
8676  // is a temporary being used as the 'this' pointer.
8677  LValue This;
8678  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8679  This.set(&VIE, Info.CurrentCall->Index);
8680
8681  ArrayRef<const Expr*> Args;
8682
8683  SourceLocation Loc = FD->getLocation();
8684
8685  APValue Scratch;
8686  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8687    // Evaluate the call as a constant initializer, to allow the construction
8688    // of objects of non-literal types.
8689    Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8690    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8691  } else
8692    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
8693                       Args, FD->getBody(), Info, Scratch);
8694
8695  return Diags.empty();
8696}
8697