SValBuilder.h revision 263508
174667Sjedgar// SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
274667Sjedgar//
374667Sjedgar//                     The LLVM Compiler Infrastructure
474667Sjedgar//
574667Sjedgar// This file is distributed under the University of Illinois Open Source
674667Sjedgar// License. See LICENSE.TXT for details.
774667Sjedgar//
874667Sjedgar//===----------------------------------------------------------------------===//
974667Sjedgar//
1074667Sjedgar//  This file defines SValBuilder, a class that defines the interface for
1174667Sjedgar//  "symbolical evaluators" which construct an SVal from an expression.
1274667Sjedgar//
1374667Sjedgar//===----------------------------------------------------------------------===//
1474667Sjedgar
1574667Sjedgar#ifndef LLVM_CLANG_GR_SVALBUILDER
1674667Sjedgar#define LLVM_CLANG_GR_SVALBUILDER
17184607Simp
18184607Simp#include "clang/AST/ASTContext.h"
19184607Simp#include "clang/AST/Expr.h"
20184607Simp#include "clang/AST/ExprObjC.h"
21184607Simp#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
22184607Simp#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
23184607Simp#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
24184607Simp
2574667Sjedgarnamespace clang {
2674667Sjedgar
2774667Sjedgarclass CXXBoolLiteralExpr;
2874667Sjedgar
2974667Sjedgarnamespace ento {
3074667Sjedgar
3174667Sjedgarclass SValBuilder {
3274667Sjedgar  virtual void anchor();
3374684Sruprotected:
3474667Sjedgar  ASTContext &Context;
3575222Sru
3674667Sjedgar  /// Manager of APSInt values.
3784306Sru  BasicValueFactory BasicVals;
3884306Sru
3974667Sjedgar  /// Manages the creation of symbols.
4074667Sjedgar  SymbolManager SymMgr;
4174667Sjedgar
42108037Sru  /// Manages the creation of memory regions.
4374667Sjedgar  MemRegionManager MemMgr;
44108037Sru
4574667Sjedgar  ProgramStateManager &StateMgr;
4674684Sru
4774667Sjedgar  /// The scalar type to use for array indices.
4874684Sru  const QualType ArrayIndexTy;
4974667Sjedgar
5074667Sjedgar  /// The width of the scalar type used for array indices.
5174667Sjedgar  const unsigned ArrayIndexWidth;
5274684Sru
5374667Sjedgar  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy) = 0;
5474684Sru  virtual SVal evalCastFromLoc(Loc val, QualType castTy) = 0;
5574667Sjedgar
5674684Srupublic:
5774667Sjedgar  // FIXME: Make these protected again once RegionStoreManager correctly
5874667Sjedgar  // handles loads from different bound value types.
5974667Sjedgar  virtual SVal dispatchCast(SVal val, QualType castTy) = 0;
6074684Sru
6174667Sjedgarpublic:
6274667Sjedgar  SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
6374667Sjedgar              ProgramStateManager &stateMgr)
6474667Sjedgar    : Context(context), BasicVals(context, alloc),
6574667Sjedgar      SymMgr(context, BasicVals, alloc),
6674667Sjedgar      MemMgr(context, alloc),
6774667Sjedgar      StateMgr(stateMgr),
6874667Sjedgar      ArrayIndexTy(context.IntTy),
6974667Sjedgar      ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
7074667Sjedgar
7174667Sjedgar  virtual ~SValBuilder() {}
7274667Sjedgar
7374667Sjedgar  bool haveSameType(const SymExpr *Sym1, const SymExpr *Sym2) {
7474667Sjedgar    return haveSameType(Sym1->getType(), Sym2->getType());
7574667Sjedgar  }
7674667Sjedgar
7774667Sjedgar  bool haveSameType(QualType Ty1, QualType Ty2) {
7874667Sjedgar    // FIXME: Remove the second disjunct when we support symbolic
7974667Sjedgar    // truncation/extension.
8074667Sjedgar    return (Context.getCanonicalType(Ty1) == Context.getCanonicalType(Ty2) ||
8174667Sjedgar            (Ty1->isIntegralOrEnumerationType() &&
8274667Sjedgar             Ty2->isIntegralOrEnumerationType()));
8374667Sjedgar  }
84
85  SVal evalCast(SVal val, QualType castTy, QualType originalType);
86
87  virtual SVal evalMinus(NonLoc val) = 0;
88
89  virtual SVal evalComplement(NonLoc val) = 0;
90
91  /// Create a new value which represents a binary expression with two non
92  /// location operands.
93  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
94                           NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
95
96  /// Create a new value which represents a binary expression with two memory
97  /// location operands.
98  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
99                           Loc lhs, Loc rhs, QualType resultTy) = 0;
100
101  /// Create a new value which represents a binary expression with a memory
102  /// location and non location operands. For example, this would be used to
103  /// evaluate a pointer arithmetic operation.
104  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
105                           Loc lhs, NonLoc rhs, QualType resultTy) = 0;
106
107  /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
108  /// that value is returned. Otherwise, returns NULL.
109  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
110
111  /// Constructs a symbolic expression for two non-location values.
112  SVal makeSymExprValNN(ProgramStateRef state, BinaryOperator::Opcode op,
113                      NonLoc lhs, NonLoc rhs, QualType resultTy);
114
115  SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
116                 SVal lhs, SVal rhs, QualType type);
117
118  DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
119                              DefinedOrUnknownSVal rhs);
120
121  ASTContext &getContext() { return Context; }
122  const ASTContext &getContext() const { return Context; }
123
124  ProgramStateManager &getStateManager() { return StateMgr; }
125
126  QualType getConditionType() const {
127    return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
128  }
129
130  QualType getArrayIndexType() const {
131    return ArrayIndexTy;
132  }
133
134  BasicValueFactory &getBasicValueFactory() { return BasicVals; }
135  const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
136
137  SymbolManager &getSymbolManager() { return SymMgr; }
138  const SymbolManager &getSymbolManager() const { return SymMgr; }
139
140  MemRegionManager &getRegionManager() { return MemMgr; }
141  const MemRegionManager &getRegionManager() const { return MemMgr; }
142
143  // Forwarding methods to SymbolManager.
144
145  const SymbolConjured* conjureSymbol(const Stmt *stmt,
146                                      const LocationContext *LCtx,
147                                      QualType type,
148                                      unsigned visitCount,
149                                      const void *symbolTag = 0) {
150    return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
151  }
152
153  const SymbolConjured* conjureSymbol(const Expr *expr,
154                                      const LocationContext *LCtx,
155                                      unsigned visitCount,
156                                      const void *symbolTag = 0) {
157    return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
158  }
159
160  /// Construct an SVal representing '0' for the specified type.
161  DefinedOrUnknownSVal makeZeroVal(QualType type);
162
163  /// Make a unique symbol for value of region.
164  DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
165
166  /// \brief Create a new symbol with a unique 'name'.
167  ///
168  /// We resort to conjured symbols when we cannot construct a derived symbol.
169  /// The advantage of symbols derived/built from other symbols is that we
170  /// preserve the relation between related(or even equivalent) expressions, so
171  /// conjured symbols should be used sparingly.
172  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
173                                        const Expr *expr,
174                                        const LocationContext *LCtx,
175                                        unsigned count);
176  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
177                                        const Expr *expr,
178                                        const LocationContext *LCtx,
179                                        QualType type,
180                                        unsigned count);
181
182  DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
183                                        const LocationContext *LCtx,
184                                        QualType type,
185                                        unsigned visitCount);
186  /// \brief Conjure a symbol representing heap allocated memory region.
187  ///
188  /// Note, the expression should represent a location.
189  DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
190                                                const LocationContext *LCtx,
191                                                unsigned Count);
192
193  DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
194      SymbolRef parentSymbol, const TypedValueRegion *region);
195
196  DefinedSVal getMetadataSymbolVal(
197      const void *symbolTag, const MemRegion *region,
198      const Expr *expr, QualType type, unsigned count);
199
200  DefinedSVal getFunctionPointer(const FunctionDecl *func);
201
202  DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
203                              const LocationContext *locContext,
204                              unsigned blockCount);
205
206  /// Returns the value of \p E, if it can be determined in a non-path-sensitive
207  /// manner.
208  ///
209  /// If \p E is not a constant or cannot be modeled, returns \c None.
210  Optional<SVal> getConstantVal(const Expr *E);
211
212  NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
213    return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
214  }
215
216  NonLoc makeLazyCompoundVal(const StoreRef &store,
217                             const TypedValueRegion *region) {
218    return nonloc::LazyCompoundVal(
219        BasicVals.getLazyCompoundValData(store, region));
220  }
221
222  NonLoc makeZeroArrayIndex() {
223    return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
224  }
225
226  NonLoc makeArrayIndex(uint64_t idx) {
227    return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
228  }
229
230  SVal convertToArrayIndex(SVal val);
231
232  nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
233    return nonloc::ConcreteInt(
234        BasicVals.getValue(integer->getValue(),
235                     integer->getType()->isUnsignedIntegerOrEnumerationType()));
236  }
237
238  nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
239    return makeTruthVal(boolean->getValue(), boolean->getType());
240  }
241
242  nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
243
244  nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
245    return nonloc::ConcreteInt(BasicVals.getValue(integer));
246  }
247
248  loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
249    return loc::ConcreteInt(BasicVals.getValue(integer));
250  }
251
252  NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
253    return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
254  }
255
256  DefinedSVal makeIntVal(uint64_t integer, QualType type) {
257    if (Loc::isLocType(type))
258      return loc::ConcreteInt(BasicVals.getValue(integer, type));
259
260    return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
261  }
262
263  NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
264    return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
265  }
266
267  NonLoc makeIntValWithPtrWidth(uint64_t integer, bool isUnsigned) {
268    return nonloc::ConcreteInt(
269        BasicVals.getIntWithPtrWidth(integer, isUnsigned));
270  }
271
272  NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
273    return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
274  }
275
276  NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
277                    const llvm::APSInt& rhs, QualType type);
278
279  NonLoc makeNonLoc(const llvm::APSInt& rhs, BinaryOperator::Opcode op,
280                    const SymExpr *lhs, QualType type);
281
282  NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
283                    const SymExpr *rhs, QualType type);
284
285  /// \brief Create a NonLoc value for cast.
286  NonLoc makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy);
287
288  nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
289    return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
290  }
291
292  nonloc::ConcreteInt makeTruthVal(bool b) {
293    return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
294  }
295
296  Loc makeNull() {
297    return loc::ConcreteInt(BasicVals.getZeroWithPtrWidth());
298  }
299
300  Loc makeLoc(SymbolRef sym) {
301    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
302  }
303
304  Loc makeLoc(const MemRegion* region) {
305    return loc::MemRegionVal(region);
306  }
307
308  Loc makeLoc(const AddrLabelExpr *expr) {
309    return loc::GotoLabel(expr->getLabel());
310  }
311
312  Loc makeLoc(const llvm::APSInt& integer) {
313    return loc::ConcreteInt(BasicVals.getValue(integer));
314  }
315
316  /// Return a memory region for the 'this' object reference.
317  loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
318                               const StackFrameContext *SFC);
319
320  /// Return a memory region for the 'this' object reference.
321  loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
322                               const StackFrameContext *SFC);
323};
324
325SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
326                                     ASTContext &context,
327                                     ProgramStateManager &stateMgr);
328
329} // end GR namespace
330
331} // end clang namespace
332
333#endif
334