1193323Sed//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed///
10193323Sed/// \file
11193323Sed/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12193323Sed///
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#ifndef LLVM_CLANG_AST_EXPRCXX_H
16193323Sed#define LLVM_CLANG_AST_EXPRCXX_H
17193323Sed
18193323Sed#include "clang/AST/Decl.h"
19193323Sed#include "clang/AST/Expr.h"
20193323Sed#include "clang/AST/TemplateBase.h"
21193323Sed#include "clang/AST/UnresolvedSet.h"
22193323Sed#include "clang/Basic/ExpressionTraits.h"
23193323Sed#include "clang/Basic/Lambda.h"
24193323Sed#include "clang/Basic/TypeTraits.h"
25193323Sed#include "llvm/Support/Compiler.h"
26193323Sed
27193323Sednamespace clang {
28193323Sed
29193323Sedclass CXXConstructorDecl;
30193323Sedclass CXXDestructorDecl;
31193323Sedclass CXXMethodDecl;
32193323Sedclass CXXTemporary;
33193323Sedclass MSPropertyDecl;
34193323Sedclass TemplateArgumentListInfo;
35193323Sedclass UuidAttr;
36193323Sed
37193323Sed//===--------------------------------------------------------------------===//
38193323Sed// C++ Expressions.
39193323Sed//===--------------------------------------------------------------------===//
40193323Sed
41193323Sed/// \brief A call to an overloaded operator written using operator
42193323Sed/// syntax.
43193323Sed///
44193323Sed/// Represents a call to an overloaded operator written using operator
45193323Sed/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46193323Sed/// normal call, this AST node provides better information about the
47193323Sed/// syntactic representation of the call.
48193323Sed///
49193323Sed/// In a C++ template, this expression node kind will be used whenever
50193323Sed/// any of the arguments are type-dependent. In this case, the
51193323Sed/// function itself will be a (possibly empty) set of functions and
52193323Sed/// function templates that were found by name lookup at template
53193323Sed/// definition time.
54193323Sedclass CXXOperatorCallExpr : public CallExpr {
55193323Sed  /// \brief The overloaded operator.
56193323Sed  OverloadedOperatorKind Operator;
57193323Sed  SourceRange Range;
58193323Sed
59193323Sed  // Record the FP_CONTRACT state that applies to this operator call. Only
60193323Sed  // meaningful for floating point types. For other types this value can be
61193323Sed  // set to false.
62193323Sed  unsigned FPContractable : 1;
63193323Sed
64193323Sed  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65193323Sedpublic:
66193323Sed  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67193323Sed                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68193323Sed                      SourceLocation operatorloc, bool fpContractable)
69193323Sed    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70193323Sed               operatorloc),
71193323Sed      Operator(Op), FPContractable(fpContractable) {
72193323Sed    Range = getSourceRangeImpl();
73193323Sed  }
74193323Sed  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75193323Sed    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76193323Sed
77193323Sed
78193323Sed  /// \brief Returns the kind of overloaded operator that this
79193323Sed  /// expression refers to.
80193323Sed  OverloadedOperatorKind getOperator() const { return Operator; }
81193323Sed
82193323Sed  /// \brief Returns the location of the operator symbol in the expression.
83193323Sed  ///
84193323Sed  /// When \c getOperator()==OO_Call, this is the location of the right
85193323Sed  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86193323Sed  /// of the right bracket.
87193323Sed  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88193323Sed
89193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
90193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
91193323Sed  SourceRange getSourceRange() const { return Range; }
92193323Sed
93193323Sed  static bool classof(const Stmt *T) {
94193323Sed    return T->getStmtClass() == CXXOperatorCallExprClass;
95193323Sed  }
96193323Sed
97193323Sed  // Set the FP contractability status of this operator. Only meaningful for
98193323Sed  // operations on floating point types.
99193323Sed  void setFPContractable(bool FPC) { FPContractable = FPC; }
100193323Sed
101193323Sed  // Get the FP contractability status of this operator. Only meaningful for
102193323Sed  // operations on floating point types.
103193323Sed  bool isFPContractable() const { return FPContractable; }
104193323Sed
105193323Sed  friend class ASTStmtReader;
106193323Sed  friend class ASTStmtWriter;
107193323Sed};
108193323Sed
109193323Sed/// Represents a call to a member function that
110193323Sed/// may be written either with member call syntax (e.g., "obj.func()"
111193323Sed/// or "objptr->func()") or with normal function-call syntax
112193323Sed/// ("func()") within a member function that ends up calling a member
113193323Sed/// function. The callee in either case is a MemberExpr that contains
114193323Sed/// both the object argument and the member function, while the
115193323Sed/// arguments are the arguments within the parentheses (not including
116193323Sed/// the object argument).
117193323Sedclass CXXMemberCallExpr : public CallExpr {
118193323Sedpublic:
119193323Sed  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
120193323Sed                    QualType t, ExprValueKind VK, SourceLocation RP)
121193323Sed    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
122193323Sed
123193323Sed  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
124193323Sed    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
125193323Sed
126193323Sed  /// \brief Retrieves the implicit object argument for the member call.
127193323Sed  ///
128193323Sed  /// For example, in "x.f(5)", this returns the sub-expression "x".
129193323Sed  Expr *getImplicitObjectArgument() const;
130193323Sed
131193323Sed  /// \brief Retrieves the declaration of the called method.
132193323Sed  CXXMethodDecl *getMethodDecl() const;
133193323Sed
134193323Sed  /// \brief Retrieves the CXXRecordDecl for the underlying type of
135193323Sed  /// the implicit object argument.
136193323Sed  ///
137193323Sed  /// Note that this is may not be the same declaration as that of the class
138193323Sed  /// context of the CXXMethodDecl which this function is calling.
139193323Sed  /// FIXME: Returns 0 for member pointer call exprs.
140193323Sed  CXXRecordDecl *getRecordDecl() const;
141193323Sed
142193323Sed  static bool classof(const Stmt *T) {
143193323Sed    return T->getStmtClass() == CXXMemberCallExprClass;
144193323Sed  }
145193323Sed};
146193323Sed
147193323Sed/// \brief Represents a call to a CUDA kernel function.
148193323Sedclass CUDAKernelCallExpr : public CallExpr {
149193323Sedprivate:
150193323Sed  enum { CONFIG, END_PREARG };
151193323Sed
152193323Sedpublic:
153193323Sed  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
154193323Sed                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
155193323Sed                     SourceLocation RP)
156193323Sed    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
157193323Sed    setConfig(Config);
158193323Sed  }
159193323Sed
160193323Sed  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
161193323Sed    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
162193323Sed
163193323Sed  const CallExpr *getConfig() const {
164193323Sed    return cast_or_null<CallExpr>(getPreArg(CONFIG));
165193323Sed  }
166193323Sed  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
167193323Sed  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
168193323Sed
169193323Sed  static bool classof(const Stmt *T) {
170193323Sed    return T->getStmtClass() == CUDAKernelCallExprClass;
171193323Sed  }
172193323Sed};
173193323Sed
174193323Sed/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
175193323Sed///
176193323Sed/// This abstract class is inherited by all of the classes
177193323Sed/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
178193323Sed/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
179193323Sed/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
180193323Sedclass CXXNamedCastExpr : public ExplicitCastExpr {
181193323Sedprivate:
182193323Sed  SourceLocation Loc; // the location of the casting op
183193323Sed  SourceLocation RParenLoc; // the location of the right parenthesis
184193323Sed  SourceRange AngleBrackets; // range for '<' '>'
185193323Sed
186193323Sedprotected:
187193323Sed  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
188193323Sed                   CastKind kind, Expr *op, unsigned PathSize,
189193323Sed                   TypeSourceInfo *writtenTy, SourceLocation l,
190193323Sed                   SourceLocation RParenLoc,
191193323Sed                   SourceRange AngleBrackets)
192193323Sed    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
193193323Sed      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
194193323Sed
195193323Sed  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
196193323Sed    : ExplicitCastExpr(SC, Shell, PathSize) { }
197193323Sed
198193323Sed  friend class ASTStmtReader;
199193323Sed
200193323Sedpublic:
201193323Sed  const char *getCastName() const;
202193323Sed
203193323Sed  /// \brief Retrieve the location of the cast operator keyword, e.g.,
204193323Sed  /// \c static_cast.
205193323Sed  SourceLocation getOperatorLoc() const { return Loc; }
206193323Sed
207193323Sed  /// \brief Retrieve the location of the closing parenthesis.
208193323Sed  SourceLocation getRParenLoc() const { return RParenLoc; }
209193323Sed
210193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
211193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
212193323Sed  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
213193323Sed
214193323Sed  static bool classof(const Stmt *T) {
215193323Sed    switch (T->getStmtClass()) {
216193323Sed    case CXXStaticCastExprClass:
217193323Sed    case CXXDynamicCastExprClass:
218193323Sed    case CXXReinterpretCastExprClass:
219193323Sed    case CXXConstCastExprClass:
220193323Sed      return true;
221193323Sed    default:
222193323Sed      return false;
223193323Sed    }
224193323Sed  }
225193323Sed};
226193323Sed
227193323Sed/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
228193323Sed///
229193323Sed/// This expression node represents a C++ static cast, e.g.,
230193323Sed/// \c static_cast<int>(1.0).
231193323Sedclass CXXStaticCastExpr : public CXXNamedCastExpr {
232193323Sed  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
233193323Sed                    unsigned pathSize, TypeSourceInfo *writtenTy,
234193323Sed                    SourceLocation l, SourceLocation RParenLoc,
235193323Sed                    SourceRange AngleBrackets)
236193323Sed    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
237193323Sed                       writtenTy, l, RParenLoc, AngleBrackets) {}
238193323Sed
239193323Sed  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
240193323Sed    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
241193323Sed
242193323Sedpublic:
243193323Sed  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
244193323Sed                                   ExprValueKind VK, CastKind K, Expr *Op,
245193323Sed                                   const CXXCastPath *Path,
246193323Sed                                   TypeSourceInfo *Written, SourceLocation L,
247193323Sed                                   SourceLocation RParenLoc,
248193323Sed                                   SourceRange AngleBrackets);
249193323Sed  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
250193323Sed                                        unsigned PathSize);
251193323Sed
252193323Sed  static bool classof(const Stmt *T) {
253193323Sed    return T->getStmtClass() == CXXStaticCastExprClass;
254193323Sed  }
255193323Sed};
256193323Sed
257193323Sed/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
258193323Sed///
259193323Sed/// This expression node represents a dynamic cast, e.g.,
260193323Sed/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
261193323Sed/// check to determine how to perform the type conversion.
262193323Sedclass CXXDynamicCastExpr : public CXXNamedCastExpr {
263193323Sed  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264193323Sed                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265193323Sed                     SourceLocation l, SourceLocation RParenLoc,
266193323Sed                     SourceRange AngleBrackets)
267193323Sed    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268193323Sed                       writtenTy, l, RParenLoc, AngleBrackets) {}
269193323Sed
270193323Sed  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271193323Sed    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272193323Sed
273193323Sedpublic:
274193323Sed  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
275193323Sed                                    ExprValueKind VK, CastKind Kind, Expr *Op,
276193323Sed                                    const CXXCastPath *Path,
277193323Sed                                    TypeSourceInfo *Written, SourceLocation L,
278193323Sed                                    SourceLocation RParenLoc,
279193323Sed                                    SourceRange AngleBrackets);
280193323Sed
281193323Sed  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
282193323Sed                                         unsigned pathSize);
283193323Sed
284193323Sed  bool isAlwaysNull() const;
285193323Sed
286193323Sed  static bool classof(const Stmt *T) {
287193323Sed    return T->getStmtClass() == CXXDynamicCastExprClass;
288193323Sed  }
289193323Sed};
290193323Sed
291193323Sed/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
292193323Sed///
293193323Sed/// This expression node represents a reinterpret cast, e.g.,
294193323Sed/// @c reinterpret_cast<int>(VoidPtr).
295193323Sed///
296193323Sed/// A reinterpret_cast provides a differently-typed view of a value but
297193323Sed/// (in Clang, as in most C++ implementations) performs no actual work at
298193323Sed/// run time.
299193323Sedclass CXXReinterpretCastExpr : public CXXNamedCastExpr {
300193323Sed  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
301193323Sed                         Expr *op, unsigned pathSize,
302193323Sed                         TypeSourceInfo *writtenTy, SourceLocation l,
303193323Sed                         SourceLocation RParenLoc,
304193323Sed                         SourceRange AngleBrackets)
305193323Sed    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
306193323Sed                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
307193323Sed
308193323Sed  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
309193323Sed    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
310193323Sed
311193323Sedpublic:
312193323Sed  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
313193323Sed                                        ExprValueKind VK, CastKind Kind,
314193323Sed                                        Expr *Op, const CXXCastPath *Path,
315193323Sed                                 TypeSourceInfo *WrittenTy, SourceLocation L,
316193323Sed                                        SourceLocation RParenLoc,
317193323Sed                                        SourceRange AngleBrackets);
318193323Sed  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
319193323Sed                                             unsigned pathSize);
320193323Sed
321193323Sed  static bool classof(const Stmt *T) {
322193323Sed    return T->getStmtClass() == CXXReinterpretCastExprClass;
323193323Sed  }
324193323Sed};
325193323Sed
326193323Sed/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
327193323Sed///
328193323Sed/// This expression node represents a const cast, e.g.,
329193323Sed/// \c const_cast<char*>(PtrToConstChar).
330193323Sed///
331193323Sed/// A const_cast can remove type qualifiers but does not change the underlying
332193323Sed/// value.
333193323Sedclass CXXConstCastExpr : public CXXNamedCastExpr {
334193323Sed  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
335193323Sed                   TypeSourceInfo *writtenTy, SourceLocation l,
336193323Sed                   SourceLocation RParenLoc, SourceRange AngleBrackets)
337193323Sed    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
338193323Sed                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
339193323Sed
340193323Sed  explicit CXXConstCastExpr(EmptyShell Empty)
341193323Sed    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
342193323Sed
343193323Sedpublic:
344193323Sed  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
345193323Sed                                  ExprValueKind VK, Expr *Op,
346193323Sed                                  TypeSourceInfo *WrittenTy, SourceLocation L,
347193323Sed                                  SourceLocation RParenLoc,
348193323Sed                                  SourceRange AngleBrackets);
349193323Sed  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
350193323Sed
351193323Sed  static bool classof(const Stmt *T) {
352193323Sed    return T->getStmtClass() == CXXConstCastExprClass;
353193323Sed  }
354193323Sed};
355193323Sed
356193323Sed/// \brief A call to a literal operator (C++11 [over.literal])
357193323Sed/// written as a user-defined literal (C++11 [lit.ext]).
358193323Sed///
359193323Sed/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
360193323Sed/// is semantically equivalent to a normal call, this AST node provides better
361193323Sed/// information about the syntactic representation of the literal.
362193323Sed///
363193323Sed/// Since literal operators are never found by ADL and can only be declared at
364193323Sed/// namespace scope, a user-defined literal is never dependent.
365193323Sedclass UserDefinedLiteral : public CallExpr {
366193323Sed  /// \brief The location of a ud-suffix within the literal.
367193323Sed  SourceLocation UDSuffixLoc;
368193323Sed
369193323Sedpublic:
370193323Sed  UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
371193323Sed                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
372193323Sed                     SourceLocation SuffixLoc)
373193323Sed    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
374193323Sed      UDSuffixLoc(SuffixLoc) {}
375193323Sed  explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
376193323Sed    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
377193323Sed
378193323Sed  /// The kind of literal operator which is invoked.
379193323Sed  enum LiteralOperatorKind {
380193323Sed    LOK_Raw,      ///< Raw form: operator "" X (const char *)
381193323Sed    LOK_Template, ///< Raw form: operator "" X<cs...> ()
382193323Sed    LOK_Integer,  ///< operator "" X (unsigned long long)
383193323Sed    LOK_Floating, ///< operator "" X (long double)
384193323Sed    LOK_String,   ///< operator "" X (const CharT *, size_t)
385193323Sed    LOK_Character ///< operator "" X (CharT)
386193323Sed  };
387193323Sed
388193323Sed  /// \brief Returns the kind of literal operator invocation
389193323Sed  /// which this expression represents.
390193323Sed  LiteralOperatorKind getLiteralOperatorKind() const;
391193323Sed
392193323Sed  /// \brief If this is not a raw user-defined literal, get the
393193323Sed  /// underlying cooked literal (representing the literal with the suffix
394193323Sed  /// removed).
395193323Sed  Expr *getCookedLiteral();
396193323Sed  const Expr *getCookedLiteral() const {
397193323Sed    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
398193323Sed  }
399193323Sed
400193323Sed  SourceLocation getLocStart() const {
401193323Sed    if (getLiteralOperatorKind() == LOK_Template)
402193323Sed      return getRParenLoc();
403193323Sed    return getArg(0)->getLocStart();
404193323Sed  }
405193323Sed  SourceLocation getLocEnd() const { return getRParenLoc(); }
406193323Sed
407193323Sed
408193323Sed  /// \brief Returns the location of a ud-suffix in the expression.
409193323Sed  ///
410193323Sed  /// For a string literal, there may be multiple identical suffixes. This
411193323Sed  /// returns the first.
412193323Sed  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
413193323Sed
414193323Sed  /// \brief Returns the ud-suffix specified for this literal.
415193323Sed  const IdentifierInfo *getUDSuffix() const;
416193323Sed
417193323Sed  static bool classof(const Stmt *S) {
418193323Sed    return S->getStmtClass() == UserDefinedLiteralClass;
419193323Sed  }
420193323Sed
421193323Sed  friend class ASTStmtReader;
422193323Sed  friend class ASTStmtWriter;
423193323Sed};
424193323Sed
425193323Sed/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
426193323Sed///
427193323Sedclass CXXBoolLiteralExpr : public Expr {
428193323Sed  bool Value;
429193323Sed  SourceLocation Loc;
430193323Sedpublic:
431193323Sed  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
432193323Sed    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
433193323Sed         false, false),
434193323Sed    Value(val), Loc(l) {}
435193323Sed
436193323Sed  explicit CXXBoolLiteralExpr(EmptyShell Empty)
437193323Sed    : Expr(CXXBoolLiteralExprClass, Empty) { }
438193323Sed
439193323Sed  bool getValue() const { return Value; }
440193323Sed  void setValue(bool V) { Value = V; }
441193323Sed
442193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
443193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
444193323Sed
445193323Sed  SourceLocation getLocation() const { return Loc; }
446193323Sed  void setLocation(SourceLocation L) { Loc = L; }
447193323Sed
448193323Sed  static bool classof(const Stmt *T) {
449193323Sed    return T->getStmtClass() == CXXBoolLiteralExprClass;
450193323Sed  }
451193323Sed
452193323Sed  // Iterators
453193323Sed  child_range children() { return child_range(); }
454193323Sed};
455193323Sed
456193323Sed/// \brief The null pointer literal (C++11 [lex.nullptr])
457193323Sed///
458193323Sed/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
459193323Sedclass CXXNullPtrLiteralExpr : public Expr {
460193323Sed  SourceLocation Loc;
461193323Sedpublic:
462193323Sed  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
463193323Sed    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
464193323Sed         false, false),
465193323Sed    Loc(l) {}
466193323Sed
467193323Sed  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
468193323Sed    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
469193323Sed
470193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
471193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
472193323Sed
473193323Sed  SourceLocation getLocation() const { return Loc; }
474193323Sed  void setLocation(SourceLocation L) { Loc = L; }
475193323Sed
476193323Sed  static bool classof(const Stmt *T) {
477193323Sed    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
478193323Sed  }
479193323Sed
480193323Sed  child_range children() { return child_range(); }
481193323Sed};
482193323Sed
483193323Sed/// \brief Implicit construction of a std::initializer_list<T> object from an
484193323Sed/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
485193323Sedclass CXXStdInitializerListExpr : public Expr {
486193323Sed  Stmt *SubExpr;
487193323Sed
488193323Sed  CXXStdInitializerListExpr(EmptyShell Empty)
489193323Sed    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(0) {}
490193323Sed
491193323Sedpublic:
492193323Sed  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
493193323Sed    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
494193323Sed           Ty->isDependentType(), SubExpr->isValueDependent(),
495193323Sed           SubExpr->isInstantiationDependent(),
496193323Sed           SubExpr->containsUnexpandedParameterPack()),
497193323Sed      SubExpr(SubExpr) {}
498193323Sed
499193323Sed  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
500193323Sed  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
501193323Sed
502193323Sed  SourceLocation getLocStart() const LLVM_READONLY {
503193323Sed    return SubExpr->getLocStart();
504193323Sed  }
505193323Sed  SourceLocation getLocEnd() const LLVM_READONLY {
506193323Sed    return SubExpr->getLocEnd();
507193323Sed  }
508193323Sed  SourceRange getSourceRange() const LLVM_READONLY {
509193323Sed    return SubExpr->getSourceRange();
510193323Sed  }
511193323Sed
512193323Sed  static bool classof(const Stmt *S) {
513193323Sed    return S->getStmtClass() == CXXStdInitializerListExprClass;
514193323Sed  }
515193323Sed
516193323Sed  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
517193323Sed
518193323Sed  friend class ASTReader;
519193323Sed  friend class ASTStmtReader;
520193323Sed};
521193323Sed
522193323Sed/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
523193323Sed/// the \c type_info that corresponds to the supplied type, or the (possibly
524193323Sed/// dynamic) type of the supplied expression.
525193323Sed///
526193323Sed/// This represents code like \c typeid(int) or \c typeid(*objPtr)
527193323Sedclass CXXTypeidExpr : public Expr {
528193323Sedprivate:
529193323Sed  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
530193323Sed  SourceRange Range;
531193323Sed
532193323Sedpublic:
533193323Sed  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
534193323Sed    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
535193323Sed           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
536193323Sed           false,
537193323Sed           // typeid is value-dependent if the type or expression are dependent
538193323Sed           Operand->getType()->isDependentType(),
539193323Sed           Operand->getType()->isInstantiationDependentType(),
540193323Sed           Operand->getType()->containsUnexpandedParameterPack()),
541193323Sed      Operand(Operand), Range(R) { }
542193323Sed
543193323Sed  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
544193323Sed    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
545193323Sed        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
546193323Sed           false,
547193323Sed        // typeid is value-dependent if the type or expression are dependent
548193323Sed           Operand->isTypeDependent() || Operand->isValueDependent(),
549193323Sed           Operand->isInstantiationDependent(),
550193323Sed           Operand->containsUnexpandedParameterPack()),
551193323Sed      Operand(Operand), Range(R) { }
552193323Sed
553193323Sed  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
554193323Sed    : Expr(CXXTypeidExprClass, Empty) {
555193323Sed    if (isExpr)
556193323Sed      Operand = (Expr*)0;
557193323Sed    else
558193323Sed      Operand = (TypeSourceInfo*)0;
559193323Sed  }
560193323Sed
561193323Sed  /// Determine whether this typeid has a type operand which is potentially
562193323Sed  /// evaluated, per C++11 [expr.typeid]p3.
563193323Sed  bool isPotentiallyEvaluated() const;
564193323Sed
565193323Sed  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566193323Sed
567193323Sed  /// \brief Retrieves the type operand of this typeid() expression after
568193323Sed  /// various required adjustments (removing reference types, cv-qualifiers).
569193323Sed  QualType getTypeOperand(ASTContext &Context) const;
570193323Sed
571193323Sed  /// \brief Retrieve source information for the type operand.
572193323Sed  TypeSourceInfo *getTypeOperandSourceInfo() const {
573193323Sed    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
574193323Sed    return Operand.get<TypeSourceInfo *>();
575193323Sed  }
576193323Sed
577193323Sed  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578193323Sed    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
579193323Sed    Operand = TSI;
580193323Sed  }
581193323Sed
582193323Sed  Expr *getExprOperand() const {
583193323Sed    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
584193323Sed    return static_cast<Expr*>(Operand.get<Stmt *>());
585193323Sed  }
586193323Sed
587193323Sed  void setExprOperand(Expr *E) {
588193323Sed    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
589193323Sed    Operand = E;
590193323Sed  }
591193323Sed
592193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
593193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
594193323Sed  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
595193323Sed  void setSourceRange(SourceRange R) { Range = R; }
596193323Sed
597193323Sed  static bool classof(const Stmt *T) {
598193323Sed    return T->getStmtClass() == CXXTypeidExprClass;
599193323Sed  }
600193323Sed
601193323Sed  // Iterators
602193323Sed  child_range children() {
603193323Sed    if (isTypeOperand()) return child_range();
604193323Sed    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
605193323Sed    return child_range(begin, begin + 1);
606193323Sed  }
607193323Sed};
608193323Sed
609193323Sed/// \brief A member reference to an MSPropertyDecl.
610193323Sed///
611193323Sed/// This expression always has pseudo-object type, and therefore it is
612193323Sed/// typically not encountered in a fully-typechecked expression except
613193323Sed/// within the syntactic form of a PseudoObjectExpr.
614193323Sedclass MSPropertyRefExpr : public Expr {
615193323Sed  Expr *BaseExpr;
616193323Sed  MSPropertyDecl *TheDecl;
617193323Sed  SourceLocation MemberLoc;
618193323Sed  bool IsArrow;
619193323Sed  NestedNameSpecifierLoc QualifierLoc;
620193323Sed
621193323Sedpublic:
622193323Sed  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
623193323Sed                    QualType ty, ExprValueKind VK,
624193323Sed                    NestedNameSpecifierLoc qualifierLoc,
625193323Sed                    SourceLocation nameLoc)
626193323Sed  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
627193323Sed         /*type-dependent*/ false, baseExpr->isValueDependent(),
628193323Sed         baseExpr->isInstantiationDependent(),
629193323Sed         baseExpr->containsUnexpandedParameterPack()),
630193323Sed    BaseExpr(baseExpr), TheDecl(decl),
631193323Sed    MemberLoc(nameLoc), IsArrow(isArrow),
632193323Sed    QualifierLoc(qualifierLoc) {}
633193323Sed
634193323Sed  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
635193323Sed
636193323Sed  SourceRange getSourceRange() const LLVM_READONLY {
637193323Sed    return SourceRange(getLocStart(), getLocEnd());
638193323Sed  }
639193323Sed  bool isImplicitAccess() const {
640193323Sed    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
641193323Sed  }
642193323Sed  SourceLocation getLocStart() const {
643193323Sed    if (!isImplicitAccess())
644193323Sed      return BaseExpr->getLocStart();
645193323Sed    else if (QualifierLoc)
646193323Sed      return QualifierLoc.getBeginLoc();
647193323Sed    else
648193323Sed        return MemberLoc;
649193323Sed  }
650193323Sed  SourceLocation getLocEnd() const { return getMemberLoc(); }
651193323Sed
652193323Sed  child_range children() {
653193323Sed    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
654193323Sed  }
655193323Sed  static bool classof(const Stmt *T) {
656193323Sed    return T->getStmtClass() == MSPropertyRefExprClass;
657193323Sed  }
658193323Sed
659193323Sed  Expr *getBaseExpr() const { return BaseExpr; }
660193323Sed  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
661193323Sed  bool isArrow() const { return IsArrow; }
662193323Sed  SourceLocation getMemberLoc() const { return MemberLoc; }
663193323Sed  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
664193323Sed
665193323Sed  friend class ASTStmtReader;
666193323Sed};
667193323Sed
668193323Sed/// A Microsoft C++ @c __uuidof expression, which gets
669193323Sed/// the _GUID that corresponds to the supplied type or expression.
670193323Sed///
671193323Sed/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
672193323Sedclass CXXUuidofExpr : public Expr {
673193323Sedprivate:
674193323Sed  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
675193323Sed  SourceRange Range;
676193323Sed
677193323Sedpublic:
678193323Sed  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
679193323Sed    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
680193323Sed           false, Operand->getType()->isDependentType(),
681193323Sed           Operand->getType()->isInstantiationDependentType(),
682193323Sed           Operand->getType()->containsUnexpandedParameterPack()),
683193323Sed      Operand(Operand), Range(R) { }
684193323Sed
685193323Sed  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
686193323Sed    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687193323Sed           false, Operand->isTypeDependent(),
688193323Sed           Operand->isInstantiationDependent(),
689193323Sed           Operand->containsUnexpandedParameterPack()),
690193323Sed      Operand(Operand), Range(R) { }
691193323Sed
692193323Sed  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
693193323Sed    : Expr(CXXUuidofExprClass, Empty) {
694193323Sed    if (isExpr)
695193323Sed      Operand = (Expr*)0;
696193323Sed    else
697193323Sed      Operand = (TypeSourceInfo*)0;
698193323Sed  }
699193323Sed
700193323Sed  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
701193323Sed
702193323Sed  /// \brief Retrieves the type operand of this __uuidof() expression after
703193323Sed  /// various required adjustments (removing reference types, cv-qualifiers).
704193323Sed  QualType getTypeOperand(ASTContext &Context) const;
705193323Sed
706193323Sed  /// \brief Retrieve source information for the type operand.
707193323Sed  TypeSourceInfo *getTypeOperandSourceInfo() const {
708193323Sed    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
709193323Sed    return Operand.get<TypeSourceInfo *>();
710193323Sed  }
711193323Sed
712193323Sed  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
713193323Sed    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
714193323Sed    Operand = TSI;
715193323Sed  }
716193323Sed
717193323Sed  Expr *getExprOperand() const {
718193323Sed    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
719193323Sed    return static_cast<Expr*>(Operand.get<Stmt *>());
720193323Sed  }
721193323Sed
722193323Sed  void setExprOperand(Expr *E) {
723194612Sed    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
724193323Sed    Operand = E;
725193323Sed  }
726193323Sed
727193323Sed  StringRef getUuidAsStringRef(ASTContext &Context) const;
728193323Sed
729193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
730193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
731193323Sed  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
732193323Sed  void setSourceRange(SourceRange R) { Range = R; }
733193323Sed
734193323Sed  static bool classof(const Stmt *T) {
735193323Sed    return T->getStmtClass() == CXXUuidofExprClass;
736193323Sed  }
737193323Sed
738193323Sed  /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
739193323Sed  /// a single GUID.
740193323Sed  static UuidAttr *GetUuidAttrOfType(QualType QT,
741193323Sed                                     bool *HasMultipleGUIDsPtr = 0);
742193323Sed
743193323Sed  // Iterators
744193323Sed  child_range children() {
745193323Sed    if (isTypeOperand()) return child_range();
746193323Sed    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
747193323Sed    return child_range(begin, begin + 1);
748193323Sed  }
749193323Sed};
750193323Sed
751193323Sed/// \brief Represents the \c this expression in C++.
752193323Sed///
753193323Sed/// This is a pointer to the object on which the current member function is
754193323Sed/// executing (C++ [expr.prim]p3). Example:
755193323Sed///
756193323Sed/// \code
757193323Sed/// class Foo {
758193323Sed/// public:
759193323Sed///   void bar();
760193323Sed///   void test() { this->bar(); }
761193323Sed/// };
762193323Sed/// \endcode
763193323Sedclass CXXThisExpr : public Expr {
764193323Sed  SourceLocation Loc;
765193323Sed  bool Implicit : 1;
766193323Sed
767193323Sedpublic:
768193323Sed  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
769193323Sed    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
770193323Sed           // 'this' is type-dependent if the class type of the enclosing
771193323Sed           // member function is dependent (C++ [temp.dep.expr]p2)
772193323Sed           Type->isDependentType(), Type->isDependentType(),
773193323Sed           Type->isInstantiationDependentType(),
774193323Sed           /*ContainsUnexpandedParameterPack=*/false),
775193323Sed      Loc(L), Implicit(isImplicit) { }
776193323Sed
777193323Sed  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
778193323Sed
779193323Sed  SourceLocation getLocation() const { return Loc; }
780193323Sed  void setLocation(SourceLocation L) { Loc = L; }
781193323Sed
782193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
783193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
784193323Sed
785193323Sed  bool isImplicit() const { return Implicit; }
786193323Sed  void setImplicit(bool I) { Implicit = I; }
787193323Sed
788193323Sed  static bool classof(const Stmt *T) {
789193323Sed    return T->getStmtClass() == CXXThisExprClass;
790193323Sed  }
791193323Sed
792193323Sed  // Iterators
793193323Sed  child_range children() { return child_range(); }
794193323Sed};
795193323Sed
796193323Sed/// \brief A C++ throw-expression (C++ [except.throw]).
797193323Sed///
798193323Sed/// This handles 'throw' (for re-throwing the current exception) and
799193323Sed/// 'throw' assignment-expression.  When assignment-expression isn't
800193323Sed/// present, Op will be null.
801193323Sedclass CXXThrowExpr : public Expr {
802193323Sed  Stmt *Op;
803193323Sed  SourceLocation ThrowLoc;
804193323Sed  /// \brief Whether the thrown variable (if any) is in scope.
805193323Sed  unsigned IsThrownVariableInScope : 1;
806193323Sed
807193323Sed  friend class ASTStmtReader;
808193323Sed
809193323Sedpublic:
810193323Sed  // \p Ty is the void type which is used as the result type of the
811193323Sed  // expression.  The \p l is the location of the throw keyword.  \p expr
812193323Sed  // can by null, if the optional expression to throw isn't present.
813193323Sed  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
814193323Sed               bool IsThrownVariableInScope) :
815193323Sed    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
816193323Sed         expr && expr->isInstantiationDependent(),
817193323Sed         expr && expr->containsUnexpandedParameterPack()),
818193323Sed    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
819193323Sed  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
820193323Sed
821193323Sed  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
822193323Sed  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
823193323Sed
824193323Sed  SourceLocation getThrowLoc() const { return ThrowLoc; }
825193323Sed
826193323Sed  /// \brief Determines whether the variable thrown by this expression (if any!)
827193323Sed  /// is within the innermost try block.
828193323Sed  ///
829193323Sed  /// This information is required to determine whether the NRVO can apply to
830193323Sed  /// this variable.
831193323Sed  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
832193323Sed
833193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
834193323Sed  SourceLocation getLocEnd() const LLVM_READONLY {
835193323Sed    if (getSubExpr() == 0)
836194612Sed      return ThrowLoc;
837194612Sed    return getSubExpr()->getLocEnd();
838193323Sed  }
839193323Sed
840193323Sed  static bool classof(const Stmt *T) {
841193323Sed    return T->getStmtClass() == CXXThrowExprClass;
842193323Sed  }
843193323Sed
844193323Sed  // Iterators
845193323Sed  child_range children() {
846193323Sed    return child_range(&Op, Op ? &Op+1 : &Op);
847193323Sed  }
848193323Sed};
849193323Sed
850193323Sed/// \brief A default argument (C++ [dcl.fct.default]).
851193323Sed///
852193323Sed/// This wraps up a function call argument that was created from the
853193323Sed/// corresponding parameter's default argument, when the call did not
854193323Sed/// explicitly supply arguments for all of the parameters.
855193323Sedclass CXXDefaultArgExpr : public Expr {
856193323Sed  /// \brief The parameter whose default is being used.
857193323Sed  ///
858193323Sed  /// When the bit is set, the subexpression is stored after the
859193323Sed  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
860193323Sed  /// actual default expression is the subexpression.
861193323Sed  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
862193323Sed
863193323Sed  /// \brief The location where the default argument expression was used.
864193323Sed  SourceLocation Loc;
865193323Sed
866193323Sed  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
867193323Sed    : Expr(SC,
868193323Sed           param->hasUnparsedDefaultArg()
869193323Sed             ? param->getType().getNonReferenceType()
870193323Sed             : param->getDefaultArg()->getType(),
871193323Sed           param->getDefaultArg()->getValueKind(),
872193323Sed           param->getDefaultArg()->getObjectKind(), false, false, false, false),
873193323Sed      Param(param, false), Loc(Loc) { }
874193323Sed
875193323Sed  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
876193323Sed                    Expr *SubExpr)
877193323Sed    : Expr(SC, SubExpr->getType(),
878193323Sed           SubExpr->getValueKind(), SubExpr->getObjectKind(),
879193323Sed           false, false, false, false),
880193323Sed      Param(param, true), Loc(Loc) {
881193323Sed    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
882193323Sed  }
883193323Sed
884193323Sedpublic:
885193323Sed  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
886193323Sed
887193323Sed  // \p Param is the parameter whose default argument is used by this
888193323Sed  // expression.
889193323Sed  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
890193323Sed                                   ParmVarDecl *Param) {
891193323Sed    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
892193323Sed  }
893193323Sed
894193323Sed  // \p Param is the parameter whose default argument is used by this
895193323Sed  // expression, and \p SubExpr is the expression that will actually be used.
896193323Sed  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
897193323Sed                                   ParmVarDecl *Param, Expr *SubExpr);
898193323Sed
899193323Sed  // Retrieve the parameter that the argument was created from.
900193323Sed  const ParmVarDecl *getParam() const { return Param.getPointer(); }
901193323Sed  ParmVarDecl *getParam() { return Param.getPointer(); }
902193323Sed
903193323Sed  // Retrieve the actual argument to the function call.
904193323Sed  const Expr *getExpr() const {
905193323Sed    if (Param.getInt())
906193323Sed      return *reinterpret_cast<Expr const * const*> (this + 1);
907193323Sed    return getParam()->getDefaultArg();
908193323Sed  }
909193323Sed  Expr *getExpr() {
910193323Sed    if (Param.getInt())
911193323Sed      return *reinterpret_cast<Expr **> (this + 1);
912193323Sed    return getParam()->getDefaultArg();
913193323Sed  }
914193323Sed
915193323Sed  /// \brief Retrieve the location where this default argument was actually
916193323Sed  /// used.
917193323Sed  SourceLocation getUsedLocation() const { return Loc; }
918193323Sed
919193323Sed  /// Default argument expressions have no representation in the
920193323Sed  /// source, so they have an empty source range.
921193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
922193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
923193323Sed
924193323Sed  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
925193323Sed
926193323Sed  static bool classof(const Stmt *T) {
927193323Sed    return T->getStmtClass() == CXXDefaultArgExprClass;
928193323Sed  }
929193323Sed
930193323Sed  // Iterators
931193323Sed  child_range children() { return child_range(); }
932193323Sed
933193323Sed  friend class ASTStmtReader;
934193323Sed  friend class ASTStmtWriter;
935193323Sed};
936193323Sed
937193323Sed/// \brief A use of a default initializer in a constructor or in aggregate
938193323Sed/// initialization.
939193323Sed///
940193323Sed/// This wraps a use of a C++ default initializer (technically,
941193323Sed/// a brace-or-equal-initializer for a non-static data member) when it
942193323Sed/// is implicitly used in a mem-initializer-list in a constructor
943193323Sed/// (C++11 [class.base.init]p8) or in aggregate initialization
944193323Sed/// (C++1y [dcl.init.aggr]p7).
945193323Sedclass CXXDefaultInitExpr : public Expr {
946193323Sed  /// \brief The field whose default is being used.
947193323Sed  FieldDecl *Field;
948193323Sed
949193323Sed  /// \brief The location where the default initializer expression was used.
950193323Sed  SourceLocation Loc;
951193323Sed
952193323Sed  CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
953193323Sed                     QualType T);
954193323Sed
955193323Sed  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
956193323Sed
957193323Sedpublic:
958193323Sed  /// \p Field is the non-static data member whose default initializer is used
959193323Sed  /// by this expression.
960193323Sed  static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
961193323Sed                                    FieldDecl *Field) {
962193323Sed    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
963193323Sed  }
964193323Sed
965193323Sed  /// \brief Get the field whose initializer will be used.
966193323Sed  FieldDecl *getField() { return Field; }
967193323Sed  const FieldDecl *getField() const { return Field; }
968193323Sed
969193323Sed  /// \brief Get the initialization expression that will be used.
970193323Sed  const Expr *getExpr() const { return Field->getInClassInitializer(); }
971193323Sed  Expr *getExpr() { return Field->getInClassInitializer(); }
972193323Sed
973193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
974193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
975193323Sed
976193323Sed  static bool classof(const Stmt *T) {
977193323Sed    return T->getStmtClass() == CXXDefaultInitExprClass;
978193323Sed  }
979193323Sed
980193323Sed  // Iterators
981193323Sed  child_range children() { return child_range(); }
982193323Sed
983193323Sed  friend class ASTReader;
984193323Sed  friend class ASTStmtReader;
985193323Sed};
986193323Sed
987193323Sed/// \brief Represents a C++ temporary.
988193323Sedclass CXXTemporary {
989193323Sed  /// \brief The destructor that needs to be called.
990193323Sed  const CXXDestructorDecl *Destructor;
991193323Sed
992193323Sed  explicit CXXTemporary(const CXXDestructorDecl *destructor)
993193323Sed    : Destructor(destructor) { }
994193323Sed
995193323Sedpublic:
996193323Sed  static CXXTemporary *Create(const ASTContext &C,
997193323Sed                              const CXXDestructorDecl *Destructor);
998193323Sed
999193323Sed  const CXXDestructorDecl *getDestructor() const { return Destructor; }
1000193323Sed  void setDestructor(const CXXDestructorDecl *Dtor) {
1001193323Sed    Destructor = Dtor;
1002193323Sed  }
1003193323Sed};
1004193323Sed
1005193323Sed/// \brief Represents binding an expression to a temporary.
1006193323Sed///
1007193323Sed/// This ensures the destructor is called for the temporary. It should only be
1008193323Sed/// needed for non-POD, non-trivially destructable class types. For example:
1009193323Sed///
1010193323Sed/// \code
1011193323Sed///   struct S {
1012193323Sed///     S() { }  // User defined constructor makes S non-POD.
1013193323Sed///     ~S() { } // User defined destructor makes it non-trivial.
1014193323Sed///   };
1015193323Sed///   void test() {
1016193323Sed///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1017193323Sed///   }
1018193323Sed/// \endcode
1019193323Sedclass CXXBindTemporaryExpr : public Expr {
1020193323Sed  CXXTemporary *Temp;
1021193323Sed
1022193323Sed  Stmt *SubExpr;
1023193323Sed
1024193323Sed  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1025193323Sed   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1026193323Sed          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1027193323Sed          SubExpr->isValueDependent(),
1028193323Sed          SubExpr->isInstantiationDependent(),
1029193323Sed          SubExpr->containsUnexpandedParameterPack()),
1030193323Sed     Temp(temp), SubExpr(SubExpr) { }
1031193323Sed
1032193323Sedpublic:
1033193323Sed  CXXBindTemporaryExpr(EmptyShell Empty)
1034193323Sed    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
1035193323Sed
1036193323Sed  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1037193323Sed                                      Expr* SubExpr);
1038193323Sed
1039193323Sed  CXXTemporary *getTemporary() { return Temp; }
1040193323Sed  const CXXTemporary *getTemporary() const { return Temp; }
1041193323Sed  void setTemporary(CXXTemporary *T) { Temp = T; }
1042193323Sed
1043193323Sed  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1044193323Sed  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1045193323Sed  void setSubExpr(Expr *E) { SubExpr = E; }
1046193323Sed
1047193323Sed  SourceLocation getLocStart() const LLVM_READONLY {
1048193323Sed    return SubExpr->getLocStart();
1049193323Sed  }
1050193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1051193323Sed
1052193323Sed  // Implement isa/cast/dyncast/etc.
1053193323Sed  static bool classof(const Stmt *T) {
1054193323Sed    return T->getStmtClass() == CXXBindTemporaryExprClass;
1055193323Sed  }
1056193323Sed
1057193323Sed  // Iterators
1058193323Sed  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1059193323Sed};
1060193323Sed
1061193323Sed/// \brief Represents a call to a C++ constructor.
1062193323Sedclass CXXConstructExpr : public Expr {
1063193323Sedpublic:
1064193323Sed  enum ConstructionKind {
1065193323Sed    CK_Complete,
1066193323Sed    CK_NonVirtualBase,
1067193323Sed    CK_VirtualBase,
1068193323Sed    CK_Delegating
1069193323Sed  };
1070193323Sed
1071193323Sedprivate:
1072193323Sed  CXXConstructorDecl *Constructor;
1073193323Sed
1074193323Sed  SourceLocation Loc;
1075193323Sed  SourceRange ParenOrBraceRange;
1076193323Sed  unsigned NumArgs : 16;
1077193323Sed  bool Elidable : 1;
1078193323Sed  bool HadMultipleCandidates : 1;
1079193323Sed  bool ListInitialization : 1;
1080193323Sed  bool ZeroInitialization : 1;
1081193323Sed  unsigned ConstructKind : 2;
1082193323Sed  Stmt **Args;
1083193323Sed
1084193323Sedprotected:
1085193323Sed  CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
1086193323Sed                   SourceLocation Loc,
1087193323Sed                   CXXConstructorDecl *d, bool elidable,
1088193323Sed                   ArrayRef<Expr *> Args,
1089193323Sed                   bool HadMultipleCandidates,
1090193323Sed                   bool ListInitialization,
1091193323Sed                   bool ZeroInitialization,
1092193323Sed                   ConstructionKind ConstructKind,
1093193323Sed                   SourceRange ParenOrBraceRange);
1094193323Sed
1095193323Sed  /// \brief Construct an empty C++ construction expression.
1096193323Sed  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1097193323Sed    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
1098193323Sed      HadMultipleCandidates(false), ListInitialization(false),
1099193323Sed      ZeroInitialization(false), ConstructKind(0), Args(0)
1100193323Sed  { }
1101193323Sed
1102193323Sedpublic:
1103193323Sed  /// \brief Construct an empty C++ construction expression.
1104193323Sed  explicit CXXConstructExpr(EmptyShell Empty)
1105193323Sed    : Expr(CXXConstructExprClass, Empty), Constructor(0),
1106193323Sed      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1107193323Sed      ListInitialization(false), ZeroInitialization(false),
1108193323Sed      ConstructKind(0), Args(0)
1109193323Sed  { }
1110193323Sed
1111193323Sed  static CXXConstructExpr *Create(const ASTContext &C, QualType T,
1112193323Sed                                  SourceLocation Loc,
1113193323Sed                                  CXXConstructorDecl *D, bool Elidable,
1114193323Sed                                  ArrayRef<Expr *> Args,
1115193323Sed                                  bool HadMultipleCandidates,
1116193323Sed                                  bool ListInitialization,
1117193323Sed                                  bool ZeroInitialization,
1118193323Sed                                  ConstructionKind ConstructKind,
1119193323Sed                                  SourceRange ParenOrBraceRange);
1120193323Sed
1121193323Sed  CXXConstructorDecl* getConstructor() const { return Constructor; }
1122193323Sed  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1123193323Sed
1124193323Sed  SourceLocation getLocation() const { return Loc; }
1125193323Sed  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1126193323Sed
1127193323Sed  /// \brief Whether this construction is elidable.
1128193323Sed  bool isElidable() const { return Elidable; }
1129193323Sed  void setElidable(bool E) { Elidable = E; }
1130193323Sed
1131193323Sed  /// \brief Whether the referred constructor was resolved from
1132193323Sed  /// an overloaded set having size greater than 1.
1133193323Sed  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1134193323Sed  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1135193323Sed
1136193323Sed  /// \brief Whether this constructor call was written as list-initialization.
1137193323Sed  bool isListInitialization() const { return ListInitialization; }
1138193323Sed  void setListInitialization(bool V) { ListInitialization = V; }
1139193323Sed
1140193323Sed  /// \brief Whether this construction first requires
1141193323Sed  /// zero-initialization before the initializer is called.
1142193323Sed  bool requiresZeroInitialization() const { return ZeroInitialization; }
1143193323Sed  void setRequiresZeroInitialization(bool ZeroInit) {
1144193323Sed    ZeroInitialization = ZeroInit;
1145193323Sed  }
1146193323Sed
1147193323Sed  /// \brief Determine whether this constructor is actually constructing
1148193323Sed  /// a base class (rather than a complete object).
1149193323Sed  ConstructionKind getConstructionKind() const {
1150193323Sed    return (ConstructionKind)ConstructKind;
1151193323Sed  }
1152193323Sed  void setConstructionKind(ConstructionKind CK) {
1153193323Sed    ConstructKind = CK;
1154193323Sed  }
1155193323Sed
1156193323Sed  typedef ExprIterator arg_iterator;
1157193323Sed  typedef ConstExprIterator const_arg_iterator;
1158193323Sed
1159193323Sed  arg_iterator arg_begin() { return Args; }
1160193323Sed  arg_iterator arg_end() { return Args + NumArgs; }
1161193323Sed  const_arg_iterator arg_begin() const { return Args; }
1162193323Sed  const_arg_iterator arg_end() const { return Args + NumArgs; }
1163193323Sed
1164193323Sed  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
1165193323Sed  unsigned getNumArgs() const { return NumArgs; }
1166193323Sed
1167193323Sed  /// \brief Return the specified argument.
1168193323Sed  Expr *getArg(unsigned Arg) {
1169193323Sed    assert(Arg < NumArgs && "Arg access out of range!");
1170193323Sed    return cast<Expr>(Args[Arg]);
1171193323Sed  }
1172193323Sed  const Expr *getArg(unsigned Arg) const {
1173193323Sed    assert(Arg < NumArgs && "Arg access out of range!");
1174193323Sed    return cast<Expr>(Args[Arg]);
1175193323Sed  }
1176193323Sed
1177193323Sed  /// \brief Set the specified argument.
1178193323Sed  void setArg(unsigned Arg, Expr *ArgExpr) {
1179193323Sed    assert(Arg < NumArgs && "Arg access out of range!");
1180193323Sed    Args[Arg] = ArgExpr;
1181193323Sed  }
1182193323Sed
1183193323Sed  SourceLocation getLocStart() const LLVM_READONLY;
1184193323Sed  SourceLocation getLocEnd() const LLVM_READONLY;
1185193323Sed  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1186193323Sed  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1187193323Sed
1188193323Sed  static bool classof(const Stmt *T) {
1189193323Sed    return T->getStmtClass() == CXXConstructExprClass ||
1190193323Sed      T->getStmtClass() == CXXTemporaryObjectExprClass;
1191193323Sed  }
1192193323Sed
1193193323Sed  // Iterators
1194193323Sed  child_range children() {
1195193323Sed    return child_range(&Args[0], &Args[0]+NumArgs);
1196193323Sed  }
1197193323Sed
1198193323Sed  friend class ASTStmtReader;
1199193323Sed};
1200193323Sed
1201193323Sed/// \brief Represents an explicit C++ type conversion that uses "functional"
1202193323Sed/// notation (C++ [expr.type.conv]).
1203193323Sed///
1204193323Sed/// Example:
1205193323Sed/// \code
1206193323Sed///   x = int(0.5);
1207193323Sed/// \endcode
1208193323Sedclass CXXFunctionalCastExpr : public ExplicitCastExpr {
1209193323Sed  SourceLocation LParenLoc;
1210193323Sed  SourceLocation RParenLoc;
1211193323Sed
1212193323Sed  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1213193323Sed                        TypeSourceInfo *writtenTy,
1214193323Sed                        CastKind kind, Expr *castExpr, unsigned pathSize,
1215193323Sed                        SourceLocation lParenLoc, SourceLocation rParenLoc)
1216193323Sed    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1217193323Sed                       castExpr, pathSize, writtenTy),
1218193323Sed      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1219193323Sed
1220193323Sed  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1221193323Sed    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1222193323Sed
1223193323Sedpublic:
1224193323Sed  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1225193323Sed                                       ExprValueKind VK,
1226193323Sed                                       TypeSourceInfo *Written,
1227193323Sed                                       CastKind Kind, Expr *Op,
1228193323Sed                                       const CXXCastPath *Path,
1229193323Sed                                       SourceLocation LPLoc,
1230193323Sed                                       SourceLocation RPLoc);
1231193323Sed  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1232193323Sed                                            unsigned PathSize);
1233193323Sed
1234193323Sed  SourceLocation getLParenLoc() const { return LParenLoc; }
1235193323Sed  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1236193323Sed  SourceLocation getRParenLoc() const { return RParenLoc; }
1237193323Sed  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1238193323Sed
1239193323Sed  SourceLocation getLocStart() const LLVM_READONLY;
1240193323Sed  SourceLocation getLocEnd() const LLVM_READONLY;
1241193323Sed
1242193323Sed  static bool classof(const Stmt *T) {
1243193323Sed    return T->getStmtClass() == CXXFunctionalCastExprClass;
1244193323Sed  }
1245193323Sed};
1246193323Sed
1247193323Sed/// @brief Represents a C++ functional cast expression that builds a
1248193323Sed/// temporary object.
1249193323Sed///
1250193323Sed/// This expression type represents a C++ "functional" cast
1251193323Sed/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1252193323Sed/// constructor to build a temporary object. With N == 1 arguments the
1253193323Sed/// functional cast expression will be represented by CXXFunctionalCastExpr.
1254193323Sed/// Example:
1255193323Sed/// \code
1256193323Sed/// struct X { X(int, float); }
1257193323Sed///
1258193323Sed/// X create_X() {
1259193323Sed///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1260193323Sed/// };
1261193323Sed/// \endcode
1262193323Sedclass CXXTemporaryObjectExpr : public CXXConstructExpr {
1263193323Sed  TypeSourceInfo *Type;
1264193323Sed
1265193323Sedpublic:
1266193323Sed  CXXTemporaryObjectExpr(const ASTContext &C, CXXConstructorDecl *Cons,
1267193323Sed                         TypeSourceInfo *Type,
1268193323Sed                         ArrayRef<Expr *> Args,
1269193323Sed                         SourceRange ParenOrBraceRange,
1270193323Sed                         bool HadMultipleCandidates,
1271193323Sed                         bool ListInitialization,
1272193323Sed                         bool ZeroInitialization);
1273193323Sed  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1274193323Sed    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1275193323Sed
1276193323Sed  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1277193323Sed
1278193323Sed  SourceLocation getLocStart() const LLVM_READONLY;
1279193323Sed  SourceLocation getLocEnd() const LLVM_READONLY;
1280193323Sed
1281193323Sed  static bool classof(const Stmt *T) {
1282193323Sed    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1283193323Sed  }
1284193323Sed
1285193323Sed  friend class ASTStmtReader;
1286193323Sed};
1287193323Sed
1288193323Sed/// \brief A C++ lambda expression, which produces a function object
1289193323Sed/// (of unspecified type) that can be invoked later.
1290193323Sed///
1291193323Sed/// Example:
1292193323Sed/// \code
1293193323Sed/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1294193323Sed///   values.erase(std::remove_if(values.begin(), values.end(),
1295193323Sed///                               [=](double value) { return value > cutoff; });
1296193323Sed/// }
1297193323Sed/// \endcode
1298193323Sed///
1299193323Sed/// C++11 lambda expressions can capture local variables, either by copying
1300193323Sed/// the values of those local variables at the time the function
1301193323Sed/// object is constructed (not when it is called!) or by holding a
1302193323Sed/// reference to the local variable. These captures can occur either
1303193323Sed/// implicitly or can be written explicitly between the square
1304193323Sed/// brackets ([...]) that start the lambda expression.
1305193323Sed///
1306193323Sed/// C++1y introduces a new form of "capture" called an init-capture that
1307193323Sed/// includes an initializing expression (rather than capturing a variable),
1308193323Sed/// and which can never occur implicitly.
1309193323Sedclass LambdaExpr : public Expr {
1310193323Sed  enum {
1311193323Sed    /// \brief Flag used by the Capture class to indicate that the given
1312193323Sed    /// capture was implicit.
1313193323Sed    Capture_Implicit = 0x01,
1314193323Sed
1315193323Sed    /// \brief Flag used by the Capture class to indicate that the
1316193323Sed    /// given capture was by-copy.
1317193323Sed    ///
1318193323Sed    /// This includes the case of a non-reference init-capture.
1319193323Sed    Capture_ByCopy = 0x02
1320193323Sed  };
1321193323Sed
1322193323Sed  /// \brief The source range that covers the lambda introducer ([...]).
1323193323Sed  SourceRange IntroducerRange;
1324193323Sed
1325193323Sed  /// \brief The source location of this lambda's capture-default ('=' or '&').
1326193323Sed  SourceLocation CaptureDefaultLoc;
1327193323Sed
1328193323Sed  /// \brief The number of captures.
1329193323Sed  unsigned NumCaptures : 16;
1330193323Sed
1331193323Sed  /// \brief The default capture kind, which is a value of type
1332193323Sed  /// LambdaCaptureDefault.
1333193323Sed  unsigned CaptureDefault : 2;
1334193323Sed
1335193323Sed  /// \brief Whether this lambda had an explicit parameter list vs. an
1336193323Sed  /// implicit (and empty) parameter list.
1337193323Sed  unsigned ExplicitParams : 1;
1338193323Sed
1339193323Sed  /// \brief Whether this lambda had the result type explicitly specified.
1340193323Sed  unsigned ExplicitResultType : 1;
1341193323Sed
1342193323Sed  /// \brief Whether there are any array index variables stored at the end of
1343193323Sed  /// this lambda expression.
1344193323Sed  unsigned HasArrayIndexVars : 1;
1345193323Sed
1346193323Sed  /// \brief The location of the closing brace ('}') that completes
1347193323Sed  /// the lambda.
1348193323Sed  ///
1349193323Sed  /// The location of the brace is also available by looking up the
1350193323Sed  /// function call operator in the lambda class. However, it is
1351193323Sed  /// stored here to improve the performance of getSourceRange(), and
1352193323Sed  /// to avoid having to deserialize the function call operator from a
1353193323Sed  /// module file just to determine the source range.
1354193323Sed  SourceLocation ClosingBrace;
1355193323Sed
1356193323Sed  // Note: The capture initializers are stored directly after the lambda
1357193323Sed  // expression, along with the index variables used to initialize by-copy
1358193323Sed  // array captures.
1359193323Sed
1360193323Sedpublic:
1361193323Sed  /// \brief Describes the capture of a variable or of \c this, or of a
1362193323Sed  /// C++1y init-capture.
1363193323Sed  class Capture {
1364193323Sed    llvm::PointerIntPair<Decl *, 2> DeclAndBits;
1365193323Sed    SourceLocation Loc;
1366193323Sed    SourceLocation EllipsisLoc;
1367193323Sed
1368193323Sed    friend class ASTStmtReader;
1369193323Sed    friend class ASTStmtWriter;
1370193323Sed
1371193323Sed  public:
1372193323Sed    /// \brief Create a new capture of a variable or of \c this.
1373193323Sed    ///
1374193323Sed    /// \param Loc The source location associated with this capture.
1375193323Sed    ///
1376193323Sed    /// \param Kind The kind of capture (this, byref, bycopy), which must
1377193323Sed    /// not be init-capture.
1378193323Sed    ///
1379193323Sed    /// \param Implicit Whether the capture was implicit or explicit.
1380193323Sed    ///
1381193323Sed    /// \param Var The local variable being captured, or null if capturing
1382193323Sed    /// \c this.
1383193323Sed    ///
1384193323Sed    /// \param EllipsisLoc The location of the ellipsis (...) for a
1385193323Sed    /// capture that is a pack expansion, or an invalid source
1386193323Sed    /// location to indicate that this is not a pack expansion.
1387193323Sed    Capture(SourceLocation Loc, bool Implicit,
1388193323Sed            LambdaCaptureKind Kind, VarDecl *Var = 0,
1389193323Sed            SourceLocation EllipsisLoc = SourceLocation());
1390193323Sed
1391193323Sed    /// \brief Determine the kind of capture.
1392193323Sed    LambdaCaptureKind getCaptureKind() const;
1393193323Sed
1394193323Sed    /// \brief Determine whether this capture handles the C++ \c this
1395193323Sed    /// pointer.
1396193323Sed    bool capturesThis() const { return DeclAndBits.getPointer() == 0; }
1397193323Sed
1398193323Sed    /// \brief Determine whether this capture handles a variable.
1399193323Sed    bool capturesVariable() const {
1400193323Sed      return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
1401193323Sed    }
1402193323Sed
1403193323Sed    /// \brief Determine whether this is an init-capture.
1404193323Sed    bool isInitCapture() const {
1405193323Sed      return capturesVariable() && getCapturedVar()->isInitCapture();
1406193323Sed    }
1407193323Sed
1408193323Sed    /// \brief Retrieve the declaration of the local variable being
1409193323Sed    /// captured.
1410193323Sed    ///
1411193323Sed    /// This operation is only valid if this capture is a variable capture
1412193323Sed    /// (other than a capture of \c this).
1413193323Sed    VarDecl *getCapturedVar() const {
1414193323Sed      assert(capturesVariable() && "No variable available for 'this' capture");
1415193323Sed      return cast<VarDecl>(DeclAndBits.getPointer());
1416193323Sed    }
1417193323Sed
1418193323Sed    /// \brief Determine whether this was an implicit capture (not
1419193323Sed    /// written between the square brackets introducing the lambda).
1420193323Sed    bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
1421193323Sed
1422193323Sed    /// \brief Determine whether this was an explicit capture (written
1423193323Sed    /// between the square brackets introducing the lambda).
1424193323Sed    bool isExplicit() const { return !isImplicit(); }
1425193323Sed
1426193323Sed    /// \brief Retrieve the source location of the capture.
1427193323Sed    ///
1428193323Sed    /// For an explicit capture, this returns the location of the
1429193323Sed    /// explicit capture in the source. For an implicit capture, this
1430193323Sed    /// returns the location at which the variable or \c this was first
1431193323Sed    /// used.
1432193323Sed    SourceLocation getLocation() const { return Loc; }
1433193323Sed
1434193323Sed    /// \brief Determine whether this capture is a pack expansion,
1435193323Sed    /// which captures a function parameter pack.
1436193323Sed    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1437193323Sed
1438193323Sed    /// \brief Retrieve the location of the ellipsis for a capture
1439193323Sed    /// that is a pack expansion.
1440193323Sed    SourceLocation getEllipsisLoc() const {
1441193323Sed      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1442193323Sed      return EllipsisLoc;
1443193323Sed    }
1444193323Sed  };
1445193323Sed
1446193323Sedprivate:
1447193323Sed  /// \brief Construct a lambda expression.
1448193323Sed  LambdaExpr(QualType T, SourceRange IntroducerRange,
1449193323Sed             LambdaCaptureDefault CaptureDefault,
1450193323Sed             SourceLocation CaptureDefaultLoc,
1451193323Sed             ArrayRef<Capture> Captures,
1452193323Sed             bool ExplicitParams,
1453193323Sed             bool ExplicitResultType,
1454193323Sed             ArrayRef<Expr *> CaptureInits,
1455193323Sed             ArrayRef<VarDecl *> ArrayIndexVars,
1456193323Sed             ArrayRef<unsigned> ArrayIndexStarts,
1457193323Sed             SourceLocation ClosingBrace,
1458193323Sed             bool ContainsUnexpandedParameterPack);
1459193323Sed
1460193323Sed  /// \brief Construct an empty lambda expression.
1461193323Sed  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1462193323Sed    : Expr(LambdaExprClass, Empty),
1463193323Sed      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1464193323Sed      ExplicitResultType(false), HasArrayIndexVars(true) {
1465193323Sed    getStoredStmts()[NumCaptures] = 0;
1466193323Sed  }
1467193323Sed
1468193323Sed  Stmt **getStoredStmts() const {
1469193323Sed    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1470193323Sed  }
1471193323Sed
1472193323Sed  /// \brief Retrieve the mapping from captures to the first array index
1473193323Sed  /// variable.
1474193323Sed  unsigned *getArrayIndexStarts() const {
1475193323Sed    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1476193323Sed  }
1477193323Sed
1478193323Sed  /// \brief Retrieve the complete set of array-index variables.
1479193323Sed  VarDecl **getArrayIndexVars() const {
1480193323Sed    unsigned ArrayIndexSize =
1481193323Sed        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1482193323Sed                                 llvm::alignOf<VarDecl*>());
1483193323Sed    return reinterpret_cast<VarDecl **>(
1484193323Sed        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1485193323Sed  }
1486193323Sed
1487193323Sedpublic:
1488193323Sed  /// \brief Construct a new lambda expression.
1489193323Sed  static LambdaExpr *Create(const ASTContext &C,
1490193323Sed                            CXXRecordDecl *Class,
1491193323Sed                            SourceRange IntroducerRange,
1492193323Sed                            LambdaCaptureDefault CaptureDefault,
1493193323Sed                            SourceLocation CaptureDefaultLoc,
1494193323Sed                            ArrayRef<Capture> Captures,
1495193323Sed                            bool ExplicitParams,
1496193323Sed                            bool ExplicitResultType,
1497193323Sed                            ArrayRef<Expr *> CaptureInits,
1498193323Sed                            ArrayRef<VarDecl *> ArrayIndexVars,
1499193323Sed                            ArrayRef<unsigned> ArrayIndexStarts,
1500193323Sed                            SourceLocation ClosingBrace,
1501193323Sed                            bool ContainsUnexpandedParameterPack);
1502193323Sed
1503193323Sed  /// \brief Construct a new lambda expression that will be deserialized from
1504193323Sed  /// an external source.
1505193323Sed  static LambdaExpr *CreateDeserialized(const ASTContext &C,
1506193323Sed                                        unsigned NumCaptures,
1507193323Sed                                        unsigned NumArrayIndexVars);
1508193323Sed
1509193323Sed  /// \brief Determine the default capture kind for this lambda.
1510193323Sed  LambdaCaptureDefault getCaptureDefault() const {
1511193323Sed    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1512193323Sed  }
1513193323Sed
1514193323Sed  /// \brief Retrieve the location of this lambda's capture-default, if any.
1515193323Sed  SourceLocation getCaptureDefaultLoc() const {
1516193323Sed    return CaptureDefaultLoc;
1517193323Sed  }
1518193323Sed
1519193323Sed  /// \brief An iterator that walks over the captures of the lambda,
1520193323Sed  /// both implicit and explicit.
1521193323Sed  typedef const Capture *capture_iterator;
1522193323Sed
1523193323Sed  /// \brief Retrieve an iterator pointing to the first lambda capture.
1524193323Sed  capture_iterator capture_begin() const;
1525193323Sed
1526193323Sed  /// \brief Retrieve an iterator pointing past the end of the
1527193323Sed  /// sequence of lambda captures.
1528193323Sed  capture_iterator capture_end() const;
1529193323Sed
1530193323Sed  /// \brief Determine the number of captures in this lambda.
1531193323Sed  unsigned capture_size() const { return NumCaptures; }
1532193323Sed
1533193323Sed  /// \brief Retrieve an iterator pointing to the first explicit
1534193323Sed  /// lambda capture.
1535193323Sed  capture_iterator explicit_capture_begin() const;
1536193323Sed
1537193323Sed  /// \brief Retrieve an iterator pointing past the end of the sequence of
1538193323Sed  /// explicit lambda captures.
1539193323Sed  capture_iterator explicit_capture_end() const;
1540193323Sed
1541193323Sed  /// \brief Retrieve an iterator pointing to the first implicit
1542193323Sed  /// lambda capture.
1543193323Sed  capture_iterator implicit_capture_begin() const;
1544193323Sed
1545193323Sed  /// \brief Retrieve an iterator pointing past the end of the sequence of
1546193323Sed  /// implicit lambda captures.
1547193323Sed  capture_iterator implicit_capture_end() const;
1548193323Sed
1549193323Sed  /// \brief Iterator that walks over the capture initialization
1550193323Sed  /// arguments.
1551193323Sed  typedef Expr **capture_init_iterator;
1552193323Sed
1553193323Sed  /// \brief Retrieve the first initialization argument for this
1554193323Sed  /// lambda expression (which initializes the first capture field).
1555193323Sed  capture_init_iterator capture_init_begin() const {
1556193323Sed    return reinterpret_cast<Expr **>(getStoredStmts());
1557193323Sed  }
1558193323Sed
1559193323Sed  /// \brief Retrieve the iterator pointing one past the last
1560193323Sed  /// initialization argument for this lambda expression.
1561193323Sed  capture_init_iterator capture_init_end() const {
1562193323Sed    return capture_init_begin() + NumCaptures;
1563193323Sed  }
1564193323Sed
1565193323Sed  /// \brief Retrieve the set of index variables used in the capture
1566193323Sed  /// initializer of an array captured by copy.
1567193323Sed  ///
1568193323Sed  /// \param Iter The iterator that points at the capture initializer for
1569193323Sed  /// which we are extracting the corresponding index variables.
1570193323Sed  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1571193323Sed
1572193323Sed  /// \brief Retrieve the source range covering the lambda introducer,
1573193323Sed  /// which contains the explicit capture list surrounded by square
1574193323Sed  /// brackets ([...]).
1575193323Sed  SourceRange getIntroducerRange() const { return IntroducerRange; }
1576193323Sed
1577193323Sed  /// \brief Retrieve the class that corresponds to the lambda.
1578193323Sed  ///
1579193323Sed  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1580193323Sed  /// captures in its fields and provides the various operations permitted
1581193323Sed  /// on a lambda (copying, calling).
1582193323Sed  CXXRecordDecl *getLambdaClass() const;
1583193323Sed
1584193323Sed  /// \brief Retrieve the function call operator associated with this
1585193323Sed  /// lambda expression.
1586193323Sed  CXXMethodDecl *getCallOperator() const;
1587193323Sed
1588193323Sed  /// \brief If this is a generic lambda expression, retrieve the template
1589193323Sed  /// parameter list associated with it, or else return null.
1590193323Sed  TemplateParameterList *getTemplateParameterList() const;
1591193323Sed
1592193323Sed  /// \brief Whether this is a generic lambda.
1593193323Sed  bool isGenericLambda() const { return getTemplateParameterList(); }
1594193323Sed
1595193323Sed  /// \brief Retrieve the body of the lambda.
1596193323Sed  CompoundStmt *getBody() const;
1597193323Sed
1598193323Sed  /// \brief Determine whether the lambda is mutable, meaning that any
1599193323Sed  /// captures values can be modified.
1600193323Sed  bool isMutable() const;
1601193323Sed
1602193323Sed  /// \brief Determine whether this lambda has an explicit parameter
1603193323Sed  /// list vs. an implicit (empty) parameter list.
1604193323Sed  bool hasExplicitParameters() const { return ExplicitParams; }
1605193323Sed
1606193323Sed  /// \brief Whether this lambda had its result type explicitly specified.
1607193323Sed  bool hasExplicitResultType() const { return ExplicitResultType; }
1608193323Sed
1609193323Sed  static bool classof(const Stmt *T) {
1610193323Sed    return T->getStmtClass() == LambdaExprClass;
1611193323Sed  }
1612193323Sed
1613193323Sed  SourceLocation getLocStart() const LLVM_READONLY {
1614193323Sed    return IntroducerRange.getBegin();
1615193323Sed  }
1616193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1617193323Sed
1618193323Sed  child_range children() {
1619193323Sed    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1620193323Sed  }
1621193323Sed
1622193323Sed  friend class ASTStmtReader;
1623193323Sed  friend class ASTStmtWriter;
1624193323Sed};
1625193323Sed
1626193323Sed/// An expression "T()" which creates a value-initialized rvalue of type
1627193323Sed/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1628193323Sedclass CXXScalarValueInitExpr : public Expr {
1629193323Sed  SourceLocation RParenLoc;
1630193323Sed  TypeSourceInfo *TypeInfo;
1631193323Sed
1632193323Sed  friend class ASTStmtReader;
1633193323Sed
1634193323Sedpublic:
1635193323Sed  /// \brief Create an explicitly-written scalar-value initialization
1636193323Sed  /// expression.
1637193323Sed  CXXScalarValueInitExpr(QualType Type,
1638193323Sed                         TypeSourceInfo *TypeInfo,
1639193323Sed                         SourceLocation rParenLoc ) :
1640193323Sed    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1641193323Sed         false, false, Type->isInstantiationDependentType(), false),
1642193323Sed    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1643193323Sed
1644193323Sed  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1645193323Sed    : Expr(CXXScalarValueInitExprClass, Shell) { }
1646193323Sed
1647193323Sed  TypeSourceInfo *getTypeSourceInfo() const {
1648193323Sed    return TypeInfo;
1649193323Sed  }
1650193323Sed
1651193323Sed  SourceLocation getRParenLoc() const { return RParenLoc; }
1652193323Sed
1653193323Sed  SourceLocation getLocStart() const LLVM_READONLY;
1654193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1655193323Sed
1656193323Sed  static bool classof(const Stmt *T) {
1657193323Sed    return T->getStmtClass() == CXXScalarValueInitExprClass;
1658193323Sed  }
1659193323Sed
1660193323Sed  // Iterators
1661193323Sed  child_range children() { return child_range(); }
1662193323Sed};
1663193323Sed
1664193323Sed/// \brief Represents a new-expression for memory allocation and constructor
1665193323Sed/// calls, e.g: "new CXXNewExpr(foo)".
1666193323Sedclass CXXNewExpr : public Expr {
1667193323Sed  /// Contains an optional array size expression, an optional initialization
1668193323Sed  /// expression, and any number of optional placement arguments, in that order.
1669193323Sed  Stmt **SubExprs;
1670193323Sed  /// \brief Points to the allocation function used.
1671193323Sed  FunctionDecl *OperatorNew;
1672193323Sed  /// \brief Points to the deallocation function used in case of error. May be
1673193323Sed  /// null.
1674193323Sed  FunctionDecl *OperatorDelete;
1675193323Sed
1676193323Sed  /// \brief The allocated type-source information, as written in the source.
1677193323Sed  TypeSourceInfo *AllocatedTypeInfo;
1678193323Sed
1679193323Sed  /// \brief If the allocated type was expressed as a parenthesized type-id,
1680193323Sed  /// the source range covering the parenthesized type-id.
1681193323Sed  SourceRange TypeIdParens;
1682193323Sed
1683193323Sed  /// \brief Range of the entire new expression.
1684193323Sed  SourceRange Range;
1685193323Sed
1686193323Sed  /// \brief Source-range of a paren-delimited initializer.
1687193323Sed  SourceRange DirectInitRange;
1688193323Sed
1689193323Sed  /// Was the usage ::new, i.e. is the global new to be used?
1690193323Sed  bool GlobalNew : 1;
1691193323Sed  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1692193323Sed  bool Array : 1;
1693193323Sed  /// If this is an array allocation, does the usual deallocation
1694193323Sed  /// function for the allocated type want to know the allocated size?
1695193323Sed  bool UsualArrayDeleteWantsSize : 1;
1696193323Sed  /// The number of placement new arguments.
1697193323Sed  unsigned NumPlacementArgs : 13;
1698193323Sed  /// What kind of initializer do we have? Could be none, parens, or braces.
1699193323Sed  /// In storage, we distinguish between "none, and no initializer expr", and
1700193323Sed  /// "none, but an implicit initializer expr".
1701193323Sed  unsigned StoredInitializationStyle : 2;
1702193323Sed
1703193323Sed  friend class ASTStmtReader;
1704193323Sed  friend class ASTStmtWriter;
1705193323Sedpublic:
1706193323Sed  enum InitializationStyle {
1707193323Sed    NoInit,   ///< New-expression has no initializer as written.
1708193323Sed    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1709193323Sed    ListInit  ///< New-expression has a C++11 list-initializer.
1710193323Sed  };
1711193323Sed
1712193323Sed  CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1713193323Sed             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1714193323Sed             ArrayRef<Expr*> placementArgs,
1715193323Sed             SourceRange typeIdParens, Expr *arraySize,
1716193323Sed             InitializationStyle initializationStyle, Expr *initializer,
1717193323Sed             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1718193323Sed             SourceRange Range, SourceRange directInitRange);
1719193323Sed  explicit CXXNewExpr(EmptyShell Shell)
1720193323Sed    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1721193323Sed
1722193323Sed  void AllocateArgsArray(const ASTContext &C, bool isArray,
1723193323Sed                         unsigned numPlaceArgs, bool hasInitializer);
1724193323Sed
1725193323Sed  QualType getAllocatedType() const {
1726193323Sed    assert(getType()->isPointerType());
1727193323Sed    return getType()->getAs<PointerType>()->getPointeeType();
1728193323Sed  }
1729193323Sed
1730193323Sed  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1731193323Sed    return AllocatedTypeInfo;
1732193323Sed  }
1733193323Sed
1734193323Sed  /// \brief True if the allocation result needs to be null-checked.
1735193323Sed  ///
1736193323Sed  /// C++11 [expr.new]p13:
1737193323Sed  ///   If the allocation function returns null, initialization shall
1738193323Sed  ///   not be done, the deallocation function shall not be called,
1739193323Sed  ///   and the value of the new-expression shall be null.
1740193323Sed  ///
1741193323Sed  /// An allocation function is not allowed to return null unless it
1742193323Sed  /// has a non-throwing exception-specification.  The '03 rule is
1743193323Sed  /// identical except that the definition of a non-throwing
1744193323Sed  /// exception specification is just "is it throw()?".
1745193323Sed  bool shouldNullCheckAllocation(const ASTContext &Ctx) const;
1746193323Sed
1747193323Sed  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1748193323Sed  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1749193323Sed  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1750193323Sed  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1751193323Sed
1752193323Sed  bool isArray() const { return Array; }
1753193323Sed  Expr *getArraySize() {
1754193323Sed    return Array ? cast<Expr>(SubExprs[0]) : 0;
1755193323Sed  }
1756193323Sed  const Expr *getArraySize() const {
1757193323Sed    return Array ? cast<Expr>(SubExprs[0]) : 0;
1758193323Sed  }
1759193323Sed
1760193323Sed  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1761193323Sed  Expr **getPlacementArgs() {
1762193323Sed    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1763193323Sed  }
1764193323Sed
1765193323Sed  Expr *getPlacementArg(unsigned i) {
1766193323Sed    assert(i < NumPlacementArgs && "Index out of range");
1767193323Sed    return getPlacementArgs()[i];
1768193323Sed  }
1769193323Sed  const Expr *getPlacementArg(unsigned i) const {
1770193323Sed    assert(i < NumPlacementArgs && "Index out of range");
1771193323Sed    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1772193323Sed  }
1773193323Sed
1774193323Sed  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1775193323Sed  SourceRange getTypeIdParens() const { return TypeIdParens; }
1776193323Sed
1777193323Sed  bool isGlobalNew() const { return GlobalNew; }
1778193323Sed
1779193323Sed  /// \brief Whether this new-expression has any initializer at all.
1780193323Sed  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1781193323Sed
1782193323Sed  /// \brief The kind of initializer this new-expression has.
1783193323Sed  InitializationStyle getInitializationStyle() const {
1784193323Sed    if (StoredInitializationStyle == 0)
1785193323Sed      return NoInit;
1786193323Sed    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1787193323Sed  }
1788193323Sed
1789193323Sed  /// \brief The initializer of this new-expression.
1790193323Sed  Expr *getInitializer() {
1791193323Sed    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1792193323Sed  }
1793193323Sed  const Expr *getInitializer() const {
1794193323Sed    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1795193323Sed  }
1796193323Sed
1797193323Sed  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1798193323Sed  const CXXConstructExpr* getConstructExpr() const {
1799193323Sed    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1800193323Sed  }
1801193323Sed
1802193323Sed  /// Answers whether the usual array deallocation function for the
1803193323Sed  /// allocated type expects the size of the allocation as a
1804193323Sed  /// parameter.
1805193323Sed  bool doesUsualArrayDeleteWantSize() const {
1806193323Sed    return UsualArrayDeleteWantsSize;
1807193323Sed  }
1808193323Sed
1809193323Sed  typedef ExprIterator arg_iterator;
1810193323Sed  typedef ConstExprIterator const_arg_iterator;
1811193323Sed
1812193323Sed  arg_iterator placement_arg_begin() {
1813193323Sed    return SubExprs + Array + hasInitializer();
1814193323Sed  }
1815193323Sed  arg_iterator placement_arg_end() {
1816193323Sed    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1817193323Sed  }
1818193323Sed  const_arg_iterator placement_arg_begin() const {
1819193323Sed    return SubExprs + Array + hasInitializer();
1820193323Sed  }
1821193323Sed  const_arg_iterator placement_arg_end() const {
1822193323Sed    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1823193323Sed  }
1824193323Sed
1825193323Sed  typedef Stmt **raw_arg_iterator;
1826193323Sed  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1827193323Sed  raw_arg_iterator raw_arg_end() {
1828193323Sed    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1829193323Sed  }
1830193323Sed  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1831193323Sed  const_arg_iterator raw_arg_end() const {
1832193323Sed    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1833193323Sed  }
1834193323Sed
1835193323Sed  SourceLocation getStartLoc() const { return Range.getBegin(); }
1836193323Sed  SourceLocation getEndLoc() const { return Range.getEnd(); }
1837193323Sed
1838193323Sed  SourceRange getDirectInitRange() const { return DirectInitRange; }
1839193323Sed
1840193323Sed  SourceRange getSourceRange() const LLVM_READONLY {
1841193323Sed    return Range;
1842193323Sed  }
1843193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1844193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1845193323Sed
1846193323Sed  static bool classof(const Stmt *T) {
1847193323Sed    return T->getStmtClass() == CXXNewExprClass;
1848193323Sed  }
1849193323Sed
1850193323Sed  // Iterators
1851193323Sed  child_range children() {
1852193323Sed    return child_range(raw_arg_begin(), raw_arg_end());
1853193323Sed  }
1854193323Sed};
1855193323Sed
1856193323Sed/// \brief Represents a \c delete expression for memory deallocation and
1857193323Sed/// destructor calls, e.g. "delete[] pArray".
1858193323Sedclass CXXDeleteExpr : public Expr {
1859193323Sed  /// Points to the operator delete overload that is used. Could be a member.
1860193323Sed  FunctionDecl *OperatorDelete;
1861193323Sed  /// The pointer expression to be deleted.
1862193323Sed  Stmt *Argument;
1863193323Sed  /// Location of the expression.
1864193323Sed  SourceLocation Loc;
1865193323Sed  /// Is this a forced global delete, i.e. "::delete"?
1866193323Sed  bool GlobalDelete : 1;
1867193323Sed  /// Is this the array form of delete, i.e. "delete[]"?
1868193323Sed  bool ArrayForm : 1;
1869193323Sed  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1870193323Sed  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1871193323Sed  /// will be true).
1872193323Sed  bool ArrayFormAsWritten : 1;
1873193323Sed  /// Does the usual deallocation function for the element type require
1874193323Sed  /// a size_t argument?
1875193323Sed  bool UsualArrayDeleteWantsSize : 1;
1876193323Sedpublic:
1877193323Sed  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1878193323Sed                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1879193323Sed                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1880193323Sed    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1881193323Sed           arg->isInstantiationDependent(),
1882193323Sed           arg->containsUnexpandedParameterPack()),
1883193323Sed      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1884193323Sed      GlobalDelete(globalDelete),
1885193323Sed      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1886193323Sed      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1887193323Sed  explicit CXXDeleteExpr(EmptyShell Shell)
1888193323Sed    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1889193323Sed
1890193323Sed  bool isGlobalDelete() const { return GlobalDelete; }
1891193323Sed  bool isArrayForm() const { return ArrayForm; }
1892193323Sed  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1893193323Sed
1894193323Sed  /// Answers whether the usual array deallocation function for the
1895193323Sed  /// allocated type expects the size of the allocation as a
1896193323Sed  /// parameter.  This can be true even if the actual deallocation
1897193323Sed  /// function that we're using doesn't want a size.
1898193323Sed  bool doesUsualArrayDeleteWantSize() const {
1899193323Sed    return UsualArrayDeleteWantsSize;
1900193323Sed  }
1901193323Sed
1902193323Sed  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1903193323Sed
1904193323Sed  Expr *getArgument() { return cast<Expr>(Argument); }
1905193323Sed  const Expr *getArgument() const { return cast<Expr>(Argument); }
1906193323Sed
1907193323Sed  /// \brief Retrieve the type being destroyed.
1908193323Sed  ///
1909193323Sed  /// If the type being destroyed is a dependent type which may or may not
1910193323Sed  /// be a pointer, return an invalid type.
1911193323Sed  QualType getDestroyedType() const;
1912193323Sed
1913193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1914193323Sed  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1915193323Sed
1916193323Sed  static bool classof(const Stmt *T) {
1917193323Sed    return T->getStmtClass() == CXXDeleteExprClass;
1918193323Sed  }
1919193323Sed
1920193323Sed  // Iterators
1921193323Sed  child_range children() { return child_range(&Argument, &Argument+1); }
1922193323Sed
1923193323Sed  friend class ASTStmtReader;
1924193323Sed};
1925193323Sed
1926193323Sed/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1927193323Sedclass PseudoDestructorTypeStorage {
1928193323Sed  /// \brief Either the type source information or the name of the type, if
1929193323Sed  /// it couldn't be resolved due to type-dependence.
1930193323Sed  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1931193323Sed
1932193323Sed  /// \brief The starting source location of the pseudo-destructor type.
1933193323Sed  SourceLocation Location;
1934193323Sed
1935193323Sedpublic:
1936193323Sed  PseudoDestructorTypeStorage() { }
1937193323Sed
1938193323Sed  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1939193323Sed    : Type(II), Location(Loc) { }
1940193323Sed
1941193323Sed  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1942193323Sed
1943193323Sed  TypeSourceInfo *getTypeSourceInfo() const {
1944193323Sed    return Type.dyn_cast<TypeSourceInfo *>();
1945193323Sed  }
1946193323Sed
1947193323Sed  IdentifierInfo *getIdentifier() const {
1948193323Sed    return Type.dyn_cast<IdentifierInfo *>();
1949193323Sed  }
1950193323Sed
1951193323Sed  SourceLocation getLocation() const { return Location; }
1952193323Sed};
1953193323Sed
1954193323Sed/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1955193323Sed///
1956193323Sed/// A pseudo-destructor is an expression that looks like a member access to a
1957193323Sed/// destructor of a scalar type, except that scalar types don't have
1958193323Sed/// destructors. For example:
1959193323Sed///
1960193323Sed/// \code
1961193323Sed/// typedef int T;
1962193323Sed/// void f(int *p) {
1963193323Sed///   p->T::~T();
1964193323Sed/// }
1965193323Sed/// \endcode
1966193323Sed///
1967193323Sed/// Pseudo-destructors typically occur when instantiating templates such as:
1968193323Sed///
1969193323Sed/// \code
1970193323Sed/// template<typename T>
1971193323Sed/// void destroy(T* ptr) {
1972193323Sed///   ptr->T::~T();
1973193323Sed/// }
1974193323Sed/// \endcode
1975193323Sed///
1976193323Sed/// for scalar types. A pseudo-destructor expression has no run-time semantics
1977193323Sed/// beyond evaluating the base expression.
1978193323Sedclass CXXPseudoDestructorExpr : public Expr {
1979193323Sed  /// \brief The base expression (that is being destroyed).
1980193323Sed  Stmt *Base;
1981193323Sed
1982193323Sed  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1983193323Sed  /// period ('.').
1984193323Sed  bool IsArrow : 1;
1985193323Sed
1986193323Sed  /// \brief The location of the '.' or '->' operator.
1987193323Sed  SourceLocation OperatorLoc;
1988193323Sed
1989193323Sed  /// \brief The nested-name-specifier that follows the operator, if present.
1990193323Sed  NestedNameSpecifierLoc QualifierLoc;
1991193323Sed
1992193323Sed  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1993193323Sed  /// expression.
1994193323Sed  TypeSourceInfo *ScopeType;
1995193323Sed
1996193323Sed  /// \brief The location of the '::' in a qualified pseudo-destructor
1997193323Sed  /// expression.
1998193323Sed  SourceLocation ColonColonLoc;
1999193323Sed
2000193323Sed  /// \brief The location of the '~'.
2001193323Sed  SourceLocation TildeLoc;
2002193323Sed
2003193323Sed  /// \brief The type being destroyed, or its name if we were unable to
2004193323Sed  /// resolve the name.
2005193323Sed  PseudoDestructorTypeStorage DestroyedType;
2006193323Sed
2007193323Sed  friend class ASTStmtReader;
2008193323Sed
2009193323Sedpublic:
2010194178Sed  CXXPseudoDestructorExpr(const ASTContext &Context,
2011194178Sed                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2012193323Sed                          NestedNameSpecifierLoc QualifierLoc,
2013194178Sed                          TypeSourceInfo *ScopeType,
2014194178Sed                          SourceLocation ColonColonLoc,
2015194178Sed                          SourceLocation TildeLoc,
2016194178Sed                          PseudoDestructorTypeStorage DestroyedType);
2017194178Sed
2018194178Sed  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2019194178Sed    : Expr(CXXPseudoDestructorExprClass, Shell),
2020194178Sed      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
2021194178Sed
2022194178Sed  Expr *getBase() const { return cast<Expr>(Base); }
2023194178Sed
2024194178Sed  /// \brief Determines whether this member expression actually had
2025194178Sed  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2026194178Sed  /// x->Base::foo.
2027194178Sed  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2028194178Sed
2029194178Sed  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
2030194178Sed  /// with source-location information.
2031194178Sed  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2032193323Sed
2033193323Sed  /// \brief If the member name was qualified, retrieves the
2034193323Sed  /// nested-name-specifier that precedes the member name. Otherwise, returns
2035193323Sed  /// null.
2036193323Sed  NestedNameSpecifier *getQualifier() const {
2037193323Sed    return QualifierLoc.getNestedNameSpecifier();
2038193323Sed  }
2039193323Sed
2040193323Sed  /// \brief Determine whether this pseudo-destructor expression was written
2041193323Sed  /// using an '->' (otherwise, it used a '.').
2042193323Sed  bool isArrow() const { return IsArrow; }
2043193323Sed
2044193323Sed  /// \brief Retrieve the location of the '.' or '->' operator.
2045193323Sed  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2046193323Sed
2047193323Sed  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2048193323Sed  /// expression.
2049193323Sed  ///
2050193323Sed  /// Pseudo-destructor expressions can have extra qualification within them
2051193323Sed  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2052193323Sed  /// Here, if the object type of the expression is (or may be) a scalar type,
2053193323Sed  /// \p T may also be a scalar type and, therefore, cannot be part of a
2054193323Sed  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2055193323Sed  /// destructor expression.
2056193323Sed  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2057193323Sed
2058193323Sed  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2059193323Sed  /// expression.
2060193323Sed  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2061193323Sed
2062193323Sed  /// \brief Retrieve the location of the '~'.
2063193323Sed  SourceLocation getTildeLoc() const { return TildeLoc; }
2064193323Sed
2065193323Sed  /// \brief Retrieve the source location information for the type
2066193323Sed  /// being destroyed.
2067193323Sed  ///
2068193323Sed  /// This type-source information is available for non-dependent
2069193323Sed  /// pseudo-destructor expressions and some dependent pseudo-destructor
2070193323Sed  /// expressions. Returns null if we only have the identifier for a
2071193323Sed  /// dependent pseudo-destructor expression.
2072193323Sed  TypeSourceInfo *getDestroyedTypeInfo() const {
2073193323Sed    return DestroyedType.getTypeSourceInfo();
2074193323Sed  }
2075193323Sed
2076193323Sed  /// \brief In a dependent pseudo-destructor expression for which we do not
2077193323Sed  /// have full type information on the destroyed type, provides the name
2078193323Sed  /// of the destroyed type.
2079193323Sed  IdentifierInfo *getDestroyedTypeIdentifier() const {
2080193323Sed    return DestroyedType.getIdentifier();
2081193323Sed  }
2082193323Sed
2083193323Sed  /// \brief Retrieve the type being destroyed.
2084193323Sed  QualType getDestroyedType() const;
2085193323Sed
2086193323Sed  /// \brief Retrieve the starting location of the type being destroyed.
2087193323Sed  SourceLocation getDestroyedTypeLoc() const {
2088193323Sed    return DestroyedType.getLocation();
2089193323Sed  }
2090193323Sed
2091193323Sed  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2092193323Sed  /// expression.
2093193323Sed  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2094193323Sed    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2095193323Sed  }
2096193323Sed
2097193323Sed  /// \brief Set the destroyed type.
2098193323Sed  void setDestroyedType(TypeSourceInfo *Info) {
2099193323Sed    DestroyedType = PseudoDestructorTypeStorage(Info);
2100193323Sed  }
2101193323Sed
2102193323Sed  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2103193323Sed  SourceLocation getLocEnd() const LLVM_READONLY;
2104193323Sed
2105193323Sed  static bool classof(const Stmt *T) {
2106193323Sed    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2107193323Sed  }
2108193323Sed
2109193323Sed  // Iterators
2110193323Sed  child_range children() { return child_range(&Base, &Base + 1); }
2111193323Sed};
2112193323Sed
2113193323Sed/// \brief Represents a GCC or MS unary type trait, as used in the
2114193323Sed/// implementation of TR1/C++11 type trait templates.
2115193323Sed///
2116193323Sed/// Example:
2117193323Sed/// \code
2118193323Sed///   __is_pod(int) == true
2119193323Sed///   __is_enum(std::string) == false
2120193323Sed/// \endcode
2121193323Sedclass UnaryTypeTraitExpr : public Expr {
2122193323Sed  /// \brief The trait. A UnaryTypeTrait enum in MSVC compatible unsigned.
2123193323Sed  unsigned UTT : 31;
2124193323Sed  /// The value of the type trait. Unspecified if dependent.
2125193323Sed  bool Value : 1;
2126193323Sed
2127193323Sed  /// \brief The location of the type trait keyword.
2128193323Sed  SourceLocation Loc;
2129193323Sed
2130193323Sed  /// \brief The location of the closing paren.
2131193323Sed  SourceLocation RParen;
2132193323Sed
2133193323Sed  /// \brief The type being queried.
2134193323Sed  TypeSourceInfo *QueriedType;
2135193323Sed
2136193323Sedpublic:
2137193323Sed  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
2138193323Sed                     TypeSourceInfo *queried, bool value,
2139193323Sed                     SourceLocation rparen, QualType ty)
2140193323Sed    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2141193323Sed           false,  queried->getType()->isDependentType(),
2142193323Sed           queried->getType()->isInstantiationDependentType(),
2143193323Sed           queried->getType()->containsUnexpandedParameterPack()),
2144193323Sed      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
2145193323Sed
2146193323Sed  explicit UnaryTypeTraitExpr(EmptyShell Empty)
2147193323Sed    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
2148193323Sed      QueriedType() { }
2149193323Sed
2150193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2151193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2152193323Sed
2153193323Sed  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
2154193323Sed
2155193323Sed  QualType getQueriedType() const { return QueriedType->getType(); }
2156193323Sed
2157193323Sed  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2158193323Sed
2159193323Sed  bool getValue() const { return Value; }
2160193323Sed
2161193323Sed  static bool classof(const Stmt *T) {
2162193323Sed    return T->getStmtClass() == UnaryTypeTraitExprClass;
2163193323Sed  }
2164193323Sed
2165193323Sed  // Iterators
2166193323Sed  child_range children() { return child_range(); }
2167193323Sed
2168193323Sed  friend class ASTStmtReader;
2169193323Sed};
2170193323Sed
2171193323Sed/// \brief Represents a GCC or MS binary type trait, as used in the
2172193323Sed/// implementation of TR1/C++11 type trait templates.
2173193323Sed///
2174193323Sed/// Example:
2175193323Sed/// \code
2176193323Sed///   __is_base_of(Base, Derived) == true
2177193323Sed/// \endcode
2178193323Sedclass BinaryTypeTraitExpr : public Expr {
2179193323Sed  /// \brief The trait. A BinaryTypeTrait enum in MSVC compatible unsigned.
2180193323Sed  unsigned BTT : 8;
2181193323Sed
2182193323Sed  /// The value of the type trait. Unspecified if dependent.
2183193323Sed  bool Value : 1;
2184193323Sed
2185193323Sed  /// \brief The location of the type trait keyword.
2186193323Sed  SourceLocation Loc;
2187193323Sed
2188193323Sed  /// \brief The location of the closing paren.
2189193323Sed  SourceLocation RParen;
2190193323Sed
2191193323Sed  /// \brief The lhs type being queried.
2192193323Sed  TypeSourceInfo *LhsType;
2193193323Sed
2194193323Sed  /// \brief The rhs type being queried.
2195193323Sed  TypeSourceInfo *RhsType;
2196193323Sed
2197193323Sedpublic:
2198193323Sed  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2199193323Sed                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2200193323Sed                     bool value, SourceLocation rparen, QualType ty)
2201193323Sed    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2202193323Sed           lhsType->getType()->isDependentType() ||
2203193323Sed           rhsType->getType()->isDependentType(),
2204193323Sed           (lhsType->getType()->isInstantiationDependentType() ||
2205193323Sed            rhsType->getType()->isInstantiationDependentType()),
2206193323Sed           (lhsType->getType()->containsUnexpandedParameterPack() ||
2207193323Sed            rhsType->getType()->containsUnexpandedParameterPack())),
2208193323Sed      BTT(btt), Value(value), Loc(loc), RParen(rparen),
2209193323Sed      LhsType(lhsType), RhsType(rhsType) { }
2210193323Sed
2211193323Sed
2212193323Sed  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2213193323Sed    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2214193323Sed      LhsType(), RhsType() { }
2215193323Sed
2216193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2217193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2218193323Sed
2219193323Sed  BinaryTypeTrait getTrait() const {
2220193323Sed    return static_cast<BinaryTypeTrait>(BTT);
2221193323Sed  }
2222193323Sed
2223193323Sed  QualType getLhsType() const { return LhsType->getType(); }
2224193323Sed  QualType getRhsType() const { return RhsType->getType(); }
2225193323Sed
2226193323Sed  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2227193323Sed  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2228193323Sed
2229193323Sed  bool getValue() const { assert(!isTypeDependent()); return Value; }
2230193323Sed
2231193323Sed  static bool classof(const Stmt *T) {
2232193323Sed    return T->getStmtClass() == BinaryTypeTraitExprClass;
2233193323Sed  }
2234193323Sed
2235193323Sed  // Iterators
2236193323Sed  child_range children() { return child_range(); }
2237193323Sed
2238193323Sed  friend class ASTStmtReader;
2239193323Sed};
2240193323Sed
2241193323Sed/// \brief A type trait used in the implementation of various C++11 and
2242193323Sed/// Library TR1 trait templates.
2243193323Sed///
2244193323Sed/// \code
2245193323Sed///   __is_trivially_constructible(vector<int>, int*, int*)
2246193323Sed/// \endcode
2247193323Sedclass TypeTraitExpr : public Expr {
2248193323Sed  /// \brief The location of the type trait keyword.
2249193323Sed  SourceLocation Loc;
2250193323Sed
2251193323Sed  /// \brief  The location of the closing parenthesis.
2252193323Sed  SourceLocation RParenLoc;
2253193323Sed
2254193323Sed  // Note: The TypeSourceInfos for the arguments are allocated after the
2255193323Sed  // TypeTraitExpr.
2256193323Sed
2257193323Sed  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2258193323Sed                ArrayRef<TypeSourceInfo *> Args,
2259193323Sed                SourceLocation RParenLoc,
2260193323Sed                bool Value);
2261193323Sed
2262193323Sed  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2263193323Sed
2264193323Sed  /// \brief Retrieve the argument types.
2265193323Sed  TypeSourceInfo **getTypeSourceInfos() {
2266193323Sed    return reinterpret_cast<TypeSourceInfo **>(this+1);
2267193323Sed  }
2268193323Sed
2269193323Sed  /// \brief Retrieve the argument types.
2270193323Sed  TypeSourceInfo * const *getTypeSourceInfos() const {
2271193323Sed    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2272193323Sed  }
2273193323Sed
2274193323Sedpublic:
2275193323Sed  /// \brief Create a new type trait expression.
2276193323Sed  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2277193323Sed                               SourceLocation Loc, TypeTrait Kind,
2278193323Sed                               ArrayRef<TypeSourceInfo *> Args,
2279193323Sed                               SourceLocation RParenLoc,
2280193323Sed                               bool Value);
2281193323Sed
2282193323Sed  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2283193323Sed                                           unsigned NumArgs);
2284193323Sed
2285193323Sed  /// \brief Determine which type trait this expression uses.
2286193323Sed  TypeTrait getTrait() const {
2287193323Sed    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2288193323Sed  }
2289193323Sed
2290193323Sed  bool getValue() const {
2291193323Sed    assert(!isValueDependent());
2292193323Sed    return TypeTraitExprBits.Value;
2293193323Sed  }
2294193323Sed
2295193323Sed  /// \brief Determine the number of arguments to this type trait.
2296193323Sed  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2297193323Sed
2298193323Sed  /// \brief Retrieve the Ith argument.
2299193323Sed  TypeSourceInfo *getArg(unsigned I) const {
2300193323Sed    assert(I < getNumArgs() && "Argument out-of-range");
2301193323Sed    return getArgs()[I];
2302193323Sed  }
2303193323Sed
2304193323Sed  /// \brief Retrieve the argument types.
2305193323Sed  ArrayRef<TypeSourceInfo *> getArgs() const {
2306193323Sed    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2307193323Sed  }
2308193323Sed
2309193323Sed  typedef TypeSourceInfo **arg_iterator;
2310193323Sed  arg_iterator arg_begin() {
2311193323Sed    return getTypeSourceInfos();
2312193323Sed  }
2313193323Sed  arg_iterator arg_end() {
2314193323Sed    return getTypeSourceInfos() + getNumArgs();
2315193323Sed  }
2316193323Sed
2317193323Sed  typedef TypeSourceInfo const * const *arg_const_iterator;
2318193323Sed  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2319193323Sed  arg_const_iterator arg_end() const {
2320193323Sed    return getTypeSourceInfos() + getNumArgs();
2321193323Sed  }
2322193323Sed
2323193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2324193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2325193323Sed
2326193323Sed  static bool classof(const Stmt *T) {
2327193323Sed    return T->getStmtClass() == TypeTraitExprClass;
2328193323Sed  }
2329193323Sed
2330193323Sed  // Iterators
2331193323Sed  child_range children() { return child_range(); }
2332193323Sed
2333193323Sed  friend class ASTStmtReader;
2334193323Sed  friend class ASTStmtWriter;
2335193323Sed
2336193323Sed};
2337193323Sed
2338193323Sed/// \brief An Embarcadero array type trait, as used in the implementation of
2339193323Sed/// __array_rank and __array_extent.
2340193323Sed///
2341193323Sed/// Example:
2342193323Sed/// \code
2343193323Sed///   __array_rank(int[10][20]) == 2
2344193323Sed///   __array_extent(int, 1)    == 20
2345193323Sed/// \endcode
2346193323Sedclass ArrayTypeTraitExpr : public Expr {
2347193323Sed  virtual void anchor();
2348193323Sed
2349193323Sed  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2350193323Sed  unsigned ATT : 2;
2351193323Sed
2352193323Sed  /// \brief The value of the type trait. Unspecified if dependent.
2353193323Sed  uint64_t Value;
2354193323Sed
2355193323Sed  /// \brief The array dimension being queried, or -1 if not used.
2356193323Sed  Expr *Dimension;
2357193323Sed
2358193323Sed  /// \brief The location of the type trait keyword.
2359193323Sed  SourceLocation Loc;
2360193323Sed
2361193323Sed  /// \brief The location of the closing paren.
2362193323Sed  SourceLocation RParen;
2363193323Sed
2364193323Sed  /// \brief The type being queried.
2365193323Sed  TypeSourceInfo *QueriedType;
2366193323Sed
2367193323Sedpublic:
2368193323Sed  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2369193323Sed                     TypeSourceInfo *queried, uint64_t value,
2370193323Sed                     Expr *dimension, SourceLocation rparen, QualType ty)
2371193323Sed    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2372193323Sed           false, queried->getType()->isDependentType(),
2373193323Sed           (queried->getType()->isInstantiationDependentType() ||
2374193323Sed            (dimension && dimension->isInstantiationDependent())),
2375193323Sed           queried->getType()->containsUnexpandedParameterPack()),
2376193323Sed      ATT(att), Value(value), Dimension(dimension),
2377193323Sed      Loc(loc), RParen(rparen), QueriedType(queried) { }
2378193323Sed
2379193323Sed
2380193323Sed  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2381193323Sed    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2382193323Sed      QueriedType() { }
2383193323Sed
2384193323Sed  virtual ~ArrayTypeTraitExpr() { }
2385193323Sed
2386193323Sed  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2387193323Sed  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2388193323Sed
2389193323Sed  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2390193323Sed
2391193323Sed  QualType getQueriedType() const { return QueriedType->getType(); }
2392193323Sed
2393193323Sed  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2394193323Sed
2395193323Sed  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2396193323Sed
2397193323Sed  Expr *getDimensionExpression() const { return Dimension; }
2398193323Sed
2399193323Sed  static bool classof(const Stmt *T) {
2400193323Sed    return T->getStmtClass() == ArrayTypeTraitExprClass;
2401193323Sed  }
2402193323Sed
2403193323Sed  // Iterators
2404193323Sed  child_range children() { return child_range(); }
2405193323Sed
2406193323Sed  friend class ASTStmtReader;
2407193323Sed};
2408193323Sed
2409193323Sed/// \brief An expression trait intrinsic.
2410193323Sed///
2411193323Sed/// Example:
2412193323Sed/// \code
2413193323Sed///   __is_lvalue_expr(std::cout) == true
2414193323Sed///   __is_lvalue_expr(1) == false
2415/// \endcode
2416class ExpressionTraitExpr : public Expr {
2417  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2418  unsigned ET : 31;
2419  /// \brief The value of the type trait. Unspecified if dependent.
2420  bool Value : 1;
2421
2422  /// \brief The location of the type trait keyword.
2423  SourceLocation Loc;
2424
2425  /// \brief The location of the closing paren.
2426  SourceLocation RParen;
2427
2428  /// \brief The expression being queried.
2429  Expr* QueriedExpression;
2430public:
2431  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2432                     Expr *queried, bool value,
2433                     SourceLocation rparen, QualType resultType)
2434    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2435           false, // Not type-dependent
2436           // Value-dependent if the argument is type-dependent.
2437           queried->isTypeDependent(),
2438           queried->isInstantiationDependent(),
2439           queried->containsUnexpandedParameterPack()),
2440      ET(et), Value(value), Loc(loc), RParen(rparen),
2441      QueriedExpression(queried) { }
2442
2443  explicit ExpressionTraitExpr(EmptyShell Empty)
2444    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2445      QueriedExpression() { }
2446
2447  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2448  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2449
2450  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2451
2452  Expr *getQueriedExpression() const { return QueriedExpression; }
2453
2454  bool getValue() const { return Value; }
2455
2456  static bool classof(const Stmt *T) {
2457    return T->getStmtClass() == ExpressionTraitExprClass;
2458  }
2459
2460  // Iterators
2461  child_range children() { return child_range(); }
2462
2463  friend class ASTStmtReader;
2464};
2465
2466
2467/// \brief A reference to an overloaded function set, either an
2468/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2469class OverloadExpr : public Expr {
2470  /// \brief The common name of these declarations.
2471  DeclarationNameInfo NameInfo;
2472
2473  /// \brief The nested-name-specifier that qualifies the name, if any.
2474  NestedNameSpecifierLoc QualifierLoc;
2475
2476  /// The results.  These are undesugared, which is to say, they may
2477  /// include UsingShadowDecls.  Access is relative to the naming
2478  /// class.
2479  // FIXME: Allocate this data after the OverloadExpr subclass.
2480  DeclAccessPair *Results;
2481  unsigned NumResults;
2482
2483protected:
2484  /// \brief Whether the name includes info for explicit template
2485  /// keyword and arguments.
2486  bool HasTemplateKWAndArgsInfo;
2487
2488  /// \brief Return the optional template keyword and arguments info.
2489  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2490
2491  /// \brief Return the optional template keyword and arguments info.
2492  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2493    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2494  }
2495
2496  OverloadExpr(StmtClass K, const ASTContext &C,
2497               NestedNameSpecifierLoc QualifierLoc,
2498               SourceLocation TemplateKWLoc,
2499               const DeclarationNameInfo &NameInfo,
2500               const TemplateArgumentListInfo *TemplateArgs,
2501               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2502               bool KnownDependent,
2503               bool KnownInstantiationDependent,
2504               bool KnownContainsUnexpandedParameterPack);
2505
2506  OverloadExpr(StmtClass K, EmptyShell Empty)
2507    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2508      HasTemplateKWAndArgsInfo(false) { }
2509
2510  void initializeResults(const ASTContext &C,
2511                         UnresolvedSetIterator Begin,
2512                         UnresolvedSetIterator End);
2513
2514public:
2515  struct FindResult {
2516    OverloadExpr *Expression;
2517    bool IsAddressOfOperand;
2518    bool HasFormOfMemberPointer;
2519  };
2520
2521  /// \brief Finds the overloaded expression in the given expression \p E of
2522  /// OverloadTy.
2523  ///
2524  /// \return the expression (which must be there) and true if it has
2525  /// the particular form of a member pointer expression
2526  static FindResult find(Expr *E) {
2527    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2528
2529    FindResult Result;
2530
2531    E = E->IgnoreParens();
2532    if (isa<UnaryOperator>(E)) {
2533      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2534      E = cast<UnaryOperator>(E)->getSubExpr();
2535      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2536
2537      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2538      Result.IsAddressOfOperand = true;
2539      Result.Expression = Ovl;
2540    } else {
2541      Result.HasFormOfMemberPointer = false;
2542      Result.IsAddressOfOperand = false;
2543      Result.Expression = cast<OverloadExpr>(E);
2544    }
2545
2546    return Result;
2547  }
2548
2549  /// \brief Gets the naming class of this lookup, if any.
2550  CXXRecordDecl *getNamingClass() const;
2551
2552  typedef UnresolvedSetImpl::iterator decls_iterator;
2553  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2554  decls_iterator decls_end() const {
2555    return UnresolvedSetIterator(Results + NumResults);
2556  }
2557
2558  /// \brief Gets the number of declarations in the unresolved set.
2559  unsigned getNumDecls() const { return NumResults; }
2560
2561  /// \brief Gets the full name info.
2562  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2563
2564  /// \brief Gets the name looked up.
2565  DeclarationName getName() const { return NameInfo.getName(); }
2566
2567  /// \brief Gets the location of the name.
2568  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2569
2570  /// \brief Fetches the nested-name qualifier, if one was given.
2571  NestedNameSpecifier *getQualifier() const {
2572    return QualifierLoc.getNestedNameSpecifier();
2573  }
2574
2575  /// \brief Fetches the nested-name qualifier with source-location
2576  /// information, if one was given.
2577  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2578
2579  /// \brief Retrieve the location of the template keyword preceding
2580  /// this name, if any.
2581  SourceLocation getTemplateKeywordLoc() const {
2582    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2583    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2584  }
2585
2586  /// \brief Retrieve the location of the left angle bracket starting the
2587  /// explicit template argument list following the name, if any.
2588  SourceLocation getLAngleLoc() const {
2589    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2590    return getTemplateKWAndArgsInfo()->LAngleLoc;
2591  }
2592
2593  /// \brief Retrieve the location of the right angle bracket ending the
2594  /// explicit template argument list following the name, if any.
2595  SourceLocation getRAngleLoc() const {
2596    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2597    return getTemplateKWAndArgsInfo()->RAngleLoc;
2598  }
2599
2600  /// \brief Determines whether the name was preceded by the template keyword.
2601  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2602
2603  /// \brief Determines whether this expression had explicit template arguments.
2604  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2605
2606  // Note that, inconsistently with the explicit-template-argument AST
2607  // nodes, users are *forbidden* from calling these methods on objects
2608  // without explicit template arguments.
2609
2610  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2611    assert(hasExplicitTemplateArgs());
2612    return *getTemplateKWAndArgsInfo();
2613  }
2614
2615  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2616    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2617  }
2618
2619  TemplateArgumentLoc const *getTemplateArgs() const {
2620    return getExplicitTemplateArgs().getTemplateArgs();
2621  }
2622
2623  unsigned getNumTemplateArgs() const {
2624    return getExplicitTemplateArgs().NumTemplateArgs;
2625  }
2626
2627  /// \brief Copies the template arguments into the given structure.
2628  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2629    getExplicitTemplateArgs().copyInto(List);
2630  }
2631
2632  /// \brief Retrieves the optional explicit template arguments.
2633  ///
2634  /// This points to the same data as getExplicitTemplateArgs(), but
2635  /// returns null if there are no explicit template arguments.
2636  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2637    if (!hasExplicitTemplateArgs()) return 0;
2638    return &getExplicitTemplateArgs();
2639  }
2640
2641  static bool classof(const Stmt *T) {
2642    return T->getStmtClass() == UnresolvedLookupExprClass ||
2643           T->getStmtClass() == UnresolvedMemberExprClass;
2644  }
2645
2646  friend class ASTStmtReader;
2647  friend class ASTStmtWriter;
2648};
2649
2650/// \brief A reference to a name which we were able to look up during
2651/// parsing but could not resolve to a specific declaration.
2652///
2653/// This arises in several ways:
2654///   * we might be waiting for argument-dependent lookup;
2655///   * the name might resolve to an overloaded function;
2656/// and eventually:
2657///   * the lookup might have included a function template.
2658///
2659/// These never include UnresolvedUsingValueDecls, which are always class
2660/// members and therefore appear only in UnresolvedMemberLookupExprs.
2661class UnresolvedLookupExpr : public OverloadExpr {
2662  /// True if these lookup results should be extended by
2663  /// argument-dependent lookup if this is the operand of a function
2664  /// call.
2665  bool RequiresADL;
2666
2667  /// True if these lookup results are overloaded.  This is pretty
2668  /// trivially rederivable if we urgently need to kill this field.
2669  bool Overloaded;
2670
2671  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2672  /// any.  This can generally be recalculated from the context chain,
2673  /// but that can be fairly expensive for unqualified lookups.  If we
2674  /// want to improve memory use here, this could go in a union
2675  /// against the qualified-lookup bits.
2676  CXXRecordDecl *NamingClass;
2677
2678  UnresolvedLookupExpr(const ASTContext &C,
2679                       CXXRecordDecl *NamingClass,
2680                       NestedNameSpecifierLoc QualifierLoc,
2681                       SourceLocation TemplateKWLoc,
2682                       const DeclarationNameInfo &NameInfo,
2683                       bool RequiresADL, bool Overloaded,
2684                       const TemplateArgumentListInfo *TemplateArgs,
2685                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2686    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2687                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2688      RequiresADL(RequiresADL),
2689      Overloaded(Overloaded), NamingClass(NamingClass)
2690  {}
2691
2692  UnresolvedLookupExpr(EmptyShell Empty)
2693    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2694      RequiresADL(false), Overloaded(false), NamingClass(0)
2695  {}
2696
2697  friend class ASTStmtReader;
2698
2699public:
2700  static UnresolvedLookupExpr *Create(const ASTContext &C,
2701                                      CXXRecordDecl *NamingClass,
2702                                      NestedNameSpecifierLoc QualifierLoc,
2703                                      const DeclarationNameInfo &NameInfo,
2704                                      bool ADL, bool Overloaded,
2705                                      UnresolvedSetIterator Begin,
2706                                      UnresolvedSetIterator End) {
2707    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2708                                       SourceLocation(), NameInfo,
2709                                       ADL, Overloaded, 0, Begin, End);
2710  }
2711
2712  static UnresolvedLookupExpr *Create(const ASTContext &C,
2713                                      CXXRecordDecl *NamingClass,
2714                                      NestedNameSpecifierLoc QualifierLoc,
2715                                      SourceLocation TemplateKWLoc,
2716                                      const DeclarationNameInfo &NameInfo,
2717                                      bool ADL,
2718                                      const TemplateArgumentListInfo *Args,
2719                                      UnresolvedSetIterator Begin,
2720                                      UnresolvedSetIterator End);
2721
2722  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
2723                                           bool HasTemplateKWAndArgsInfo,
2724                                           unsigned NumTemplateArgs);
2725
2726  /// True if this declaration should be extended by
2727  /// argument-dependent lookup.
2728  bool requiresADL() const { return RequiresADL; }
2729
2730  /// True if this lookup is overloaded.
2731  bool isOverloaded() const { return Overloaded; }
2732
2733  /// Gets the 'naming class' (in the sense of C++0x
2734  /// [class.access.base]p5) of the lookup.  This is the scope
2735  /// that was looked in to find these results.
2736  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2737
2738  SourceLocation getLocStart() const LLVM_READONLY {
2739    if (NestedNameSpecifierLoc l = getQualifierLoc())
2740      return l.getBeginLoc();
2741    return getNameInfo().getLocStart();
2742  }
2743  SourceLocation getLocEnd() const LLVM_READONLY {
2744    if (hasExplicitTemplateArgs())
2745      return getRAngleLoc();
2746    return getNameInfo().getLocEnd();
2747  }
2748
2749  child_range children() { return child_range(); }
2750
2751  static bool classof(const Stmt *T) {
2752    return T->getStmtClass() == UnresolvedLookupExprClass;
2753  }
2754};
2755
2756/// \brief A qualified reference to a name whose declaration cannot
2757/// yet be resolved.
2758///
2759/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2760/// it expresses a reference to a declaration such as
2761/// X<T>::value. The difference, however, is that an
2762/// DependentScopeDeclRefExpr node is used only within C++ templates when
2763/// the qualification (e.g., X<T>::) refers to a dependent type. In
2764/// this case, X<T>::value cannot resolve to a declaration because the
2765/// declaration will differ from one instantiation of X<T> to the
2766/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2767/// qualifier (X<T>::) and the name of the entity being referenced
2768/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2769/// declaration can be found.
2770class DependentScopeDeclRefExpr : public Expr {
2771  /// \brief The nested-name-specifier that qualifies this unresolved
2772  /// declaration name.
2773  NestedNameSpecifierLoc QualifierLoc;
2774
2775  /// \brief The name of the entity we will be referencing.
2776  DeclarationNameInfo NameInfo;
2777
2778  /// \brief Whether the name includes info for explicit template
2779  /// keyword and arguments.
2780  bool HasTemplateKWAndArgsInfo;
2781
2782  /// \brief Return the optional template keyword and arguments info.
2783  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2784    if (!HasTemplateKWAndArgsInfo) return 0;
2785    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2786  }
2787  /// \brief Return the optional template keyword and arguments info.
2788  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2789    return const_cast<DependentScopeDeclRefExpr*>(this)
2790      ->getTemplateKWAndArgsInfo();
2791  }
2792
2793  DependentScopeDeclRefExpr(QualType T,
2794                            NestedNameSpecifierLoc QualifierLoc,
2795                            SourceLocation TemplateKWLoc,
2796                            const DeclarationNameInfo &NameInfo,
2797                            const TemplateArgumentListInfo *Args);
2798
2799public:
2800  static DependentScopeDeclRefExpr *Create(const ASTContext &C,
2801                                           NestedNameSpecifierLoc QualifierLoc,
2802                                           SourceLocation TemplateKWLoc,
2803                                           const DeclarationNameInfo &NameInfo,
2804                              const TemplateArgumentListInfo *TemplateArgs);
2805
2806  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
2807                                                bool HasTemplateKWAndArgsInfo,
2808                                                unsigned NumTemplateArgs);
2809
2810  /// \brief Retrieve the name that this expression refers to.
2811  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2812
2813  /// \brief Retrieve the name that this expression refers to.
2814  DeclarationName getDeclName() const { return NameInfo.getName(); }
2815
2816  /// \brief Retrieve the location of the name within the expression.
2817  ///
2818  /// For example, in "X<T>::value" this is the location of "value".
2819  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2820
2821  /// \brief Retrieve the nested-name-specifier that qualifies the
2822  /// name, with source location information.
2823  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2824
2825  /// \brief Retrieve the nested-name-specifier that qualifies this
2826  /// declaration.
2827  NestedNameSpecifier *getQualifier() const {
2828    return QualifierLoc.getNestedNameSpecifier();
2829  }
2830
2831  /// \brief Retrieve the location of the template keyword preceding
2832  /// this name, if any.
2833  SourceLocation getTemplateKeywordLoc() const {
2834    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2835    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2836  }
2837
2838  /// \brief Retrieve the location of the left angle bracket starting the
2839  /// explicit template argument list following the name, if any.
2840  SourceLocation getLAngleLoc() const {
2841    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2842    return getTemplateKWAndArgsInfo()->LAngleLoc;
2843  }
2844
2845  /// \brief Retrieve the location of the right angle bracket ending the
2846  /// explicit template argument list following the name, if any.
2847  SourceLocation getRAngleLoc() const {
2848    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2849    return getTemplateKWAndArgsInfo()->RAngleLoc;
2850  }
2851
2852  /// Determines whether the name was preceded by the template keyword.
2853  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2854
2855  /// Determines whether this lookup had explicit template arguments.
2856  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2857
2858  // Note that, inconsistently with the explicit-template-argument AST
2859  // nodes, users are *forbidden* from calling these methods on objects
2860  // without explicit template arguments.
2861
2862  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2863    assert(hasExplicitTemplateArgs());
2864    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2865  }
2866
2867  /// Gets a reference to the explicit template argument list.
2868  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2869    assert(hasExplicitTemplateArgs());
2870    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2871  }
2872
2873  /// \brief Retrieves the optional explicit template arguments.
2874  ///
2875  /// This points to the same data as getExplicitTemplateArgs(), but
2876  /// returns null if there are no explicit template arguments.
2877  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2878    if (!hasExplicitTemplateArgs()) return 0;
2879    return &getExplicitTemplateArgs();
2880  }
2881
2882  /// \brief Copies the template arguments (if present) into the given
2883  /// structure.
2884  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2885    getExplicitTemplateArgs().copyInto(List);
2886  }
2887
2888  TemplateArgumentLoc const *getTemplateArgs() const {
2889    return getExplicitTemplateArgs().getTemplateArgs();
2890  }
2891
2892  unsigned getNumTemplateArgs() const {
2893    return getExplicitTemplateArgs().NumTemplateArgs;
2894  }
2895
2896  /// Note: getLocStart() is the start of the whole DependentScopeDeclRefExpr,
2897  /// and differs from getLocation().getStart().
2898  SourceLocation getLocStart() const LLVM_READONLY {
2899    return QualifierLoc.getBeginLoc();
2900  }
2901  SourceLocation getLocEnd() const LLVM_READONLY {
2902    if (hasExplicitTemplateArgs())
2903      return getRAngleLoc();
2904    return getLocation();
2905  }
2906
2907  static bool classof(const Stmt *T) {
2908    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2909  }
2910
2911  child_range children() { return child_range(); }
2912
2913  friend class ASTStmtReader;
2914  friend class ASTStmtWriter;
2915};
2916
2917/// Represents an expression -- generally a full-expression -- that
2918/// introduces cleanups to be run at the end of the sub-expression's
2919/// evaluation.  The most common source of expression-introduced
2920/// cleanups is temporary objects in C++, but several other kinds of
2921/// expressions can create cleanups, including basically every
2922/// call in ARC that returns an Objective-C pointer.
2923///
2924/// This expression also tracks whether the sub-expression contains a
2925/// potentially-evaluated block literal.  The lifetime of a block
2926/// literal is the extent of the enclosing scope.
2927class ExprWithCleanups : public Expr {
2928public:
2929  /// The type of objects that are kept in the cleanup.
2930  /// It's useful to remember the set of blocks;  we could also
2931  /// remember the set of temporaries, but there's currently
2932  /// no need.
2933  typedef BlockDecl *CleanupObject;
2934
2935private:
2936  Stmt *SubExpr;
2937
2938  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2939  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2940
2941  CleanupObject *getObjectsBuffer() {
2942    return reinterpret_cast<CleanupObject*>(this + 1);
2943  }
2944  const CleanupObject *getObjectsBuffer() const {
2945    return reinterpret_cast<const CleanupObject*>(this + 1);
2946  }
2947  friend class ASTStmtReader;
2948
2949public:
2950  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
2951                                  unsigned numObjects);
2952
2953  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
2954                                  ArrayRef<CleanupObject> objects);
2955
2956  ArrayRef<CleanupObject> getObjects() const {
2957    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2958  }
2959
2960  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2961
2962  CleanupObject getObject(unsigned i) const {
2963    assert(i < getNumObjects() && "Index out of range");
2964    return getObjects()[i];
2965  }
2966
2967  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2968  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2969
2970  /// As with any mutator of the AST, be very careful
2971  /// when modifying an existing AST to preserve its invariants.
2972  void setSubExpr(Expr *E) { SubExpr = E; }
2973
2974  SourceLocation getLocStart() const LLVM_READONLY {
2975    return SubExpr->getLocStart();
2976  }
2977  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2978
2979  // Implement isa/cast/dyncast/etc.
2980  static bool classof(const Stmt *T) {
2981    return T->getStmtClass() == ExprWithCleanupsClass;
2982  }
2983
2984  // Iterators
2985  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2986};
2987
2988/// \brief Describes an explicit type conversion that uses functional
2989/// notion but could not be resolved because one or more arguments are
2990/// type-dependent.
2991///
2992/// The explicit type conversions expressed by
2993/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2994/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2995/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2996/// type-dependent. For example, this would occur in a template such
2997/// as:
2998///
2999/// \code
3000///   template<typename T, typename A1>
3001///   inline T make_a(const A1& a1) {
3002///     return T(a1);
3003///   }
3004/// \endcode
3005///
3006/// When the returned expression is instantiated, it may resolve to a
3007/// constructor call, conversion function call, or some kind of type
3008/// conversion.
3009class CXXUnresolvedConstructExpr : public Expr {
3010  /// \brief The type being constructed.
3011  TypeSourceInfo *Type;
3012
3013  /// \brief The location of the left parentheses ('(').
3014  SourceLocation LParenLoc;
3015
3016  /// \brief The location of the right parentheses (')').
3017  SourceLocation RParenLoc;
3018
3019  /// \brief The number of arguments used to construct the type.
3020  unsigned NumArgs;
3021
3022  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
3023                             SourceLocation LParenLoc,
3024                             ArrayRef<Expr*> Args,
3025                             SourceLocation RParenLoc);
3026
3027  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3028    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
3029
3030  friend class ASTStmtReader;
3031
3032public:
3033  static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
3034                                            TypeSourceInfo *Type,
3035                                            SourceLocation LParenLoc,
3036                                            ArrayRef<Expr*> Args,
3037                                            SourceLocation RParenLoc);
3038
3039  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
3040                                                 unsigned NumArgs);
3041
3042  /// \brief Retrieve the type that is being constructed, as specified
3043  /// in the source code.
3044  QualType getTypeAsWritten() const { return Type->getType(); }
3045
3046  /// \brief Retrieve the type source information for the type being
3047  /// constructed.
3048  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
3049
3050  /// \brief Retrieve the location of the left parentheses ('(') that
3051  /// precedes the argument list.
3052  SourceLocation getLParenLoc() const { return LParenLoc; }
3053  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3054
3055  /// \brief Retrieve the location of the right parentheses (')') that
3056  /// follows the argument list.
3057  SourceLocation getRParenLoc() const { return RParenLoc; }
3058  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3059
3060  /// \brief Retrieve the number of arguments.
3061  unsigned arg_size() const { return NumArgs; }
3062
3063  typedef Expr** arg_iterator;
3064  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
3065  arg_iterator arg_end() { return arg_begin() + NumArgs; }
3066
3067  typedef const Expr* const * const_arg_iterator;
3068  const_arg_iterator arg_begin() const {
3069    return reinterpret_cast<const Expr* const *>(this + 1);
3070  }
3071  const_arg_iterator arg_end() const {
3072    return arg_begin() + NumArgs;
3073  }
3074
3075  Expr *getArg(unsigned I) {
3076    assert(I < NumArgs && "Argument index out-of-range");
3077    return *(arg_begin() + I);
3078  }
3079
3080  const Expr *getArg(unsigned I) const {
3081    assert(I < NumArgs && "Argument index out-of-range");
3082    return *(arg_begin() + I);
3083  }
3084
3085  void setArg(unsigned I, Expr *E) {
3086    assert(I < NumArgs && "Argument index out-of-range");
3087    *(arg_begin() + I) = E;
3088  }
3089
3090  SourceLocation getLocStart() const LLVM_READONLY;
3091  SourceLocation getLocEnd() const LLVM_READONLY {
3092    assert(RParenLoc.isValid() || NumArgs == 1);
3093    return RParenLoc.isValid() ? RParenLoc : getArg(0)->getLocEnd();
3094  }
3095
3096  static bool classof(const Stmt *T) {
3097    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3098  }
3099
3100  // Iterators
3101  child_range children() {
3102    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
3103    return child_range(begin, begin + NumArgs);
3104  }
3105};
3106
3107/// \brief Represents a C++ member access expression where the actual
3108/// member referenced could not be resolved because the base
3109/// expression or the member name was dependent.
3110///
3111/// Like UnresolvedMemberExprs, these can be either implicit or
3112/// explicit accesses.  It is only possible to get one of these with
3113/// an implicit access if a qualifier is provided.
3114class CXXDependentScopeMemberExpr : public Expr {
3115  /// \brief The expression for the base pointer or class reference,
3116  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
3117  Stmt *Base;
3118
3119  /// \brief The type of the base expression.  Never null, even for
3120  /// implicit accesses.
3121  QualType BaseType;
3122
3123  /// \brief Whether this member expression used the '->' operator or
3124  /// the '.' operator.
3125  bool IsArrow : 1;
3126
3127  /// \brief Whether this member expression has info for explicit template
3128  /// keyword and arguments.
3129  bool HasTemplateKWAndArgsInfo : 1;
3130
3131  /// \brief The location of the '->' or '.' operator.
3132  SourceLocation OperatorLoc;
3133
3134  /// \brief The nested-name-specifier that precedes the member name, if any.
3135  NestedNameSpecifierLoc QualifierLoc;
3136
3137  /// \brief In a qualified member access expression such as t->Base::f, this
3138  /// member stores the resolves of name lookup in the context of the member
3139  /// access expression, to be used at instantiation time.
3140  ///
3141  /// FIXME: This member, along with the QualifierLoc, could
3142  /// be stuck into a structure that is optionally allocated at the end of
3143  /// the CXXDependentScopeMemberExpr, to save space in the common case.
3144  NamedDecl *FirstQualifierFoundInScope;
3145
3146  /// \brief The member to which this member expression refers, which
3147  /// can be name, overloaded operator, or destructor.
3148  ///
3149  /// FIXME: could also be a template-id
3150  DeclarationNameInfo MemberNameInfo;
3151
3152  /// \brief Return the optional template keyword and arguments info.
3153  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
3154    if (!HasTemplateKWAndArgsInfo) return 0;
3155    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
3156  }
3157  /// \brief Return the optional template keyword and arguments info.
3158  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
3159    return const_cast<CXXDependentScopeMemberExpr*>(this)
3160      ->getTemplateKWAndArgsInfo();
3161  }
3162
3163  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3164                              QualType BaseType, bool IsArrow,
3165                              SourceLocation OperatorLoc,
3166                              NestedNameSpecifierLoc QualifierLoc,
3167                              SourceLocation TemplateKWLoc,
3168                              NamedDecl *FirstQualifierFoundInScope,
3169                              DeclarationNameInfo MemberNameInfo,
3170                              const TemplateArgumentListInfo *TemplateArgs);
3171
3172public:
3173  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3174                              QualType BaseType, bool IsArrow,
3175                              SourceLocation OperatorLoc,
3176                              NestedNameSpecifierLoc QualifierLoc,
3177                              NamedDecl *FirstQualifierFoundInScope,
3178                              DeclarationNameInfo MemberNameInfo);
3179
3180  static CXXDependentScopeMemberExpr *
3181  Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
3182         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3183         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3184         DeclarationNameInfo MemberNameInfo,
3185         const TemplateArgumentListInfo *TemplateArgs);
3186
3187  static CXXDependentScopeMemberExpr *
3188  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3189              unsigned NumTemplateArgs);
3190
3191  /// \brief True if this is an implicit access, i.e. one in which the
3192  /// member being accessed was not written in the source.  The source
3193  /// location of the operator is invalid in this case.
3194  bool isImplicitAccess() const;
3195
3196  /// \brief Retrieve the base object of this member expressions,
3197  /// e.g., the \c x in \c x.m.
3198  Expr *getBase() const {
3199    assert(!isImplicitAccess());
3200    return cast<Expr>(Base);
3201  }
3202
3203  QualType getBaseType() const { return BaseType; }
3204
3205  /// \brief Determine whether this member expression used the '->'
3206  /// operator; otherwise, it used the '.' operator.
3207  bool isArrow() const { return IsArrow; }
3208
3209  /// \brief Retrieve the location of the '->' or '.' operator.
3210  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3211
3212  /// \brief Retrieve the nested-name-specifier that qualifies the member
3213  /// name.
3214  NestedNameSpecifier *getQualifier() const {
3215    return QualifierLoc.getNestedNameSpecifier();
3216  }
3217
3218  /// \brief Retrieve the nested-name-specifier that qualifies the member
3219  /// name, with source location information.
3220  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3221
3222
3223  /// \brief Retrieve the first part of the nested-name-specifier that was
3224  /// found in the scope of the member access expression when the member access
3225  /// was initially parsed.
3226  ///
3227  /// This function only returns a useful result when member access expression
3228  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3229  /// returned by this function describes what was found by unqualified name
3230  /// lookup for the identifier "Base" within the scope of the member access
3231  /// expression itself. At template instantiation time, this information is
3232  /// combined with the results of name lookup into the type of the object
3233  /// expression itself (the class type of x).
3234  NamedDecl *getFirstQualifierFoundInScope() const {
3235    return FirstQualifierFoundInScope;
3236  }
3237
3238  /// \brief Retrieve the name of the member that this expression
3239  /// refers to.
3240  const DeclarationNameInfo &getMemberNameInfo() const {
3241    return MemberNameInfo;
3242  }
3243
3244  /// \brief Retrieve the name of the member that this expression
3245  /// refers to.
3246  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3247
3248  // \brief Retrieve the location of the name of the member that this
3249  // expression refers to.
3250  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3251
3252  /// \brief Retrieve the location of the template keyword preceding the
3253  /// member name, if any.
3254  SourceLocation getTemplateKeywordLoc() const {
3255    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3256    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3257  }
3258
3259  /// \brief Retrieve the location of the left angle bracket starting the
3260  /// explicit template argument list following the member name, if any.
3261  SourceLocation getLAngleLoc() const {
3262    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3263    return getTemplateKWAndArgsInfo()->LAngleLoc;
3264  }
3265
3266  /// \brief Retrieve the location of the right angle bracket ending the
3267  /// explicit template argument list following the member name, if any.
3268  SourceLocation getRAngleLoc() const {
3269    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3270    return getTemplateKWAndArgsInfo()->RAngleLoc;
3271  }
3272
3273  /// Determines whether the member name was preceded by the template keyword.
3274  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3275
3276  /// \brief Determines whether this member expression actually had a C++
3277  /// template argument list explicitly specified, e.g., x.f<int>.
3278  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3279
3280  /// \brief Retrieve the explicit template argument list that followed the
3281  /// member template name, if any.
3282  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3283    assert(hasExplicitTemplateArgs());
3284    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3285  }
3286
3287  /// \brief Retrieve the explicit template argument list that followed the
3288  /// member template name, if any.
3289  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3290    return const_cast<CXXDependentScopeMemberExpr *>(this)
3291             ->getExplicitTemplateArgs();
3292  }
3293
3294  /// \brief Retrieves the optional explicit template arguments.
3295  ///
3296  /// This points to the same data as getExplicitTemplateArgs(), but
3297  /// returns null if there are no explicit template arguments.
3298  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3299    if (!hasExplicitTemplateArgs()) return 0;
3300    return &getExplicitTemplateArgs();
3301  }
3302
3303  /// \brief Copies the template arguments (if present) into the given
3304  /// structure.
3305  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3306    getExplicitTemplateArgs().copyInto(List);
3307  }
3308
3309  /// \brief Initializes the template arguments using the given structure.
3310  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3311    getExplicitTemplateArgs().initializeFrom(List);
3312  }
3313
3314  /// \brief Retrieve the template arguments provided as part of this
3315  /// template-id.
3316  const TemplateArgumentLoc *getTemplateArgs() const {
3317    return getExplicitTemplateArgs().getTemplateArgs();
3318  }
3319
3320  /// \brief Retrieve the number of template arguments provided as part of this
3321  /// template-id.
3322  unsigned getNumTemplateArgs() const {
3323    return getExplicitTemplateArgs().NumTemplateArgs;
3324  }
3325
3326  SourceLocation getLocStart() const LLVM_READONLY {
3327    if (!isImplicitAccess())
3328      return Base->getLocStart();
3329    if (getQualifier())
3330      return getQualifierLoc().getBeginLoc();
3331    return MemberNameInfo.getBeginLoc();
3332
3333  }
3334  SourceLocation getLocEnd() const LLVM_READONLY {
3335    if (hasExplicitTemplateArgs())
3336      return getRAngleLoc();
3337    return MemberNameInfo.getEndLoc();
3338  }
3339
3340  static bool classof(const Stmt *T) {
3341    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3342  }
3343
3344  // Iterators
3345  child_range children() {
3346    if (isImplicitAccess()) return child_range();
3347    return child_range(&Base, &Base + 1);
3348  }
3349
3350  friend class ASTStmtReader;
3351  friend class ASTStmtWriter;
3352};
3353
3354/// \brief Represents a C++ member access expression for which lookup
3355/// produced a set of overloaded functions.
3356///
3357/// The member access may be explicit or implicit:
3358/// \code
3359///    struct A {
3360///      int a, b;
3361///      int explicitAccess() { return this->a + this->A::b; }
3362///      int implicitAccess() { return a + A::b; }
3363///    };
3364/// \endcode
3365///
3366/// In the final AST, an explicit access always becomes a MemberExpr.
3367/// An implicit access may become either a MemberExpr or a
3368/// DeclRefExpr, depending on whether the member is static.
3369class UnresolvedMemberExpr : public OverloadExpr {
3370  /// \brief Whether this member expression used the '->' operator or
3371  /// the '.' operator.
3372  bool IsArrow : 1;
3373
3374  /// \brief Whether the lookup results contain an unresolved using
3375  /// declaration.
3376  bool HasUnresolvedUsing : 1;
3377
3378  /// \brief The expression for the base pointer or class reference,
3379  /// e.g., the \c x in x.f.
3380  ///
3381  /// This can be null if this is an 'unbased' member expression.
3382  Stmt *Base;
3383
3384  /// \brief The type of the base expression; never null.
3385  QualType BaseType;
3386
3387  /// \brief The location of the '->' or '.' operator.
3388  SourceLocation OperatorLoc;
3389
3390  UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
3391                       Expr *Base, QualType BaseType, bool IsArrow,
3392                       SourceLocation OperatorLoc,
3393                       NestedNameSpecifierLoc QualifierLoc,
3394                       SourceLocation TemplateKWLoc,
3395                       const DeclarationNameInfo &MemberNameInfo,
3396                       const TemplateArgumentListInfo *TemplateArgs,
3397                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3398
3399  UnresolvedMemberExpr(EmptyShell Empty)
3400    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3401      HasUnresolvedUsing(false), Base(0) { }
3402
3403  friend class ASTStmtReader;
3404
3405public:
3406  static UnresolvedMemberExpr *
3407  Create(const ASTContext &C, bool HasUnresolvedUsing,
3408         Expr *Base, QualType BaseType, bool IsArrow,
3409         SourceLocation OperatorLoc,
3410         NestedNameSpecifierLoc QualifierLoc,
3411         SourceLocation TemplateKWLoc,
3412         const DeclarationNameInfo &MemberNameInfo,
3413         const TemplateArgumentListInfo *TemplateArgs,
3414         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3415
3416  static UnresolvedMemberExpr *
3417  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3418              unsigned NumTemplateArgs);
3419
3420  /// \brief True if this is an implicit access, i.e., one in which the
3421  /// member being accessed was not written in the source.
3422  ///
3423  /// The source location of the operator is invalid in this case.
3424  bool isImplicitAccess() const;
3425
3426  /// \brief Retrieve the base object of this member expressions,
3427  /// e.g., the \c x in \c x.m.
3428  Expr *getBase() {
3429    assert(!isImplicitAccess());
3430    return cast<Expr>(Base);
3431  }
3432  const Expr *getBase() const {
3433    assert(!isImplicitAccess());
3434    return cast<Expr>(Base);
3435  }
3436
3437  QualType getBaseType() const { return BaseType; }
3438
3439  /// \brief Determine whether the lookup results contain an unresolved using
3440  /// declaration.
3441  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3442
3443  /// \brief Determine whether this member expression used the '->'
3444  /// operator; otherwise, it used the '.' operator.
3445  bool isArrow() const { return IsArrow; }
3446
3447  /// \brief Retrieve the location of the '->' or '.' operator.
3448  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3449
3450  /// \brief Retrieve the naming class of this lookup.
3451  CXXRecordDecl *getNamingClass() const;
3452
3453  /// \brief Retrieve the full name info for the member that this expression
3454  /// refers to.
3455  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3456
3457  /// \brief Retrieve the name of the member that this expression
3458  /// refers to.
3459  DeclarationName getMemberName() const { return getName(); }
3460
3461  // \brief Retrieve the location of the name of the member that this
3462  // expression refers to.
3463  SourceLocation getMemberLoc() const { return getNameLoc(); }
3464
3465  // \brief Return the preferred location (the member name) for the arrow when
3466  // diagnosing a problem with this expression.
3467  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3468
3469  SourceLocation getLocStart() const LLVM_READONLY {
3470    if (!isImplicitAccess())
3471      return Base->getLocStart();
3472    if (NestedNameSpecifierLoc l = getQualifierLoc())
3473      return l.getBeginLoc();
3474    return getMemberNameInfo().getLocStart();
3475  }
3476  SourceLocation getLocEnd() const LLVM_READONLY {
3477    if (hasExplicitTemplateArgs())
3478      return getRAngleLoc();
3479    return getMemberNameInfo().getLocEnd();
3480  }
3481
3482  static bool classof(const Stmt *T) {
3483    return T->getStmtClass() == UnresolvedMemberExprClass;
3484  }
3485
3486  // Iterators
3487  child_range children() {
3488    if (isImplicitAccess()) return child_range();
3489    return child_range(&Base, &Base + 1);
3490  }
3491};
3492
3493/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3494///
3495/// The noexcept expression tests whether a given expression might throw. Its
3496/// result is a boolean constant.
3497class CXXNoexceptExpr : public Expr {
3498  bool Value : 1;
3499  Stmt *Operand;
3500  SourceRange Range;
3501
3502  friend class ASTStmtReader;
3503
3504public:
3505  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3506                  SourceLocation Keyword, SourceLocation RParen)
3507    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3508           /*TypeDependent*/false,
3509           /*ValueDependent*/Val == CT_Dependent,
3510           Val == CT_Dependent || Operand->isInstantiationDependent(),
3511           Operand->containsUnexpandedParameterPack()),
3512      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3513  { }
3514
3515  CXXNoexceptExpr(EmptyShell Empty)
3516    : Expr(CXXNoexceptExprClass, Empty)
3517  { }
3518
3519  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3520
3521  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3522  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3523  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3524
3525  bool getValue() const { return Value; }
3526
3527  static bool classof(const Stmt *T) {
3528    return T->getStmtClass() == CXXNoexceptExprClass;
3529  }
3530
3531  // Iterators
3532  child_range children() { return child_range(&Operand, &Operand + 1); }
3533};
3534
3535/// \brief Represents a C++11 pack expansion that produces a sequence of
3536/// expressions.
3537///
3538/// A pack expansion expression contains a pattern (which itself is an
3539/// expression) followed by an ellipsis. For example:
3540///
3541/// \code
3542/// template<typename F, typename ...Types>
3543/// void forward(F f, Types &&...args) {
3544///   f(static_cast<Types&&>(args)...);
3545/// }
3546/// \endcode
3547///
3548/// Here, the argument to the function object \c f is a pack expansion whose
3549/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3550/// template is instantiated, the pack expansion will instantiate to zero or
3551/// or more function arguments to the function object \c f.
3552class PackExpansionExpr : public Expr {
3553  SourceLocation EllipsisLoc;
3554
3555  /// \brief The number of expansions that will be produced by this pack
3556  /// expansion expression, if known.
3557  ///
3558  /// When zero, the number of expansions is not known. Otherwise, this value
3559  /// is the number of expansions + 1.
3560  unsigned NumExpansions;
3561
3562  Stmt *Pattern;
3563
3564  friend class ASTStmtReader;
3565  friend class ASTStmtWriter;
3566
3567public:
3568  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3569                    Optional<unsigned> NumExpansions)
3570    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3571           Pattern->getObjectKind(), /*TypeDependent=*/true,
3572           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3573           /*ContainsUnexpandedParameterPack=*/false),
3574      EllipsisLoc(EllipsisLoc),
3575      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3576      Pattern(Pattern) { }
3577
3578  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3579
3580  /// \brief Retrieve the pattern of the pack expansion.
3581  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3582
3583  /// \brief Retrieve the pattern of the pack expansion.
3584  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3585
3586  /// \brief Retrieve the location of the ellipsis that describes this pack
3587  /// expansion.
3588  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3589
3590  /// \brief Determine the number of expansions that will be produced when
3591  /// this pack expansion is instantiated, if already known.
3592  Optional<unsigned> getNumExpansions() const {
3593    if (NumExpansions)
3594      return NumExpansions - 1;
3595
3596    return None;
3597  }
3598
3599  SourceLocation getLocStart() const LLVM_READONLY {
3600    return Pattern->getLocStart();
3601  }
3602  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3603
3604  static bool classof(const Stmt *T) {
3605    return T->getStmtClass() == PackExpansionExprClass;
3606  }
3607
3608  // Iterators
3609  child_range children() {
3610    return child_range(&Pattern, &Pattern + 1);
3611  }
3612};
3613
3614inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3615  if (!HasTemplateKWAndArgsInfo) return 0;
3616  if (isa<UnresolvedLookupExpr>(this))
3617    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3618      (cast<UnresolvedLookupExpr>(this) + 1);
3619  else
3620    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3621      (cast<UnresolvedMemberExpr>(this) + 1);
3622}
3623
3624/// \brief Represents an expression that computes the length of a parameter
3625/// pack.
3626///
3627/// \code
3628/// template<typename ...Types>
3629/// struct count {
3630///   static const unsigned value = sizeof...(Types);
3631/// };
3632/// \endcode
3633class SizeOfPackExpr : public Expr {
3634  /// \brief The location of the \c sizeof keyword.
3635  SourceLocation OperatorLoc;
3636
3637  /// \brief The location of the name of the parameter pack.
3638  SourceLocation PackLoc;
3639
3640  /// \brief The location of the closing parenthesis.
3641  SourceLocation RParenLoc;
3642
3643  /// \brief The length of the parameter pack, if known.
3644  ///
3645  /// When this expression is value-dependent, the length of the parameter pack
3646  /// is unknown. When this expression is not value-dependent, the length is
3647  /// known.
3648  unsigned Length;
3649
3650  /// \brief The parameter pack itself.
3651  NamedDecl *Pack;
3652
3653  friend class ASTStmtReader;
3654  friend class ASTStmtWriter;
3655
3656public:
3657  /// \brief Create a value-dependent expression that computes the length of
3658  /// the given parameter pack.
3659  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3660                 SourceLocation PackLoc, SourceLocation RParenLoc)
3661    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3662           /*TypeDependent=*/false, /*ValueDependent=*/true,
3663           /*InstantiationDependent=*/true,
3664           /*ContainsUnexpandedParameterPack=*/false),
3665      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3666      Length(0), Pack(Pack) { }
3667
3668  /// \brief Create an expression that computes the length of
3669  /// the given parameter pack, which is already known.
3670  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3671                 SourceLocation PackLoc, SourceLocation RParenLoc,
3672                 unsigned Length)
3673  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3674         /*TypeDependent=*/false, /*ValueDependent=*/false,
3675         /*InstantiationDependent=*/false,
3676         /*ContainsUnexpandedParameterPack=*/false),
3677    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3678    Length(Length), Pack(Pack) { }
3679
3680  /// \brief Create an empty expression.
3681  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3682
3683  /// \brief Determine the location of the 'sizeof' keyword.
3684  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3685
3686  /// \brief Determine the location of the parameter pack.
3687  SourceLocation getPackLoc() const { return PackLoc; }
3688
3689  /// \brief Determine the location of the right parenthesis.
3690  SourceLocation getRParenLoc() const { return RParenLoc; }
3691
3692  /// \brief Retrieve the parameter pack.
3693  NamedDecl *getPack() const { return Pack; }
3694
3695  /// \brief Retrieve the length of the parameter pack.
3696  ///
3697  /// This routine may only be invoked when the expression is not
3698  /// value-dependent.
3699  unsigned getPackLength() const {
3700    assert(!isValueDependent() &&
3701           "Cannot get the length of a value-dependent pack size expression");
3702    return Length;
3703  }
3704
3705  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3706  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3707
3708  static bool classof(const Stmt *T) {
3709    return T->getStmtClass() == SizeOfPackExprClass;
3710  }
3711
3712  // Iterators
3713  child_range children() { return child_range(); }
3714};
3715
3716/// \brief Represents a reference to a non-type template parameter
3717/// that has been substituted with a template argument.
3718class SubstNonTypeTemplateParmExpr : public Expr {
3719  /// \brief The replaced parameter.
3720  NonTypeTemplateParmDecl *Param;
3721
3722  /// \brief The replacement expression.
3723  Stmt *Replacement;
3724
3725  /// \brief The location of the non-type template parameter reference.
3726  SourceLocation NameLoc;
3727
3728  friend class ASTReader;
3729  friend class ASTStmtReader;
3730  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3731    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3732
3733public:
3734  SubstNonTypeTemplateParmExpr(QualType type,
3735                               ExprValueKind valueKind,
3736                               SourceLocation loc,
3737                               NonTypeTemplateParmDecl *param,
3738                               Expr *replacement)
3739    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3740           replacement->isTypeDependent(), replacement->isValueDependent(),
3741           replacement->isInstantiationDependent(),
3742           replacement->containsUnexpandedParameterPack()),
3743      Param(param), Replacement(replacement), NameLoc(loc) {}
3744
3745  SourceLocation getNameLoc() const { return NameLoc; }
3746  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3747  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3748
3749  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3750
3751  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3752
3753  static bool classof(const Stmt *s) {
3754    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3755  }
3756
3757  // Iterators
3758  child_range children() { return child_range(&Replacement, &Replacement+1); }
3759};
3760
3761/// \brief Represents a reference to a non-type template parameter pack that
3762/// has been substituted with a non-template argument pack.
3763///
3764/// When a pack expansion in the source code contains multiple parameter packs
3765/// and those parameter packs correspond to different levels of template
3766/// parameter lists, this node is used to represent a non-type template
3767/// parameter pack from an outer level, which has already had its argument pack
3768/// substituted but that still lives within a pack expansion that itself
3769/// could not be instantiated. When actually performing a substitution into
3770/// that pack expansion (e.g., when all template parameters have corresponding
3771/// arguments), this type will be replaced with the appropriate underlying
3772/// expression at the current pack substitution index.
3773class SubstNonTypeTemplateParmPackExpr : public Expr {
3774  /// \brief The non-type template parameter pack itself.
3775  NonTypeTemplateParmDecl *Param;
3776
3777  /// \brief A pointer to the set of template arguments that this
3778  /// parameter pack is instantiated with.
3779  const TemplateArgument *Arguments;
3780
3781  /// \brief The number of template arguments in \c Arguments.
3782  unsigned NumArguments;
3783
3784  /// \brief The location of the non-type template parameter pack reference.
3785  SourceLocation NameLoc;
3786
3787  friend class ASTReader;
3788  friend class ASTStmtReader;
3789  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3790    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3791
3792public:
3793  SubstNonTypeTemplateParmPackExpr(QualType T,
3794                                   NonTypeTemplateParmDecl *Param,
3795                                   SourceLocation NameLoc,
3796                                   const TemplateArgument &ArgPack);
3797
3798  /// \brief Retrieve the non-type template parameter pack being substituted.
3799  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3800
3801  /// \brief Retrieve the location of the parameter pack name.
3802  SourceLocation getParameterPackLocation() const { return NameLoc; }
3803
3804  /// \brief Retrieve the template argument pack containing the substituted
3805  /// template arguments.
3806  TemplateArgument getArgumentPack() const;
3807
3808  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3809  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3810
3811  static bool classof(const Stmt *T) {
3812    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3813  }
3814
3815  // Iterators
3816  child_range children() { return child_range(); }
3817};
3818
3819/// \brief Represents a reference to a function parameter pack that has been
3820/// substituted but not yet expanded.
3821///
3822/// When a pack expansion contains multiple parameter packs at different levels,
3823/// this node is used to represent a function parameter pack at an outer level
3824/// which we have already substituted to refer to expanded parameters, but where
3825/// the containing pack expansion cannot yet be expanded.
3826///
3827/// \code
3828/// template<typename...Ts> struct S {
3829///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3830/// };
3831/// template struct S<int, int>;
3832/// \endcode
3833class FunctionParmPackExpr : public Expr {
3834  /// \brief The function parameter pack which was referenced.
3835  ParmVarDecl *ParamPack;
3836
3837  /// \brief The location of the function parameter pack reference.
3838  SourceLocation NameLoc;
3839
3840  /// \brief The number of expansions of this pack.
3841  unsigned NumParameters;
3842
3843  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3844                       SourceLocation NameLoc, unsigned NumParams,
3845                       Decl * const *Params);
3846
3847  friend class ASTReader;
3848  friend class ASTStmtReader;
3849
3850public:
3851  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
3852                                      ParmVarDecl *ParamPack,
3853                                      SourceLocation NameLoc,
3854                                      ArrayRef<Decl *> Params);
3855  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
3856                                           unsigned NumParams);
3857
3858  /// \brief Get the parameter pack which this expression refers to.
3859  ParmVarDecl *getParameterPack() const { return ParamPack; }
3860
3861  /// \brief Get the location of the parameter pack.
3862  SourceLocation getParameterPackLocation() const { return NameLoc; }
3863
3864  /// \brief Iterators over the parameters which the parameter pack expanded
3865  /// into.
3866  typedef ParmVarDecl * const *iterator;
3867  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3868  iterator end() const { return begin() + NumParameters; }
3869
3870  /// \brief Get the number of parameters in this parameter pack.
3871  unsigned getNumExpansions() const { return NumParameters; }
3872
3873  /// \brief Get an expansion of the parameter pack by index.
3874  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3875
3876  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3877  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3878
3879  static bool classof(const Stmt *T) {
3880    return T->getStmtClass() == FunctionParmPackExprClass;
3881  }
3882
3883  child_range children() { return child_range(); }
3884};
3885
3886/// \brief Represents a prvalue temporary that is written into memory so that
3887/// a reference can bind to it.
3888///
3889/// Prvalue expressions are materialized when they need to have an address
3890/// in memory for a reference to bind to. This happens when binding a
3891/// reference to the result of a conversion, e.g.,
3892///
3893/// \code
3894/// const int &r = 1.0;
3895/// \endcode
3896///
3897/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3898/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3899/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3900/// (either an lvalue or an xvalue, depending on the kind of reference binding
3901/// to it), maintaining the invariant that references always bind to glvalues.
3902///
3903/// Reference binding and copy-elision can both extend the lifetime of a
3904/// temporary. When either happens, the expression will also track the
3905/// declaration which is responsible for the lifetime extension.
3906class MaterializeTemporaryExpr : public Expr {
3907public:
3908  /// \brief The temporary-generating expression whose value will be
3909  /// materialized.
3910  Stmt *Temporary;
3911
3912  /// \brief The declaration which lifetime-extended this reference, if any.
3913  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3914  const ValueDecl *ExtendingDecl;
3915
3916  friend class ASTStmtReader;
3917  friend class ASTStmtWriter;
3918
3919public:
3920  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3921                           bool BoundToLvalueReference,
3922                           const ValueDecl *ExtendedBy)
3923    : Expr(MaterializeTemporaryExprClass, T,
3924           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3925           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3926           Temporary->isInstantiationDependent(),
3927           Temporary->containsUnexpandedParameterPack()),
3928      Temporary(Temporary), ExtendingDecl(ExtendedBy) {
3929  }
3930
3931  MaterializeTemporaryExpr(EmptyShell Empty)
3932    : Expr(MaterializeTemporaryExprClass, Empty) { }
3933
3934  /// \brief Retrieve the temporary-generating subexpression whose value will
3935  /// be materialized into a glvalue.
3936  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(Temporary); }
3937
3938  /// \brief Retrieve the storage duration for the materialized temporary.
3939  StorageDuration getStorageDuration() const {
3940    if (!ExtendingDecl)
3941      return SD_FullExpression;
3942    // FIXME: This is not necessarily correct for a temporary materialized
3943    // within a default initializer.
3944    if (isa<FieldDecl>(ExtendingDecl))
3945      return SD_Automatic;
3946    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3947  }
3948
3949  /// \brief Get the declaration which triggered the lifetime-extension of this
3950  /// temporary, if any.
3951  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3952
3953  void setExtendingDecl(const ValueDecl *ExtendedBy) {
3954    ExtendingDecl = ExtendedBy;
3955  }
3956
3957  /// \brief Determine whether this materialized temporary is bound to an
3958  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3959  bool isBoundToLvalueReference() const {
3960    return getValueKind() == VK_LValue;
3961  }
3962
3963  SourceLocation getLocStart() const LLVM_READONLY {
3964    return Temporary->getLocStart();
3965  }
3966  SourceLocation getLocEnd() const LLVM_READONLY {
3967    return Temporary->getLocEnd();
3968  }
3969
3970  static bool classof(const Stmt *T) {
3971    return T->getStmtClass() == MaterializeTemporaryExprClass;
3972  }
3973
3974  // Iterators
3975  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3976};
3977
3978}  // end namespace clang
3979
3980#endif
3981