BBVectorize.cpp revision 263508
1251877Speter//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2251877Speter//
3251877Speter//                     The LLVM Compiler Infrastructure
4251877Speter//
5251877Speter// This file is distributed under the University of Illinois Open Source
6251877Speter// License. See LICENSE.TXT for details.
7251877Speter//
8251877Speter//===----------------------------------------------------------------------===//
9251877Speter//
10251877Speter// This file implements a basic-block vectorization pass. The algorithm was
11251877Speter// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12251877Speter// et al. It works by looking for chains of pairable operations and then
13251877Speter// pairing them.
14251877Speter//
15251877Speter//===----------------------------------------------------------------------===//
16251877Speter
17251877Speter#define BBV_NAME "bb-vectorize"
18251877Speter#define DEBUG_TYPE BBV_NAME
19251877Speter#include "llvm/Transforms/Vectorize.h"
20251877Speter#include "llvm/ADT/DenseMap.h"
21251877Speter#include "llvm/ADT/DenseSet.h"
22251877Speter#include "llvm/ADT/STLExtras.h"
23251877Speter#include "llvm/ADT/SmallSet.h"
24251877Speter#include "llvm/ADT/SmallVector.h"
25251877Speter#include "llvm/ADT/Statistic.h"
26251877Speter#include "llvm/ADT/StringExtras.h"
27251877Speter#include "llvm/Analysis/AliasAnalysis.h"
28251877Speter#include "llvm/Analysis/AliasSetTracker.h"
29251877Speter#include "llvm/Analysis/Dominators.h"
30251877Speter#include "llvm/Analysis/ScalarEvolution.h"
31251877Speter#include "llvm/Analysis/ScalarEvolutionExpressions.h"
32251877Speter#include "llvm/Analysis/TargetTransformInfo.h"
33251877Speter#include "llvm/Analysis/ValueTracking.h"
34251877Speter#include "llvm/IR/Constants.h"
35251877Speter#include "llvm/IR/DataLayout.h"
36251877Speter#include "llvm/IR/DerivedTypes.h"
37251877Speter#include "llvm/IR/Function.h"
38251877Speter#include "llvm/IR/Instructions.h"
39251877Speter#include "llvm/IR/IntrinsicInst.h"
40251877Speter#include "llvm/IR/Intrinsics.h"
41251877Speter#include "llvm/IR/LLVMContext.h"
42251877Speter#include "llvm/IR/Metadata.h"
43251877Speter#include "llvm/IR/Type.h"
44251877Speter#include "llvm/Pass.h"
45251877Speter#include "llvm/Support/CommandLine.h"
46251877Speter#include "llvm/Support/Debug.h"
47251877Speter#include "llvm/Support/ValueHandle.h"
48251877Speter#include "llvm/Support/raw_ostream.h"
49251877Speter#include "llvm/Transforms/Utils/Local.h"
50251877Speter#include <algorithm>
51251877Speterusing namespace llvm;
52251877Speter
53251877Speterstatic cl::opt<bool>
54251877SpeterIgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
55251877Speter  cl::Hidden, cl::desc("Ignore target information"));
56251877Speter
57251877Speterstatic cl::opt<unsigned>
58251877SpeterReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
59251877Speter  cl::desc("The required chain depth for vectorization"));
60251877Speter
61251877Speterstatic cl::opt<bool>
62251877SpeterUseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
63251877Speter  cl::Hidden, cl::desc("Use the chain depth requirement with"
64251877Speter                       " target information"));
65251877Speter
66251877Speterstatic cl::opt<unsigned>
67251877SpeterSearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
68251877Speter  cl::desc("The maximum search distance for instruction pairs"));
69251877Speter
70251877Speterstatic cl::opt<bool>
71251877SpeterSplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
72251877Speter  cl::desc("Replicating one element to a pair breaks the chain"));
73251877Speter
74251877Speterstatic cl::opt<unsigned>
75251877SpeterVectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
76251877Speter  cl::desc("The size of the native vector registers"));
77251877Speter
78251877Speterstatic cl::opt<unsigned>
79251877SpeterMaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
80251877Speter  cl::desc("The maximum number of pairing iterations"));
81251877Speter
82251877Speterstatic cl::opt<bool>
83251877SpeterPow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
84251877Speter  cl::desc("Don't try to form non-2^n-length vectors"));
85251877Speter
86251877Speterstatic cl::opt<unsigned>
87251877SpeterMaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
88251877Speter  cl::desc("The maximum number of pairable instructions per group"));
89251877Speter
90251877Speterstatic cl::opt<unsigned>
91251877SpeterMaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
92251877Speter  cl::desc("The maximum number of candidate instruction pairs per group"));
93251877Speter
94251877Speterstatic cl::opt<unsigned>
95251877SpeterMaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
96251877Speter  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
97251877Speter                       " a full cycle check"));
98251877Speter
99251877Speterstatic cl::opt<bool>
100251877SpeterNoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
101251877Speter  cl::desc("Don't try to vectorize boolean (i1) values"));
102251877Speter
103251877Speterstatic cl::opt<bool>
104251877SpeterNoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
105251877Speter  cl::desc("Don't try to vectorize integer values"));
106251877Speter
107251877Speterstatic cl::opt<bool>
108251877SpeterNoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
109251877Speter  cl::desc("Don't try to vectorize floating-point values"));
110251877Speter
111251877Speter// FIXME: This should default to false once pointer vector support works.
112251877Speterstatic cl::opt<bool>
113251877SpeterNoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
114251877Speter  cl::desc("Don't try to vectorize pointer values"));
115251877Speter
116251877Speterstatic cl::opt<bool>
117251877SpeterNoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
118251877Speter  cl::desc("Don't try to vectorize casting (conversion) operations"));
119251877Speter
120251877Speterstatic cl::opt<bool>
121251877SpeterNoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
122251877Speter  cl::desc("Don't try to vectorize floating-point math intrinsics"));
123251877Speter
124251877Speterstatic cl::opt<bool>
125251877SpeterNoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
126251877Speter  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
127251877Speter
128251877Speterstatic cl::opt<bool>
129251877SpeterNoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
130251877Speter  cl::desc("Don't try to vectorize select instructions"));
131251877Speter
132251877Speterstatic cl::opt<bool>
133251877SpeterNoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
134251877Speter  cl::desc("Don't try to vectorize comparison instructions"));
135251877Speter
136251877Speterstatic cl::opt<bool>
137251877SpeterNoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
138251877Speter  cl::desc("Don't try to vectorize getelementptr instructions"));
139251877Speter
140251877Speterstatic cl::opt<bool>
141251877SpeterNoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
142251877Speter  cl::desc("Don't try to vectorize loads and stores"));
143251877Speter
144251877Speterstatic cl::opt<bool>
145251877SpeterAlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
146251877Speter  cl::desc("Only generate aligned loads and stores"));
147251877Speter
148251877Speterstatic cl::opt<bool>
149251877SpeterNoMemOpBoost("bb-vectorize-no-mem-op-boost",
150251877Speter  cl::init(false), cl::Hidden,
151253895Speter  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
152253895Speter
153253895Speterstatic cl::opt<bool>
154253895SpeterFastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
155253895Speter  cl::desc("Use a fast instruction dependency analysis"));
156253895Speter
157253895Speter#ifndef NDEBUG
158253895Speterstatic cl::opt<bool>
159251877SpeterDebugInstructionExamination("bb-vectorize-debug-instruction-examination",
160251877Speter  cl::init(false), cl::Hidden,
161251877Speter  cl::desc("When debugging is enabled, output information on the"
162251877Speter           " instruction-examination process"));
163251877Speterstatic cl::opt<bool>
164251877SpeterDebugCandidateSelection("bb-vectorize-debug-candidate-selection",
165251877Speter  cl::init(false), cl::Hidden,
166251877Speter  cl::desc("When debugging is enabled, output information on the"
167251877Speter           " candidate-selection process"));
168251877Speterstatic cl::opt<bool>
169251877SpeterDebugPairSelection("bb-vectorize-debug-pair-selection",
170251877Speter  cl::init(false), cl::Hidden,
171251877Speter  cl::desc("When debugging is enabled, output information on the"
172251877Speter           " pair-selection process"));
173251877Speterstatic cl::opt<bool>
174251877SpeterDebugCycleCheck("bb-vectorize-debug-cycle-check",
175251877Speter  cl::init(false), cl::Hidden,
176251877Speter  cl::desc("When debugging is enabled, output information on the"
177251877Speter           " cycle-checking process"));
178251877Speter
179251877Speterstatic cl::opt<bool>
180251877SpeterPrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
181251877Speter  cl::init(false), cl::Hidden,
182251877Speter  cl::desc("When debugging is enabled, dump the basic block after"
183251877Speter           " every pair is fused"));
184251877Speter#endif
185251877Speter
186251877SpeterSTATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
187251877Speter
188251877Speternamespace {
189251877Speter  struct BBVectorize : public BasicBlockPass {
190251877Speter    static char ID; // Pass identification, replacement for typeid
191251877Speter
192251877Speter    const VectorizeConfig Config;
193251877Speter
194251877Speter    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
195251877Speter      : BasicBlockPass(ID), Config(C) {
196251877Speter      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
197251877Speter    }
198251877Speter
199251877Speter    BBVectorize(Pass *P, const VectorizeConfig &C)
200251877Speter      : BasicBlockPass(ID), Config(C) {
201251877Speter      AA = &P->getAnalysis<AliasAnalysis>();
202251877Speter      DT = &P->getAnalysis<DominatorTree>();
203251877Speter      SE = &P->getAnalysis<ScalarEvolution>();
204251877Speter      TD = P->getAnalysisIfAvailable<DataLayout>();
205251877Speter      TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
206251877Speter    }
207251877Speter
208251877Speter    typedef std::pair<Value *, Value *> ValuePair;
209251877Speter    typedef std::pair<ValuePair, int> ValuePairWithCost;
210251877Speter    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
211251877Speter    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
212251877Speter    typedef std::pair<VPPair, unsigned> VPPairWithType;
213251877Speter
214251877Speter    AliasAnalysis *AA;
215251877Speter    DominatorTree *DT;
216251877Speter    ScalarEvolution *SE;
217251877Speter    DataLayout *TD;
218251877Speter    const TargetTransformInfo *TTI;
219251877Speter
220251877Speter    // FIXME: const correct?
221251877Speter
222251877Speter    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
223251877Speter
224251877Speter    bool getCandidatePairs(BasicBlock &BB,
225251877Speter                       BasicBlock::iterator &Start,
226251877Speter                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
227251877Speter                       DenseSet<ValuePair> &FixedOrderPairs,
228251877Speter                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
229251877Speter                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
230251877Speter
231251877Speter    // FIXME: The current implementation does not account for pairs that
232251877Speter    // are connected in multiple ways. For example:
233251877Speter    //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
234251877Speter    enum PairConnectionType {
235251877Speter      PairConnectionDirect,
236251877Speter      PairConnectionSwap,
237251877Speter      PairConnectionSplat
238251877Speter    };
239251877Speter
240251877Speter    void computeConnectedPairs(
241251877Speter             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
242251877Speter             DenseSet<ValuePair> &CandidatePairsSet,
243251877Speter             std::vector<Value *> &PairableInsts,
244251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
245251877Speter             DenseMap<VPPair, unsigned> &PairConnectionTypes);
246251877Speter
247251877Speter    void buildDepMap(BasicBlock &BB,
248251877Speter             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
249251877Speter             std::vector<Value *> &PairableInsts,
250251877Speter             DenseSet<ValuePair> &PairableInstUsers);
251251877Speter
252251877Speter    void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
253251877Speter             DenseSet<ValuePair> &CandidatePairsSet,
254251877Speter             DenseMap<ValuePair, int> &CandidatePairCostSavings,
255251877Speter             std::vector<Value *> &PairableInsts,
256251877Speter             DenseSet<ValuePair> &FixedOrderPairs,
257251877Speter             DenseMap<VPPair, unsigned> &PairConnectionTypes,
258251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
259251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
260251877Speter             DenseSet<ValuePair> &PairableInstUsers,
261251877Speter             DenseMap<Value *, Value *>& ChosenPairs);
262251877Speter
263251877Speter    void fuseChosenPairs(BasicBlock &BB,
264251877Speter             std::vector<Value *> &PairableInsts,
265251877Speter             DenseMap<Value *, Value *>& ChosenPairs,
266251877Speter             DenseSet<ValuePair> &FixedOrderPairs,
267251877Speter             DenseMap<VPPair, unsigned> &PairConnectionTypes,
268251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
269251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
270251877Speter
271251877Speter
272251877Speter    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
273251877Speter
274251877Speter    bool areInstsCompatible(Instruction *I, Instruction *J,
275251877Speter                       bool IsSimpleLoadStore, bool NonPow2Len,
276251877Speter                       int &CostSavings, int &FixedOrder);
277251877Speter
278251877Speter    bool trackUsesOfI(DenseSet<Value *> &Users,
279251877Speter                      AliasSetTracker &WriteSet, Instruction *I,
280251877Speter                      Instruction *J, bool UpdateUsers = true,
281251877Speter                      DenseSet<ValuePair> *LoadMoveSetPairs = 0);
282251877Speter
283251877Speter  void computePairsConnectedTo(
284251877Speter             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
285251877Speter             DenseSet<ValuePair> &CandidatePairsSet,
286251877Speter             std::vector<Value *> &PairableInsts,
287251877Speter             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
288251877Speter             DenseMap<VPPair, unsigned> &PairConnectionTypes,
289251877Speter             ValuePair P);
290251877Speter
291251877Speter    bool pairsConflict(ValuePair P, ValuePair Q,
292251877Speter             DenseSet<ValuePair> &PairableInstUsers,
293251877Speter             DenseMap<ValuePair, std::vector<ValuePair> >
294251877Speter               *PairableInstUserMap = 0,
295             DenseSet<VPPair> *PairableInstUserPairSet = 0);
296
297    bool pairWillFormCycle(ValuePair P,
298             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
299             DenseSet<ValuePair> &CurrentPairs);
300
301    void pruneDAGFor(
302             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
303             std::vector<Value *> &PairableInsts,
304             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
305             DenseSet<ValuePair> &PairableInstUsers,
306             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
307             DenseSet<VPPair> &PairableInstUserPairSet,
308             DenseMap<Value *, Value *> &ChosenPairs,
309             DenseMap<ValuePair, size_t> &DAG,
310             DenseSet<ValuePair> &PrunedDAG, ValuePair J,
311             bool UseCycleCheck);
312
313    void buildInitialDAGFor(
314             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
315             DenseSet<ValuePair> &CandidatePairsSet,
316             std::vector<Value *> &PairableInsts,
317             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
318             DenseSet<ValuePair> &PairableInstUsers,
319             DenseMap<Value *, Value *> &ChosenPairs,
320             DenseMap<ValuePair, size_t> &DAG, ValuePair J);
321
322    void findBestDAGFor(
323             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
324             DenseSet<ValuePair> &CandidatePairsSet,
325             DenseMap<ValuePair, int> &CandidatePairCostSavings,
326             std::vector<Value *> &PairableInsts,
327             DenseSet<ValuePair> &FixedOrderPairs,
328             DenseMap<VPPair, unsigned> &PairConnectionTypes,
329             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
330             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
331             DenseSet<ValuePair> &PairableInstUsers,
332             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
333             DenseSet<VPPair> &PairableInstUserPairSet,
334             DenseMap<Value *, Value *> &ChosenPairs,
335             DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
336             int &BestEffSize, Value *II, std::vector<Value *>&JJ,
337             bool UseCycleCheck);
338
339    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
340                     Instruction *J, unsigned o);
341
342    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
343                     unsigned MaskOffset, unsigned NumInElem,
344                     unsigned NumInElem1, unsigned IdxOffset,
345                     std::vector<Constant*> &Mask);
346
347    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
348                     Instruction *J);
349
350    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
351                       unsigned o, Value *&LOp, unsigned numElemL,
352                       Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
353                       unsigned IdxOff = 0);
354
355    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
356                     Instruction *J, unsigned o, bool IBeforeJ);
357
358    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
359                     Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
360                     bool IBeforeJ);
361
362    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
363                     Instruction *J, Instruction *K,
364                     Instruction *&InsertionPt, Instruction *&K1,
365                     Instruction *&K2);
366
367    void collectPairLoadMoveSet(BasicBlock &BB,
368                     DenseMap<Value *, Value *> &ChosenPairs,
369                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
370                     DenseSet<ValuePair> &LoadMoveSetPairs,
371                     Instruction *I);
372
373    void collectLoadMoveSet(BasicBlock &BB,
374                     std::vector<Value *> &PairableInsts,
375                     DenseMap<Value *, Value *> &ChosenPairs,
376                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
377                     DenseSet<ValuePair> &LoadMoveSetPairs);
378
379    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
380                     DenseSet<ValuePair> &LoadMoveSetPairs,
381                     Instruction *I, Instruction *J);
382
383    void moveUsesOfIAfterJ(BasicBlock &BB,
384                     DenseSet<ValuePair> &LoadMoveSetPairs,
385                     Instruction *&InsertionPt,
386                     Instruction *I, Instruction *J);
387
388    void combineMetadata(Instruction *K, const Instruction *J);
389
390    bool vectorizeBB(BasicBlock &BB) {
391      if (!DT->isReachableFromEntry(&BB)) {
392        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
393              " in " << BB.getParent()->getName() << "\n");
394        return false;
395      }
396
397      DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
398
399      bool changed = false;
400      // Iterate a sufficient number of times to merge types of size 1 bit,
401      // then 2 bits, then 4, etc. up to half of the target vector width of the
402      // target vector register.
403      unsigned n = 1;
404      for (unsigned v = 2;
405           (TTI || v <= Config.VectorBits) &&
406           (!Config.MaxIter || n <= Config.MaxIter);
407           v *= 2, ++n) {
408        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
409              " for " << BB.getName() << " in " <<
410              BB.getParent()->getName() << "...\n");
411        if (vectorizePairs(BB))
412          changed = true;
413        else
414          break;
415      }
416
417      if (changed && !Pow2LenOnly) {
418        ++n;
419        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
420          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
421                n << " for " << BB.getName() << " in " <<
422                BB.getParent()->getName() << "...\n");
423          if (!vectorizePairs(BB, true)) break;
424        }
425      }
426
427      DEBUG(dbgs() << "BBV: done!\n");
428      return changed;
429    }
430
431    virtual bool runOnBasicBlock(BasicBlock &BB) {
432      AA = &getAnalysis<AliasAnalysis>();
433      DT = &getAnalysis<DominatorTree>();
434      SE = &getAnalysis<ScalarEvolution>();
435      TD = getAnalysisIfAvailable<DataLayout>();
436      TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
437
438      return vectorizeBB(BB);
439    }
440
441    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
442      BasicBlockPass::getAnalysisUsage(AU);
443      AU.addRequired<AliasAnalysis>();
444      AU.addRequired<DominatorTree>();
445      AU.addRequired<ScalarEvolution>();
446      AU.addRequired<TargetTransformInfo>();
447      AU.addPreserved<AliasAnalysis>();
448      AU.addPreserved<DominatorTree>();
449      AU.addPreserved<ScalarEvolution>();
450      AU.setPreservesCFG();
451    }
452
453    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
454      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
455             "Cannot form vector from incompatible scalar types");
456      Type *STy = ElemTy->getScalarType();
457
458      unsigned numElem;
459      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
460        numElem = VTy->getNumElements();
461      } else {
462        numElem = 1;
463      }
464
465      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
466        numElem += VTy->getNumElements();
467      } else {
468        numElem += 1;
469      }
470
471      return VectorType::get(STy, numElem);
472    }
473
474    static inline void getInstructionTypes(Instruction *I,
475                                           Type *&T1, Type *&T2) {
476      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
477        // For stores, it is the value type, not the pointer type that matters
478        // because the value is what will come from a vector register.
479
480        Value *IVal = SI->getValueOperand();
481        T1 = IVal->getType();
482      } else {
483        T1 = I->getType();
484      }
485
486      if (CastInst *CI = dyn_cast<CastInst>(I))
487        T2 = CI->getSrcTy();
488      else
489        T2 = T1;
490
491      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
492        T2 = SI->getCondition()->getType();
493      } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
494        T2 = SI->getOperand(0)->getType();
495      } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
496        T2 = CI->getOperand(0)->getType();
497      }
498    }
499
500    // Returns the weight associated with the provided value. A chain of
501    // candidate pairs has a length given by the sum of the weights of its
502    // members (one weight per pair; the weight of each member of the pair
503    // is assumed to be the same). This length is then compared to the
504    // chain-length threshold to determine if a given chain is significant
505    // enough to be vectorized. The length is also used in comparing
506    // candidate chains where longer chains are considered to be better.
507    // Note: when this function returns 0, the resulting instructions are
508    // not actually fused.
509    inline size_t getDepthFactor(Value *V) {
510      // InsertElement and ExtractElement have a depth factor of zero. This is
511      // for two reasons: First, they cannot be usefully fused. Second, because
512      // the pass generates a lot of these, they can confuse the simple metric
513      // used to compare the dags in the next iteration. Thus, giving them a
514      // weight of zero allows the pass to essentially ignore them in
515      // subsequent iterations when looking for vectorization opportunities
516      // while still tracking dependency chains that flow through those
517      // instructions.
518      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
519        return 0;
520
521      // Give a load or store half of the required depth so that load/store
522      // pairs will vectorize.
523      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
524        return Config.ReqChainDepth/2;
525
526      return 1;
527    }
528
529    // Returns the cost of the provided instruction using TTI.
530    // This does not handle loads and stores.
531    unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
532      switch (Opcode) {
533      default: break;
534      case Instruction::GetElementPtr:
535        // We mark this instruction as zero-cost because scalar GEPs are usually
536        // lowered to the instruction addressing mode. At the moment we don't
537        // generate vector GEPs.
538        return 0;
539      case Instruction::Br:
540        return TTI->getCFInstrCost(Opcode);
541      case Instruction::PHI:
542        return 0;
543      case Instruction::Add:
544      case Instruction::FAdd:
545      case Instruction::Sub:
546      case Instruction::FSub:
547      case Instruction::Mul:
548      case Instruction::FMul:
549      case Instruction::UDiv:
550      case Instruction::SDiv:
551      case Instruction::FDiv:
552      case Instruction::URem:
553      case Instruction::SRem:
554      case Instruction::FRem:
555      case Instruction::Shl:
556      case Instruction::LShr:
557      case Instruction::AShr:
558      case Instruction::And:
559      case Instruction::Or:
560      case Instruction::Xor:
561        return TTI->getArithmeticInstrCost(Opcode, T1);
562      case Instruction::Select:
563      case Instruction::ICmp:
564      case Instruction::FCmp:
565        return TTI->getCmpSelInstrCost(Opcode, T1, T2);
566      case Instruction::ZExt:
567      case Instruction::SExt:
568      case Instruction::FPToUI:
569      case Instruction::FPToSI:
570      case Instruction::FPExt:
571      case Instruction::PtrToInt:
572      case Instruction::IntToPtr:
573      case Instruction::SIToFP:
574      case Instruction::UIToFP:
575      case Instruction::Trunc:
576      case Instruction::FPTrunc:
577      case Instruction::BitCast:
578      case Instruction::ShuffleVector:
579        return TTI->getCastInstrCost(Opcode, T1, T2);
580      }
581
582      return 1;
583    }
584
585    // This determines the relative offset of two loads or stores, returning
586    // true if the offset could be determined to be some constant value.
587    // For example, if OffsetInElmts == 1, then J accesses the memory directly
588    // after I; if OffsetInElmts == -1 then I accesses the memory
589    // directly after J.
590    bool getPairPtrInfo(Instruction *I, Instruction *J,
591        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
592        unsigned &IAddressSpace, unsigned &JAddressSpace,
593        int64_t &OffsetInElmts, bool ComputeOffset = true) {
594      OffsetInElmts = 0;
595      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
596        LoadInst *LJ = cast<LoadInst>(J);
597        IPtr = LI->getPointerOperand();
598        JPtr = LJ->getPointerOperand();
599        IAlignment = LI->getAlignment();
600        JAlignment = LJ->getAlignment();
601        IAddressSpace = LI->getPointerAddressSpace();
602        JAddressSpace = LJ->getPointerAddressSpace();
603      } else {
604        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
605        IPtr = SI->getPointerOperand();
606        JPtr = SJ->getPointerOperand();
607        IAlignment = SI->getAlignment();
608        JAlignment = SJ->getAlignment();
609        IAddressSpace = SI->getPointerAddressSpace();
610        JAddressSpace = SJ->getPointerAddressSpace();
611      }
612
613      if (!ComputeOffset)
614        return true;
615
616      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
617      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
618
619      // If this is a trivial offset, then we'll get something like
620      // 1*sizeof(type). With target data, which we need anyway, this will get
621      // constant folded into a number.
622      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
623      if (const SCEVConstant *ConstOffSCEV =
624            dyn_cast<SCEVConstant>(OffsetSCEV)) {
625        ConstantInt *IntOff = ConstOffSCEV->getValue();
626        int64_t Offset = IntOff->getSExtValue();
627
628        Type *VTy = IPtr->getType()->getPointerElementType();
629        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
630
631        Type *VTy2 = JPtr->getType()->getPointerElementType();
632        if (VTy != VTy2 && Offset < 0) {
633          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
634          OffsetInElmts = Offset/VTy2TSS;
635          return (abs64(Offset) % VTy2TSS) == 0;
636        }
637
638        OffsetInElmts = Offset/VTyTSS;
639        return (abs64(Offset) % VTyTSS) == 0;
640      }
641
642      return false;
643    }
644
645    // Returns true if the provided CallInst represents an intrinsic that can
646    // be vectorized.
647    bool isVectorizableIntrinsic(CallInst* I) {
648      Function *F = I->getCalledFunction();
649      if (!F) return false;
650
651      Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
652      if (!IID) return false;
653
654      switch(IID) {
655      default:
656        return false;
657      case Intrinsic::sqrt:
658      case Intrinsic::powi:
659      case Intrinsic::sin:
660      case Intrinsic::cos:
661      case Intrinsic::log:
662      case Intrinsic::log2:
663      case Intrinsic::log10:
664      case Intrinsic::exp:
665      case Intrinsic::exp2:
666      case Intrinsic::pow:
667        return Config.VectorizeMath;
668      case Intrinsic::fma:
669      case Intrinsic::fmuladd:
670        return Config.VectorizeFMA;
671      }
672    }
673
674    bool isPureIEChain(InsertElementInst *IE) {
675      InsertElementInst *IENext = IE;
676      do {
677        if (!isa<UndefValue>(IENext->getOperand(0)) &&
678            !isa<InsertElementInst>(IENext->getOperand(0))) {
679          return false;
680        }
681      } while ((IENext =
682                 dyn_cast<InsertElementInst>(IENext->getOperand(0))));
683
684      return true;
685    }
686  };
687
688  // This function implements one vectorization iteration on the provided
689  // basic block. It returns true if the block is changed.
690  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
691    bool ShouldContinue;
692    BasicBlock::iterator Start = BB.getFirstInsertionPt();
693
694    std::vector<Value *> AllPairableInsts;
695    DenseMap<Value *, Value *> AllChosenPairs;
696    DenseSet<ValuePair> AllFixedOrderPairs;
697    DenseMap<VPPair, unsigned> AllPairConnectionTypes;
698    DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
699                                                 AllConnectedPairDeps;
700
701    do {
702      std::vector<Value *> PairableInsts;
703      DenseMap<Value *, std::vector<Value *> > CandidatePairs;
704      DenseSet<ValuePair> FixedOrderPairs;
705      DenseMap<ValuePair, int> CandidatePairCostSavings;
706      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
707                                         FixedOrderPairs,
708                                         CandidatePairCostSavings,
709                                         PairableInsts, NonPow2Len);
710      if (PairableInsts.empty()) continue;
711
712      // Build the candidate pair set for faster lookups.
713      DenseSet<ValuePair> CandidatePairsSet;
714      for (DenseMap<Value *, std::vector<Value *> >::iterator I =
715           CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
716        for (std::vector<Value *>::iterator J = I->second.begin(),
717             JE = I->second.end(); J != JE; ++J)
718          CandidatePairsSet.insert(ValuePair(I->first, *J));
719
720      // Now we have a map of all of the pairable instructions and we need to
721      // select the best possible pairing. A good pairing is one such that the
722      // users of the pair are also paired. This defines a (directed) forest
723      // over the pairs such that two pairs are connected iff the second pair
724      // uses the first.
725
726      // Note that it only matters that both members of the second pair use some
727      // element of the first pair (to allow for splatting).
728
729      DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
730                                                   ConnectedPairDeps;
731      DenseMap<VPPair, unsigned> PairConnectionTypes;
732      computeConnectedPairs(CandidatePairs, CandidatePairsSet,
733                            PairableInsts, ConnectedPairs, PairConnectionTypes);
734      if (ConnectedPairs.empty()) continue;
735
736      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
737           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
738           I != IE; ++I)
739        for (std::vector<ValuePair>::iterator J = I->second.begin(),
740             JE = I->second.end(); J != JE; ++J)
741          ConnectedPairDeps[*J].push_back(I->first);
742
743      // Build the pairable-instruction dependency map
744      DenseSet<ValuePair> PairableInstUsers;
745      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
746
747      // There is now a graph of the connected pairs. For each variable, pick
748      // the pairing with the largest dag meeting the depth requirement on at
749      // least one branch. Then select all pairings that are part of that dag
750      // and remove them from the list of available pairings and pairable
751      // variables.
752
753      DenseMap<Value *, Value *> ChosenPairs;
754      choosePairs(CandidatePairs, CandidatePairsSet,
755        CandidatePairCostSavings,
756        PairableInsts, FixedOrderPairs, PairConnectionTypes,
757        ConnectedPairs, ConnectedPairDeps,
758        PairableInstUsers, ChosenPairs);
759
760      if (ChosenPairs.empty()) continue;
761      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
762                              PairableInsts.end());
763      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
764
765      // Only for the chosen pairs, propagate information on fixed-order pairs,
766      // pair connections, and their types to the data structures used by the
767      // pair fusion procedures.
768      for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
769           IE = ChosenPairs.end(); I != IE; ++I) {
770        if (FixedOrderPairs.count(*I))
771          AllFixedOrderPairs.insert(*I);
772        else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
773          AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
774
775        for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
776             J != IE; ++J) {
777          DenseMap<VPPair, unsigned>::iterator K =
778            PairConnectionTypes.find(VPPair(*I, *J));
779          if (K != PairConnectionTypes.end()) {
780            AllPairConnectionTypes.insert(*K);
781          } else {
782            K = PairConnectionTypes.find(VPPair(*J, *I));
783            if (K != PairConnectionTypes.end())
784              AllPairConnectionTypes.insert(*K);
785          }
786        }
787      }
788
789      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
790           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
791           I != IE; ++I)
792        for (std::vector<ValuePair>::iterator J = I->second.begin(),
793          JE = I->second.end(); J != JE; ++J)
794          if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
795            AllConnectedPairs[I->first].push_back(*J);
796            AllConnectedPairDeps[*J].push_back(I->first);
797          }
798    } while (ShouldContinue);
799
800    if (AllChosenPairs.empty()) return false;
801    NumFusedOps += AllChosenPairs.size();
802
803    // A set of pairs has now been selected. It is now necessary to replace the
804    // paired instructions with vector instructions. For this procedure each
805    // operand must be replaced with a vector operand. This vector is formed
806    // by using build_vector on the old operands. The replaced values are then
807    // replaced with a vector_extract on the result.  Subsequent optimization
808    // passes should coalesce the build/extract combinations.
809
810    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
811                    AllPairConnectionTypes,
812                    AllConnectedPairs, AllConnectedPairDeps);
813
814    // It is important to cleanup here so that future iterations of this
815    // function have less work to do.
816    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
817    return true;
818  }
819
820  // This function returns true if the provided instruction is capable of being
821  // fused into a vector instruction. This determination is based only on the
822  // type and other attributes of the instruction.
823  bool BBVectorize::isInstVectorizable(Instruction *I,
824                                         bool &IsSimpleLoadStore) {
825    IsSimpleLoadStore = false;
826
827    if (CallInst *C = dyn_cast<CallInst>(I)) {
828      if (!isVectorizableIntrinsic(C))
829        return false;
830    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
831      // Vectorize simple loads if possbile:
832      IsSimpleLoadStore = L->isSimple();
833      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
834        return false;
835    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
836      // Vectorize simple stores if possbile:
837      IsSimpleLoadStore = S->isSimple();
838      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
839        return false;
840    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
841      // We can vectorize casts, but not casts of pointer types, etc.
842      if (!Config.VectorizeCasts)
843        return false;
844
845      Type *SrcTy = C->getSrcTy();
846      if (!SrcTy->isSingleValueType())
847        return false;
848
849      Type *DestTy = C->getDestTy();
850      if (!DestTy->isSingleValueType())
851        return false;
852    } else if (isa<SelectInst>(I)) {
853      if (!Config.VectorizeSelect)
854        return false;
855    } else if (isa<CmpInst>(I)) {
856      if (!Config.VectorizeCmp)
857        return false;
858    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
859      if (!Config.VectorizeGEP)
860        return false;
861
862      // Currently, vector GEPs exist only with one index.
863      if (G->getNumIndices() != 1)
864        return false;
865    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
866        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
867      return false;
868    }
869
870    // We can't vectorize memory operations without target data
871    if (TD == 0 && IsSimpleLoadStore)
872      return false;
873
874    Type *T1, *T2;
875    getInstructionTypes(I, T1, T2);
876
877    // Not every type can be vectorized...
878    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
879        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
880      return false;
881
882    if (T1->getScalarSizeInBits() == 1) {
883      if (!Config.VectorizeBools)
884        return false;
885    } else {
886      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
887        return false;
888    }
889
890    if (T2->getScalarSizeInBits() == 1) {
891      if (!Config.VectorizeBools)
892        return false;
893    } else {
894      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
895        return false;
896    }
897
898    if (!Config.VectorizeFloats
899        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
900      return false;
901
902    // Don't vectorize target-specific types.
903    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
904      return false;
905    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
906      return false;
907
908    if ((!Config.VectorizePointers || TD == 0) &&
909        (T1->getScalarType()->isPointerTy() ||
910         T2->getScalarType()->isPointerTy()))
911      return false;
912
913    if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
914                 T2->getPrimitiveSizeInBits() >= Config.VectorBits))
915      return false;
916
917    return true;
918  }
919
920  // This function returns true if the two provided instructions are compatible
921  // (meaning that they can be fused into a vector instruction). This assumes
922  // that I has already been determined to be vectorizable and that J is not
923  // in the use dag of I.
924  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
925                       bool IsSimpleLoadStore, bool NonPow2Len,
926                       int &CostSavings, int &FixedOrder) {
927    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
928                     " <-> " << *J << "\n");
929
930    CostSavings = 0;
931    FixedOrder = 0;
932
933    // Loads and stores can be merged if they have different alignments,
934    // but are otherwise the same.
935    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
936                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
937      return false;
938
939    Type *IT1, *IT2, *JT1, *JT2;
940    getInstructionTypes(I, IT1, IT2);
941    getInstructionTypes(J, JT1, JT2);
942    unsigned MaxTypeBits = std::max(
943      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
944      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
945    if (!TTI && MaxTypeBits > Config.VectorBits)
946      return false;
947
948    // FIXME: handle addsub-type operations!
949
950    if (IsSimpleLoadStore) {
951      Value *IPtr, *JPtr;
952      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
953      int64_t OffsetInElmts = 0;
954      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
955            IAddressSpace, JAddressSpace,
956            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
957        FixedOrder = (int) OffsetInElmts;
958        unsigned BottomAlignment = IAlignment;
959        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
960
961        Type *aTypeI = isa<StoreInst>(I) ?
962          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
963        Type *aTypeJ = isa<StoreInst>(J) ?
964          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
965        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
966
967        if (Config.AlignedOnly) {
968          // An aligned load or store is possible only if the instruction
969          // with the lower offset has an alignment suitable for the
970          // vector type.
971
972          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
973          if (BottomAlignment < VecAlignment)
974            return false;
975        }
976
977        if (TTI) {
978          unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
979                                                IAlignment, IAddressSpace);
980          unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
981                                                JAlignment, JAddressSpace);
982          unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
983                                                BottomAlignment,
984                                                IAddressSpace);
985
986          ICost += TTI->getAddressComputationCost(aTypeI);
987          JCost += TTI->getAddressComputationCost(aTypeJ);
988          VCost += TTI->getAddressComputationCost(VType);
989
990          if (VCost > ICost + JCost)
991            return false;
992
993          // We don't want to fuse to a type that will be split, even
994          // if the two input types will also be split and there is no other
995          // associated cost.
996          unsigned VParts = TTI->getNumberOfParts(VType);
997          if (VParts > 1)
998            return false;
999          else if (!VParts && VCost == ICost + JCost)
1000            return false;
1001
1002          CostSavings = ICost + JCost - VCost;
1003        }
1004      } else {
1005        return false;
1006      }
1007    } else if (TTI) {
1008      unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
1009      unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
1010      Type *VT1 = getVecTypeForPair(IT1, JT1),
1011           *VT2 = getVecTypeForPair(IT2, JT2);
1012
1013      // Note that this procedure is incorrect for insert and extract element
1014      // instructions (because combining these often results in a shuffle),
1015      // but this cost is ignored (because insert and extract element
1016      // instructions are assigned a zero depth factor and are not really
1017      // fused in general).
1018      unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
1019
1020      if (VCost > ICost + JCost)
1021        return false;
1022
1023      // We don't want to fuse to a type that will be split, even
1024      // if the two input types will also be split and there is no other
1025      // associated cost.
1026      unsigned VParts1 = TTI->getNumberOfParts(VT1),
1027               VParts2 = TTI->getNumberOfParts(VT2);
1028      if (VParts1 > 1 || VParts2 > 1)
1029        return false;
1030      else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
1031        return false;
1032
1033      CostSavings = ICost + JCost - VCost;
1034    }
1035
1036    // The powi intrinsic is special because only the first argument is
1037    // vectorized, the second arguments must be equal.
1038    CallInst *CI = dyn_cast<CallInst>(I);
1039    Function *FI;
1040    if (CI && (FI = CI->getCalledFunction())) {
1041      Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
1042      if (IID == Intrinsic::powi) {
1043        Value *A1I = CI->getArgOperand(1),
1044              *A1J = cast<CallInst>(J)->getArgOperand(1);
1045        const SCEV *A1ISCEV = SE->getSCEV(A1I),
1046                   *A1JSCEV = SE->getSCEV(A1J);
1047        return (A1ISCEV == A1JSCEV);
1048      }
1049
1050      if (IID && TTI) {
1051        SmallVector<Type*, 4> Tys;
1052        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
1053          Tys.push_back(CI->getArgOperand(i)->getType());
1054        unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
1055
1056        Tys.clear();
1057        CallInst *CJ = cast<CallInst>(J);
1058        for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
1059          Tys.push_back(CJ->getArgOperand(i)->getType());
1060        unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
1061
1062        Tys.clear();
1063        assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
1064               "Intrinsic argument counts differ");
1065        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
1066          if (IID == Intrinsic::powi && i == 1)
1067            Tys.push_back(CI->getArgOperand(i)->getType());
1068          else
1069            Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
1070                                            CJ->getArgOperand(i)->getType()));
1071        }
1072
1073        Type *RetTy = getVecTypeForPair(IT1, JT1);
1074        unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
1075
1076        if (VCost > ICost + JCost)
1077          return false;
1078
1079        // We don't want to fuse to a type that will be split, even
1080        // if the two input types will also be split and there is no other
1081        // associated cost.
1082        unsigned RetParts = TTI->getNumberOfParts(RetTy);
1083        if (RetParts > 1)
1084          return false;
1085        else if (!RetParts && VCost == ICost + JCost)
1086          return false;
1087
1088        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
1089          if (!Tys[i]->isVectorTy())
1090            continue;
1091
1092          unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
1093          if (NumParts > 1)
1094            return false;
1095          else if (!NumParts && VCost == ICost + JCost)
1096            return false;
1097        }
1098
1099        CostSavings = ICost + JCost - VCost;
1100      }
1101    }
1102
1103    return true;
1104  }
1105
1106  // Figure out whether or not J uses I and update the users and write-set
1107  // structures associated with I. Specifically, Users represents the set of
1108  // instructions that depend on I. WriteSet represents the set
1109  // of memory locations that are dependent on I. If UpdateUsers is true,
1110  // and J uses I, then Users is updated to contain J and WriteSet is updated
1111  // to contain any memory locations to which J writes. The function returns
1112  // true if J uses I. By default, alias analysis is used to determine
1113  // whether J reads from memory that overlaps with a location in WriteSet.
1114  // If LoadMoveSet is not null, then it is a previously-computed map
1115  // where the key is the memory-based user instruction and the value is
1116  // the instruction to be compared with I. So, if LoadMoveSet is provided,
1117  // then the alias analysis is not used. This is necessary because this
1118  // function is called during the process of moving instructions during
1119  // vectorization and the results of the alias analysis are not stable during
1120  // that process.
1121  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
1122                       AliasSetTracker &WriteSet, Instruction *I,
1123                       Instruction *J, bool UpdateUsers,
1124                       DenseSet<ValuePair> *LoadMoveSetPairs) {
1125    bool UsesI = false;
1126
1127    // This instruction may already be marked as a user due, for example, to
1128    // being a member of a selected pair.
1129    if (Users.count(J))
1130      UsesI = true;
1131
1132    if (!UsesI)
1133      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
1134           JU != JE; ++JU) {
1135        Value *V = *JU;
1136        if (I == V || Users.count(V)) {
1137          UsesI = true;
1138          break;
1139        }
1140      }
1141    if (!UsesI && J->mayReadFromMemory()) {
1142      if (LoadMoveSetPairs) {
1143        UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
1144      } else {
1145        for (AliasSetTracker::iterator W = WriteSet.begin(),
1146             WE = WriteSet.end(); W != WE; ++W) {
1147          if (W->aliasesUnknownInst(J, *AA)) {
1148            UsesI = true;
1149            break;
1150          }
1151        }
1152      }
1153    }
1154
1155    if (UsesI && UpdateUsers) {
1156      if (J->mayWriteToMemory()) WriteSet.add(J);
1157      Users.insert(J);
1158    }
1159
1160    return UsesI;
1161  }
1162
1163  // This function iterates over all instruction pairs in the provided
1164  // basic block and collects all candidate pairs for vectorization.
1165  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
1166                       BasicBlock::iterator &Start,
1167                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1168                       DenseSet<ValuePair> &FixedOrderPairs,
1169                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
1170                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
1171    size_t TotalPairs = 0;
1172    BasicBlock::iterator E = BB.end();
1173    if (Start == E) return false;
1174
1175    bool ShouldContinue = false, IAfterStart = false;
1176    for (BasicBlock::iterator I = Start++; I != E; ++I) {
1177      if (I == Start) IAfterStart = true;
1178
1179      bool IsSimpleLoadStore;
1180      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
1181
1182      // Look for an instruction with which to pair instruction *I...
1183      DenseSet<Value *> Users;
1184      AliasSetTracker WriteSet(*AA);
1185      if (I->mayWriteToMemory()) WriteSet.add(I);
1186
1187      bool JAfterStart = IAfterStart;
1188      BasicBlock::iterator J = llvm::next(I);
1189      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
1190        if (J == Start) JAfterStart = true;
1191
1192        // Determine if J uses I, if so, exit the loop.
1193        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
1194        if (Config.FastDep) {
1195          // Note: For this heuristic to be effective, independent operations
1196          // must tend to be intermixed. This is likely to be true from some
1197          // kinds of grouped loop unrolling (but not the generic LLVM pass),
1198          // but otherwise may require some kind of reordering pass.
1199
1200          // When using fast dependency analysis,
1201          // stop searching after first use:
1202          if (UsesI) break;
1203        } else {
1204          if (UsesI) continue;
1205        }
1206
1207        // J does not use I, and comes before the first use of I, so it can be
1208        // merged with I if the instructions are compatible.
1209        int CostSavings, FixedOrder;
1210        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
1211            CostSavings, FixedOrder)) continue;
1212
1213        // J is a candidate for merging with I.
1214        if (!PairableInsts.size() ||
1215             PairableInsts[PairableInsts.size()-1] != I) {
1216          PairableInsts.push_back(I);
1217        }
1218
1219        CandidatePairs[I].push_back(J);
1220        ++TotalPairs;
1221        if (TTI)
1222          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
1223                                                            CostSavings));
1224
1225        if (FixedOrder == 1)
1226          FixedOrderPairs.insert(ValuePair(I, J));
1227        else if (FixedOrder == -1)
1228          FixedOrderPairs.insert(ValuePair(J, I));
1229
1230        // The next call to this function must start after the last instruction
1231        // selected during this invocation.
1232        if (JAfterStart) {
1233          Start = llvm::next(J);
1234          IAfterStart = JAfterStart = false;
1235        }
1236
1237        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
1238                     << *I << " <-> " << *J << " (cost savings: " <<
1239                     CostSavings << ")\n");
1240
1241        // If we have already found too many pairs, break here and this function
1242        // will be called again starting after the last instruction selected
1243        // during this invocation.
1244        if (PairableInsts.size() >= Config.MaxInsts ||
1245            TotalPairs >= Config.MaxPairs) {
1246          ShouldContinue = true;
1247          break;
1248        }
1249      }
1250
1251      if (ShouldContinue)
1252        break;
1253    }
1254
1255    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1256           << " instructions with candidate pairs\n");
1257
1258    return ShouldContinue;
1259  }
1260
1261  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1262  // it looks for pairs such that both members have an input which is an
1263  // output of PI or PJ.
1264  void BBVectorize::computePairsConnectedTo(
1265                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1266                  DenseSet<ValuePair> &CandidatePairsSet,
1267                  std::vector<Value *> &PairableInsts,
1268                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1269                  DenseMap<VPPair, unsigned> &PairConnectionTypes,
1270                  ValuePair P) {
1271    StoreInst *SI, *SJ;
1272
1273    // For each possible pairing for this variable, look at the uses of
1274    // the first value...
1275    for (Value::use_iterator I = P.first->use_begin(),
1276         E = P.first->use_end(); I != E; ++I) {
1277      if (isa<LoadInst>(*I)) {
1278        // A pair cannot be connected to a load because the load only takes one
1279        // operand (the address) and it is a scalar even after vectorization.
1280        continue;
1281      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
1282                 P.first == SI->getPointerOperand()) {
1283        // Similarly, a pair cannot be connected to a store through its
1284        // pointer operand.
1285        continue;
1286      }
1287
1288      // For each use of the first variable, look for uses of the second
1289      // variable...
1290      for (Value::use_iterator J = P.second->use_begin(),
1291           E2 = P.second->use_end(); J != E2; ++J) {
1292        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1293            P.second == SJ->getPointerOperand())
1294          continue;
1295
1296        // Look for <I, J>:
1297        if (CandidatePairsSet.count(ValuePair(*I, *J))) {
1298          VPPair VP(P, ValuePair(*I, *J));
1299          ConnectedPairs[VP.first].push_back(VP.second);
1300          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
1301        }
1302
1303        // Look for <J, I>:
1304        if (CandidatePairsSet.count(ValuePair(*J, *I))) {
1305          VPPair VP(P, ValuePair(*J, *I));
1306          ConnectedPairs[VP.first].push_back(VP.second);
1307          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
1308        }
1309      }
1310
1311      if (Config.SplatBreaksChain) continue;
1312      // Look for cases where just the first value in the pair is used by
1313      // both members of another pair (splatting).
1314      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
1315        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1316            P.first == SJ->getPointerOperand())
1317          continue;
1318
1319        if (CandidatePairsSet.count(ValuePair(*I, *J))) {
1320          VPPair VP(P, ValuePair(*I, *J));
1321          ConnectedPairs[VP.first].push_back(VP.second);
1322          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1323        }
1324      }
1325    }
1326
1327    if (Config.SplatBreaksChain) return;
1328    // Look for cases where just the second value in the pair is used by
1329    // both members of another pair (splatting).
1330    for (Value::use_iterator I = P.second->use_begin(),
1331         E = P.second->use_end(); I != E; ++I) {
1332      if (isa<LoadInst>(*I))
1333        continue;
1334      else if ((SI = dyn_cast<StoreInst>(*I)) &&
1335               P.second == SI->getPointerOperand())
1336        continue;
1337
1338      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
1339        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1340            P.second == SJ->getPointerOperand())
1341          continue;
1342
1343        if (CandidatePairsSet.count(ValuePair(*I, *J))) {
1344          VPPair VP(P, ValuePair(*I, *J));
1345          ConnectedPairs[VP.first].push_back(VP.second);
1346          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1347        }
1348      }
1349    }
1350  }
1351
1352  // This function figures out which pairs are connected.  Two pairs are
1353  // connected if some output of the first pair forms an input to both members
1354  // of the second pair.
1355  void BBVectorize::computeConnectedPairs(
1356                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1357                  DenseSet<ValuePair> &CandidatePairsSet,
1358                  std::vector<Value *> &PairableInsts,
1359                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1360                  DenseMap<VPPair, unsigned> &PairConnectionTypes) {
1361    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1362         PE = PairableInsts.end(); PI != PE; ++PI) {
1363      DenseMap<Value *, std::vector<Value *> >::iterator PP =
1364        CandidatePairs.find(*PI);
1365      if (PP == CandidatePairs.end())
1366        continue;
1367
1368      for (std::vector<Value *>::iterator P = PP->second.begin(),
1369           E = PP->second.end(); P != E; ++P)
1370        computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
1371                                PairableInsts, ConnectedPairs,
1372                                PairConnectionTypes, ValuePair(*PI, *P));
1373    }
1374
1375    DEBUG(size_t TotalPairs = 0;
1376          for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
1377               ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
1378            TotalPairs += I->second.size();
1379          dbgs() << "BBV: found " << TotalPairs
1380                 << " pair connections.\n");
1381  }
1382
1383  // This function builds a set of use tuples such that <A, B> is in the set
1384  // if B is in the use dag of A. If B is in the use dag of A, then B
1385  // depends on the output of A.
1386  void BBVectorize::buildDepMap(
1387                      BasicBlock &BB,
1388                      DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1389                      std::vector<Value *> &PairableInsts,
1390                      DenseSet<ValuePair> &PairableInstUsers) {
1391    DenseSet<Value *> IsInPair;
1392    for (DenseMap<Value *, std::vector<Value *> >::iterator C =
1393         CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
1394      IsInPair.insert(C->first);
1395      IsInPair.insert(C->second.begin(), C->second.end());
1396    }
1397
1398    // Iterate through the basic block, recording all users of each
1399    // pairable instruction.
1400
1401    BasicBlock::iterator E = BB.end(), EL =
1402      BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
1403    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1404      if (IsInPair.find(I) == IsInPair.end()) continue;
1405
1406      DenseSet<Value *> Users;
1407      AliasSetTracker WriteSet(*AA);
1408      if (I->mayWriteToMemory()) WriteSet.add(I);
1409
1410      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) {
1411        (void) trackUsesOfI(Users, WriteSet, I, J);
1412
1413        if (J == EL)
1414          break;
1415      }
1416
1417      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1418           U != E; ++U) {
1419        if (IsInPair.find(*U) == IsInPair.end()) continue;
1420        PairableInstUsers.insert(ValuePair(I, *U));
1421      }
1422
1423      if (I == EL)
1424        break;
1425    }
1426  }
1427
1428  // Returns true if an input to pair P is an output of pair Q and also an
1429  // input of pair Q is an output of pair P. If this is the case, then these
1430  // two pairs cannot be simultaneously fused.
1431  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1432             DenseSet<ValuePair> &PairableInstUsers,
1433             DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
1434             DenseSet<VPPair> *PairableInstUserPairSet) {
1435    // Two pairs are in conflict if they are mutual Users of eachother.
1436    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1437                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1438                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1439                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1440    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1441                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1442                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1443                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1444    if (PairableInstUserMap) {
1445      // FIXME: The expensive part of the cycle check is not so much the cycle
1446      // check itself but this edge insertion procedure. This needs some
1447      // profiling and probably a different data structure.
1448      if (PUsesQ) {
1449        if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
1450          (*PairableInstUserMap)[Q].push_back(P);
1451      }
1452      if (QUsesP) {
1453        if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
1454          (*PairableInstUserMap)[P].push_back(Q);
1455      }
1456    }
1457
1458    return (QUsesP && PUsesQ);
1459  }
1460
1461  // This function walks the use graph of current pairs to see if, starting
1462  // from P, the walk returns to P.
1463  bool BBVectorize::pairWillFormCycle(ValuePair P,
1464             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1465             DenseSet<ValuePair> &CurrentPairs) {
1466    DEBUG(if (DebugCycleCheck)
1467            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1468                   << *P.second << "\n");
1469    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1470    // contains non-direct associations.
1471    DenseSet<ValuePair> Visited;
1472    SmallVector<ValuePair, 32> Q;
1473    // General depth-first post-order traversal:
1474    Q.push_back(P);
1475    do {
1476      ValuePair QTop = Q.pop_back_val();
1477      Visited.insert(QTop);
1478
1479      DEBUG(if (DebugCycleCheck)
1480              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1481                     << *QTop.second << "\n");
1482      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1483        PairableInstUserMap.find(QTop);
1484      if (QQ == PairableInstUserMap.end())
1485        continue;
1486
1487      for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
1488           CE = QQ->second.end(); C != CE; ++C) {
1489        if (*C == P) {
1490          DEBUG(dbgs()
1491                 << "BBV: rejected to prevent non-trivial cycle formation: "
1492                 << QTop.first << " <-> " << C->second << "\n");
1493          return true;
1494        }
1495
1496        if (CurrentPairs.count(*C) && !Visited.count(*C))
1497          Q.push_back(*C);
1498      }
1499    } while (!Q.empty());
1500
1501    return false;
1502  }
1503
1504  // This function builds the initial dag of connected pairs with the
1505  // pair J at the root.
1506  void BBVectorize::buildInitialDAGFor(
1507                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1508                  DenseSet<ValuePair> &CandidatePairsSet,
1509                  std::vector<Value *> &PairableInsts,
1510                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1511                  DenseSet<ValuePair> &PairableInstUsers,
1512                  DenseMap<Value *, Value *> &ChosenPairs,
1513                  DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
1514    // Each of these pairs is viewed as the root node of a DAG. The DAG
1515    // is then walked (depth-first). As this happens, we keep track of
1516    // the pairs that compose the DAG and the maximum depth of the DAG.
1517    SmallVector<ValuePairWithDepth, 32> Q;
1518    // General depth-first post-order traversal:
1519    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1520    do {
1521      ValuePairWithDepth QTop = Q.back();
1522
1523      // Push each child onto the queue:
1524      bool MoreChildren = false;
1525      size_t MaxChildDepth = QTop.second;
1526      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1527        ConnectedPairs.find(QTop.first);
1528      if (QQ != ConnectedPairs.end())
1529        for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
1530             ke = QQ->second.end(); k != ke; ++k) {
1531          // Make sure that this child pair is still a candidate:
1532          if (CandidatePairsSet.count(*k)) {
1533            DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
1534            if (C == DAG.end()) {
1535              size_t d = getDepthFactor(k->first);
1536              Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
1537              MoreChildren = true;
1538            } else {
1539              MaxChildDepth = std::max(MaxChildDepth, C->second);
1540            }
1541          }
1542        }
1543
1544      if (!MoreChildren) {
1545        // Record the current pair as part of the DAG:
1546        DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1547        Q.pop_back();
1548      }
1549    } while (!Q.empty());
1550  }
1551
1552  // Given some initial dag, prune it by removing conflicting pairs (pairs
1553  // that cannot be simultaneously chosen for vectorization).
1554  void BBVectorize::pruneDAGFor(
1555              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1556              std::vector<Value *> &PairableInsts,
1557              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1558              DenseSet<ValuePair> &PairableInstUsers,
1559              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1560              DenseSet<VPPair> &PairableInstUserPairSet,
1561              DenseMap<Value *, Value *> &ChosenPairs,
1562              DenseMap<ValuePair, size_t> &DAG,
1563              DenseSet<ValuePair> &PrunedDAG, ValuePair J,
1564              bool UseCycleCheck) {
1565    SmallVector<ValuePairWithDepth, 32> Q;
1566    // General depth-first post-order traversal:
1567    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1568    do {
1569      ValuePairWithDepth QTop = Q.pop_back_val();
1570      PrunedDAG.insert(QTop.first);
1571
1572      // Visit each child, pruning as necessary...
1573      SmallVector<ValuePairWithDepth, 8> BestChildren;
1574      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
1575        ConnectedPairs.find(QTop.first);
1576      if (QQ == ConnectedPairs.end())
1577        continue;
1578
1579      for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
1580           KE = QQ->second.end(); K != KE; ++K) {
1581        DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
1582        if (C == DAG.end()) continue;
1583
1584        // This child is in the DAG, now we need to make sure it is the
1585        // best of any conflicting children. There could be multiple
1586        // conflicting children, so first, determine if we're keeping
1587        // this child, then delete conflicting children as necessary.
1588
1589        // It is also necessary to guard against pairing-induced
1590        // dependencies. Consider instructions a .. x .. y .. b
1591        // such that (a,b) are to be fused and (x,y) are to be fused
1592        // but a is an input to x and b is an output from y. This
1593        // means that y cannot be moved after b but x must be moved
1594        // after b for (a,b) to be fused. In other words, after
1595        // fusing (a,b) we have y .. a/b .. x where y is an input
1596        // to a/b and x is an output to a/b: x and y can no longer
1597        // be legally fused. To prevent this condition, we must
1598        // make sure that a child pair added to the DAG is not
1599        // both an input and output of an already-selected pair.
1600
1601        // Pairing-induced dependencies can also form from more complicated
1602        // cycles. The pair vs. pair conflicts are easy to check, and so
1603        // that is done explicitly for "fast rejection", and because for
1604        // child vs. child conflicts, we may prefer to keep the current
1605        // pair in preference to the already-selected child.
1606        DenseSet<ValuePair> CurrentPairs;
1607
1608        bool CanAdd = true;
1609        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
1610              = BestChildren.begin(), E2 = BestChildren.end();
1611             C2 != E2; ++C2) {
1612          if (C2->first.first == C->first.first ||
1613              C2->first.first == C->first.second ||
1614              C2->first.second == C->first.first ||
1615              C2->first.second == C->first.second ||
1616              pairsConflict(C2->first, C->first, PairableInstUsers,
1617                            UseCycleCheck ? &PairableInstUserMap : 0,
1618                            UseCycleCheck ? &PairableInstUserPairSet : 0)) {
1619            if (C2->second >= C->second) {
1620              CanAdd = false;
1621              break;
1622            }
1623
1624            CurrentPairs.insert(C2->first);
1625          }
1626        }
1627        if (!CanAdd) continue;
1628
1629        // Even worse, this child could conflict with another node already
1630        // selected for the DAG. If that is the case, ignore this child.
1631        for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
1632             E2 = PrunedDAG.end(); T != E2; ++T) {
1633          if (T->first == C->first.first ||
1634              T->first == C->first.second ||
1635              T->second == C->first.first ||
1636              T->second == C->first.second ||
1637              pairsConflict(*T, C->first, PairableInstUsers,
1638                            UseCycleCheck ? &PairableInstUserMap : 0,
1639                            UseCycleCheck ? &PairableInstUserPairSet : 0)) {
1640            CanAdd = false;
1641            break;
1642          }
1643
1644          CurrentPairs.insert(*T);
1645        }
1646        if (!CanAdd) continue;
1647
1648        // And check the queue too...
1649        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
1650             E2 = Q.end(); C2 != E2; ++C2) {
1651          if (C2->first.first == C->first.first ||
1652              C2->first.first == C->first.second ||
1653              C2->first.second == C->first.first ||
1654              C2->first.second == C->first.second ||
1655              pairsConflict(C2->first, C->first, PairableInstUsers,
1656                            UseCycleCheck ? &PairableInstUserMap : 0,
1657                            UseCycleCheck ? &PairableInstUserPairSet : 0)) {
1658            CanAdd = false;
1659            break;
1660          }
1661
1662          CurrentPairs.insert(C2->first);
1663        }
1664        if (!CanAdd) continue;
1665
1666        // Last but not least, check for a conflict with any of the
1667        // already-chosen pairs.
1668        for (DenseMap<Value *, Value *>::iterator C2 =
1669              ChosenPairs.begin(), E2 = ChosenPairs.end();
1670             C2 != E2; ++C2) {
1671          if (pairsConflict(*C2, C->first, PairableInstUsers,
1672                            UseCycleCheck ? &PairableInstUserMap : 0,
1673                            UseCycleCheck ? &PairableInstUserPairSet : 0)) {
1674            CanAdd = false;
1675            break;
1676          }
1677
1678          CurrentPairs.insert(*C2);
1679        }
1680        if (!CanAdd) continue;
1681
1682        // To check for non-trivial cycles formed by the addition of the
1683        // current pair we've formed a list of all relevant pairs, now use a
1684        // graph walk to check for a cycle. We start from the current pair and
1685        // walk the use dag to see if we again reach the current pair. If we
1686        // do, then the current pair is rejected.
1687
1688        // FIXME: It may be more efficient to use a topological-ordering
1689        // algorithm to improve the cycle check. This should be investigated.
1690        if (UseCycleCheck &&
1691            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1692          continue;
1693
1694        // This child can be added, but we may have chosen it in preference
1695        // to an already-selected child. Check for this here, and if a
1696        // conflict is found, then remove the previously-selected child
1697        // before adding this one in its place.
1698        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
1699              = BestChildren.begin(); C2 != BestChildren.end();) {
1700          if (C2->first.first == C->first.first ||
1701              C2->first.first == C->first.second ||
1702              C2->first.second == C->first.first ||
1703              C2->first.second == C->first.second ||
1704              pairsConflict(C2->first, C->first, PairableInstUsers))
1705            C2 = BestChildren.erase(C2);
1706          else
1707            ++C2;
1708        }
1709
1710        BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
1711      }
1712
1713      for (SmallVectorImpl<ValuePairWithDepth>::iterator C
1714            = BestChildren.begin(), E2 = BestChildren.end();
1715           C != E2; ++C) {
1716        size_t DepthF = getDepthFactor(C->first.first);
1717        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1718      }
1719    } while (!Q.empty());
1720  }
1721
1722  // This function finds the best dag of mututally-compatible connected
1723  // pairs, given the choice of root pairs as an iterator range.
1724  void BBVectorize::findBestDAGFor(
1725              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
1726              DenseSet<ValuePair> &CandidatePairsSet,
1727              DenseMap<ValuePair, int> &CandidatePairCostSavings,
1728              std::vector<Value *> &PairableInsts,
1729              DenseSet<ValuePair> &FixedOrderPairs,
1730              DenseMap<VPPair, unsigned> &PairConnectionTypes,
1731              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
1732              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
1733              DenseSet<ValuePair> &PairableInstUsers,
1734              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
1735              DenseSet<VPPair> &PairableInstUserPairSet,
1736              DenseMap<Value *, Value *> &ChosenPairs,
1737              DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
1738              int &BestEffSize, Value *II, std::vector<Value *>&JJ,
1739              bool UseCycleCheck) {
1740    for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
1741         J != JE; ++J) {
1742      ValuePair IJ(II, *J);
1743      if (!CandidatePairsSet.count(IJ))
1744        continue;
1745
1746      // Before going any further, make sure that this pair does not
1747      // conflict with any already-selected pairs (see comment below
1748      // near the DAG pruning for more details).
1749      DenseSet<ValuePair> ChosenPairSet;
1750      bool DoesConflict = false;
1751      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1752           E = ChosenPairs.end(); C != E; ++C) {
1753        if (pairsConflict(*C, IJ, PairableInstUsers,
1754                          UseCycleCheck ? &PairableInstUserMap : 0,
1755                          UseCycleCheck ? &PairableInstUserPairSet : 0)) {
1756          DoesConflict = true;
1757          break;
1758        }
1759
1760        ChosenPairSet.insert(*C);
1761      }
1762      if (DoesConflict) continue;
1763
1764      if (UseCycleCheck &&
1765          pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
1766        continue;
1767
1768      DenseMap<ValuePair, size_t> DAG;
1769      buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
1770                          PairableInsts, ConnectedPairs,
1771                          PairableInstUsers, ChosenPairs, DAG, IJ);
1772
1773      // Because we'll keep the child with the largest depth, the largest
1774      // depth is still the same in the unpruned DAG.
1775      size_t MaxDepth = DAG.lookup(IJ);
1776
1777      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
1778                   << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
1779                   MaxDepth << " and size " << DAG.size() << "\n");
1780
1781      // At this point the DAG has been constructed, but, may contain
1782      // contradictory children (meaning that different children of
1783      // some dag node may be attempting to fuse the same instruction).
1784      // So now we walk the dag again, in the case of a conflict,
1785      // keep only the child with the largest depth. To break a tie,
1786      // favor the first child.
1787
1788      DenseSet<ValuePair> PrunedDAG;
1789      pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
1790                   PairableInstUsers, PairableInstUserMap,
1791                   PairableInstUserPairSet,
1792                   ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
1793
1794      int EffSize = 0;
1795      if (TTI) {
1796        DenseSet<Value *> PrunedDAGInstrs;
1797        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
1798             E = PrunedDAG.end(); S != E; ++S) {
1799          PrunedDAGInstrs.insert(S->first);
1800          PrunedDAGInstrs.insert(S->second);
1801        }
1802
1803        // The set of pairs that have already contributed to the total cost.
1804        DenseSet<ValuePair> IncomingPairs;
1805
1806        // If the cost model were perfect, this might not be necessary; but we
1807        // need to make sure that we don't get stuck vectorizing our own
1808        // shuffle chains.
1809        bool HasNontrivialInsts = false;
1810
1811        // The node weights represent the cost savings associated with
1812        // fusing the pair of instructions.
1813        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
1814             E = PrunedDAG.end(); S != E; ++S) {
1815          if (!isa<ShuffleVectorInst>(S->first) &&
1816              !isa<InsertElementInst>(S->first) &&
1817              !isa<ExtractElementInst>(S->first))
1818            HasNontrivialInsts = true;
1819
1820          bool FlipOrder = false;
1821
1822          if (getDepthFactor(S->first)) {
1823            int ESContrib = CandidatePairCostSavings.find(*S)->second;
1824            DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
1825                   << *S->first << " <-> " << *S->second << "} = " <<
1826                   ESContrib << "\n");
1827            EffSize += ESContrib;
1828          }
1829
1830          // The edge weights contribute in a negative sense: they represent
1831          // the cost of shuffles.
1832          DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
1833            ConnectedPairDeps.find(*S);
1834          if (SS != ConnectedPairDeps.end()) {
1835            unsigned NumDepsDirect = 0, NumDepsSwap = 0;
1836            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
1837                 TE = SS->second.end(); T != TE; ++T) {
1838              VPPair Q(*S, *T);
1839              if (!PrunedDAG.count(Q.second))
1840                continue;
1841              DenseMap<VPPair, unsigned>::iterator R =
1842                PairConnectionTypes.find(VPPair(Q.second, Q.first));
1843              assert(R != PairConnectionTypes.end() &&
1844                     "Cannot find pair connection type");
1845              if (R->second == PairConnectionDirect)
1846                ++NumDepsDirect;
1847              else if (R->second == PairConnectionSwap)
1848                ++NumDepsSwap;
1849            }
1850
1851            // If there are more swaps than direct connections, then
1852            // the pair order will be flipped during fusion. So the real
1853            // number of swaps is the minimum number.
1854            FlipOrder = !FixedOrderPairs.count(*S) &&
1855              ((NumDepsSwap > NumDepsDirect) ||
1856                FixedOrderPairs.count(ValuePair(S->second, S->first)));
1857
1858            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
1859                 TE = SS->second.end(); T != TE; ++T) {
1860              VPPair Q(*S, *T);
1861              if (!PrunedDAG.count(Q.second))
1862                continue;
1863              DenseMap<VPPair, unsigned>::iterator R =
1864                PairConnectionTypes.find(VPPair(Q.second, Q.first));
1865              assert(R != PairConnectionTypes.end() &&
1866                     "Cannot find pair connection type");
1867              Type *Ty1 = Q.second.first->getType(),
1868                   *Ty2 = Q.second.second->getType();
1869              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1870              if ((R->second == PairConnectionDirect && FlipOrder) ||
1871                  (R->second == PairConnectionSwap && !FlipOrder)  ||
1872                  R->second == PairConnectionSplat) {
1873                int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1874                                                   VTy, VTy);
1875
1876                if (VTy->getVectorNumElements() == 2) {
1877                  if (R->second == PairConnectionSplat)
1878                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1879                      TargetTransformInfo::SK_Broadcast, VTy));
1880                  else
1881                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1882                      TargetTransformInfo::SK_Reverse, VTy));
1883                }
1884
1885                DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1886                  *Q.second.first << " <-> " << *Q.second.second <<
1887                    "} -> {" <<
1888                  *S->first << " <-> " << *S->second << "} = " <<
1889                   ESContrib << "\n");
1890                EffSize -= ESContrib;
1891              }
1892            }
1893          }
1894
1895          // Compute the cost of outgoing edges. We assume that edges outgoing
1896          // to shuffles, inserts or extracts can be merged, and so contribute
1897          // no additional cost.
1898          if (!S->first->getType()->isVoidTy()) {
1899            Type *Ty1 = S->first->getType(),
1900                 *Ty2 = S->second->getType();
1901            Type *VTy = getVecTypeForPair(Ty1, Ty2);
1902
1903            bool NeedsExtraction = false;
1904            for (Value::use_iterator I = S->first->use_begin(),
1905                 IE = S->first->use_end(); I != IE; ++I) {
1906              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1907                // Shuffle can be folded if it has no other input
1908                if (isa<UndefValue>(SI->getOperand(1)))
1909                  continue;
1910              }
1911              if (isa<ExtractElementInst>(*I))
1912                continue;
1913              if (PrunedDAGInstrs.count(*I))
1914                continue;
1915              NeedsExtraction = true;
1916              break;
1917            }
1918
1919            if (NeedsExtraction) {
1920              int ESContrib;
1921              if (Ty1->isVectorTy()) {
1922                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1923                                               Ty1, VTy);
1924                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1925                  TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
1926              } else
1927                ESContrib = (int) TTI->getVectorInstrCost(
1928                                    Instruction::ExtractElement, VTy, 0);
1929
1930              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1931                *S->first << "} = " << ESContrib << "\n");
1932              EffSize -= ESContrib;
1933            }
1934
1935            NeedsExtraction = false;
1936            for (Value::use_iterator I = S->second->use_begin(),
1937                 IE = S->second->use_end(); I != IE; ++I) {
1938              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1939                // Shuffle can be folded if it has no other input
1940                if (isa<UndefValue>(SI->getOperand(1)))
1941                  continue;
1942              }
1943              if (isa<ExtractElementInst>(*I))
1944                continue;
1945              if (PrunedDAGInstrs.count(*I))
1946                continue;
1947              NeedsExtraction = true;
1948              break;
1949            }
1950
1951            if (NeedsExtraction) {
1952              int ESContrib;
1953              if (Ty2->isVectorTy()) {
1954                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1955                                               Ty2, VTy);
1956                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
1957                  TargetTransformInfo::SK_ExtractSubvector, VTy,
1958                  Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
1959              } else
1960                ESContrib = (int) TTI->getVectorInstrCost(
1961                                    Instruction::ExtractElement, VTy, 1);
1962              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1963                *S->second << "} = " << ESContrib << "\n");
1964              EffSize -= ESContrib;
1965            }
1966          }
1967
1968          // Compute the cost of incoming edges.
1969          if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
1970            Instruction *S1 = cast<Instruction>(S->first),
1971                        *S2 = cast<Instruction>(S->second);
1972            for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
1973              Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
1974
1975              // Combining constants into vector constants (or small vector
1976              // constants into larger ones are assumed free).
1977              if (isa<Constant>(O1) && isa<Constant>(O2))
1978                continue;
1979
1980              if (FlipOrder)
1981                std::swap(O1, O2);
1982
1983              ValuePair VP  = ValuePair(O1, O2);
1984              ValuePair VPR = ValuePair(O2, O1);
1985
1986              // Internal edges are not handled here.
1987              if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
1988                continue;
1989
1990              Type *Ty1 = O1->getType(),
1991                   *Ty2 = O2->getType();
1992              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1993
1994              // Combining vector operations of the same type is also assumed
1995              // folded with other operations.
1996              if (Ty1 == Ty2) {
1997                // If both are insert elements, then both can be widened.
1998                InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
1999                                  *IEO2 = dyn_cast<InsertElementInst>(O2);
2000                if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
2001                  continue;
2002                // If both are extract elements, and both have the same input
2003                // type, then they can be replaced with a shuffle
2004                ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
2005                                   *EIO2 = dyn_cast<ExtractElementInst>(O2);
2006                if (EIO1 && EIO2 &&
2007                    EIO1->getOperand(0)->getType() ==
2008                      EIO2->getOperand(0)->getType())
2009                  continue;
2010                // If both are a shuffle with equal operand types and only two
2011                // unqiue operands, then they can be replaced with a single
2012                // shuffle
2013                ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
2014                                  *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
2015                if (SIO1 && SIO2 &&
2016                    SIO1->getOperand(0)->getType() ==
2017                      SIO2->getOperand(0)->getType()) {
2018                  SmallSet<Value *, 4> SIOps;
2019                  SIOps.insert(SIO1->getOperand(0));
2020                  SIOps.insert(SIO1->getOperand(1));
2021                  SIOps.insert(SIO2->getOperand(0));
2022                  SIOps.insert(SIO2->getOperand(1));
2023                  if (SIOps.size() <= 2)
2024                    continue;
2025                }
2026              }
2027
2028              int ESContrib;
2029              // This pair has already been formed.
2030              if (IncomingPairs.count(VP)) {
2031                continue;
2032              } else if (IncomingPairs.count(VPR)) {
2033                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2034                                               VTy, VTy);
2035
2036                if (VTy->getVectorNumElements() == 2)
2037                  ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
2038                    TargetTransformInfo::SK_Reverse, VTy));
2039              } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
2040                ESContrib = (int) TTI->getVectorInstrCost(
2041                                    Instruction::InsertElement, VTy, 0);
2042                ESContrib += (int) TTI->getVectorInstrCost(
2043                                     Instruction::InsertElement, VTy, 1);
2044              } else if (!Ty1->isVectorTy()) {
2045                // O1 needs to be inserted into a vector of size O2, and then
2046                // both need to be shuffled together.
2047                ESContrib = (int) TTI->getVectorInstrCost(
2048                                    Instruction::InsertElement, Ty2, 0);
2049                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2050                                                VTy, Ty2);
2051              } else if (!Ty2->isVectorTy()) {
2052                // O2 needs to be inserted into a vector of size O1, and then
2053                // both need to be shuffled together.
2054                ESContrib = (int) TTI->getVectorInstrCost(
2055                                    Instruction::InsertElement, Ty1, 0);
2056                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2057                                                VTy, Ty1);
2058              } else {
2059                Type *TyBig = Ty1, *TySmall = Ty2;
2060                if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
2061                  std::swap(TyBig, TySmall);
2062
2063                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
2064                                               VTy, TyBig);
2065                if (TyBig != TySmall)
2066                  ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
2067                                                  TyBig, TySmall);
2068              }
2069
2070              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
2071                     << *O1 << " <-> " << *O2 << "} = " <<
2072                     ESContrib << "\n");
2073              EffSize -= ESContrib;
2074              IncomingPairs.insert(VP);
2075            }
2076          }
2077        }
2078
2079        if (!HasNontrivialInsts) {
2080          DEBUG(if (DebugPairSelection) dbgs() <<
2081                "\tNo non-trivial instructions in DAG;"
2082                " override to zero effective size\n");
2083          EffSize = 0;
2084        }
2085      } else {
2086        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
2087             E = PrunedDAG.end(); S != E; ++S)
2088          EffSize += (int) getDepthFactor(S->first);
2089      }
2090
2091      DEBUG(if (DebugPairSelection)
2092             dbgs() << "BBV: found pruned DAG for pair {"
2093             << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
2094             MaxDepth << " and size " << PrunedDAG.size() <<
2095            " (effective size: " << EffSize << ")\n");
2096      if (((TTI && !UseChainDepthWithTI) ||
2097            MaxDepth >= Config.ReqChainDepth) &&
2098          EffSize > 0 && EffSize > BestEffSize) {
2099        BestMaxDepth = MaxDepth;
2100        BestEffSize = EffSize;
2101        BestDAG = PrunedDAG;
2102      }
2103    }
2104  }
2105
2106  // Given the list of candidate pairs, this function selects those
2107  // that will be fused into vector instructions.
2108  void BBVectorize::choosePairs(
2109                DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
2110                DenseSet<ValuePair> &CandidatePairsSet,
2111                DenseMap<ValuePair, int> &CandidatePairCostSavings,
2112                std::vector<Value *> &PairableInsts,
2113                DenseSet<ValuePair> &FixedOrderPairs,
2114                DenseMap<VPPair, unsigned> &PairConnectionTypes,
2115                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
2116                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
2117                DenseSet<ValuePair> &PairableInstUsers,
2118                DenseMap<Value *, Value *>& ChosenPairs) {
2119    bool UseCycleCheck =
2120     CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
2121
2122    DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
2123    for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
2124         E = CandidatePairsSet.end(); I != E; ++I) {
2125      std::vector<Value *> &JJ = CandidatePairs2[I->second];
2126      if (JJ.empty()) JJ.reserve(32);
2127      JJ.push_back(I->first);
2128    }
2129
2130    DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
2131    DenseSet<VPPair> PairableInstUserPairSet;
2132    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
2133         E = PairableInsts.end(); I != E; ++I) {
2134      // The number of possible pairings for this variable:
2135      size_t NumChoices = CandidatePairs.lookup(*I).size();
2136      if (!NumChoices) continue;
2137
2138      std::vector<Value *> &JJ = CandidatePairs[*I];
2139
2140      // The best pair to choose and its dag:
2141      size_t BestMaxDepth = 0;
2142      int BestEffSize = 0;
2143      DenseSet<ValuePair> BestDAG;
2144      findBestDAGFor(CandidatePairs, CandidatePairsSet,
2145                      CandidatePairCostSavings,
2146                      PairableInsts, FixedOrderPairs, PairConnectionTypes,
2147                      ConnectedPairs, ConnectedPairDeps,
2148                      PairableInstUsers, PairableInstUserMap,
2149                      PairableInstUserPairSet, ChosenPairs,
2150                      BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
2151                      UseCycleCheck);
2152
2153      if (BestDAG.empty())
2154        continue;
2155
2156      // A dag has been chosen (or not) at this point. If no dag was
2157      // chosen, then this instruction, I, cannot be paired (and is no longer
2158      // considered).
2159
2160      DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
2161                   << *cast<Instruction>(*I) << "\n");
2162
2163      for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
2164           SE2 = BestDAG.end(); S != SE2; ++S) {
2165        // Insert the members of this dag into the list of chosen pairs.
2166        ChosenPairs.insert(ValuePair(S->first, S->second));
2167        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
2168               *S->second << "\n");
2169
2170        // Remove all candidate pairs that have values in the chosen dag.
2171        std::vector<Value *> &KK = CandidatePairs[S->first];
2172        for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
2173             K != KE; ++K) {
2174          if (*K == S->second)
2175            continue;
2176
2177          CandidatePairsSet.erase(ValuePair(S->first, *K));
2178        }
2179
2180        std::vector<Value *> &LL = CandidatePairs2[S->second];
2181        for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
2182             L != LE; ++L) {
2183          if (*L == S->first)
2184            continue;
2185
2186          CandidatePairsSet.erase(ValuePair(*L, S->second));
2187        }
2188
2189        std::vector<Value *> &MM = CandidatePairs[S->second];
2190        for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
2191             M != ME; ++M) {
2192          assert(*M != S->first && "Flipped pair in candidate list?");
2193          CandidatePairsSet.erase(ValuePair(S->second, *M));
2194        }
2195
2196        std::vector<Value *> &NN = CandidatePairs2[S->first];
2197        for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
2198             N != NE; ++N) {
2199          assert(*N != S->second && "Flipped pair in candidate list?");
2200          CandidatePairsSet.erase(ValuePair(*N, S->first));
2201        }
2202      }
2203    }
2204
2205    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
2206  }
2207
2208  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
2209                     unsigned n = 0) {
2210    if (!I->hasName())
2211      return "";
2212
2213    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
2214             (n > 0 ? "." + utostr(n) : "")).str();
2215  }
2216
2217  // Returns the value that is to be used as the pointer input to the vector
2218  // instruction that fuses I with J.
2219  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
2220                     Instruction *I, Instruction *J, unsigned o) {
2221    Value *IPtr, *JPtr;
2222    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2223    int64_t OffsetInElmts;
2224
2225    // Note: the analysis might fail here, that is why the pair order has
2226    // been precomputed (OffsetInElmts must be unused here).
2227    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2228                          IAddressSpace, JAddressSpace,
2229                          OffsetInElmts, false);
2230
2231    // The pointer value is taken to be the one with the lowest offset.
2232    Value *VPtr = IPtr;
2233
2234    Type *ArgTypeI = IPtr->getType()->getPointerElementType();
2235    Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
2236    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2237    Type *VArgPtrType
2238      = PointerType::get(VArgType,
2239                         IPtr->getType()->getPointerAddressSpace());
2240    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
2241                        /* insert before */ I);
2242  }
2243
2244  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
2245                     unsigned MaskOffset, unsigned NumInElem,
2246                     unsigned NumInElem1, unsigned IdxOffset,
2247                     std::vector<Constant*> &Mask) {
2248    unsigned NumElem1 = J->getType()->getVectorNumElements();
2249    for (unsigned v = 0; v < NumElem1; ++v) {
2250      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
2251      if (m < 0) {
2252        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
2253      } else {
2254        unsigned mm = m + (int) IdxOffset;
2255        if (m >= (int) NumInElem1)
2256          mm += (int) NumInElem;
2257
2258        Mask[v+MaskOffset] =
2259          ConstantInt::get(Type::getInt32Ty(Context), mm);
2260      }
2261    }
2262  }
2263
2264  // Returns the value that is to be used as the vector-shuffle mask to the
2265  // vector instruction that fuses I with J.
2266  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
2267                     Instruction *I, Instruction *J) {
2268    // This is the shuffle mask. We need to append the second
2269    // mask to the first, and the numbers need to be adjusted.
2270
2271    Type *ArgTypeI = I->getType();
2272    Type *ArgTypeJ = J->getType();
2273    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2274
2275    unsigned NumElemI = ArgTypeI->getVectorNumElements();
2276
2277    // Get the total number of elements in the fused vector type.
2278    // By definition, this must equal the number of elements in
2279    // the final mask.
2280    unsigned NumElem = VArgType->getVectorNumElements();
2281    std::vector<Constant*> Mask(NumElem);
2282
2283    Type *OpTypeI = I->getOperand(0)->getType();
2284    unsigned NumInElemI = OpTypeI->getVectorNumElements();
2285    Type *OpTypeJ = J->getOperand(0)->getType();
2286    unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
2287
2288    // The fused vector will be:
2289    // -----------------------------------------------------
2290    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
2291    // -----------------------------------------------------
2292    // from which we'll extract NumElem total elements (where the first NumElemI
2293    // of them come from the mask in I and the remainder come from the mask
2294    // in J.
2295
2296    // For the mask from the first pair...
2297    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
2298                       0,          Mask);
2299
2300    // For the mask from the second pair...
2301    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
2302                       NumInElemI, Mask);
2303
2304    return ConstantVector::get(Mask);
2305  }
2306
2307  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
2308                                  Instruction *J, unsigned o, Value *&LOp,
2309                                  unsigned numElemL,
2310                                  Type *ArgTypeL, Type *ArgTypeH,
2311                                  bool IBeforeJ, unsigned IdxOff) {
2312    bool ExpandedIEChain = false;
2313    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
2314      // If we have a pure insertelement chain, then this can be rewritten
2315      // into a chain that directly builds the larger type.
2316      if (isPureIEChain(LIE)) {
2317        SmallVector<Value *, 8> VectElemts(numElemL,
2318          UndefValue::get(ArgTypeL->getScalarType()));
2319        InsertElementInst *LIENext = LIE;
2320        do {
2321          unsigned Idx =
2322            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
2323          VectElemts[Idx] = LIENext->getOperand(1);
2324        } while ((LIENext =
2325                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
2326
2327        LIENext = 0;
2328        Value *LIEPrev = UndefValue::get(ArgTypeH);
2329        for (unsigned i = 0; i < numElemL; ++i) {
2330          if (isa<UndefValue>(VectElemts[i])) continue;
2331          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
2332                             ConstantInt::get(Type::getInt32Ty(Context),
2333                                              i + IdxOff),
2334                             getReplacementName(IBeforeJ ? I : J,
2335                                                true, o, i+1));
2336          LIENext->insertBefore(IBeforeJ ? J : I);
2337          LIEPrev = LIENext;
2338        }
2339
2340        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
2341        ExpandedIEChain = true;
2342      }
2343    }
2344
2345    return ExpandedIEChain;
2346  }
2347
2348  static unsigned getNumScalarElements(Type *Ty) {
2349    if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
2350      return VecTy->getNumElements();
2351    return 1;
2352  }
2353
2354  // Returns the value to be used as the specified operand of the vector
2355  // instruction that fuses I with J.
2356  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
2357                     Instruction *J, unsigned o, bool IBeforeJ) {
2358    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2359    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
2360
2361    // Compute the fused vector type for this operand
2362    Type *ArgTypeI = I->getOperand(o)->getType();
2363    Type *ArgTypeJ = J->getOperand(o)->getType();
2364    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2365
2366    Instruction *L = I, *H = J;
2367    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
2368
2369    unsigned numElemL = getNumScalarElements(ArgTypeL);
2370    unsigned numElemH = getNumScalarElements(ArgTypeH);
2371
2372    Value *LOp = L->getOperand(o);
2373    Value *HOp = H->getOperand(o);
2374    unsigned numElem = VArgType->getNumElements();
2375
2376    // First, we check if we can reuse the "original" vector outputs (if these
2377    // exist). We might need a shuffle.
2378    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
2379    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
2380    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
2381    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
2382
2383    // FIXME: If we're fusing shuffle instructions, then we can't apply this
2384    // optimization. The input vectors to the shuffle might be a different
2385    // length from the shuffle outputs. Unfortunately, the replacement
2386    // shuffle mask has already been formed, and the mask entries are sensitive
2387    // to the sizes of the inputs.
2388    bool IsSizeChangeShuffle =
2389      isa<ShuffleVectorInst>(L) &&
2390        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
2391
2392    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
2393      // We can have at most two unique vector inputs.
2394      bool CanUseInputs = true;
2395      Value *I1, *I2 = 0;
2396      if (LEE) {
2397        I1 = LEE->getOperand(0);
2398      } else {
2399        I1 = LSV->getOperand(0);
2400        I2 = LSV->getOperand(1);
2401        if (I2 == I1 || isa<UndefValue>(I2))
2402          I2 = 0;
2403      }
2404
2405      if (HEE) {
2406        Value *I3 = HEE->getOperand(0);
2407        if (!I2 && I3 != I1)
2408          I2 = I3;
2409        else if (I3 != I1 && I3 != I2)
2410          CanUseInputs = false;
2411      } else {
2412        Value *I3 = HSV->getOperand(0);
2413        if (!I2 && I3 != I1)
2414          I2 = I3;
2415        else if (I3 != I1 && I3 != I2)
2416          CanUseInputs = false;
2417
2418        if (CanUseInputs) {
2419          Value *I4 = HSV->getOperand(1);
2420          if (!isa<UndefValue>(I4)) {
2421            if (!I2 && I4 != I1)
2422              I2 = I4;
2423            else if (I4 != I1 && I4 != I2)
2424              CanUseInputs = false;
2425          }
2426        }
2427      }
2428
2429      if (CanUseInputs) {
2430        unsigned LOpElem =
2431          cast<Instruction>(LOp)->getOperand(0)->getType()
2432            ->getVectorNumElements();
2433
2434        unsigned HOpElem =
2435          cast<Instruction>(HOp)->getOperand(0)->getType()
2436            ->getVectorNumElements();
2437
2438        // We have one or two input vectors. We need to map each index of the
2439        // operands to the index of the original vector.
2440        SmallVector<std::pair<int, int>, 8>  II(numElem);
2441        for (unsigned i = 0; i < numElemL; ++i) {
2442          int Idx, INum;
2443          if (LEE) {
2444            Idx =
2445              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
2446            INum = LEE->getOperand(0) == I1 ? 0 : 1;
2447          } else {
2448            Idx = LSV->getMaskValue(i);
2449            if (Idx < (int) LOpElem) {
2450              INum = LSV->getOperand(0) == I1 ? 0 : 1;
2451            } else {
2452              Idx -= LOpElem;
2453              INum = LSV->getOperand(1) == I1 ? 0 : 1;
2454            }
2455          }
2456
2457          II[i] = std::pair<int, int>(Idx, INum);
2458        }
2459        for (unsigned i = 0; i < numElemH; ++i) {
2460          int Idx, INum;
2461          if (HEE) {
2462            Idx =
2463              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
2464            INum = HEE->getOperand(0) == I1 ? 0 : 1;
2465          } else {
2466            Idx = HSV->getMaskValue(i);
2467            if (Idx < (int) HOpElem) {
2468              INum = HSV->getOperand(0) == I1 ? 0 : 1;
2469            } else {
2470              Idx -= HOpElem;
2471              INum = HSV->getOperand(1) == I1 ? 0 : 1;
2472            }
2473          }
2474
2475          II[i + numElemL] = std::pair<int, int>(Idx, INum);
2476        }
2477
2478        // We now have an array which tells us from which index of which
2479        // input vector each element of the operand comes.
2480        VectorType *I1T = cast<VectorType>(I1->getType());
2481        unsigned I1Elem = I1T->getNumElements();
2482
2483        if (!I2) {
2484          // In this case there is only one underlying vector input. Check for
2485          // the trivial case where we can use the input directly.
2486          if (I1Elem == numElem) {
2487            bool ElemInOrder = true;
2488            for (unsigned i = 0; i < numElem; ++i) {
2489              if (II[i].first != (int) i && II[i].first != -1) {
2490                ElemInOrder = false;
2491                break;
2492              }
2493            }
2494
2495            if (ElemInOrder)
2496              return I1;
2497          }
2498
2499          // A shuffle is needed.
2500          std::vector<Constant *> Mask(numElem);
2501          for (unsigned i = 0; i < numElem; ++i) {
2502            int Idx = II[i].first;
2503            if (Idx == -1)
2504              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
2505            else
2506              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2507          }
2508
2509          Instruction *S =
2510            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2511                                  ConstantVector::get(Mask),
2512                                  getReplacementName(IBeforeJ ? I : J,
2513                                                     true, o));
2514          S->insertBefore(IBeforeJ ? J : I);
2515          return S;
2516        }
2517
2518        VectorType *I2T = cast<VectorType>(I2->getType());
2519        unsigned I2Elem = I2T->getNumElements();
2520
2521        // This input comes from two distinct vectors. The first step is to
2522        // make sure that both vectors are the same length. If not, the
2523        // smaller one will need to grow before they can be shuffled together.
2524        if (I1Elem < I2Elem) {
2525          std::vector<Constant *> Mask(I2Elem);
2526          unsigned v = 0;
2527          for (; v < I1Elem; ++v)
2528            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2529          for (; v < I2Elem; ++v)
2530            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2531
2532          Instruction *NewI1 =
2533            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2534                                  ConstantVector::get(Mask),
2535                                  getReplacementName(IBeforeJ ? I : J,
2536                                                     true, o, 1));
2537          NewI1->insertBefore(IBeforeJ ? J : I);
2538          I1 = NewI1;
2539          I1T = I2T;
2540          I1Elem = I2Elem;
2541        } else if (I1Elem > I2Elem) {
2542          std::vector<Constant *> Mask(I1Elem);
2543          unsigned v = 0;
2544          for (; v < I2Elem; ++v)
2545            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2546          for (; v < I1Elem; ++v)
2547            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2548
2549          Instruction *NewI2 =
2550            new ShuffleVectorInst(I2, UndefValue::get(I2T),
2551                                  ConstantVector::get(Mask),
2552                                  getReplacementName(IBeforeJ ? I : J,
2553                                                     true, o, 1));
2554          NewI2->insertBefore(IBeforeJ ? J : I);
2555          I2 = NewI2;
2556          I2T = I1T;
2557          I2Elem = I1Elem;
2558        }
2559
2560        // Now that both I1 and I2 are the same length we can shuffle them
2561        // together (and use the result).
2562        std::vector<Constant *> Mask(numElem);
2563        for (unsigned v = 0; v < numElem; ++v) {
2564          if (II[v].first == -1) {
2565            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2566          } else {
2567            int Idx = II[v].first + II[v].second * I1Elem;
2568            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2569          }
2570        }
2571
2572        Instruction *NewOp =
2573          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
2574                                getReplacementName(IBeforeJ ? I : J, true, o));
2575        NewOp->insertBefore(IBeforeJ ? J : I);
2576        return NewOp;
2577      }
2578    }
2579
2580    Type *ArgType = ArgTypeL;
2581    if (numElemL < numElemH) {
2582      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
2583                                         ArgTypeL, VArgType, IBeforeJ, 1)) {
2584        // This is another short-circuit case: we're combining a scalar into
2585        // a vector that is formed by an IE chain. We've just expanded the IE
2586        // chain, now insert the scalar and we're done.
2587
2588        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
2589                           getReplacementName(IBeforeJ ? I : J, true, o));
2590        S->insertBefore(IBeforeJ ? J : I);
2591        return S;
2592      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
2593                                ArgTypeH, IBeforeJ)) {
2594        // The two vector inputs to the shuffle must be the same length,
2595        // so extend the smaller vector to be the same length as the larger one.
2596        Instruction *NLOp;
2597        if (numElemL > 1) {
2598
2599          std::vector<Constant *> Mask(numElemH);
2600          unsigned v = 0;
2601          for (; v < numElemL; ++v)
2602            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2603          for (; v < numElemH; ++v)
2604            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2605
2606          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
2607                                       ConstantVector::get(Mask),
2608                                       getReplacementName(IBeforeJ ? I : J,
2609                                                          true, o, 1));
2610        } else {
2611          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
2612                                           getReplacementName(IBeforeJ ? I : J,
2613                                                              true, o, 1));
2614        }
2615
2616        NLOp->insertBefore(IBeforeJ ? J : I);
2617        LOp = NLOp;
2618      }
2619
2620      ArgType = ArgTypeH;
2621    } else if (numElemL > numElemH) {
2622      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
2623                                         ArgTypeH, VArgType, IBeforeJ)) {
2624        Instruction *S =
2625          InsertElementInst::Create(LOp, HOp,
2626                                    ConstantInt::get(Type::getInt32Ty(Context),
2627                                                     numElemL),
2628                                    getReplacementName(IBeforeJ ? I : J,
2629                                                       true, o));
2630        S->insertBefore(IBeforeJ ? J : I);
2631        return S;
2632      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
2633                                ArgTypeL, IBeforeJ)) {
2634        Instruction *NHOp;
2635        if (numElemH > 1) {
2636          std::vector<Constant *> Mask(numElemL);
2637          unsigned v = 0;
2638          for (; v < numElemH; ++v)
2639            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2640          for (; v < numElemL; ++v)
2641            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2642
2643          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
2644                                       ConstantVector::get(Mask),
2645                                       getReplacementName(IBeforeJ ? I : J,
2646                                                          true, o, 1));
2647        } else {
2648          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
2649                                           getReplacementName(IBeforeJ ? I : J,
2650                                                              true, o, 1));
2651        }
2652
2653        NHOp->insertBefore(IBeforeJ ? J : I);
2654        HOp = NHOp;
2655      }
2656    }
2657
2658    if (ArgType->isVectorTy()) {
2659      unsigned numElem = VArgType->getVectorNumElements();
2660      std::vector<Constant*> Mask(numElem);
2661      for (unsigned v = 0; v < numElem; ++v) {
2662        unsigned Idx = v;
2663        // If the low vector was expanded, we need to skip the extra
2664        // undefined entries.
2665        if (v >= numElemL && numElemH > numElemL)
2666          Idx += (numElemH - numElemL);
2667        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2668      }
2669
2670      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
2671                          ConstantVector::get(Mask),
2672                          getReplacementName(IBeforeJ ? I : J, true, o));
2673      BV->insertBefore(IBeforeJ ? J : I);
2674      return BV;
2675    }
2676
2677    Instruction *BV1 = InsertElementInst::Create(
2678                                          UndefValue::get(VArgType), LOp, CV0,
2679                                          getReplacementName(IBeforeJ ? I : J,
2680                                                             true, o, 1));
2681    BV1->insertBefore(IBeforeJ ? J : I);
2682    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2683                                          getReplacementName(IBeforeJ ? I : J,
2684                                                             true, o, 2));
2685    BV2->insertBefore(IBeforeJ ? J : I);
2686    return BV2;
2687  }
2688
2689  // This function creates an array of values that will be used as the inputs
2690  // to the vector instruction that fuses I with J.
2691  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2692                     Instruction *I, Instruction *J,
2693                     SmallVectorImpl<Value *> &ReplacedOperands,
2694                     bool IBeforeJ) {
2695    unsigned NumOperands = I->getNumOperands();
2696
2697    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2698      // Iterate backward so that we look at the store pointer
2699      // first and know whether or not we need to flip the inputs.
2700
2701      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2702        // This is the pointer for a load/store instruction.
2703        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
2704        continue;
2705      } else if (isa<CallInst>(I)) {
2706        Function *F = cast<CallInst>(I)->getCalledFunction();
2707        Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
2708        if (o == NumOperands-1) {
2709          BasicBlock &BB = *I->getParent();
2710
2711          Module *M = BB.getParent()->getParent();
2712          Type *ArgTypeI = I->getType();
2713          Type *ArgTypeJ = J->getType();
2714          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2715
2716          ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
2717          continue;
2718        } else if (IID == Intrinsic::powi && o == 1) {
2719          // The second argument of powi is a single integer and we've already
2720          // checked that both arguments are equal. As a result, we just keep
2721          // I's second argument.
2722          ReplacedOperands[o] = I->getOperand(o);
2723          continue;
2724        }
2725      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2726        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2727        continue;
2728      }
2729
2730      ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
2731    }
2732  }
2733
2734  // This function creates two values that represent the outputs of the
2735  // original I and J instructions. These are generally vector shuffles
2736  // or extracts. In many cases, these will end up being unused and, thus,
2737  // eliminated by later passes.
2738  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2739                     Instruction *J, Instruction *K,
2740                     Instruction *&InsertionPt,
2741                     Instruction *&K1, Instruction *&K2) {
2742    if (isa<StoreInst>(I)) {
2743      AA->replaceWithNewValue(I, K);
2744      AA->replaceWithNewValue(J, K);
2745    } else {
2746      Type *IType = I->getType();
2747      Type *JType = J->getType();
2748
2749      VectorType *VType = getVecTypeForPair(IType, JType);
2750      unsigned numElem = VType->getNumElements();
2751
2752      unsigned numElemI = getNumScalarElements(IType);
2753      unsigned numElemJ = getNumScalarElements(JType);
2754
2755      if (IType->isVectorTy()) {
2756        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
2757        for (unsigned v = 0; v < numElemI; ++v) {
2758          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2759          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
2760        }
2761
2762        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
2763                                   ConstantVector::get( Mask1),
2764                                   getReplacementName(K, false, 1));
2765      } else {
2766        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2767        K1 = ExtractElementInst::Create(K, CV0,
2768                                          getReplacementName(K, false, 1));
2769      }
2770
2771      if (JType->isVectorTy()) {
2772        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
2773        for (unsigned v = 0; v < numElemJ; ++v) {
2774          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2775          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
2776        }
2777
2778        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
2779                                   ConstantVector::get( Mask2),
2780                                   getReplacementName(K, false, 2));
2781      } else {
2782        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2783        K2 = ExtractElementInst::Create(K, CV1,
2784                                          getReplacementName(K, false, 2));
2785      }
2786
2787      K1->insertAfter(K);
2788      K2->insertAfter(K1);
2789      InsertionPt = K2;
2790    }
2791  }
2792
2793  // Move all uses of the function I (including pairing-induced uses) after J.
2794  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2795                     DenseSet<ValuePair> &LoadMoveSetPairs,
2796                     Instruction *I, Instruction *J) {
2797    // Skip to the first instruction past I.
2798    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2799
2800    DenseSet<Value *> Users;
2801    AliasSetTracker WriteSet(*AA);
2802    if (I->mayWriteToMemory()) WriteSet.add(I);
2803
2804    for (; cast<Instruction>(L) != J; ++L)
2805      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
2806
2807    assert(cast<Instruction>(L) == J &&
2808      "Tracking has not proceeded far enough to check for dependencies");
2809    // If J is now in the use set of I, then trackUsesOfI will return true
2810    // and we have a dependency cycle (and the fusing operation must abort).
2811    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
2812  }
2813
2814  // Move all uses of the function I (including pairing-induced uses) after J.
2815  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2816                     DenseSet<ValuePair> &LoadMoveSetPairs,
2817                     Instruction *&InsertionPt,
2818                     Instruction *I, Instruction *J) {
2819    // Skip to the first instruction past I.
2820    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2821
2822    DenseSet<Value *> Users;
2823    AliasSetTracker WriteSet(*AA);
2824    if (I->mayWriteToMemory()) WriteSet.add(I);
2825
2826    for (; cast<Instruction>(L) != J;) {
2827      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
2828        // Move this instruction
2829        Instruction *InstToMove = L; ++L;
2830
2831        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2832                        " to after " << *InsertionPt << "\n");
2833        InstToMove->removeFromParent();
2834        InstToMove->insertAfter(InsertionPt);
2835        InsertionPt = InstToMove;
2836      } else {
2837        ++L;
2838      }
2839    }
2840  }
2841
2842  // Collect all load instruction that are in the move set of a given first
2843  // pair member.  These loads depend on the first instruction, I, and so need
2844  // to be moved after J (the second instruction) when the pair is fused.
2845  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2846                     DenseMap<Value *, Value *> &ChosenPairs,
2847                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
2848                     DenseSet<ValuePair> &LoadMoveSetPairs,
2849                     Instruction *I) {
2850    // Skip to the first instruction past I.
2851    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2852
2853    DenseSet<Value *> Users;
2854    AliasSetTracker WriteSet(*AA);
2855    if (I->mayWriteToMemory()) WriteSet.add(I);
2856
2857    // Note: We cannot end the loop when we reach J because J could be moved
2858    // farther down the use chain by another instruction pairing. Also, J
2859    // could be before I if this is an inverted input.
2860    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2861      if (trackUsesOfI(Users, WriteSet, I, L)) {
2862        if (L->mayReadFromMemory()) {
2863          LoadMoveSet[L].push_back(I);
2864          LoadMoveSetPairs.insert(ValuePair(L, I));
2865        }
2866      }
2867    }
2868  }
2869
2870  // In cases where both load/stores and the computation of their pointers
2871  // are chosen for vectorization, we can end up in a situation where the
2872  // aliasing analysis starts returning different query results as the
2873  // process of fusing instruction pairs continues. Because the algorithm
2874  // relies on finding the same use dags here as were found earlier, we'll
2875  // need to precompute the necessary aliasing information here and then
2876  // manually update it during the fusion process.
2877  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2878                     std::vector<Value *> &PairableInsts,
2879                     DenseMap<Value *, Value *> &ChosenPairs,
2880                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
2881                     DenseSet<ValuePair> &LoadMoveSetPairs) {
2882    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2883         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2884      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2885      if (P == ChosenPairs.end()) continue;
2886
2887      Instruction *I = cast<Instruction>(P->first);
2888      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
2889                             LoadMoveSetPairs, I);
2890    }
2891  }
2892
2893  // When the first instruction in each pair is cloned, it will inherit its
2894  // parent's metadata. This metadata must be combined with that of the other
2895  // instruction in a safe way.
2896  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2897    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2898    K->getAllMetadataOtherThanDebugLoc(Metadata);
2899    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2900      unsigned Kind = Metadata[i].first;
2901      MDNode *JMD = J->getMetadata(Kind);
2902      MDNode *KMD = Metadata[i].second;
2903
2904      switch (Kind) {
2905      default:
2906        K->setMetadata(Kind, 0); // Remove unknown metadata
2907        break;
2908      case LLVMContext::MD_tbaa:
2909        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2910        break;
2911      case LLVMContext::MD_fpmath:
2912        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2913        break;
2914      }
2915    }
2916  }
2917
2918  // This function fuses the chosen instruction pairs into vector instructions,
2919  // taking care preserve any needed scalar outputs and, then, it reorders the
2920  // remaining instructions as needed (users of the first member of the pair
2921  // need to be moved to after the location of the second member of the pair
2922  // because the vector instruction is inserted in the location of the pair's
2923  // second member).
2924  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2925             std::vector<Value *> &PairableInsts,
2926             DenseMap<Value *, Value *> &ChosenPairs,
2927             DenseSet<ValuePair> &FixedOrderPairs,
2928             DenseMap<VPPair, unsigned> &PairConnectionTypes,
2929             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
2930             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
2931    LLVMContext& Context = BB.getContext();
2932
2933    // During the vectorization process, the order of the pairs to be fused
2934    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2935    // list. After a pair is fused, the flipped pair is removed from the list.
2936    DenseSet<ValuePair> FlippedPairs;
2937    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2938         E = ChosenPairs.end(); P != E; ++P)
2939      FlippedPairs.insert(ValuePair(P->second, P->first));
2940    for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
2941         E = FlippedPairs.end(); P != E; ++P)
2942      ChosenPairs.insert(*P);
2943
2944    DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
2945    DenseSet<ValuePair> LoadMoveSetPairs;
2946    collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
2947                       LoadMoveSet, LoadMoveSetPairs);
2948
2949    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2950
2951    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2952      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2953      if (P == ChosenPairs.end()) {
2954        ++PI;
2955        continue;
2956      }
2957
2958      if (getDepthFactor(P->first) == 0) {
2959        // These instructions are not really fused, but are tracked as though
2960        // they are. Any case in which it would be interesting to fuse them
2961        // will be taken care of by InstCombine.
2962        --NumFusedOps;
2963        ++PI;
2964        continue;
2965      }
2966
2967      Instruction *I = cast<Instruction>(P->first),
2968        *J = cast<Instruction>(P->second);
2969
2970      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2971             " <-> " << *J << "\n");
2972
2973      // Remove the pair and flipped pair from the list.
2974      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2975      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2976      ChosenPairs.erase(FP);
2977      ChosenPairs.erase(P);
2978
2979      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
2980        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2981               " <-> " << *J <<
2982               " aborted because of non-trivial dependency cycle\n");
2983        --NumFusedOps;
2984        ++PI;
2985        continue;
2986      }
2987
2988      // If the pair must have the other order, then flip it.
2989      bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
2990      if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
2991        // This pair does not have a fixed order, and so we might want to
2992        // flip it if that will yield fewer shuffles. We count the number
2993        // of dependencies connected via swaps, and those directly connected,
2994        // and flip the order if the number of swaps is greater.
2995        bool OrigOrder = true;
2996        DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
2997          ConnectedPairDeps.find(ValuePair(I, J));
2998        if (IJ == ConnectedPairDeps.end()) {
2999          IJ = ConnectedPairDeps.find(ValuePair(J, I));
3000          OrigOrder = false;
3001        }
3002
3003        if (IJ != ConnectedPairDeps.end()) {
3004          unsigned NumDepsDirect = 0, NumDepsSwap = 0;
3005          for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
3006               TE = IJ->second.end(); T != TE; ++T) {
3007            VPPair Q(IJ->first, *T);
3008            DenseMap<VPPair, unsigned>::iterator R =
3009              PairConnectionTypes.find(VPPair(Q.second, Q.first));
3010            assert(R != PairConnectionTypes.end() &&
3011                   "Cannot find pair connection type");
3012            if (R->second == PairConnectionDirect)
3013              ++NumDepsDirect;
3014            else if (R->second == PairConnectionSwap)
3015              ++NumDepsSwap;
3016          }
3017
3018          if (!OrigOrder)
3019            std::swap(NumDepsDirect, NumDepsSwap);
3020
3021          if (NumDepsSwap > NumDepsDirect) {
3022            FlipPairOrder = true;
3023            DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
3024                            " <-> " << *J << "\n");
3025          }
3026        }
3027      }
3028
3029      Instruction *L = I, *H = J;
3030      if (FlipPairOrder)
3031        std::swap(H, L);
3032
3033      // If the pair being fused uses the opposite order from that in the pair
3034      // connection map, then we need to flip the types.
3035      DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
3036        ConnectedPairs.find(ValuePair(H, L));
3037      if (HL != ConnectedPairs.end())
3038        for (std::vector<ValuePair>::iterator T = HL->second.begin(),
3039             TE = HL->second.end(); T != TE; ++T) {
3040          VPPair Q(HL->first, *T);
3041          DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
3042          assert(R != PairConnectionTypes.end() &&
3043                 "Cannot find pair connection type");
3044          if (R->second == PairConnectionDirect)
3045            R->second = PairConnectionSwap;
3046          else if (R->second == PairConnectionSwap)
3047            R->second = PairConnectionDirect;
3048        }
3049
3050      bool LBeforeH = !FlipPairOrder;
3051      unsigned NumOperands = I->getNumOperands();
3052      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
3053      getReplacementInputsForPair(Context, L, H, ReplacedOperands,
3054                                  LBeforeH);
3055
3056      // Make a copy of the original operation, change its type to the vector
3057      // type and replace its operands with the vector operands.
3058      Instruction *K = L->clone();
3059      if (L->hasName())
3060        K->takeName(L);
3061      else if (H->hasName())
3062        K->takeName(H);
3063
3064      if (!isa<StoreInst>(K))
3065        K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
3066
3067      combineMetadata(K, H);
3068      K->intersectOptionalDataWith(H);
3069
3070      for (unsigned o = 0; o < NumOperands; ++o)
3071        K->setOperand(o, ReplacedOperands[o]);
3072
3073      K->insertAfter(J);
3074
3075      // Instruction insertion point:
3076      Instruction *InsertionPt = K;
3077      Instruction *K1 = 0, *K2 = 0;
3078      replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
3079
3080      // The use dag of the first original instruction must be moved to after
3081      // the location of the second instruction. The entire use dag of the
3082      // first instruction is disjoint from the input dag of the second
3083      // (by definition), and so commutes with it.
3084
3085      moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
3086
3087      if (!isa<StoreInst>(I)) {
3088        L->replaceAllUsesWith(K1);
3089        H->replaceAllUsesWith(K2);
3090        AA->replaceWithNewValue(L, K1);
3091        AA->replaceWithNewValue(H, K2);
3092      }
3093
3094      // Instructions that may read from memory may be in the load move set.
3095      // Once an instruction is fused, we no longer need its move set, and so
3096      // the values of the map never need to be updated. However, when a load
3097      // is fused, we need to merge the entries from both instructions in the
3098      // pair in case those instructions were in the move set of some other
3099      // yet-to-be-fused pair. The loads in question are the keys of the map.
3100      if (I->mayReadFromMemory()) {
3101        std::vector<ValuePair> NewSetMembers;
3102        DenseMap<Value *, std::vector<Value *> >::iterator II =
3103          LoadMoveSet.find(I);
3104        if (II != LoadMoveSet.end())
3105          for (std::vector<Value *>::iterator N = II->second.begin(),
3106               NE = II->second.end(); N != NE; ++N)
3107            NewSetMembers.push_back(ValuePair(K, *N));
3108        DenseMap<Value *, std::vector<Value *> >::iterator JJ =
3109          LoadMoveSet.find(J);
3110        if (JJ != LoadMoveSet.end())
3111          for (std::vector<Value *>::iterator N = JJ->second.begin(),
3112               NE = JJ->second.end(); N != NE; ++N)
3113            NewSetMembers.push_back(ValuePair(K, *N));
3114        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
3115             AE = NewSetMembers.end(); A != AE; ++A) {
3116          LoadMoveSet[A->first].push_back(A->second);
3117          LoadMoveSetPairs.insert(*A);
3118        }
3119      }
3120
3121      // Before removing I, set the iterator to the next instruction.
3122      PI = llvm::next(BasicBlock::iterator(I));
3123      if (cast<Instruction>(PI) == J)
3124        ++PI;
3125
3126      SE->forgetValue(I);
3127      SE->forgetValue(J);
3128      I->eraseFromParent();
3129      J->eraseFromParent();
3130
3131      DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
3132                                               BB << "\n");
3133    }
3134
3135    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
3136  }
3137}
3138
3139char BBVectorize::ID = 0;
3140static const char bb_vectorize_name[] = "Basic-Block Vectorization";
3141INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
3142INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3143INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3144INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3145INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3146INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
3147
3148BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
3149  return new BBVectorize(C);
3150}
3151
3152bool
3153llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
3154  BBVectorize BBVectorizer(P, C);
3155  return BBVectorizer.vectorizeBB(BB);
3156}
3157
3158//===----------------------------------------------------------------------===//
3159VectorizeConfig::VectorizeConfig() {
3160  VectorBits = ::VectorBits;
3161  VectorizeBools = !::NoBools;
3162  VectorizeInts = !::NoInts;
3163  VectorizeFloats = !::NoFloats;
3164  VectorizePointers = !::NoPointers;
3165  VectorizeCasts = !::NoCasts;
3166  VectorizeMath = !::NoMath;
3167  VectorizeFMA = !::NoFMA;
3168  VectorizeSelect = !::NoSelect;
3169  VectorizeCmp = !::NoCmp;
3170  VectorizeGEP = !::NoGEP;
3171  VectorizeMemOps = !::NoMemOps;
3172  AlignedOnly = ::AlignedOnly;
3173  ReqChainDepth= ::ReqChainDepth;
3174  SearchLimit = ::SearchLimit;
3175  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
3176  SplatBreaksChain = ::SplatBreaksChain;
3177  MaxInsts = ::MaxInsts;
3178  MaxPairs = ::MaxPairs;
3179  MaxIter = ::MaxIter;
3180  Pow2LenOnly = ::Pow2LenOnly;
3181  NoMemOpBoost = ::NoMemOpBoost;
3182  FastDep = ::FastDep;
3183}
3184