SimplifyCFG.cpp revision 263508
150397Sobrien//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2169689Skan//
3132718Skan//                     The LLVM Compiler Infrastructure
450397Sobrien//
5132718Skan// This file is distributed under the University of Illinois Open Source
650397Sobrien// License. See LICENSE.TXT for details.
7132718Skan//
850397Sobrien//===----------------------------------------------------------------------===//
950397Sobrien//
1050397Sobrien// Peephole optimize the CFG.
1150397Sobrien//
12132718Skan//===----------------------------------------------------------------------===//
1350397Sobrien
1450397Sobrien#define DEBUG_TYPE "simplifycfg"
1550397Sobrien#include "llvm/Transforms/Utils/Local.h"
1650397Sobrien#include "llvm/ADT/DenseMap.h"
1750397Sobrien#include "llvm/ADT/STLExtras.h"
18132718Skan#include "llvm/ADT/SetVector.h"
19169689Skan#include "llvm/ADT/SmallPtrSet.h"
20169689Skan#include "llvm/ADT/SmallVector.h"
2150397Sobrien#include "llvm/ADT/Statistic.h"
2250397Sobrien#include "llvm/Analysis/ConstantFolding.h"
2350397Sobrien#include "llvm/Analysis/InstructionSimplify.h"
24132718Skan#include "llvm/Analysis/TargetTransformInfo.h"
25132718Skan#include "llvm/Analysis/ValueTracking.h"
2650397Sobrien#include "llvm/IR/Constants.h"
2750397Sobrien#include "llvm/IR/DataLayout.h"
2890075Sobrien#include "llvm/IR/DerivedTypes.h"
2950397Sobrien#include "llvm/IR/GlobalVariable.h"
3050397Sobrien#include "llvm/IR/IRBuilder.h"
3150397Sobrien#include "llvm/IR/Instructions.h"
3250397Sobrien#include "llvm/IR/IntrinsicInst.h"
3350397Sobrien#include "llvm/IR/LLVMContext.h"
3450397Sobrien#include "llvm/IR/MDBuilder.h"
3550397Sobrien#include "llvm/IR/Metadata.h"
36117395Skan#include "llvm/IR/Module.h"
3752284Sobrien#include "llvm/IR/Operator.h"
3850397Sobrien#include "llvm/IR/Type.h"
39132718Skan#include "llvm/Support/CFG.h"
4050397Sobrien#include "llvm/Support/CommandLine.h"
4150397Sobrien#include "llvm/Support/ConstantRange.h"
42132718Skan#include "llvm/Support/Debug.h"
4350397Sobrien#include "llvm/Support/NoFolder.h"
4450397Sobrien#include "llvm/Support/PatternMatch.h"
4550397Sobrien#include "llvm/Support/raw_ostream.h"
4650397Sobrien#include "llvm/Transforms/Utils/BasicBlockUtils.h"
4750397Sobrien#include <algorithm>
4890075Sobrien#include <map>
4950397Sobrien#include <set>
5050397Sobrienusing namespace llvm;
5150397Sobrienusing namespace PatternMatch;
5250397Sobrien
5350397Sobrienstatic cl::opt<unsigned>
5450397SobrienPHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
5550397Sobrien   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
5650397Sobrien
5750397Sobrienstatic cl::opt<bool>
5852284SobrienDupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
5950397Sobrien       cl::desc("Duplicate return instructions into unconditional branches"));
6052284Sobrien
6150397Sobrienstatic cl::opt<bool>
6250397SobrienSinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
63132718Skan       cl::desc("Sink common instructions down to the end block"));
64132718Skan
65132718Skanstatic cl::opt<bool>
6650397SobrienHoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
6750397Sobrien       cl::desc("Hoist conditional stores if an unconditional store preceeds"));
68132718Skan
6952284SobrienSTATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
7050397SobrienSTATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
71132718SkanSTATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
72117395SkanSTATISTIC(NumSpeculations, "Number of speculative executed instructions");
7350397Sobrien
7450397Sobriennamespace {
7550397Sobrien  /// ValueEqualityComparisonCase - Represents a case of a switch.
7650397Sobrien  struct ValueEqualityComparisonCase {
7750397Sobrien    ConstantInt *Value;
7850397Sobrien    BasicBlock *Dest;
7950397Sobrien
8050397Sobrien    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
81169689Skan      : Value(Value), Dest(Dest) {}
82169689Skan
83169689Skan    bool operator<(ValueEqualityComparisonCase RHS) const {
8450397Sobrien      // Comparing pointers is ok as we only rely on the order for uniquing.
8550397Sobrien      return Value < RHS.Value;
8650397Sobrien    }
8750397Sobrien
8850397Sobrien    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
89169689Skan  };
90169689Skan
9152284Sobrienclass SimplifyCFGOpt {
9250397Sobrien  const TargetTransformInfo &TTI;
9350397Sobrien  const DataLayout *const TD;
94169689Skan  Value *isValueEqualityComparison(TerminatorInst *TI);
9550397Sobrien  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
96169689Skan                               std::vector<ValueEqualityComparisonCase> &Cases);
97169689Skan  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
98169689Skan                                                     BasicBlock *Pred,
99169689Skan                                                     IRBuilder<> &Builder);
100169689Skan  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
101169689Skan                                           IRBuilder<> &Builder);
102169689Skan
10350397Sobrien  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
104169689Skan  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
105169689Skan  bool SimplifyUnreachable(UnreachableInst *UI);
106169689Skan  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
107169689Skan  bool SimplifyIndirectBr(IndirectBrInst *IBI);
108169689Skan  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
109169689Skan  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
110169689Skan
111169689Skanpublic:
112169689Skan  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
11350397Sobrien      : TTI(TTI), TD(TD) {}
114117395Skan  bool run(BasicBlock *BB);
11550397Sobrien};
11650397Sobrien}
11750397Sobrien
11850397Sobrien/// SafeToMergeTerminators - Return true if it is safe to merge these two
11950397Sobrien/// terminator instructions together.
12050397Sobrien///
12150397Sobrienstatic bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
12250397Sobrien  if (SI1 == SI2) return false;  // Can't merge with self!
12350397Sobrien
12450397Sobrien  // It is not safe to merge these two switch instructions if they have a common
125132718Skan  // successor, and if that successor has a PHI node, and if *that* PHI node has
12650397Sobrien  // conflicting incoming values from the two switch blocks.
127132718Skan  BasicBlock *SI1BB = SI1->getParent();
128132718Skan  BasicBlock *SI2BB = SI2->getParent();
129132718Skan  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
130132718Skan
13152284Sobrien  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
132132718Skan    if (SI1Succs.count(*I))
13350397Sobrien      for (BasicBlock::iterator BBI = (*I)->begin();
13452284Sobrien           isa<PHINode>(BBI); ++BBI) {
13552284Sobrien        PHINode *PN = cast<PHINode>(BBI);
13652284Sobrien        if (PN->getIncomingValueForBlock(SI1BB) !=
137169689Skan            PN->getIncomingValueForBlock(SI2BB))
13850397Sobrien          return false;
13952284Sobrien      }
14052284Sobrien
14152284Sobrien  return true;
14252284Sobrien}
14352284Sobrien
14452284Sobrien/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
14552284Sobrien/// to merge these two terminator instructions together, where SI1 is an
14652284Sobrien/// unconditional branch. PhiNodes will store all PHI nodes in common
14750397Sobrien/// successors.
14850397Sobrien///
14952284Sobrienstatic bool isProfitableToFoldUnconditional(BranchInst *SI1,
15050397Sobrien                                          BranchInst *SI2,
15152284Sobrien                                          Instruction *Cond,
15250397Sobrien                                          SmallVectorImpl<PHINode*> &PhiNodes) {
15350397Sobrien  if (SI1 == SI2) return false;  // Can't merge with self!
15450397Sobrien  assert(SI1->isUnconditional() && SI2->isConditional());
15550397Sobrien
156132718Skan  // We fold the unconditional branch if we can easily update all PHI nodes in
157169689Skan  // common successors:
158132718Skan  // 1> We have a constant incoming value for the conditional branch;
15950397Sobrien  // 2> We have "Cond" as the incoming value for the unconditional branch;
16050397Sobrien  // 3> SI2->getCondition() and Cond have same operands.
16150397Sobrien  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
162117395Skan  if (!Ci2) return false;
163117395Skan  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
164117395Skan        Cond->getOperand(1) == Ci2->getOperand(1)) &&
165132718Skan      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
16650397Sobrien        Cond->getOperand(1) == Ci2->getOperand(0)))
16750397Sobrien    return false;
16850397Sobrien
16950397Sobrien  BasicBlock *SI1BB = SI1->getParent();
17050397Sobrien  BasicBlock *SI2BB = SI2->getParent();
17152284Sobrien  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
172169689Skan  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
173169689Skan    if (SI1Succs.count(*I))
174169689Skan      for (BasicBlock::iterator BBI = (*I)->begin();
175132718Skan           isa<PHINode>(BBI); ++BBI) {
176117395Skan        PHINode *PN = cast<PHINode>(BBI);
177117395Skan        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
17850397Sobrien            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
179132718Skan          return false;
18050397Sobrien        PhiNodes.push_back(PN);
18152284Sobrien      }
182169689Skan  return true;
18352284Sobrien}
18452284Sobrien
18550397Sobrien/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
18650397Sobrien/// now be entries in it from the 'NewPred' block.  The values that will be
18750397Sobrien/// flowing into the PHI nodes will be the same as those coming in from
18850397Sobrien/// ExistPred, an existing predecessor of Succ.
18950397Sobrienstatic void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
19050397Sobrien                                  BasicBlock *ExistPred) {
19150397Sobrien  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
19250397Sobrien
19350397Sobrien  PHINode *PN;
19450397Sobrien  for (BasicBlock::iterator I = Succ->begin();
195132718Skan       (PN = dyn_cast<PHINode>(I)); ++I)
19650397Sobrien    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
197132718Skan}
198132718Skan
199132718Skan/// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
200132718Skan/// given instruction, which is assumed to be safe to speculate. 1 means
20150397Sobrien/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
202132718Skanstatic unsigned ComputeSpeculationCost(const User *I) {
20350397Sobrien  assert(isSafeToSpeculativelyExecute(I) &&
20450397Sobrien         "Instruction is not safe to speculatively execute!");
20550397Sobrien  switch (Operator::getOpcode(I)) {
206169689Skan  default:
207169689Skan    // In doubt, be conservative.
208169689Skan    return UINT_MAX;
209169689Skan  case Instruction::GetElementPtr:
210169689Skan    // GEPs are cheap if all indices are constant.
211169689Skan    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
212169689Skan      return UINT_MAX;
213169689Skan    return 1;
214169689Skan  case Instruction::Load:
215169689Skan  case Instruction::Add:
216169689Skan  case Instruction::Sub:
217169689Skan  case Instruction::And:
218169689Skan  case Instruction::Or:
219169689Skan  case Instruction::Xor:
220169689Skan  case Instruction::Shl:
221169689Skan  case Instruction::LShr:
222169689Skan  case Instruction::AShr:
223169689Skan  case Instruction::ICmp:
224169689Skan  case Instruction::Trunc:
225169689Skan  case Instruction::ZExt:
226169689Skan  case Instruction::SExt:
227169689Skan    return 1; // These are all cheap.
228169689Skan
229169689Skan  case Instruction::Call:
230169689Skan  case Instruction::Select:
23190075Sobrien    return 2;
23250397Sobrien  }
233169689Skan}
23450397Sobrien
23550397Sobrien/// DominatesMergePoint - If we have a merge point of an "if condition" as
23652284Sobrien/// accepted above, return true if the specified value dominates the block.  We
237169689Skan/// don't handle the true generality of domination here, just a special case
23850397Sobrien/// which works well enough for us.
23950397Sobrien///
24050397Sobrien/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
241117395Skan/// see if V (which must be an instruction) and its recursive operands
242117395Skan/// that do not dominate BB have a combined cost lower than CostRemaining and
243117395Skan/// are non-trapping.  If both are true, the instruction is inserted into the
244117395Skan/// set and true is returned.
245117395Skan///
246117395Skan/// The cost for most non-trapping instructions is defined as 1 except for
247117395Skan/// Select whose cost is 2.
248117395Skan///
249169689Skan/// After this function returns, CostRemaining is decreased by the cost of
250117395Skan/// V plus its non-dominating operands.  If that cost is greater than
251117395Skan/// CostRemaining, false is returned and CostRemaining is undefined.
252117395Skanstatic bool DominatesMergePoint(Value *V, BasicBlock *BB,
253117395Skan                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
25452284Sobrien                                unsigned &CostRemaining) {
25550397Sobrien  Instruction *I = dyn_cast<Instruction>(V);
256132718Skan  if (!I) {
257169689Skan    // Non-instructions all dominate instructions, but not all constantexprs
258132718Skan    // can be executed unconditionally.
25950397Sobrien    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
26050397Sobrien      if (C->canTrap())
26150397Sobrien        return false;
26290075Sobrien    return true;
26390075Sobrien  }
26490075Sobrien  BasicBlock *PBB = I->getParent();
26590075Sobrien
26690075Sobrien  // We don't want to allow weird loops that might have the "if condition" in
267117395Skan  // the bottom of this block.
268169689Skan  if (PBB == BB) return false;
26990075Sobrien
27090075Sobrien  // If this instruction is defined in a block that contains an unconditional
27190075Sobrien  // branch to BB, then it must be in the 'conditional' part of the "if
272169689Skan  // statement".  If not, it definitely dominates the region.
273169689Skan  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
274169689Skan  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
275169689Skan    return true;
276169689Skan
277169689Skan  // If we aren't allowing aggressive promotion anymore, then don't consider
278169689Skan  // instructions in the 'if region'.
279169689Skan  if (AggressiveInsts == 0) return false;
280169689Skan
281169689Skan  // If we have seen this instruction before, don't count it again.
282169689Skan  if (AggressiveInsts->count(I)) return true;
283169689Skan
284169689Skan  // Okay, it looks like the instruction IS in the "condition".  Check to
285169689Skan  // see if it's a cheap instruction to unconditionally compute, and if it
286169689Skan  // only uses stuff defined outside of the condition.  If so, hoist it out.
287169689Skan  if (!isSafeToSpeculativelyExecute(I))
288169689Skan    return false;
289169689Skan
290169689Skan  unsigned Cost = ComputeSpeculationCost(I);
291169689Skan
292169689Skan  if (Cost > CostRemaining)
293169689Skan    return false;
294169689Skan
295169689Skan  CostRemaining -= Cost;
296169689Skan
297169689Skan  // Okay, we can only really hoist these out if their operands do
298169689Skan  // not take us over the cost threshold.
299169689Skan  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
300169689Skan    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
301169689Skan      return false;
302169689Skan  // Okay, it's safe to do this!  Remember this instruction.
303169689Skan  AggressiveInsts->insert(I);
304169689Skan  return true;
305169689Skan}
306169689Skan
307169689Skan/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
308169689Skan/// and PointerNullValue. Return NULL if value is not a constant int.
309169689Skanstatic ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
310169689Skan  // Normal constant int.
311169689Skan  ConstantInt *CI = dyn_cast<ConstantInt>(V);
312169689Skan  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
313169689Skan    return CI;
314169689Skan
315169689Skan  // This is some kind of pointer constant. Turn it into a pointer-sized
316169689Skan  // ConstantInt if possible.
317169689Skan  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
318169689Skan
319169689Skan  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
320169689Skan  if (isa<ConstantPointerNull>(V))
321169689Skan    return ConstantInt::get(PtrTy, 0);
322169689Skan
323169689Skan  // IntToPtr const int.
324169689Skan  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
325169689Skan    if (CE->getOpcode() == Instruction::IntToPtr)
326169689Skan      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
327169689Skan        // The constant is very likely to have the right type already.
328169689Skan        if (CI->getType() == PtrTy)
329169689Skan          return CI;
330169689Skan        else
331169689Skan          return cast<ConstantInt>
332169689Skan            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
333169689Skan      }
334169689Skan  return 0;
335169689Skan}
336169689Skan
33790075Sobrien/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
33890075Sobrien/// collection of icmp eq/ne instructions that compare a value against a
33990075Sobrien/// constant, return the value being compared, and stick the constant into the
34090075Sobrien/// Values vector.
341169689Skanstatic Value *
34290075SobrienGatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
34390075Sobrien                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
34490075Sobrien  Instruction *I = dyn_cast<Instruction>(V);
34590075Sobrien  if (I == 0) return 0;
34690075Sobrien
347169689Skan  // If this is an icmp against a constant, handle this as one of the cases.
34890075Sobrien  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
34990075Sobrien    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
350169689Skan      Value *RHSVal;
351169689Skan      ConstantInt *RHSC;
35250397Sobrien
35350397Sobrien      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
354169689Skan        // (x & ~2^x) == y --> x == y || x == y|2^x
355169689Skan        // This undoes a transformation done by instcombine to fuse 2 compares.
356169689Skan        if (match(ICI->getOperand(0),
357132718Skan                  m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
358132718Skan          APInt Not = ~RHSC->getValue();
359132718Skan          if (Not.isPowerOf2()) {
360132718Skan            Vals.push_back(C);
36150397Sobrien            Vals.push_back(
362132718Skan                ConstantInt::get(C->getContext(), C->getValue() | Not));
363132718Skan            UsedICmps++;
364132718Skan            return RHSVal;
365132718Skan          }
366132718Skan        }
367132718Skan
368132718Skan        UsedICmps++;
369169689Skan        Vals.push_back(C);
370132718Skan        return I->getOperand(0);
371132718Skan      }
372132718Skan
373132718Skan      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
374132718Skan      // the set.
375132718Skan      ConstantRange Span =
376132718Skan        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
377132718Skan
378169689Skan      // Shift the range if the compare is fed by an add. This is the range
379132718Skan      // compare idiom as emitted by instcombine.
380132718Skan      bool hasAdd =
381132718Skan          match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
382132718Skan      if (hasAdd)
383169689Skan        Span = Span.subtract(RHSC->getValue());
384169689Skan
385132718Skan      // If this is an and/!= check then we want to optimize "x ugt 2" into
386117395Skan      // x != 0 && x != 1.
387117395Skan      if (!isEQ)
38850397Sobrien        Span = Span.inverse();
38950397Sobrien
390169689Skan      // If there are a ton of values, we don't want to make a ginormous switch.
39152284Sobrien      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
39252284Sobrien        return 0;
39352284Sobrien
394169689Skan      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
395169689Skan        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
39650397Sobrien      UsedICmps++;
39750397Sobrien      return hasAdd ? RHSVal : I->getOperand(0);
39850397Sobrien    }
399169689Skan    return 0;
400169689Skan  }
401169689Skan
402169689Skan  // Otherwise, we can only handle an | or &, depending on isEQ.
403169689Skan  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
404169689Skan    return 0;
40550397Sobrien
40650397Sobrien  unsigned NumValsBeforeLHS = Vals.size();
407132718Skan  unsigned UsedICmpsBeforeLHS = UsedICmps;
408169689Skan  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
409169689Skan                                          isEQ, UsedICmps)) {
41050397Sobrien    unsigned NumVals = Vals.size();
411169689Skan    unsigned UsedICmpsBeforeRHS = UsedICmps;
412169689Skan    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
413169689Skan                                            isEQ, UsedICmps)) {
41450397Sobrien      if (LHS == RHS)
41550397Sobrien        return LHS;
41650397Sobrien      Vals.resize(NumVals);
41750397Sobrien      UsedICmps = UsedICmpsBeforeRHS;
41850397Sobrien    }
41950397Sobrien
42050397Sobrien    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
42150397Sobrien    // set it and return success.
42250397Sobrien    if (Extra == 0 || Extra == I->getOperand(1)) {
42350397Sobrien      Extra = I->getOperand(1);
42450397Sobrien      return LHS;
42550397Sobrien    }
426132718Skan
427132718Skan    Vals.resize(NumValsBeforeLHS);
428132718Skan    UsedICmps = UsedICmpsBeforeLHS;
429132718Skan    return 0;
430132718Skan  }
431132718Skan
432132718Skan  // If the LHS can't be folded in, but Extra is available and RHS can, try to
433132718Skan  // use LHS as Extra.
434132718Skan  if (Extra == 0 || Extra == I->getOperand(0)) {
435132718Skan    Value *OldExtra = Extra;
436132718Skan    Extra = I->getOperand(0);
437132718Skan    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
438132718Skan                                            isEQ, UsedICmps))
439132718Skan      return RHS;
440132718Skan    assert(Vals.size() == NumValsBeforeLHS);
441132718Skan    Extra = OldExtra;
442132718Skan  }
443132718Skan
444132718Skan  return 0;
445132718Skan}
446132718Skan
447132718Skanstatic void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
448132718Skan  Instruction *Cond = 0;
449132718Skan  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
45050397Sobrien    Cond = dyn_cast<Instruction>(SI->getCondition());
45150397Sobrien  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
45250397Sobrien    if (BI->isConditional())
45350397Sobrien      Cond = dyn_cast<Instruction>(BI->getCondition());
45450397Sobrien  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
455132718Skan    Cond = dyn_cast<Instruction>(IBI->getAddress());
45652284Sobrien  }
45750397Sobrien
458169689Skan  TI->eraseFromParent();
45950397Sobrien  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
460132718Skan}
461132718Skan
462132718Skan/// isValueEqualityComparison - Return true if the specified terminator checks
463132718Skan/// to see if a value is equal to constant integer value.
464132718SkanValue *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
465132718Skan  Value *CV = 0;
46650397Sobrien  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
46752284Sobrien    // Do not permit merging of large switch instructions into their
46852284Sobrien    // predecessors unless there is only one predecessor.
46952284Sobrien    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
470132718Skan                                             pred_end(SI->getParent())) <= 128)
471132718Skan      CV = SI->getCondition();
472132718Skan  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
47352284Sobrien    if (BI->isConditional() && BI->getCondition()->hasOneUse())
474132718Skan      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
475132718Skan        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD))
476132718Skan          CV = ICI->getOperand(0);
477132718Skan
478132718Skan  // Unwrap any lossless ptrtoint cast.
479132718Skan  if (TD && CV) {
480132718Skan    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
481169689Skan      Value *Ptr = PTII->getPointerOperand();
482132718Skan      if (PTII->getType() == TD->getIntPtrType(Ptr->getType()))
483169689Skan        CV = Ptr;
484169689Skan    }
485169689Skan  }
486169689Skan  return CV;
48750397Sobrien}
488132718Skan
489132718Skan/// GetValueEqualityComparisonCases - Given a value comparison instruction,
490132718Skan/// decode all of the 'cases' that it represents and return the 'default' block.
49152284SobrienBasicBlock *SimplifyCFGOpt::
492132718SkanGetValueEqualityComparisonCases(TerminatorInst *TI,
49350397Sobrien                                std::vector<ValueEqualityComparisonCase>
49450397Sobrien                                                                       &Cases) {
495169689Skan  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
49652284Sobrien    Cases.reserve(SI->getNumCases());
49750397Sobrien    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
49850397Sobrien      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
49950397Sobrien                                                  i.getCaseSuccessor()));
50050397Sobrien    return SI->getDefaultDest();
50150397Sobrien  }
502132718Skan
503132718Skan  BranchInst *BI = cast<BranchInst>(TI);
50450397Sobrien  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
50550397Sobrien  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
50650397Sobrien  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
50750397Sobrien                                                             TD),
50850397Sobrien                                              Succ));
50950397Sobrien  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
51090075Sobrien}
51150397Sobrien
51250397Sobrien
51350397Sobrien/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
51490075Sobrien/// in the list that match the specified block.
51590075Sobrienstatic void EliminateBlockCases(BasicBlock *BB,
51690075Sobrien                              std::vector<ValueEqualityComparisonCase> &Cases) {
51790075Sobrien  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
51890075Sobrien}
51990075Sobrien
52090075Sobrien/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
52190075Sobrien/// well.
52290075Sobrienstatic bool
52390075SobrienValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
52490075Sobrien              std::vector<ValueEqualityComparisonCase > &C2) {
52590075Sobrien  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
52690075Sobrien
52790075Sobrien  // Make V1 be smaller than V2.
528169689Skan  if (V1->size() > V2->size())
52990075Sobrien    std::swap(V1, V2);
53090075Sobrien
53190075Sobrien  if (V1->size() == 0) return false;
53290075Sobrien  if (V1->size() == 1) {
533117395Skan    // Just scan V2.
534169689Skan    ConstantInt *TheVal = (*V1)[0].Value;
53590075Sobrien    for (unsigned i = 0, e = V2->size(); i != e; ++i)
53690075Sobrien      if (TheVal == (*V2)[i].Value)
53790075Sobrien        return true;
538169689Skan  }
539169689Skan
540169689Skan  // Otherwise, just sort both lists and compare element by element.
54190075Sobrien  array_pod_sort(V1->begin(), V1->end());
542169689Skan  array_pod_sort(V2->begin(), V2->end());
54390075Sobrien  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
544169689Skan  while (i1 != e1 && i2 != e2) {
54590075Sobrien    if ((*V1)[i1].Value == (*V2)[i2].Value)
54690075Sobrien      return true;
54750397Sobrien    if ((*V1)[i1].Value < (*V2)[i2].Value)
54890075Sobrien      ++i1;
54950397Sobrien    else
55050397Sobrien      ++i2;
551169689Skan  }
552169689Skan  return false;
55350397Sobrien}
55450397Sobrien
555169689Skan/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
556169689Skan/// terminator instruction and its block is known to only have a single
557169689Skan/// predecessor block, check to see if that predecessor is also a value
558169689Skan/// comparison with the same value, and if that comparison determines the
55950397Sobrien/// outcome of this comparison.  If so, simplify TI.  This does a very limited
56050397Sobrien/// form of jump threading.
56150397Sobrienbool SimplifyCFGOpt::
56250397SobrienSimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
56350397Sobrien                                              BasicBlock *Pred,
564132718Skan                                              IRBuilder<> &Builder) {
565132718Skan  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
566169689Skan  if (!PredVal) return false;  // Not a value comparison in predecessor.
567169689Skan
568132718Skan  Value *ThisVal = isValueEqualityComparison(TI);
569132718Skan  assert(ThisVal && "This isn't a value comparison!!");
57050397Sobrien  if (ThisVal != PredVal) return false;  // Different predicates.
57150397Sobrien
57252284Sobrien  // TODO: Preserve branch weight metadata, similarly to how
57352284Sobrien  // FoldValueComparisonIntoPredecessors preserves it.
57452284Sobrien
57552284Sobrien  // Find out information about when control will move from Pred to TI's block.
57652284Sobrien  std::vector<ValueEqualityComparisonCase> PredCases;
57752284Sobrien  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
57890075Sobrien                                                        PredCases);
57950397Sobrien  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
58050397Sobrien
58150397Sobrien  // Find information about how control leaves this block.
582  std::vector<ValueEqualityComparisonCase> ThisCases;
583  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
584  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
585
586  // If TI's block is the default block from Pred's comparison, potentially
587  // simplify TI based on this knowledge.
588  if (PredDef == TI->getParent()) {
589    // If we are here, we know that the value is none of those cases listed in
590    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
591    // can simplify TI.
592    if (!ValuesOverlap(PredCases, ThisCases))
593      return false;
594
595    if (isa<BranchInst>(TI)) {
596      // Okay, one of the successors of this condbr is dead.  Convert it to a
597      // uncond br.
598      assert(ThisCases.size() == 1 && "Branch can only have one case!");
599      // Insert the new branch.
600      Instruction *NI = Builder.CreateBr(ThisDef);
601      (void) NI;
602
603      // Remove PHI node entries for the dead edge.
604      ThisCases[0].Dest->removePredecessor(TI->getParent());
605
606      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
607           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
608
609      EraseTerminatorInstAndDCECond(TI);
610      return true;
611    }
612
613    SwitchInst *SI = cast<SwitchInst>(TI);
614    // Okay, TI has cases that are statically dead, prune them away.
615    SmallPtrSet<Constant*, 16> DeadCases;
616    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
617      DeadCases.insert(PredCases[i].Value);
618
619    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
620                 << "Through successor TI: " << *TI);
621
622    // Collect branch weights into a vector.
623    SmallVector<uint32_t, 8> Weights;
624    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
625    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
626    if (HasWeight)
627      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
628           ++MD_i) {
629        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
630        assert(CI);
631        Weights.push_back(CI->getValue().getZExtValue());
632      }
633    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
634      --i;
635      if (DeadCases.count(i.getCaseValue())) {
636        if (HasWeight) {
637          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
638          Weights.pop_back();
639        }
640        i.getCaseSuccessor()->removePredecessor(TI->getParent());
641        SI->removeCase(i);
642      }
643    }
644    if (HasWeight && Weights.size() >= 2)
645      SI->setMetadata(LLVMContext::MD_prof,
646                      MDBuilder(SI->getParent()->getContext()).
647                      createBranchWeights(Weights));
648
649    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
650    return true;
651  }
652
653  // Otherwise, TI's block must correspond to some matched value.  Find out
654  // which value (or set of values) this is.
655  ConstantInt *TIV = 0;
656  BasicBlock *TIBB = TI->getParent();
657  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
658    if (PredCases[i].Dest == TIBB) {
659      if (TIV != 0)
660        return false;  // Cannot handle multiple values coming to this block.
661      TIV = PredCases[i].Value;
662    }
663  assert(TIV && "No edge from pred to succ?");
664
665  // Okay, we found the one constant that our value can be if we get into TI's
666  // BB.  Find out which successor will unconditionally be branched to.
667  BasicBlock *TheRealDest = 0;
668  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
669    if (ThisCases[i].Value == TIV) {
670      TheRealDest = ThisCases[i].Dest;
671      break;
672    }
673
674  // If not handled by any explicit cases, it is handled by the default case.
675  if (TheRealDest == 0) TheRealDest = ThisDef;
676
677  // Remove PHI node entries for dead edges.
678  BasicBlock *CheckEdge = TheRealDest;
679  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
680    if (*SI != CheckEdge)
681      (*SI)->removePredecessor(TIBB);
682    else
683      CheckEdge = 0;
684
685  // Insert the new branch.
686  Instruction *NI = Builder.CreateBr(TheRealDest);
687  (void) NI;
688
689  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
690            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
691
692  EraseTerminatorInstAndDCECond(TI);
693  return true;
694}
695
696namespace {
697  /// ConstantIntOrdering - This class implements a stable ordering of constant
698  /// integers that does not depend on their address.  This is important for
699  /// applications that sort ConstantInt's to ensure uniqueness.
700  struct ConstantIntOrdering {
701    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
702      return LHS->getValue().ult(RHS->getValue());
703    }
704  };
705}
706
707static int ConstantIntSortPredicate(ConstantInt *const *P1,
708                                    ConstantInt *const *P2) {
709  const ConstantInt *LHS = *P1;
710  const ConstantInt *RHS = *P2;
711  if (LHS->getValue().ult(RHS->getValue()))
712    return 1;
713  if (LHS->getValue() == RHS->getValue())
714    return 0;
715  return -1;
716}
717
718static inline bool HasBranchWeights(const Instruction* I) {
719  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
720  if (ProfMD && ProfMD->getOperand(0))
721    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
722      return MDS->getString().equals("branch_weights");
723
724  return false;
725}
726
727/// Get Weights of a given TerminatorInst, the default weight is at the front
728/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
729/// metadata.
730static void GetBranchWeights(TerminatorInst *TI,
731                             SmallVectorImpl<uint64_t> &Weights) {
732  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
733  assert(MD);
734  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
735    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
736    assert(CI);
737    Weights.push_back(CI->getValue().getZExtValue());
738  }
739
740  // If TI is a conditional eq, the default case is the false case,
741  // and the corresponding branch-weight data is at index 2. We swap the
742  // default weight to be the first entry.
743  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
744    assert(Weights.size() == 2);
745    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
746    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
747      std::swap(Weights.front(), Weights.back());
748  }
749}
750
751/// Sees if any of the weights are too big for a uint32_t, and halves all the
752/// weights if any are.
753static void FitWeights(MutableArrayRef<uint64_t> Weights) {
754  bool Halve = false;
755  for (unsigned i = 0; i < Weights.size(); ++i)
756    if (Weights[i] > UINT_MAX) {
757      Halve = true;
758      break;
759    }
760
761  if (! Halve)
762    return;
763
764  for (unsigned i = 0; i < Weights.size(); ++i)
765    Weights[i] /= 2;
766}
767
768/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
769/// equality comparison instruction (either a switch or a branch on "X == c").
770/// See if any of the predecessors of the terminator block are value comparisons
771/// on the same value.  If so, and if safe to do so, fold them together.
772bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
773                                                         IRBuilder<> &Builder) {
774  BasicBlock *BB = TI->getParent();
775  Value *CV = isValueEqualityComparison(TI);  // CondVal
776  assert(CV && "Not a comparison?");
777  bool Changed = false;
778
779  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
780  while (!Preds.empty()) {
781    BasicBlock *Pred = Preds.pop_back_val();
782
783    // See if the predecessor is a comparison with the same value.
784    TerminatorInst *PTI = Pred->getTerminator();
785    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
786
787    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
788      // Figure out which 'cases' to copy from SI to PSI.
789      std::vector<ValueEqualityComparisonCase> BBCases;
790      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
791
792      std::vector<ValueEqualityComparisonCase> PredCases;
793      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
794
795      // Based on whether the default edge from PTI goes to BB or not, fill in
796      // PredCases and PredDefault with the new switch cases we would like to
797      // build.
798      SmallVector<BasicBlock*, 8> NewSuccessors;
799
800      // Update the branch weight metadata along the way
801      SmallVector<uint64_t, 8> Weights;
802      bool PredHasWeights = HasBranchWeights(PTI);
803      bool SuccHasWeights = HasBranchWeights(TI);
804
805      if (PredHasWeights) {
806        GetBranchWeights(PTI, Weights);
807        // branch-weight metadata is inconsistent here.
808        if (Weights.size() != 1 + PredCases.size())
809          PredHasWeights = SuccHasWeights = false;
810      } else if (SuccHasWeights)
811        // If there are no predecessor weights but there are successor weights,
812        // populate Weights with 1, which will later be scaled to the sum of
813        // successor's weights
814        Weights.assign(1 + PredCases.size(), 1);
815
816      SmallVector<uint64_t, 8> SuccWeights;
817      if (SuccHasWeights) {
818        GetBranchWeights(TI, SuccWeights);
819        // branch-weight metadata is inconsistent here.
820        if (SuccWeights.size() != 1 + BBCases.size())
821          PredHasWeights = SuccHasWeights = false;
822      } else if (PredHasWeights)
823        SuccWeights.assign(1 + BBCases.size(), 1);
824
825      if (PredDefault == BB) {
826        // If this is the default destination from PTI, only the edges in TI
827        // that don't occur in PTI, or that branch to BB will be activated.
828        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
829        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
830          if (PredCases[i].Dest != BB)
831            PTIHandled.insert(PredCases[i].Value);
832          else {
833            // The default destination is BB, we don't need explicit targets.
834            std::swap(PredCases[i], PredCases.back());
835
836            if (PredHasWeights || SuccHasWeights) {
837              // Increase weight for the default case.
838              Weights[0] += Weights[i+1];
839              std::swap(Weights[i+1], Weights.back());
840              Weights.pop_back();
841            }
842
843            PredCases.pop_back();
844            --i; --e;
845          }
846
847        // Reconstruct the new switch statement we will be building.
848        if (PredDefault != BBDefault) {
849          PredDefault->removePredecessor(Pred);
850          PredDefault = BBDefault;
851          NewSuccessors.push_back(BBDefault);
852        }
853
854        unsigned CasesFromPred = Weights.size();
855        uint64_t ValidTotalSuccWeight = 0;
856        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
857          if (!PTIHandled.count(BBCases[i].Value) &&
858              BBCases[i].Dest != BBDefault) {
859            PredCases.push_back(BBCases[i]);
860            NewSuccessors.push_back(BBCases[i].Dest);
861            if (SuccHasWeights || PredHasWeights) {
862              // The default weight is at index 0, so weight for the ith case
863              // should be at index i+1. Scale the cases from successor by
864              // PredDefaultWeight (Weights[0]).
865              Weights.push_back(Weights[0] * SuccWeights[i+1]);
866              ValidTotalSuccWeight += SuccWeights[i+1];
867            }
868          }
869
870        if (SuccHasWeights || PredHasWeights) {
871          ValidTotalSuccWeight += SuccWeights[0];
872          // Scale the cases from predecessor by ValidTotalSuccWeight.
873          for (unsigned i = 1; i < CasesFromPred; ++i)
874            Weights[i] *= ValidTotalSuccWeight;
875          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
876          Weights[0] *= SuccWeights[0];
877        }
878      } else {
879        // If this is not the default destination from PSI, only the edges
880        // in SI that occur in PSI with a destination of BB will be
881        // activated.
882        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
883        std::map<ConstantInt*, uint64_t> WeightsForHandled;
884        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
885          if (PredCases[i].Dest == BB) {
886            PTIHandled.insert(PredCases[i].Value);
887
888            if (PredHasWeights || SuccHasWeights) {
889              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
890              std::swap(Weights[i+1], Weights.back());
891              Weights.pop_back();
892            }
893
894            std::swap(PredCases[i], PredCases.back());
895            PredCases.pop_back();
896            --i; --e;
897          }
898
899        // Okay, now we know which constants were sent to BB from the
900        // predecessor.  Figure out where they will all go now.
901        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
902          if (PTIHandled.count(BBCases[i].Value)) {
903            // If this is one we are capable of getting...
904            if (PredHasWeights || SuccHasWeights)
905              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
906            PredCases.push_back(BBCases[i]);
907            NewSuccessors.push_back(BBCases[i].Dest);
908            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
909          }
910
911        // If there are any constants vectored to BB that TI doesn't handle,
912        // they must go to the default destination of TI.
913        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
914                                    PTIHandled.begin(),
915               E = PTIHandled.end(); I != E; ++I) {
916          if (PredHasWeights || SuccHasWeights)
917            Weights.push_back(WeightsForHandled[*I]);
918          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
919          NewSuccessors.push_back(BBDefault);
920        }
921      }
922
923      // Okay, at this point, we know which new successor Pred will get.  Make
924      // sure we update the number of entries in the PHI nodes for these
925      // successors.
926      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
927        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
928
929      Builder.SetInsertPoint(PTI);
930      // Convert pointer to int before we switch.
931      if (CV->getType()->isPointerTy()) {
932        assert(TD && "Cannot switch on pointer without DataLayout");
933        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()),
934                                    "magicptr");
935      }
936
937      // Now that the successors are updated, create the new Switch instruction.
938      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
939                                               PredCases.size());
940      NewSI->setDebugLoc(PTI->getDebugLoc());
941      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
942        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
943
944      if (PredHasWeights || SuccHasWeights) {
945        // Halve the weights if any of them cannot fit in an uint32_t
946        FitWeights(Weights);
947
948        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
949
950        NewSI->setMetadata(LLVMContext::MD_prof,
951                           MDBuilder(BB->getContext()).
952                           createBranchWeights(MDWeights));
953      }
954
955      EraseTerminatorInstAndDCECond(PTI);
956
957      // Okay, last check.  If BB is still a successor of PSI, then we must
958      // have an infinite loop case.  If so, add an infinitely looping block
959      // to handle the case to preserve the behavior of the code.
960      BasicBlock *InfLoopBlock = 0;
961      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
962        if (NewSI->getSuccessor(i) == BB) {
963          if (InfLoopBlock == 0) {
964            // Insert it at the end of the function, because it's either code,
965            // or it won't matter if it's hot. :)
966            InfLoopBlock = BasicBlock::Create(BB->getContext(),
967                                              "infloop", BB->getParent());
968            BranchInst::Create(InfLoopBlock, InfLoopBlock);
969          }
970          NewSI->setSuccessor(i, InfLoopBlock);
971        }
972
973      Changed = true;
974    }
975  }
976  return Changed;
977}
978
979// isSafeToHoistInvoke - If we would need to insert a select that uses the
980// value of this invoke (comments in HoistThenElseCodeToIf explain why we
981// would need to do this), we can't hoist the invoke, as there is nowhere
982// to put the select in this case.
983static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
984                                Instruction *I1, Instruction *I2) {
985  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
986    PHINode *PN;
987    for (BasicBlock::iterator BBI = SI->begin();
988         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
989      Value *BB1V = PN->getIncomingValueForBlock(BB1);
990      Value *BB2V = PN->getIncomingValueForBlock(BB2);
991      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
992        return false;
993      }
994    }
995  }
996  return true;
997}
998
999/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1000/// BB2, hoist any common code in the two blocks up into the branch block.  The
1001/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1002static bool HoistThenElseCodeToIf(BranchInst *BI) {
1003  // This does very trivial matching, with limited scanning, to find identical
1004  // instructions in the two blocks.  In particular, we don't want to get into
1005  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1006  // such, we currently just scan for obviously identical instructions in an
1007  // identical order.
1008  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1009  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1010
1011  BasicBlock::iterator BB1_Itr = BB1->begin();
1012  BasicBlock::iterator BB2_Itr = BB2->begin();
1013
1014  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1015  // Skip debug info if it is not identical.
1016  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1017  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1018  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1019    while (isa<DbgInfoIntrinsic>(I1))
1020      I1 = BB1_Itr++;
1021    while (isa<DbgInfoIntrinsic>(I2))
1022      I2 = BB2_Itr++;
1023  }
1024  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1025      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1026    return false;
1027
1028  BasicBlock *BIParent = BI->getParent();
1029
1030  bool Changed = false;
1031  do {
1032    // If we are hoisting the terminator instruction, don't move one (making a
1033    // broken BB), instead clone it, and remove BI.
1034    if (isa<TerminatorInst>(I1))
1035      goto HoistTerminator;
1036
1037    // For a normal instruction, we just move one to right before the branch,
1038    // then replace all uses of the other with the first.  Finally, we remove
1039    // the now redundant second instruction.
1040    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1041    if (!I2->use_empty())
1042      I2->replaceAllUsesWith(I1);
1043    I1->intersectOptionalDataWith(I2);
1044    I2->eraseFromParent();
1045    Changed = true;
1046
1047    I1 = BB1_Itr++;
1048    I2 = BB2_Itr++;
1049    // Skip debug info if it is not identical.
1050    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1051    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1052    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1053      while (isa<DbgInfoIntrinsic>(I1))
1054        I1 = BB1_Itr++;
1055      while (isa<DbgInfoIntrinsic>(I2))
1056        I2 = BB2_Itr++;
1057    }
1058  } while (I1->isIdenticalToWhenDefined(I2));
1059
1060  return true;
1061
1062HoistTerminator:
1063  // It may not be possible to hoist an invoke.
1064  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1065    return Changed;
1066
1067  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1068    PHINode *PN;
1069    for (BasicBlock::iterator BBI = SI->begin();
1070         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1071      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1072      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1073      if (BB1V == BB2V)
1074        continue;
1075
1076      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1077        return Changed;
1078      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1079        return Changed;
1080    }
1081  }
1082
1083  // Okay, it is safe to hoist the terminator.
1084  Instruction *NT = I1->clone();
1085  BIParent->getInstList().insert(BI, NT);
1086  if (!NT->getType()->isVoidTy()) {
1087    I1->replaceAllUsesWith(NT);
1088    I2->replaceAllUsesWith(NT);
1089    NT->takeName(I1);
1090  }
1091
1092  IRBuilder<true, NoFolder> Builder(NT);
1093  // Hoisting one of the terminators from our successor is a great thing.
1094  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1095  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1096  // nodes, so we insert select instruction to compute the final result.
1097  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1098  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1099    PHINode *PN;
1100    for (BasicBlock::iterator BBI = SI->begin();
1101         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1102      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1103      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1104      if (BB1V == BB2V) continue;
1105
1106      // These values do not agree.  Insert a select instruction before NT
1107      // that determines the right value.
1108      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1109      if (SI == 0)
1110        SI = cast<SelectInst>
1111          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1112                                BB1V->getName()+"."+BB2V->getName()));
1113
1114      // Make the PHI node use the select for all incoming values for BB1/BB2
1115      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1116        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1117          PN->setIncomingValue(i, SI);
1118    }
1119  }
1120
1121  // Update any PHI nodes in our new successors.
1122  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1123    AddPredecessorToBlock(*SI, BIParent, BB1);
1124
1125  EraseTerminatorInstAndDCECond(BI);
1126  return true;
1127}
1128
1129/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1130/// check whether BBEnd has only two predecessors and the other predecessor
1131/// ends with an unconditional branch. If it is true, sink any common code
1132/// in the two predecessors to BBEnd.
1133static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1134  assert(BI1->isUnconditional());
1135  BasicBlock *BB1 = BI1->getParent();
1136  BasicBlock *BBEnd = BI1->getSuccessor(0);
1137
1138  // Check that BBEnd has two predecessors and the other predecessor ends with
1139  // an unconditional branch.
1140  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1141  BasicBlock *Pred0 = *PI++;
1142  if (PI == PE) // Only one predecessor.
1143    return false;
1144  BasicBlock *Pred1 = *PI++;
1145  if (PI != PE) // More than two predecessors.
1146    return false;
1147  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1148  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1149  if (!BI2 || !BI2->isUnconditional())
1150    return false;
1151
1152  // Gather the PHI nodes in BBEnd.
1153  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1154  Instruction *FirstNonPhiInBBEnd = 0;
1155  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1156       I != E; ++I) {
1157    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1158      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1161    } else {
1162      FirstNonPhiInBBEnd = &*I;
1163      break;
1164    }
1165  }
1166  if (!FirstNonPhiInBBEnd)
1167    return false;
1168
1169
1170  // This does very trivial matching, with limited scanning, to find identical
1171  // instructions in the two blocks.  We scan backward for obviously identical
1172  // instructions in an identical order.
1173  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1174      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1175      RE2 = BB2->getInstList().rend();
1176  // Skip debug info.
1177  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1178  if (RI1 == RE1)
1179    return false;
1180  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1181  if (RI2 == RE2)
1182    return false;
1183  // Skip the unconditional branches.
1184  ++RI1;
1185  ++RI2;
1186
1187  bool Changed = false;
1188  while (RI1 != RE1 && RI2 != RE2) {
1189    // Skip debug info.
1190    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1191    if (RI1 == RE1)
1192      return Changed;
1193    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1194    if (RI2 == RE2)
1195      return Changed;
1196
1197    Instruction *I1 = &*RI1, *I2 = &*RI2;
1198    // I1 and I2 should have a single use in the same PHI node, and they
1199    // perform the same operation.
1200    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1201    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1202        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1203        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1204        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1205        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1206        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1207        !I1->hasOneUse() || !I2->hasOneUse() ||
1208        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1209        MapValueFromBB1ToBB2[I1].first != I2)
1210      return Changed;
1211
1212    // Check whether we should swap the operands of ICmpInst.
1213    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1214    bool SwapOpnds = false;
1215    if (ICmp1 && ICmp2 &&
1216        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1217        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1218        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1219         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1220      ICmp2->swapOperands();
1221      SwapOpnds = true;
1222    }
1223    if (!I1->isSameOperationAs(I2)) {
1224      if (SwapOpnds)
1225        ICmp2->swapOperands();
1226      return Changed;
1227    }
1228
1229    // The operands should be either the same or they need to be generated
1230    // with a PHI node after sinking. We only handle the case where there is
1231    // a single pair of different operands.
1232    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1233    unsigned Op1Idx = 0;
1234    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1235      if (I1->getOperand(I) == I2->getOperand(I))
1236        continue;
1237      // Early exit if we have more-than one pair of different operands or
1238      // the different operand is already in MapValueFromBB1ToBB2.
1239      // Early exit if we need a PHI node to replace a constant.
1240      if (DifferentOp1 ||
1241          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1242          MapValueFromBB1ToBB2.end() ||
1243          isa<Constant>(I1->getOperand(I)) ||
1244          isa<Constant>(I2->getOperand(I))) {
1245        // If we can't sink the instructions, undo the swapping.
1246        if (SwapOpnds)
1247          ICmp2->swapOperands();
1248        return Changed;
1249      }
1250      DifferentOp1 = I1->getOperand(I);
1251      Op1Idx = I;
1252      DifferentOp2 = I2->getOperand(I);
1253    }
1254
1255    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1256    // remove (I1, I2) from MapValueFromBB1ToBB2.
1257    if (DifferentOp1) {
1258      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1259                                       DifferentOp1->getName() + ".sink",
1260                                       BBEnd->begin());
1261      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1262      // I1 should use NewPN instead of DifferentOp1.
1263      I1->setOperand(Op1Idx, NewPN);
1264      NewPN->addIncoming(DifferentOp1, BB1);
1265      NewPN->addIncoming(DifferentOp2, BB2);
1266      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1267    }
1268    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1269    MapValueFromBB1ToBB2.erase(I1);
1270
1271    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1272    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1273    // We need to update RE1 and RE2 if we are going to sink the first
1274    // instruction in the basic block down.
1275    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1276    // Sink the instruction.
1277    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1278    if (!OldPN->use_empty())
1279      OldPN->replaceAllUsesWith(I1);
1280    OldPN->eraseFromParent();
1281
1282    if (!I2->use_empty())
1283      I2->replaceAllUsesWith(I1);
1284    I1->intersectOptionalDataWith(I2);
1285    I2->eraseFromParent();
1286
1287    if (UpdateRE1)
1288      RE1 = BB1->getInstList().rend();
1289    if (UpdateRE2)
1290      RE2 = BB2->getInstList().rend();
1291    FirstNonPhiInBBEnd = I1;
1292    NumSinkCommons++;
1293    Changed = true;
1294  }
1295  return Changed;
1296}
1297
1298/// \brief Determine if we can hoist sink a sole store instruction out of a
1299/// conditional block.
1300///
1301/// We are looking for code like the following:
1302///   BrBB:
1303///     store i32 %add, i32* %arrayidx2
1304///     ... // No other stores or function calls (we could be calling a memory
1305///     ... // function).
1306///     %cmp = icmp ult %x, %y
1307///     br i1 %cmp, label %EndBB, label %ThenBB
1308///   ThenBB:
1309///     store i32 %add5, i32* %arrayidx2
1310///     br label EndBB
1311///   EndBB:
1312///     ...
1313///   We are going to transform this into:
1314///   BrBB:
1315///     store i32 %add, i32* %arrayidx2
1316///     ... //
1317///     %cmp = icmp ult %x, %y
1318///     %add.add5 = select i1 %cmp, i32 %add, %add5
1319///     store i32 %add.add5, i32* %arrayidx2
1320///     ...
1321///
1322/// \return The pointer to the value of the previous store if the store can be
1323///         hoisted into the predecessor block. 0 otherwise.
1324static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1325                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
1326  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1327  if (!StoreToHoist)
1328    return 0;
1329
1330  // Volatile or atomic.
1331  if (!StoreToHoist->isSimple())
1332    return 0;
1333
1334  Value *StorePtr = StoreToHoist->getPointerOperand();
1335
1336  // Look for a store to the same pointer in BrBB.
1337  unsigned MaxNumInstToLookAt = 10;
1338  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1339       RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1340    Instruction *CurI = &*RI;
1341
1342    // Could be calling an instruction that effects memory like free().
1343    if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1344      return 0;
1345
1346    StoreInst *SI = dyn_cast<StoreInst>(CurI);
1347    // Found the previous store make sure it stores to the same location.
1348    if (SI && SI->getPointerOperand() == StorePtr)
1349      // Found the previous store, return its value operand.
1350      return SI->getValueOperand();
1351    else if (SI)
1352      return 0; // Unknown store.
1353  }
1354
1355  return 0;
1356}
1357
1358/// \brief Speculate a conditional basic block flattening the CFG.
1359///
1360/// Note that this is a very risky transform currently. Speculating
1361/// instructions like this is most often not desirable. Instead, there is an MI
1362/// pass which can do it with full awareness of the resource constraints.
1363/// However, some cases are "obvious" and we should do directly. An example of
1364/// this is speculating a single, reasonably cheap instruction.
1365///
1366/// There is only one distinct advantage to flattening the CFG at the IR level:
1367/// it makes very common but simplistic optimizations such as are common in
1368/// instcombine and the DAG combiner more powerful by removing CFG edges and
1369/// modeling their effects with easier to reason about SSA value graphs.
1370///
1371///
1372/// An illustration of this transform is turning this IR:
1373/// \code
1374///   BB:
1375///     %cmp = icmp ult %x, %y
1376///     br i1 %cmp, label %EndBB, label %ThenBB
1377///   ThenBB:
1378///     %sub = sub %x, %y
1379///     br label BB2
1380///   EndBB:
1381///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1382///     ...
1383/// \endcode
1384///
1385/// Into this IR:
1386/// \code
1387///   BB:
1388///     %cmp = icmp ult %x, %y
1389///     %sub = sub %x, %y
1390///     %cond = select i1 %cmp, 0, %sub
1391///     ...
1392/// \endcode
1393///
1394/// \returns true if the conditional block is removed.
1395static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
1396  // Be conservative for now. FP select instruction can often be expensive.
1397  Value *BrCond = BI->getCondition();
1398  if (isa<FCmpInst>(BrCond))
1399    return false;
1400
1401  BasicBlock *BB = BI->getParent();
1402  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1403
1404  // If ThenBB is actually on the false edge of the conditional branch, remember
1405  // to swap the select operands later.
1406  bool Invert = false;
1407  if (ThenBB != BI->getSuccessor(0)) {
1408    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1409    Invert = true;
1410  }
1411  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1412
1413  // Keep a count of how many times instructions are used within CondBB when
1414  // they are candidates for sinking into CondBB. Specifically:
1415  // - They are defined in BB, and
1416  // - They have no side effects, and
1417  // - All of their uses are in CondBB.
1418  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1419
1420  unsigned SpeculationCost = 0;
1421  Value *SpeculatedStoreValue = 0;
1422  StoreInst *SpeculatedStore = 0;
1423  for (BasicBlock::iterator BBI = ThenBB->begin(),
1424                            BBE = llvm::prior(ThenBB->end());
1425       BBI != BBE; ++BBI) {
1426    Instruction *I = BBI;
1427    // Skip debug info.
1428    if (isa<DbgInfoIntrinsic>(I))
1429      continue;
1430
1431    // Only speculatively execution a single instruction (not counting the
1432    // terminator) for now.
1433    ++SpeculationCost;
1434    if (SpeculationCost > 1)
1435      return false;
1436
1437    // Don't hoist the instruction if it's unsafe or expensive.
1438    if (!isSafeToSpeculativelyExecute(I) &&
1439        !(HoistCondStores &&
1440          (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1441                                                         EndBB))))
1442      return false;
1443    if (!SpeculatedStoreValue &&
1444        ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
1445      return false;
1446
1447    // Store the store speculation candidate.
1448    if (SpeculatedStoreValue)
1449      SpeculatedStore = cast<StoreInst>(I);
1450
1451    // Do not hoist the instruction if any of its operands are defined but not
1452    // used in BB. The transformation will prevent the operand from
1453    // being sunk into the use block.
1454    for (User::op_iterator i = I->op_begin(), e = I->op_end();
1455         i != e; ++i) {
1456      Instruction *OpI = dyn_cast<Instruction>(*i);
1457      if (!OpI || OpI->getParent() != BB ||
1458          OpI->mayHaveSideEffects())
1459        continue; // Not a candidate for sinking.
1460
1461      ++SinkCandidateUseCounts[OpI];
1462    }
1463  }
1464
1465  // Consider any sink candidates which are only used in CondBB as costs for
1466  // speculation. Note, while we iterate over a DenseMap here, we are summing
1467  // and so iteration order isn't significant.
1468  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1469           SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1470       I != E; ++I)
1471    if (I->first->getNumUses() == I->second) {
1472      ++SpeculationCost;
1473      if (SpeculationCost > 1)
1474        return false;
1475    }
1476
1477  // Check that the PHI nodes can be converted to selects.
1478  bool HaveRewritablePHIs = false;
1479  for (BasicBlock::iterator I = EndBB->begin();
1480       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1481    Value *OrigV = PN->getIncomingValueForBlock(BB);
1482    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1483
1484    // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1485    // Skip PHIs which are trivial.
1486    if (ThenV == OrigV)
1487      continue;
1488
1489    HaveRewritablePHIs = true;
1490    ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1491    ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1492    if (!OrigCE && !ThenCE)
1493      continue; // Known safe and cheap.
1494
1495    if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1496        (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1497      return false;
1498    unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0;
1499    unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0;
1500    if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1501      return false;
1502
1503    // Account for the cost of an unfolded ConstantExpr which could end up
1504    // getting expanded into Instructions.
1505    // FIXME: This doesn't account for how many operations are combined in the
1506    // constant expression.
1507    ++SpeculationCost;
1508    if (SpeculationCost > 1)
1509      return false;
1510  }
1511
1512  // If there are no PHIs to process, bail early. This helps ensure idempotence
1513  // as well.
1514  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1515    return false;
1516
1517  // If we get here, we can hoist the instruction and if-convert.
1518  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1519
1520  // Insert a select of the value of the speculated store.
1521  if (SpeculatedStoreValue) {
1522    IRBuilder<true, NoFolder> Builder(BI);
1523    Value *TrueV = SpeculatedStore->getValueOperand();
1524    Value *FalseV = SpeculatedStoreValue;
1525    if (Invert)
1526      std::swap(TrueV, FalseV);
1527    Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1528                                    "." + FalseV->getName());
1529    SpeculatedStore->setOperand(0, S);
1530  }
1531
1532  // Hoist the instructions.
1533  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1534                           llvm::prior(ThenBB->end()));
1535
1536  // Insert selects and rewrite the PHI operands.
1537  IRBuilder<true, NoFolder> Builder(BI);
1538  for (BasicBlock::iterator I = EndBB->begin();
1539       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1540    unsigned OrigI = PN->getBasicBlockIndex(BB);
1541    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1542    Value *OrigV = PN->getIncomingValue(OrigI);
1543    Value *ThenV = PN->getIncomingValue(ThenI);
1544
1545    // Skip PHIs which are trivial.
1546    if (OrigV == ThenV)
1547      continue;
1548
1549    // Create a select whose true value is the speculatively executed value and
1550    // false value is the preexisting value. Swap them if the branch
1551    // destinations were inverted.
1552    Value *TrueV = ThenV, *FalseV = OrigV;
1553    if (Invert)
1554      std::swap(TrueV, FalseV);
1555    Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1556                                    TrueV->getName() + "." + FalseV->getName());
1557    PN->setIncomingValue(OrigI, V);
1558    PN->setIncomingValue(ThenI, V);
1559  }
1560
1561  ++NumSpeculations;
1562  return true;
1563}
1564
1565/// \returns True if this block contains a CallInst with the NoDuplicate
1566/// attribute.
1567static bool HasNoDuplicateCall(const BasicBlock *BB) {
1568  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1569    const CallInst *CI = dyn_cast<CallInst>(I);
1570    if (!CI)
1571      continue;
1572    if (CI->cannotDuplicate())
1573      return true;
1574  }
1575  return false;
1576}
1577
1578/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1579/// across this block.
1580static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1581  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1582  unsigned Size = 0;
1583
1584  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1585    if (isa<DbgInfoIntrinsic>(BBI))
1586      continue;
1587    if (Size > 10) return false;  // Don't clone large BB's.
1588    ++Size;
1589
1590    // We can only support instructions that do not define values that are
1591    // live outside of the current basic block.
1592    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1593         UI != E; ++UI) {
1594      Instruction *U = cast<Instruction>(*UI);
1595      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1596    }
1597
1598    // Looks ok, continue checking.
1599  }
1600
1601  return true;
1602}
1603
1604/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1605/// that is defined in the same block as the branch and if any PHI entries are
1606/// constants, thread edges corresponding to that entry to be branches to their
1607/// ultimate destination.
1608static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1609  BasicBlock *BB = BI->getParent();
1610  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1611  // NOTE: we currently cannot transform this case if the PHI node is used
1612  // outside of the block.
1613  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1614    return false;
1615
1616  // Degenerate case of a single entry PHI.
1617  if (PN->getNumIncomingValues() == 1) {
1618    FoldSingleEntryPHINodes(PN->getParent());
1619    return true;
1620  }
1621
1622  // Now we know that this block has multiple preds and two succs.
1623  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1624
1625  if (HasNoDuplicateCall(BB)) return false;
1626
1627  // Okay, this is a simple enough basic block.  See if any phi values are
1628  // constants.
1629  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1630    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1631    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1632
1633    // Okay, we now know that all edges from PredBB should be revectored to
1634    // branch to RealDest.
1635    BasicBlock *PredBB = PN->getIncomingBlock(i);
1636    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1637
1638    if (RealDest == BB) continue;  // Skip self loops.
1639    // Skip if the predecessor's terminator is an indirect branch.
1640    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1641
1642    // The dest block might have PHI nodes, other predecessors and other
1643    // difficult cases.  Instead of being smart about this, just insert a new
1644    // block that jumps to the destination block, effectively splitting
1645    // the edge we are about to create.
1646    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1647                                            RealDest->getName()+".critedge",
1648                                            RealDest->getParent(), RealDest);
1649    BranchInst::Create(RealDest, EdgeBB);
1650
1651    // Update PHI nodes.
1652    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1653
1654    // BB may have instructions that are being threaded over.  Clone these
1655    // instructions into EdgeBB.  We know that there will be no uses of the
1656    // cloned instructions outside of EdgeBB.
1657    BasicBlock::iterator InsertPt = EdgeBB->begin();
1658    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1659    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1660      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1661        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1662        continue;
1663      }
1664      // Clone the instruction.
1665      Instruction *N = BBI->clone();
1666      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1667
1668      // Update operands due to translation.
1669      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1670           i != e; ++i) {
1671        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1672        if (PI != TranslateMap.end())
1673          *i = PI->second;
1674      }
1675
1676      // Check for trivial simplification.
1677      if (Value *V = SimplifyInstruction(N, TD)) {
1678        TranslateMap[BBI] = V;
1679        delete N;   // Instruction folded away, don't need actual inst
1680      } else {
1681        // Insert the new instruction into its new home.
1682        EdgeBB->getInstList().insert(InsertPt, N);
1683        if (!BBI->use_empty())
1684          TranslateMap[BBI] = N;
1685      }
1686    }
1687
1688    // Loop over all of the edges from PredBB to BB, changing them to branch
1689    // to EdgeBB instead.
1690    TerminatorInst *PredBBTI = PredBB->getTerminator();
1691    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1692      if (PredBBTI->getSuccessor(i) == BB) {
1693        BB->removePredecessor(PredBB);
1694        PredBBTI->setSuccessor(i, EdgeBB);
1695      }
1696
1697    // Recurse, simplifying any other constants.
1698    return FoldCondBranchOnPHI(BI, TD) | true;
1699  }
1700
1701  return false;
1702}
1703
1704/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1705/// PHI node, see if we can eliminate it.
1706static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1707  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1708  // statement", which has a very simple dominance structure.  Basically, we
1709  // are trying to find the condition that is being branched on, which
1710  // subsequently causes this merge to happen.  We really want control
1711  // dependence information for this check, but simplifycfg can't keep it up
1712  // to date, and this catches most of the cases we care about anyway.
1713  BasicBlock *BB = PN->getParent();
1714  BasicBlock *IfTrue, *IfFalse;
1715  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1716  if (!IfCond ||
1717      // Don't bother if the branch will be constant folded trivially.
1718      isa<ConstantInt>(IfCond))
1719    return false;
1720
1721  // Okay, we found that we can merge this two-entry phi node into a select.
1722  // Doing so would require us to fold *all* two entry phi nodes in this block.
1723  // At some point this becomes non-profitable (particularly if the target
1724  // doesn't support cmov's).  Only do this transformation if there are two or
1725  // fewer PHI nodes in this block.
1726  unsigned NumPhis = 0;
1727  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1728    if (NumPhis > 2)
1729      return false;
1730
1731  // Loop over the PHI's seeing if we can promote them all to select
1732  // instructions.  While we are at it, keep track of the instructions
1733  // that need to be moved to the dominating block.
1734  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1735  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1736           MaxCostVal1 = PHINodeFoldingThreshold;
1737
1738  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1739    PHINode *PN = cast<PHINode>(II++);
1740    if (Value *V = SimplifyInstruction(PN, TD)) {
1741      PN->replaceAllUsesWith(V);
1742      PN->eraseFromParent();
1743      continue;
1744    }
1745
1746    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1747                             MaxCostVal0) ||
1748        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1749                             MaxCostVal1))
1750      return false;
1751  }
1752
1753  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1754  // we ran out of PHIs then we simplified them all.
1755  PN = dyn_cast<PHINode>(BB->begin());
1756  if (PN == 0) return true;
1757
1758  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1759  // often be turned into switches and other things.
1760  if (PN->getType()->isIntegerTy(1) &&
1761      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1762       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1763       isa<BinaryOperator>(IfCond)))
1764    return false;
1765
1766  // If we all PHI nodes are promotable, check to make sure that all
1767  // instructions in the predecessor blocks can be promoted as well.  If
1768  // not, we won't be able to get rid of the control flow, so it's not
1769  // worth promoting to select instructions.
1770  BasicBlock *DomBlock = 0;
1771  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1772  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1773  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1774    IfBlock1 = 0;
1775  } else {
1776    DomBlock = *pred_begin(IfBlock1);
1777    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1778      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1779        // This is not an aggressive instruction that we can promote.
1780        // Because of this, we won't be able to get rid of the control
1781        // flow, so the xform is not worth it.
1782        return false;
1783      }
1784  }
1785
1786  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1787    IfBlock2 = 0;
1788  } else {
1789    DomBlock = *pred_begin(IfBlock2);
1790    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1791      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1792        // This is not an aggressive instruction that we can promote.
1793        // Because of this, we won't be able to get rid of the control
1794        // flow, so the xform is not worth it.
1795        return false;
1796      }
1797  }
1798
1799  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1800               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1801
1802  // If we can still promote the PHI nodes after this gauntlet of tests,
1803  // do all of the PHI's now.
1804  Instruction *InsertPt = DomBlock->getTerminator();
1805  IRBuilder<true, NoFolder> Builder(InsertPt);
1806
1807  // Move all 'aggressive' instructions, which are defined in the
1808  // conditional parts of the if's up to the dominating block.
1809  if (IfBlock1)
1810    DomBlock->getInstList().splice(InsertPt,
1811                                   IfBlock1->getInstList(), IfBlock1->begin(),
1812                                   IfBlock1->getTerminator());
1813  if (IfBlock2)
1814    DomBlock->getInstList().splice(InsertPt,
1815                                   IfBlock2->getInstList(), IfBlock2->begin(),
1816                                   IfBlock2->getTerminator());
1817
1818  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1819    // Change the PHI node into a select instruction.
1820    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1821    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1822
1823    SelectInst *NV =
1824      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1825    PN->replaceAllUsesWith(NV);
1826    NV->takeName(PN);
1827    PN->eraseFromParent();
1828  }
1829
1830  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1831  // has been flattened.  Change DomBlock to jump directly to our new block to
1832  // avoid other simplifycfg's kicking in on the diamond.
1833  TerminatorInst *OldTI = DomBlock->getTerminator();
1834  Builder.SetInsertPoint(OldTI);
1835  Builder.CreateBr(BB);
1836  OldTI->eraseFromParent();
1837  return true;
1838}
1839
1840/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1841/// to two returning blocks, try to merge them together into one return,
1842/// introducing a select if the return values disagree.
1843static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1844                                           IRBuilder<> &Builder) {
1845  assert(BI->isConditional() && "Must be a conditional branch");
1846  BasicBlock *TrueSucc = BI->getSuccessor(0);
1847  BasicBlock *FalseSucc = BI->getSuccessor(1);
1848  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1849  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1850
1851  // Check to ensure both blocks are empty (just a return) or optionally empty
1852  // with PHI nodes.  If there are other instructions, merging would cause extra
1853  // computation on one path or the other.
1854  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1855    return false;
1856  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1857    return false;
1858
1859  Builder.SetInsertPoint(BI);
1860  // Okay, we found a branch that is going to two return nodes.  If
1861  // there is no return value for this function, just change the
1862  // branch into a return.
1863  if (FalseRet->getNumOperands() == 0) {
1864    TrueSucc->removePredecessor(BI->getParent());
1865    FalseSucc->removePredecessor(BI->getParent());
1866    Builder.CreateRetVoid();
1867    EraseTerminatorInstAndDCECond(BI);
1868    return true;
1869  }
1870
1871  // Otherwise, figure out what the true and false return values are
1872  // so we can insert a new select instruction.
1873  Value *TrueValue = TrueRet->getReturnValue();
1874  Value *FalseValue = FalseRet->getReturnValue();
1875
1876  // Unwrap any PHI nodes in the return blocks.
1877  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1878    if (TVPN->getParent() == TrueSucc)
1879      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1880  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1881    if (FVPN->getParent() == FalseSucc)
1882      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1883
1884  // In order for this transformation to be safe, we must be able to
1885  // unconditionally execute both operands to the return.  This is
1886  // normally the case, but we could have a potentially-trapping
1887  // constant expression that prevents this transformation from being
1888  // safe.
1889  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1890    if (TCV->canTrap())
1891      return false;
1892  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1893    if (FCV->canTrap())
1894      return false;
1895
1896  // Okay, we collected all the mapped values and checked them for sanity, and
1897  // defined to really do this transformation.  First, update the CFG.
1898  TrueSucc->removePredecessor(BI->getParent());
1899  FalseSucc->removePredecessor(BI->getParent());
1900
1901  // Insert select instructions where needed.
1902  Value *BrCond = BI->getCondition();
1903  if (TrueValue) {
1904    // Insert a select if the results differ.
1905    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1906    } else if (isa<UndefValue>(TrueValue)) {
1907      TrueValue = FalseValue;
1908    } else {
1909      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1910                                       FalseValue, "retval");
1911    }
1912  }
1913
1914  Value *RI = !TrueValue ?
1915    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1916
1917  (void) RI;
1918
1919  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1920               << "\n  " << *BI << "NewRet = " << *RI
1921               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1922
1923  EraseTerminatorInstAndDCECond(BI);
1924
1925  return true;
1926}
1927
1928/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1929/// probabilities of the branch taking each edge. Fills in the two APInt
1930/// parameters and return true, or returns false if no or invalid metadata was
1931/// found.
1932static bool ExtractBranchMetadata(BranchInst *BI,
1933                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1934  assert(BI->isConditional() &&
1935         "Looking for probabilities on unconditional branch?");
1936  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1937  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1938  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1939  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1940  if (!CITrue || !CIFalse) return false;
1941  ProbTrue = CITrue->getValue().getZExtValue();
1942  ProbFalse = CIFalse->getValue().getZExtValue();
1943  return true;
1944}
1945
1946/// checkCSEInPredecessor - Return true if the given instruction is available
1947/// in its predecessor block. If yes, the instruction will be removed.
1948///
1949static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1950  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1951    return false;
1952  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1953    Instruction *PBI = &*I;
1954    // Check whether Inst and PBI generate the same value.
1955    if (Inst->isIdenticalTo(PBI)) {
1956      Inst->replaceAllUsesWith(PBI);
1957      Inst->eraseFromParent();
1958      return true;
1959    }
1960  }
1961  return false;
1962}
1963
1964/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1965/// predecessor branches to us and one of our successors, fold the block into
1966/// the predecessor and use logical operations to pick the right destination.
1967bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1968  BasicBlock *BB = BI->getParent();
1969
1970  Instruction *Cond = 0;
1971  if (BI->isConditional())
1972    Cond = dyn_cast<Instruction>(BI->getCondition());
1973  else {
1974    // For unconditional branch, check for a simple CFG pattern, where
1975    // BB has a single predecessor and BB's successor is also its predecessor's
1976    // successor. If such pattern exisits, check for CSE between BB and its
1977    // predecessor.
1978    if (BasicBlock *PB = BB->getSinglePredecessor())
1979      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1980        if (PBI->isConditional() &&
1981            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1982             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1983          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1984               I != E; ) {
1985            Instruction *Curr = I++;
1986            if (isa<CmpInst>(Curr)) {
1987              Cond = Curr;
1988              break;
1989            }
1990            // Quit if we can't remove this instruction.
1991            if (!checkCSEInPredecessor(Curr, PB))
1992              return false;
1993          }
1994        }
1995
1996    if (Cond == 0)
1997      return false;
1998  }
1999
2000  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2001    Cond->getParent() != BB || !Cond->hasOneUse())
2002  return false;
2003
2004  // Only allow this if the condition is a simple instruction that can be
2005  // executed unconditionally.  It must be in the same block as the branch, and
2006  // must be at the front of the block.
2007  BasicBlock::iterator FrontIt = BB->front();
2008
2009  // Ignore dbg intrinsics.
2010  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2011
2012  // Allow a single instruction to be hoisted in addition to the compare
2013  // that feeds the branch.  We later ensure that any values that _it_ uses
2014  // were also live in the predecessor, so that we don't unnecessarily create
2015  // register pressure or inhibit out-of-order execution.
2016  Instruction *BonusInst = 0;
2017  if (&*FrontIt != Cond &&
2018      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
2019      isSafeToSpeculativelyExecute(FrontIt)) {
2020    BonusInst = &*FrontIt;
2021    ++FrontIt;
2022
2023    // Ignore dbg intrinsics.
2024    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2025  }
2026
2027  // Only a single bonus inst is allowed.
2028  if (&*FrontIt != Cond)
2029    return false;
2030
2031  // Make sure the instruction after the condition is the cond branch.
2032  BasicBlock::iterator CondIt = Cond; ++CondIt;
2033
2034  // Ingore dbg intrinsics.
2035  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2036
2037  if (&*CondIt != BI)
2038    return false;
2039
2040  // Cond is known to be a compare or binary operator.  Check to make sure that
2041  // neither operand is a potentially-trapping constant expression.
2042  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2043    if (CE->canTrap())
2044      return false;
2045  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2046    if (CE->canTrap())
2047      return false;
2048
2049  // Finally, don't infinitely unroll conditional loops.
2050  BasicBlock *TrueDest  = BI->getSuccessor(0);
2051  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
2052  if (TrueDest == BB || FalseDest == BB)
2053    return false;
2054
2055  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2056    BasicBlock *PredBlock = *PI;
2057    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2058
2059    // Check that we have two conditional branches.  If there is a PHI node in
2060    // the common successor, verify that the same value flows in from both
2061    // blocks.
2062    SmallVector<PHINode*, 4> PHIs;
2063    if (PBI == 0 || PBI->isUnconditional() ||
2064        (BI->isConditional() &&
2065         !SafeToMergeTerminators(BI, PBI)) ||
2066        (!BI->isConditional() &&
2067         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2068      continue;
2069
2070    // Determine if the two branches share a common destination.
2071    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2072    bool InvertPredCond = false;
2073
2074    if (BI->isConditional()) {
2075      if (PBI->getSuccessor(0) == TrueDest)
2076        Opc = Instruction::Or;
2077      else if (PBI->getSuccessor(1) == FalseDest)
2078        Opc = Instruction::And;
2079      else if (PBI->getSuccessor(0) == FalseDest)
2080        Opc = Instruction::And, InvertPredCond = true;
2081      else if (PBI->getSuccessor(1) == TrueDest)
2082        Opc = Instruction::Or, InvertPredCond = true;
2083      else
2084        continue;
2085    } else {
2086      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2087        continue;
2088    }
2089
2090    // Ensure that any values used in the bonus instruction are also used
2091    // by the terminator of the predecessor.  This means that those values
2092    // must already have been resolved, so we won't be inhibiting the
2093    // out-of-order core by speculating them earlier. We also allow
2094    // instructions that are used by the terminator's condition because it
2095    // exposes more merging opportunities.
2096    bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
2097                         *BonusInst->use_begin() == Cond);
2098
2099    if (BonusInst && !UsedByBranch) {
2100      // Collect the values used by the bonus inst
2101      SmallPtrSet<Value*, 4> UsedValues;
2102      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2103           OE = BonusInst->op_end(); OI != OE; ++OI) {
2104        Value *V = *OI;
2105        if (!isa<Constant>(V) && !isa<Argument>(V))
2106          UsedValues.insert(V);
2107      }
2108
2109      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2110      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2111
2112      // Walk up to four levels back up the use-def chain of the predecessor's
2113      // terminator to see if all those values were used.  The choice of four
2114      // levels is arbitrary, to provide a compile-time-cost bound.
2115      while (!Worklist.empty()) {
2116        std::pair<Value*, unsigned> Pair = Worklist.back();
2117        Worklist.pop_back();
2118
2119        if (Pair.second >= 4) continue;
2120        UsedValues.erase(Pair.first);
2121        if (UsedValues.empty()) break;
2122
2123        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2124          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2125               OI != OE; ++OI)
2126            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2127        }
2128      }
2129
2130      if (!UsedValues.empty()) return false;
2131    }
2132
2133    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2134    IRBuilder<> Builder(PBI);
2135
2136    // If we need to invert the condition in the pred block to match, do so now.
2137    if (InvertPredCond) {
2138      Value *NewCond = PBI->getCondition();
2139
2140      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2141        CmpInst *CI = cast<CmpInst>(NewCond);
2142        CI->setPredicate(CI->getInversePredicate());
2143      } else {
2144        NewCond = Builder.CreateNot(NewCond,
2145                                    PBI->getCondition()->getName()+".not");
2146      }
2147
2148      PBI->setCondition(NewCond);
2149      PBI->swapSuccessors();
2150    }
2151
2152    // If we have a bonus inst, clone it into the predecessor block.
2153    Instruction *NewBonus = 0;
2154    if (BonusInst) {
2155      NewBonus = BonusInst->clone();
2156      PredBlock->getInstList().insert(PBI, NewBonus);
2157      NewBonus->takeName(BonusInst);
2158      BonusInst->setName(BonusInst->getName()+".old");
2159    }
2160
2161    // Clone Cond into the predecessor basic block, and or/and the
2162    // two conditions together.
2163    Instruction *New = Cond->clone();
2164    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2165    PredBlock->getInstList().insert(PBI, New);
2166    New->takeName(Cond);
2167    Cond->setName(New->getName()+".old");
2168
2169    if (BI->isConditional()) {
2170      Instruction *NewCond =
2171        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2172                                            New, "or.cond"));
2173      PBI->setCondition(NewCond);
2174
2175      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2176      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2177                                                  PredFalseWeight);
2178      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2179                                                  SuccFalseWeight);
2180      SmallVector<uint64_t, 8> NewWeights;
2181
2182      if (PBI->getSuccessor(0) == BB) {
2183        if (PredHasWeights && SuccHasWeights) {
2184          // PBI: br i1 %x, BB, FalseDest
2185          // BI:  br i1 %y, TrueDest, FalseDest
2186          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2187          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2188          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2189          //               TrueWeight for PBI * FalseWeight for BI.
2190          // We assume that total weights of a BranchInst can fit into 32 bits.
2191          // Therefore, we will not have overflow using 64-bit arithmetic.
2192          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2193               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2194        }
2195        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2196        PBI->setSuccessor(0, TrueDest);
2197      }
2198      if (PBI->getSuccessor(1) == BB) {
2199        if (PredHasWeights && SuccHasWeights) {
2200          // PBI: br i1 %x, TrueDest, BB
2201          // BI:  br i1 %y, TrueDest, FalseDest
2202          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2203          //              FalseWeight for PBI * TrueWeight for BI.
2204          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2205              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2206          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2207          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2208        }
2209        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2210        PBI->setSuccessor(1, FalseDest);
2211      }
2212      if (NewWeights.size() == 2) {
2213        // Halve the weights if any of them cannot fit in an uint32_t
2214        FitWeights(NewWeights);
2215
2216        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2217        PBI->setMetadata(LLVMContext::MD_prof,
2218                         MDBuilder(BI->getContext()).
2219                         createBranchWeights(MDWeights));
2220      } else
2221        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2222    } else {
2223      // Update PHI nodes in the common successors.
2224      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2225        ConstantInt *PBI_C = cast<ConstantInt>(
2226          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2227        assert(PBI_C->getType()->isIntegerTy(1));
2228        Instruction *MergedCond = 0;
2229        if (PBI->getSuccessor(0) == TrueDest) {
2230          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2231          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2232          //       is false: !PBI_Cond and BI_Value
2233          Instruction *NotCond =
2234            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2235                                "not.cond"));
2236          MergedCond =
2237            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2238                                NotCond, New,
2239                                "and.cond"));
2240          if (PBI_C->isOne())
2241            MergedCond =
2242              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2243                                  PBI->getCondition(), MergedCond,
2244                                  "or.cond"));
2245        } else {
2246          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2247          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2248          //       is false: PBI_Cond and BI_Value
2249          MergedCond =
2250            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2251                                PBI->getCondition(), New,
2252                                "and.cond"));
2253          if (PBI_C->isOne()) {
2254            Instruction *NotCond =
2255              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2256                                  "not.cond"));
2257            MergedCond =
2258              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2259                                  NotCond, MergedCond,
2260                                  "or.cond"));
2261          }
2262        }
2263        // Update PHI Node.
2264        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2265                                  MergedCond);
2266      }
2267      // Change PBI from Conditional to Unconditional.
2268      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2269      EraseTerminatorInstAndDCECond(PBI);
2270      PBI = New_PBI;
2271    }
2272
2273    // TODO: If BB is reachable from all paths through PredBlock, then we
2274    // could replace PBI's branch probabilities with BI's.
2275
2276    // Copy any debug value intrinsics into the end of PredBlock.
2277    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2278      if (isa<DbgInfoIntrinsic>(*I))
2279        I->clone()->insertBefore(PBI);
2280
2281    return true;
2282  }
2283  return false;
2284}
2285
2286/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2287/// predecessor of another block, this function tries to simplify it.  We know
2288/// that PBI and BI are both conditional branches, and BI is in one of the
2289/// successor blocks of PBI - PBI branches to BI.
2290static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2291  assert(PBI->isConditional() && BI->isConditional());
2292  BasicBlock *BB = BI->getParent();
2293
2294  // If this block ends with a branch instruction, and if there is a
2295  // predecessor that ends on a branch of the same condition, make
2296  // this conditional branch redundant.
2297  if (PBI->getCondition() == BI->getCondition() &&
2298      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2299    // Okay, the outcome of this conditional branch is statically
2300    // knowable.  If this block had a single pred, handle specially.
2301    if (BB->getSinglePredecessor()) {
2302      // Turn this into a branch on constant.
2303      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2304      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2305                                        CondIsTrue));
2306      return true;  // Nuke the branch on constant.
2307    }
2308
2309    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2310    // in the constant and simplify the block result.  Subsequent passes of
2311    // simplifycfg will thread the block.
2312    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2313      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2314      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2315                                       std::distance(PB, PE),
2316                                       BI->getCondition()->getName() + ".pr",
2317                                       BB->begin());
2318      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2319      // predecessor, compute the PHI'd conditional value for all of the preds.
2320      // Any predecessor where the condition is not computable we keep symbolic.
2321      for (pred_iterator PI = PB; PI != PE; ++PI) {
2322        BasicBlock *P = *PI;
2323        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2324            PBI != BI && PBI->isConditional() &&
2325            PBI->getCondition() == BI->getCondition() &&
2326            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2327          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2328          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2329                                              CondIsTrue), P);
2330        } else {
2331          NewPN->addIncoming(BI->getCondition(), P);
2332        }
2333      }
2334
2335      BI->setCondition(NewPN);
2336      return true;
2337    }
2338  }
2339
2340  // If this is a conditional branch in an empty block, and if any
2341  // predecessors is a conditional branch to one of our destinations,
2342  // fold the conditions into logical ops and one cond br.
2343  BasicBlock::iterator BBI = BB->begin();
2344  // Ignore dbg intrinsics.
2345  while (isa<DbgInfoIntrinsic>(BBI))
2346    ++BBI;
2347  if (&*BBI != BI)
2348    return false;
2349
2350
2351  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2352    if (CE->canTrap())
2353      return false;
2354
2355  int PBIOp, BIOp;
2356  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2357    PBIOp = BIOp = 0;
2358  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2359    PBIOp = 0, BIOp = 1;
2360  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2361    PBIOp = 1, BIOp = 0;
2362  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2363    PBIOp = BIOp = 1;
2364  else
2365    return false;
2366
2367  // Check to make sure that the other destination of this branch
2368  // isn't BB itself.  If so, this is an infinite loop that will
2369  // keep getting unwound.
2370  if (PBI->getSuccessor(PBIOp) == BB)
2371    return false;
2372
2373  // Do not perform this transformation if it would require
2374  // insertion of a large number of select instructions. For targets
2375  // without predication/cmovs, this is a big pessimization.
2376  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2377
2378  unsigned NumPhis = 0;
2379  for (BasicBlock::iterator II = CommonDest->begin();
2380       isa<PHINode>(II); ++II, ++NumPhis)
2381    if (NumPhis > 2) // Disable this xform.
2382      return false;
2383
2384  // Finally, if everything is ok, fold the branches to logical ops.
2385  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2386
2387  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2388               << "AND: " << *BI->getParent());
2389
2390
2391  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2392  // branch in it, where one edge (OtherDest) goes back to itself but the other
2393  // exits.  We don't *know* that the program avoids the infinite loop
2394  // (even though that seems likely).  If we do this xform naively, we'll end up
2395  // recursively unpeeling the loop.  Since we know that (after the xform is
2396  // done) that the block *is* infinite if reached, we just make it an obviously
2397  // infinite loop with no cond branch.
2398  if (OtherDest == BB) {
2399    // Insert it at the end of the function, because it's either code,
2400    // or it won't matter if it's hot. :)
2401    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2402                                                  "infloop", BB->getParent());
2403    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2404    OtherDest = InfLoopBlock;
2405  }
2406
2407  DEBUG(dbgs() << *PBI->getParent()->getParent());
2408
2409  // BI may have other predecessors.  Because of this, we leave
2410  // it alone, but modify PBI.
2411
2412  // Make sure we get to CommonDest on True&True directions.
2413  Value *PBICond = PBI->getCondition();
2414  IRBuilder<true, NoFolder> Builder(PBI);
2415  if (PBIOp)
2416    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2417
2418  Value *BICond = BI->getCondition();
2419  if (BIOp)
2420    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2421
2422  // Merge the conditions.
2423  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2424
2425  // Modify PBI to branch on the new condition to the new dests.
2426  PBI->setCondition(Cond);
2427  PBI->setSuccessor(0, CommonDest);
2428  PBI->setSuccessor(1, OtherDest);
2429
2430  // Update branch weight for PBI.
2431  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2432  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2433                                              PredFalseWeight);
2434  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2435                                              SuccFalseWeight);
2436  if (PredHasWeights && SuccHasWeights) {
2437    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2438    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2439    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2440    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2441    // The weight to CommonDest should be PredCommon * SuccTotal +
2442    //                                    PredOther * SuccCommon.
2443    // The weight to OtherDest should be PredOther * SuccOther.
2444    SmallVector<uint64_t, 2> NewWeights;
2445    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2446                         PredOther * SuccCommon);
2447    NewWeights.push_back(PredOther * SuccOther);
2448    // Halve the weights if any of them cannot fit in an uint32_t
2449    FitWeights(NewWeights);
2450
2451    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2452    PBI->setMetadata(LLVMContext::MD_prof,
2453                     MDBuilder(BI->getContext()).
2454                     createBranchWeights(MDWeights));
2455  }
2456
2457  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2458  // block that are identical to the entries for BI's block.
2459  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2460
2461  // We know that the CommonDest already had an edge from PBI to
2462  // it.  If it has PHIs though, the PHIs may have different
2463  // entries for BB and PBI's BB.  If so, insert a select to make
2464  // them agree.
2465  PHINode *PN;
2466  for (BasicBlock::iterator II = CommonDest->begin();
2467       (PN = dyn_cast<PHINode>(II)); ++II) {
2468    Value *BIV = PN->getIncomingValueForBlock(BB);
2469    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2470    Value *PBIV = PN->getIncomingValue(PBBIdx);
2471    if (BIV != PBIV) {
2472      // Insert a select in PBI to pick the right value.
2473      Value *NV = cast<SelectInst>
2474        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2475      PN->setIncomingValue(PBBIdx, NV);
2476    }
2477  }
2478
2479  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2480  DEBUG(dbgs() << *PBI->getParent()->getParent());
2481
2482  // This basic block is probably dead.  We know it has at least
2483  // one fewer predecessor.
2484  return true;
2485}
2486
2487// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2488// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2489// Takes care of updating the successors and removing the old terminator.
2490// Also makes sure not to introduce new successors by assuming that edges to
2491// non-successor TrueBBs and FalseBBs aren't reachable.
2492static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2493                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2494                                       uint32_t TrueWeight,
2495                                       uint32_t FalseWeight){
2496  // Remove any superfluous successor edges from the CFG.
2497  // First, figure out which successors to preserve.
2498  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2499  // successor.
2500  BasicBlock *KeepEdge1 = TrueBB;
2501  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2502
2503  // Then remove the rest.
2504  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2505    BasicBlock *Succ = OldTerm->getSuccessor(I);
2506    // Make sure only to keep exactly one copy of each edge.
2507    if (Succ == KeepEdge1)
2508      KeepEdge1 = 0;
2509    else if (Succ == KeepEdge2)
2510      KeepEdge2 = 0;
2511    else
2512      Succ->removePredecessor(OldTerm->getParent());
2513  }
2514
2515  IRBuilder<> Builder(OldTerm);
2516  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2517
2518  // Insert an appropriate new terminator.
2519  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2520    if (TrueBB == FalseBB)
2521      // We were only looking for one successor, and it was present.
2522      // Create an unconditional branch to it.
2523      Builder.CreateBr(TrueBB);
2524    else {
2525      // We found both of the successors we were looking for.
2526      // Create a conditional branch sharing the condition of the select.
2527      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2528      if (TrueWeight != FalseWeight)
2529        NewBI->setMetadata(LLVMContext::MD_prof,
2530                           MDBuilder(OldTerm->getContext()).
2531                           createBranchWeights(TrueWeight, FalseWeight));
2532    }
2533  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2534    // Neither of the selected blocks were successors, so this
2535    // terminator must be unreachable.
2536    new UnreachableInst(OldTerm->getContext(), OldTerm);
2537  } else {
2538    // One of the selected values was a successor, but the other wasn't.
2539    // Insert an unconditional branch to the one that was found;
2540    // the edge to the one that wasn't must be unreachable.
2541    if (KeepEdge1 == 0)
2542      // Only TrueBB was found.
2543      Builder.CreateBr(TrueBB);
2544    else
2545      // Only FalseBB was found.
2546      Builder.CreateBr(FalseBB);
2547  }
2548
2549  EraseTerminatorInstAndDCECond(OldTerm);
2550  return true;
2551}
2552
2553// SimplifySwitchOnSelect - Replaces
2554//   (switch (select cond, X, Y)) on constant X, Y
2555// with a branch - conditional if X and Y lead to distinct BBs,
2556// unconditional otherwise.
2557static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2558  // Check for constant integer values in the select.
2559  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2560  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2561  if (!TrueVal || !FalseVal)
2562    return false;
2563
2564  // Find the relevant condition and destinations.
2565  Value *Condition = Select->getCondition();
2566  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2567  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2568
2569  // Get weight for TrueBB and FalseBB.
2570  uint32_t TrueWeight = 0, FalseWeight = 0;
2571  SmallVector<uint64_t, 8> Weights;
2572  bool HasWeights = HasBranchWeights(SI);
2573  if (HasWeights) {
2574    GetBranchWeights(SI, Weights);
2575    if (Weights.size() == 1 + SI->getNumCases()) {
2576      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2577                                     getSuccessorIndex()];
2578      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2579                                      getSuccessorIndex()];
2580    }
2581  }
2582
2583  // Perform the actual simplification.
2584  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2585                                    TrueWeight, FalseWeight);
2586}
2587
2588// SimplifyIndirectBrOnSelect - Replaces
2589//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2590//                             blockaddress(@fn, BlockB)))
2591// with
2592//   (br cond, BlockA, BlockB).
2593static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2594  // Check that both operands of the select are block addresses.
2595  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2596  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2597  if (!TBA || !FBA)
2598    return false;
2599
2600  // Extract the actual blocks.
2601  BasicBlock *TrueBB = TBA->getBasicBlock();
2602  BasicBlock *FalseBB = FBA->getBasicBlock();
2603
2604  // Perform the actual simplification.
2605  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2606                                    0, 0);
2607}
2608
2609/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2610/// instruction (a seteq/setne with a constant) as the only instruction in a
2611/// block that ends with an uncond branch.  We are looking for a very specific
2612/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2613/// this case, we merge the first two "or's of icmp" into a switch, but then the
2614/// default value goes to an uncond block with a seteq in it, we get something
2615/// like:
2616///
2617///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2618/// DEFAULT:
2619///   %tmp = icmp eq i8 %A, 92
2620///   br label %end
2621/// end:
2622///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2623///
2624/// We prefer to split the edge to 'end' so that there is a true/false entry to
2625/// the PHI, merging the third icmp into the switch.
2626static bool TryToSimplifyUncondBranchWithICmpInIt(
2627    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2628    const DataLayout *TD) {
2629  BasicBlock *BB = ICI->getParent();
2630
2631  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2632  // complex.
2633  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2634
2635  Value *V = ICI->getOperand(0);
2636  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2637
2638  // The pattern we're looking for is where our only predecessor is a switch on
2639  // 'V' and this block is the default case for the switch.  In this case we can
2640  // fold the compared value into the switch to simplify things.
2641  BasicBlock *Pred = BB->getSinglePredecessor();
2642  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2643
2644  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2645  if (SI->getCondition() != V)
2646    return false;
2647
2648  // If BB is reachable on a non-default case, then we simply know the value of
2649  // V in this block.  Substitute it and constant fold the icmp instruction
2650  // away.
2651  if (SI->getDefaultDest() != BB) {
2652    ConstantInt *VVal = SI->findCaseDest(BB);
2653    assert(VVal && "Should have a unique destination value");
2654    ICI->setOperand(0, VVal);
2655
2656    if (Value *V = SimplifyInstruction(ICI, TD)) {
2657      ICI->replaceAllUsesWith(V);
2658      ICI->eraseFromParent();
2659    }
2660    // BB is now empty, so it is likely to simplify away.
2661    return SimplifyCFG(BB, TTI, TD) | true;
2662  }
2663
2664  // Ok, the block is reachable from the default dest.  If the constant we're
2665  // comparing exists in one of the other edges, then we can constant fold ICI
2666  // and zap it.
2667  if (SI->findCaseValue(Cst) != SI->case_default()) {
2668    Value *V;
2669    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2670      V = ConstantInt::getFalse(BB->getContext());
2671    else
2672      V = ConstantInt::getTrue(BB->getContext());
2673
2674    ICI->replaceAllUsesWith(V);
2675    ICI->eraseFromParent();
2676    // BB is now empty, so it is likely to simplify away.
2677    return SimplifyCFG(BB, TTI, TD) | true;
2678  }
2679
2680  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2681  // the block.
2682  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2683  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2684  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2685      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2686    return false;
2687
2688  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2689  // true in the PHI.
2690  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2691  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2692
2693  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2694    std::swap(DefaultCst, NewCst);
2695
2696  // Replace ICI (which is used by the PHI for the default value) with true or
2697  // false depending on if it is EQ or NE.
2698  ICI->replaceAllUsesWith(DefaultCst);
2699  ICI->eraseFromParent();
2700
2701  // Okay, the switch goes to this block on a default value.  Add an edge from
2702  // the switch to the merge point on the compared value.
2703  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2704                                         BB->getParent(), BB);
2705  SmallVector<uint64_t, 8> Weights;
2706  bool HasWeights = HasBranchWeights(SI);
2707  if (HasWeights) {
2708    GetBranchWeights(SI, Weights);
2709    if (Weights.size() == 1 + SI->getNumCases()) {
2710      // Split weight for default case to case for "Cst".
2711      Weights[0] = (Weights[0]+1) >> 1;
2712      Weights.push_back(Weights[0]);
2713
2714      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2715      SI->setMetadata(LLVMContext::MD_prof,
2716                      MDBuilder(SI->getContext()).
2717                      createBranchWeights(MDWeights));
2718    }
2719  }
2720  SI->addCase(Cst, NewBB);
2721
2722  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2723  Builder.SetInsertPoint(NewBB);
2724  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2725  Builder.CreateBr(SuccBlock);
2726  PHIUse->addIncoming(NewCst, NewBB);
2727  return true;
2728}
2729
2730/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2731/// Check to see if it is branching on an or/and chain of icmp instructions, and
2732/// fold it into a switch instruction if so.
2733static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2734                                      IRBuilder<> &Builder) {
2735  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2736  if (Cond == 0) return false;
2737
2738
2739  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2740  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2741  // 'setne's and'ed together, collect them.
2742  Value *CompVal = 0;
2743  std::vector<ConstantInt*> Values;
2744  bool TrueWhenEqual = true;
2745  Value *ExtraCase = 0;
2746  unsigned UsedICmps = 0;
2747
2748  if (Cond->getOpcode() == Instruction::Or) {
2749    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2750                                     UsedICmps);
2751  } else if (Cond->getOpcode() == Instruction::And) {
2752    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2753                                     UsedICmps);
2754    TrueWhenEqual = false;
2755  }
2756
2757  // If we didn't have a multiply compared value, fail.
2758  if (CompVal == 0) return false;
2759
2760  // Avoid turning single icmps into a switch.
2761  if (UsedICmps <= 1)
2762    return false;
2763
2764  // There might be duplicate constants in the list, which the switch
2765  // instruction can't handle, remove them now.
2766  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2767  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2768
2769  // If Extra was used, we require at least two switch values to do the
2770  // transformation.  A switch with one value is just an cond branch.
2771  if (ExtraCase && Values.size() < 2) return false;
2772
2773  // TODO: Preserve branch weight metadata, similarly to how
2774  // FoldValueComparisonIntoPredecessors preserves it.
2775
2776  // Figure out which block is which destination.
2777  BasicBlock *DefaultBB = BI->getSuccessor(1);
2778  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2779  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2780
2781  BasicBlock *BB = BI->getParent();
2782
2783  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2784               << " cases into SWITCH.  BB is:\n" << *BB);
2785
2786  // If there are any extra values that couldn't be folded into the switch
2787  // then we evaluate them with an explicit branch first.  Split the block
2788  // right before the condbr to handle it.
2789  if (ExtraCase) {
2790    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2791    // Remove the uncond branch added to the old block.
2792    TerminatorInst *OldTI = BB->getTerminator();
2793    Builder.SetInsertPoint(OldTI);
2794
2795    if (TrueWhenEqual)
2796      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2797    else
2798      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2799
2800    OldTI->eraseFromParent();
2801
2802    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2803    // for the edge we just added.
2804    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2805
2806    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2807          << "\nEXTRABB = " << *BB);
2808    BB = NewBB;
2809  }
2810
2811  Builder.SetInsertPoint(BI);
2812  // Convert pointer to int before we switch.
2813  if (CompVal->getType()->isPointerTy()) {
2814    assert(TD && "Cannot switch on pointer without DataLayout");
2815    CompVal = Builder.CreatePtrToInt(CompVal,
2816                                     TD->getIntPtrType(CompVal->getType()),
2817                                     "magicptr");
2818  }
2819
2820  // Create the new switch instruction now.
2821  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2822
2823  // Add all of the 'cases' to the switch instruction.
2824  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2825    New->addCase(Values[i], EdgeBB);
2826
2827  // We added edges from PI to the EdgeBB.  As such, if there were any
2828  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2829  // the number of edges added.
2830  for (BasicBlock::iterator BBI = EdgeBB->begin();
2831       isa<PHINode>(BBI); ++BBI) {
2832    PHINode *PN = cast<PHINode>(BBI);
2833    Value *InVal = PN->getIncomingValueForBlock(BB);
2834    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2835      PN->addIncoming(InVal, BB);
2836  }
2837
2838  // Erase the old branch instruction.
2839  EraseTerminatorInstAndDCECond(BI);
2840
2841  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2842  return true;
2843}
2844
2845bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2846  // If this is a trivial landing pad that just continues unwinding the caught
2847  // exception then zap the landing pad, turning its invokes into calls.
2848  BasicBlock *BB = RI->getParent();
2849  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2850  if (RI->getValue() != LPInst)
2851    // Not a landing pad, or the resume is not unwinding the exception that
2852    // caused control to branch here.
2853    return false;
2854
2855  // Check that there are no other instructions except for debug intrinsics.
2856  BasicBlock::iterator I = LPInst, E = RI;
2857  while (++I != E)
2858    if (!isa<DbgInfoIntrinsic>(I))
2859      return false;
2860
2861  // Turn all invokes that unwind here into calls and delete the basic block.
2862  bool InvokeRequiresTableEntry = false;
2863  bool Changed = false;
2864  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2865    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2866
2867    if (II->hasFnAttr(Attribute::UWTable)) {
2868      // Don't remove an `invoke' instruction if the ABI requires an entry into
2869      // the table.
2870      InvokeRequiresTableEntry = true;
2871      continue;
2872    }
2873
2874    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2875
2876    // Insert a call instruction before the invoke.
2877    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2878    Call->takeName(II);
2879    Call->setCallingConv(II->getCallingConv());
2880    Call->setAttributes(II->getAttributes());
2881    Call->setDebugLoc(II->getDebugLoc());
2882
2883    // Anything that used the value produced by the invoke instruction now uses
2884    // the value produced by the call instruction.  Note that we do this even
2885    // for void functions and calls with no uses so that the callgraph edge is
2886    // updated.
2887    II->replaceAllUsesWith(Call);
2888    BB->removePredecessor(II->getParent());
2889
2890    // Insert a branch to the normal destination right before the invoke.
2891    BranchInst::Create(II->getNormalDest(), II);
2892
2893    // Finally, delete the invoke instruction!
2894    II->eraseFromParent();
2895    Changed = true;
2896  }
2897
2898  if (!InvokeRequiresTableEntry)
2899    // The landingpad is now unreachable.  Zap it.
2900    BB->eraseFromParent();
2901
2902  return Changed;
2903}
2904
2905bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2906  BasicBlock *BB = RI->getParent();
2907  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2908
2909  // Find predecessors that end with branches.
2910  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2911  SmallVector<BranchInst*, 8> CondBranchPreds;
2912  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2913    BasicBlock *P = *PI;
2914    TerminatorInst *PTI = P->getTerminator();
2915    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2916      if (BI->isUnconditional())
2917        UncondBranchPreds.push_back(P);
2918      else
2919        CondBranchPreds.push_back(BI);
2920    }
2921  }
2922
2923  // If we found some, do the transformation!
2924  if (!UncondBranchPreds.empty() && DupRet) {
2925    while (!UncondBranchPreds.empty()) {
2926      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2927      DEBUG(dbgs() << "FOLDING: " << *BB
2928            << "INTO UNCOND BRANCH PRED: " << *Pred);
2929      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2930    }
2931
2932    // If we eliminated all predecessors of the block, delete the block now.
2933    if (pred_begin(BB) == pred_end(BB))
2934      // We know there are no successors, so just nuke the block.
2935      BB->eraseFromParent();
2936
2937    return true;
2938  }
2939
2940  // Check out all of the conditional branches going to this return
2941  // instruction.  If any of them just select between returns, change the
2942  // branch itself into a select/return pair.
2943  while (!CondBranchPreds.empty()) {
2944    BranchInst *BI = CondBranchPreds.pop_back_val();
2945
2946    // Check to see if the non-BB successor is also a return block.
2947    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2948        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2949        SimplifyCondBranchToTwoReturns(BI, Builder))
2950      return true;
2951  }
2952  return false;
2953}
2954
2955bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2956  BasicBlock *BB = UI->getParent();
2957
2958  bool Changed = false;
2959
2960  // If there are any instructions immediately before the unreachable that can
2961  // be removed, do so.
2962  while (UI != BB->begin()) {
2963    BasicBlock::iterator BBI = UI;
2964    --BBI;
2965    // Do not delete instructions that can have side effects which might cause
2966    // the unreachable to not be reachable; specifically, calls and volatile
2967    // operations may have this effect.
2968    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2969
2970    if (BBI->mayHaveSideEffects()) {
2971      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2972        if (SI->isVolatile())
2973          break;
2974      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2975        if (LI->isVolatile())
2976          break;
2977      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2978        if (RMWI->isVolatile())
2979          break;
2980      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2981        if (CXI->isVolatile())
2982          break;
2983      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2984                 !isa<LandingPadInst>(BBI)) {
2985        break;
2986      }
2987      // Note that deleting LandingPad's here is in fact okay, although it
2988      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2989      // all the predecessors of this block will be the unwind edges of Invokes,
2990      // and we can therefore guarantee this block will be erased.
2991    }
2992
2993    // Delete this instruction (any uses are guaranteed to be dead)
2994    if (!BBI->use_empty())
2995      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2996    BBI->eraseFromParent();
2997    Changed = true;
2998  }
2999
3000  // If the unreachable instruction is the first in the block, take a gander
3001  // at all of the predecessors of this instruction, and simplify them.
3002  if (&BB->front() != UI) return Changed;
3003
3004  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3005  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3006    TerminatorInst *TI = Preds[i]->getTerminator();
3007    IRBuilder<> Builder(TI);
3008    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3009      if (BI->isUnconditional()) {
3010        if (BI->getSuccessor(0) == BB) {
3011          new UnreachableInst(TI->getContext(), TI);
3012          TI->eraseFromParent();
3013          Changed = true;
3014        }
3015      } else {
3016        if (BI->getSuccessor(0) == BB) {
3017          Builder.CreateBr(BI->getSuccessor(1));
3018          EraseTerminatorInstAndDCECond(BI);
3019        } else if (BI->getSuccessor(1) == BB) {
3020          Builder.CreateBr(BI->getSuccessor(0));
3021          EraseTerminatorInstAndDCECond(BI);
3022          Changed = true;
3023        }
3024      }
3025    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3026      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3027           i != e; ++i)
3028        if (i.getCaseSuccessor() == BB) {
3029          BB->removePredecessor(SI->getParent());
3030          SI->removeCase(i);
3031          --i; --e;
3032          Changed = true;
3033        }
3034      // If the default value is unreachable, figure out the most popular
3035      // destination and make it the default.
3036      if (SI->getDefaultDest() == BB) {
3037        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3038        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3039             i != e; ++i) {
3040          std::pair<unsigned, unsigned> &entry =
3041              Popularity[i.getCaseSuccessor()];
3042          if (entry.first == 0) {
3043            entry.first = 1;
3044            entry.second = i.getCaseIndex();
3045          } else {
3046            entry.first++;
3047          }
3048        }
3049
3050        // Find the most popular block.
3051        unsigned MaxPop = 0;
3052        unsigned MaxIndex = 0;
3053        BasicBlock *MaxBlock = 0;
3054        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3055             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3056          if (I->second.first > MaxPop ||
3057              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3058            MaxPop = I->second.first;
3059            MaxIndex = I->second.second;
3060            MaxBlock = I->first;
3061          }
3062        }
3063        if (MaxBlock) {
3064          // Make this the new default, allowing us to delete any explicit
3065          // edges to it.
3066          SI->setDefaultDest(MaxBlock);
3067          Changed = true;
3068
3069          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3070          // it.
3071          if (isa<PHINode>(MaxBlock->begin()))
3072            for (unsigned i = 0; i != MaxPop-1; ++i)
3073              MaxBlock->removePredecessor(SI->getParent());
3074
3075          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3076               i != e; ++i)
3077            if (i.getCaseSuccessor() == MaxBlock) {
3078              SI->removeCase(i);
3079              --i; --e;
3080            }
3081        }
3082      }
3083    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3084      if (II->getUnwindDest() == BB) {
3085        // Convert the invoke to a call instruction.  This would be a good
3086        // place to note that the call does not throw though.
3087        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3088        II->removeFromParent();   // Take out of symbol table
3089
3090        // Insert the call now...
3091        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3092        Builder.SetInsertPoint(BI);
3093        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3094                                          Args, II->getName());
3095        CI->setCallingConv(II->getCallingConv());
3096        CI->setAttributes(II->getAttributes());
3097        // If the invoke produced a value, the call does now instead.
3098        II->replaceAllUsesWith(CI);
3099        delete II;
3100        Changed = true;
3101      }
3102    }
3103  }
3104
3105  // If this block is now dead, remove it.
3106  if (pred_begin(BB) == pred_end(BB) &&
3107      BB != &BB->getParent()->getEntryBlock()) {
3108    // We know there are no successors, so just nuke the block.
3109    BB->eraseFromParent();
3110    return true;
3111  }
3112
3113  return Changed;
3114}
3115
3116/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3117/// integer range comparison into a sub, an icmp and a branch.
3118static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3119  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3120
3121  // Make sure all cases point to the same destination and gather the values.
3122  SmallVector<ConstantInt *, 16> Cases;
3123  SwitchInst::CaseIt I = SI->case_begin();
3124  Cases.push_back(I.getCaseValue());
3125  SwitchInst::CaseIt PrevI = I++;
3126  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3127    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3128      return false;
3129    Cases.push_back(I.getCaseValue());
3130  }
3131  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3132
3133  // Sort the case values, then check if they form a range we can transform.
3134  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3135  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3136    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3137      return false;
3138  }
3139
3140  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3141  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3142
3143  Value *Sub = SI->getCondition();
3144  if (!Offset->isNullValue())
3145    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3146  Value *Cmp;
3147  // If NumCases overflowed, then all possible values jump to the successor.
3148  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3149    Cmp = ConstantInt::getTrue(SI->getContext());
3150  else
3151    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3152  BranchInst *NewBI = Builder.CreateCondBr(
3153      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3154
3155  // Update weight for the newly-created conditional branch.
3156  SmallVector<uint64_t, 8> Weights;
3157  bool HasWeights = HasBranchWeights(SI);
3158  if (HasWeights) {
3159    GetBranchWeights(SI, Weights);
3160    if (Weights.size() == 1 + SI->getNumCases()) {
3161      // Combine all weights for the cases to be the true weight of NewBI.
3162      // We assume that the sum of all weights for a Terminator can fit into 32
3163      // bits.
3164      uint32_t NewTrueWeight = 0;
3165      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3166        NewTrueWeight += (uint32_t)Weights[I];
3167      NewBI->setMetadata(LLVMContext::MD_prof,
3168                         MDBuilder(SI->getContext()).
3169                         createBranchWeights(NewTrueWeight,
3170                                             (uint32_t)Weights[0]));
3171    }
3172  }
3173
3174  // Prune obsolete incoming values off the successor's PHI nodes.
3175  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3176       isa<PHINode>(BBI); ++BBI) {
3177    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3178      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3179  }
3180  SI->eraseFromParent();
3181
3182  return true;
3183}
3184
3185/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3186/// and use it to remove dead cases.
3187static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3188  Value *Cond = SI->getCondition();
3189  unsigned Bits = Cond->getType()->getIntegerBitWidth();
3190  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3191  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3192
3193  // Gather dead cases.
3194  SmallVector<ConstantInt*, 8> DeadCases;
3195  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3196    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3197        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3198      DeadCases.push_back(I.getCaseValue());
3199      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3200                   << I.getCaseValue() << "' is dead.\n");
3201    }
3202  }
3203
3204  SmallVector<uint64_t, 8> Weights;
3205  bool HasWeight = HasBranchWeights(SI);
3206  if (HasWeight) {
3207    GetBranchWeights(SI, Weights);
3208    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3209  }
3210
3211  // Remove dead cases from the switch.
3212  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3213    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3214    assert(Case != SI->case_default() &&
3215           "Case was not found. Probably mistake in DeadCases forming.");
3216    if (HasWeight) {
3217      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3218      Weights.pop_back();
3219    }
3220
3221    // Prune unused values from PHI nodes.
3222    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3223    SI->removeCase(Case);
3224  }
3225  if (HasWeight) {
3226    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3227    SI->setMetadata(LLVMContext::MD_prof,
3228                    MDBuilder(SI->getParent()->getContext()).
3229                    createBranchWeights(MDWeights));
3230  }
3231
3232  return !DeadCases.empty();
3233}
3234
3235/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3236/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3237/// by an unconditional branch), look at the phi node for BB in the successor
3238/// block and see if the incoming value is equal to CaseValue. If so, return
3239/// the phi node, and set PhiIndex to BB's index in the phi node.
3240static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3241                                              BasicBlock *BB,
3242                                              int *PhiIndex) {
3243  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3244    return NULL; // BB must be empty to be a candidate for simplification.
3245  if (!BB->getSinglePredecessor())
3246    return NULL; // BB must be dominated by the switch.
3247
3248  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3249  if (!Branch || !Branch->isUnconditional())
3250    return NULL; // Terminator must be unconditional branch.
3251
3252  BasicBlock *Succ = Branch->getSuccessor(0);
3253
3254  BasicBlock::iterator I = Succ->begin();
3255  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3256    int Idx = PHI->getBasicBlockIndex(BB);
3257    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3258
3259    Value *InValue = PHI->getIncomingValue(Idx);
3260    if (InValue != CaseValue) continue;
3261
3262    *PhiIndex = Idx;
3263    return PHI;
3264  }
3265
3266  return NULL;
3267}
3268
3269/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3270/// instruction to a phi node dominated by the switch, if that would mean that
3271/// some of the destination blocks of the switch can be folded away.
3272/// Returns true if a change is made.
3273static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3274  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3275  ForwardingNodesMap ForwardingNodes;
3276
3277  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3278    ConstantInt *CaseValue = I.getCaseValue();
3279    BasicBlock *CaseDest = I.getCaseSuccessor();
3280
3281    int PhiIndex;
3282    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3283                                                 &PhiIndex);
3284    if (!PHI) continue;
3285
3286    ForwardingNodes[PHI].push_back(PhiIndex);
3287  }
3288
3289  bool Changed = false;
3290
3291  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3292       E = ForwardingNodes.end(); I != E; ++I) {
3293    PHINode *Phi = I->first;
3294    SmallVectorImpl<int> &Indexes = I->second;
3295
3296    if (Indexes.size() < 2) continue;
3297
3298    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3299      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3300    Changed = true;
3301  }
3302
3303  return Changed;
3304}
3305
3306/// ValidLookupTableConstant - Return true if the backend will be able to handle
3307/// initializing an array of constants like C.
3308static bool ValidLookupTableConstant(Constant *C) {
3309  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3310    return CE->isGEPWithNoNotionalOverIndexing();
3311
3312  return isa<ConstantFP>(C) ||
3313      isa<ConstantInt>(C) ||
3314      isa<ConstantPointerNull>(C) ||
3315      isa<GlobalValue>(C) ||
3316      isa<UndefValue>(C);
3317}
3318
3319/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3320/// its constant value in ConstantPool, returning 0 if it's not there.
3321static Constant *LookupConstant(Value *V,
3322                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3323  if (Constant *C = dyn_cast<Constant>(V))
3324    return C;
3325  return ConstantPool.lookup(V);
3326}
3327
3328/// ConstantFold - Try to fold instruction I into a constant. This works for
3329/// simple instructions such as binary operations where both operands are
3330/// constant or can be replaced by constants from the ConstantPool. Returns the
3331/// resulting constant on success, 0 otherwise.
3332static Constant *
3333ConstantFold(Instruction *I,
3334             const SmallDenseMap<Value *, Constant *> &ConstantPool,
3335             const DataLayout *DL) {
3336  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3337    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3338    if (!A)
3339      return 0;
3340    if (A->isAllOnesValue())
3341      return LookupConstant(Select->getTrueValue(), ConstantPool);
3342    if (A->isNullValue())
3343      return LookupConstant(Select->getFalseValue(), ConstantPool);
3344    return 0;
3345  }
3346
3347  SmallVector<Constant *, 4> COps;
3348  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3349    if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3350      COps.push_back(A);
3351    else
3352      return 0;
3353  }
3354
3355  if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
3356    return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3357                                           COps[1], DL);
3358
3359  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3360}
3361
3362/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3363/// at the common destination basic block, *CommonDest, for one of the case
3364/// destionations CaseDest corresponding to value CaseVal (0 for the default
3365/// case), of a switch instruction SI.
3366static bool
3367GetCaseResults(SwitchInst *SI,
3368               ConstantInt *CaseVal,
3369               BasicBlock *CaseDest,
3370               BasicBlock **CommonDest,
3371               SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
3372               const DataLayout *DL) {
3373  // The block from which we enter the common destination.
3374  BasicBlock *Pred = SI->getParent();
3375
3376  // If CaseDest is empty except for some side-effect free instructions through
3377  // which we can constant-propagate the CaseVal, continue to its successor.
3378  SmallDenseMap<Value*, Constant*> ConstantPool;
3379  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3380  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3381       ++I) {
3382    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3383      // If the terminator is a simple branch, continue to the next block.
3384      if (T->getNumSuccessors() != 1)
3385        return false;
3386      Pred = CaseDest;
3387      CaseDest = T->getSuccessor(0);
3388    } else if (isa<DbgInfoIntrinsic>(I)) {
3389      // Skip debug intrinsic.
3390      continue;
3391    } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
3392      // Instruction is side-effect free and constant.
3393      ConstantPool.insert(std::make_pair(I, C));
3394    } else {
3395      break;
3396    }
3397  }
3398
3399  // If we did not have a CommonDest before, use the current one.
3400  if (!*CommonDest)
3401    *CommonDest = CaseDest;
3402  // If the destination isn't the common one, abort.
3403  if (CaseDest != *CommonDest)
3404    return false;
3405
3406  // Get the values for this case from phi nodes in the destination block.
3407  BasicBlock::iterator I = (*CommonDest)->begin();
3408  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3409    int Idx = PHI->getBasicBlockIndex(Pred);
3410    if (Idx == -1)
3411      continue;
3412
3413    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3414                                        ConstantPool);
3415    if (!ConstVal)
3416      return false;
3417
3418    // Note: If the constant comes from constant-propagating the case value
3419    // through the CaseDest basic block, it will be safe to remove the
3420    // instructions in that block. They cannot be used (except in the phi nodes
3421    // we visit) outside CaseDest, because that block does not dominate its
3422    // successor. If it did, we would not be in this phi node.
3423
3424    // Be conservative about which kinds of constants we support.
3425    if (!ValidLookupTableConstant(ConstVal))
3426      return false;
3427
3428    Res.push_back(std::make_pair(PHI, ConstVal));
3429  }
3430
3431  return true;
3432}
3433
3434namespace {
3435  /// SwitchLookupTable - This class represents a lookup table that can be used
3436  /// to replace a switch.
3437  class SwitchLookupTable {
3438  public:
3439    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3440    /// with the contents of Values, using DefaultValue to fill any holes in the
3441    /// table.
3442    SwitchLookupTable(Module &M,
3443                      uint64_t TableSize,
3444                      ConstantInt *Offset,
3445             const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3446                      Constant *DefaultValue,
3447                      const DataLayout *TD);
3448
3449    /// BuildLookup - Build instructions with Builder to retrieve the value at
3450    /// the position given by Index in the lookup table.
3451    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3452
3453    /// WouldFitInRegister - Return true if a table with TableSize elements of
3454    /// type ElementType would fit in a target-legal register.
3455    static bool WouldFitInRegister(const DataLayout *TD,
3456                                   uint64_t TableSize,
3457                                   const Type *ElementType);
3458
3459  private:
3460    // Depending on the contents of the table, it can be represented in
3461    // different ways.
3462    enum {
3463      // For tables where each element contains the same value, we just have to
3464      // store that single value and return it for each lookup.
3465      SingleValueKind,
3466
3467      // For small tables with integer elements, we can pack them into a bitmap
3468      // that fits into a target-legal register. Values are retrieved by
3469      // shift and mask operations.
3470      BitMapKind,
3471
3472      // The table is stored as an array of values. Values are retrieved by load
3473      // instructions from the table.
3474      ArrayKind
3475    } Kind;
3476
3477    // For SingleValueKind, this is the single value.
3478    Constant *SingleValue;
3479
3480    // For BitMapKind, this is the bitmap.
3481    ConstantInt *BitMap;
3482    IntegerType *BitMapElementTy;
3483
3484    // For ArrayKind, this is the array.
3485    GlobalVariable *Array;
3486  };
3487}
3488
3489SwitchLookupTable::SwitchLookupTable(Module &M,
3490                                     uint64_t TableSize,
3491                                     ConstantInt *Offset,
3492             const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3493                                     Constant *DefaultValue,
3494                                     const DataLayout *TD)
3495    : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3496  assert(Values.size() && "Can't build lookup table without values!");
3497  assert(TableSize >= Values.size() && "Can't fit values in table!");
3498
3499  // If all values in the table are equal, this is that value.
3500  SingleValue = Values.begin()->second;
3501
3502  // Build up the table contents.
3503  SmallVector<Constant*, 64> TableContents(TableSize);
3504  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3505    ConstantInt *CaseVal = Values[I].first;
3506    Constant *CaseRes = Values[I].second;
3507    assert(CaseRes->getType() == DefaultValue->getType());
3508
3509    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3510                   .getLimitedValue();
3511    TableContents[Idx] = CaseRes;
3512
3513    if (CaseRes != SingleValue)
3514      SingleValue = 0;
3515  }
3516
3517  // Fill in any holes in the table with the default result.
3518  if (Values.size() < TableSize) {
3519    for (uint64_t I = 0; I < TableSize; ++I) {
3520      if (!TableContents[I])
3521        TableContents[I] = DefaultValue;
3522    }
3523
3524    if (DefaultValue != SingleValue)
3525      SingleValue = 0;
3526  }
3527
3528  // If each element in the table contains the same value, we only need to store
3529  // that single value.
3530  if (SingleValue) {
3531    Kind = SingleValueKind;
3532    return;
3533  }
3534
3535  // If the type is integer and the table fits in a register, build a bitmap.
3536  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3537    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3538    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3539    for (uint64_t I = TableSize; I > 0; --I) {
3540      TableInt <<= IT->getBitWidth();
3541      // Insert values into the bitmap. Undef values are set to zero.
3542      if (!isa<UndefValue>(TableContents[I - 1])) {
3543        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3544        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3545      }
3546    }
3547    BitMap = ConstantInt::get(M.getContext(), TableInt);
3548    BitMapElementTy = IT;
3549    Kind = BitMapKind;
3550    ++NumBitMaps;
3551    return;
3552  }
3553
3554  // Store the table in an array.
3555  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3556  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3557
3558  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3559                             GlobalVariable::PrivateLinkage,
3560                             Initializer,
3561                             "switch.table");
3562  Array->setUnnamedAddr(true);
3563  Kind = ArrayKind;
3564}
3565
3566Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3567  switch (Kind) {
3568    case SingleValueKind:
3569      return SingleValue;
3570    case BitMapKind: {
3571      // Type of the bitmap (e.g. i59).
3572      IntegerType *MapTy = BitMap->getType();
3573
3574      // Cast Index to the same type as the bitmap.
3575      // Note: The Index is <= the number of elements in the table, so
3576      // truncating it to the width of the bitmask is safe.
3577      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3578
3579      // Multiply the shift amount by the element width.
3580      ShiftAmt = Builder.CreateMul(ShiftAmt,
3581                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3582                                   "switch.shiftamt");
3583
3584      // Shift down.
3585      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3586                                              "switch.downshift");
3587      // Mask off.
3588      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3589                                 "switch.masked");
3590    }
3591    case ArrayKind: {
3592      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3593      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3594                                             "switch.gep");
3595      return Builder.CreateLoad(GEP, "switch.load");
3596    }
3597  }
3598  llvm_unreachable("Unknown lookup table kind!");
3599}
3600
3601bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3602                                           uint64_t TableSize,
3603                                           const Type *ElementType) {
3604  if (!TD)
3605    return false;
3606  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3607  if (!IT)
3608    return false;
3609  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3610  // are <= 15, we could try to narrow the type.
3611
3612  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3613  if (TableSize >= UINT_MAX/IT->getBitWidth())
3614    return false;
3615  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3616}
3617
3618/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3619/// for this switch, based on the number of cases, size of the table and the
3620/// types of the results.
3621static bool ShouldBuildLookupTable(SwitchInst *SI,
3622                                   uint64_t TableSize,
3623                                   const TargetTransformInfo &TTI,
3624                                   const DataLayout *TD,
3625                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3626  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3627    return false; // TableSize overflowed, or mul below might overflow.
3628
3629  bool AllTablesFitInRegister = true;
3630  bool HasIllegalType = false;
3631  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3632       E = ResultTypes.end(); I != E; ++I) {
3633    Type *Ty = I->second;
3634
3635    // Saturate this flag to true.
3636    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3637
3638    // Saturate this flag to false.
3639    AllTablesFitInRegister = AllTablesFitInRegister &&
3640      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3641
3642    // If both flags saturate, we're done. NOTE: This *only* works with
3643    // saturating flags, and all flags have to saturate first due to the
3644    // non-deterministic behavior of iterating over a dense map.
3645    if (HasIllegalType && !AllTablesFitInRegister)
3646      break;
3647  }
3648
3649  // If each table would fit in a register, we should build it anyway.
3650  if (AllTablesFitInRegister)
3651    return true;
3652
3653  // Don't build a table that doesn't fit in-register if it has illegal types.
3654  if (HasIllegalType)
3655    return false;
3656
3657  // The table density should be at least 40%. This is the same criterion as for
3658  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3659  // FIXME: Find the best cut-off.
3660  return SI->getNumCases() * 10 >= TableSize * 4;
3661}
3662
3663/// SwitchToLookupTable - If the switch is only used to initialize one or more
3664/// phi nodes in a common successor block with different constant values,
3665/// replace the switch with lookup tables.
3666static bool SwitchToLookupTable(SwitchInst *SI,
3667                                IRBuilder<> &Builder,
3668                                const TargetTransformInfo &TTI,
3669                                const DataLayout* TD) {
3670  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3671
3672  // Only build lookup table when we have a target that supports it.
3673  if (!TTI.shouldBuildLookupTables())
3674    return false;
3675
3676  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3677  // split off a dense part and build a lookup table for that.
3678
3679  // FIXME: This creates arrays of GEPs to constant strings, which means each
3680  // GEP needs a runtime relocation in PIC code. We should just build one big
3681  // string and lookup indices into that.
3682
3683  // Ignore the switch if the number of cases is too small.
3684  // This is similar to the check when building jump tables in
3685  // SelectionDAGBuilder::handleJTSwitchCase.
3686  // FIXME: Determine the best cut-off.
3687  if (SI->getNumCases() < 4)
3688    return false;
3689
3690  // Figure out the corresponding result for each case value and phi node in the
3691  // common destination, as well as the the min and max case values.
3692  assert(SI->case_begin() != SI->case_end());
3693  SwitchInst::CaseIt CI = SI->case_begin();
3694  ConstantInt *MinCaseVal = CI.getCaseValue();
3695  ConstantInt *MaxCaseVal = CI.getCaseValue();
3696
3697  BasicBlock *CommonDest = 0;
3698  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3699  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3700  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3701  SmallDenseMap<PHINode*, Type*> ResultTypes;
3702  SmallVector<PHINode*, 4> PHIs;
3703
3704  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3705    ConstantInt *CaseVal = CI.getCaseValue();
3706    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3707      MinCaseVal = CaseVal;
3708    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3709      MaxCaseVal = CaseVal;
3710
3711    // Resulting value at phi nodes for this case value.
3712    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3713    ResultsTy Results;
3714    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3715                        Results, TD))
3716      return false;
3717
3718    // Append the result from this case to the list for each phi.
3719    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3720      if (!ResultLists.count(I->first))
3721        PHIs.push_back(I->first);
3722      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3723    }
3724  }
3725
3726  // Get the resulting values for the default case.
3727  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3728  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3729                      DefaultResultsList, TD))
3730    return false;
3731  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3732    PHINode *PHI = DefaultResultsList[I].first;
3733    Constant *Result = DefaultResultsList[I].second;
3734    DefaultResults[PHI] = Result;
3735    ResultTypes[PHI] = Result->getType();
3736  }
3737
3738  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3739  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3740  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3741    return false;
3742
3743  // Create the BB that does the lookups.
3744  Module &Mod = *CommonDest->getParent()->getParent();
3745  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3746                                            "switch.lookup",
3747                                            CommonDest->getParent(),
3748                                            CommonDest);
3749
3750  // Compute the table index value.
3751  Builder.SetInsertPoint(SI);
3752  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3753                                        "switch.tableidx");
3754
3755  // Compute the maximum table size representable by the integer type we are
3756  // switching upon.
3757  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
3758  uint64_t MaxTableSize = CaseSize > 63? UINT64_MAX : 1ULL << CaseSize;
3759  assert(MaxTableSize >= TableSize &&
3760         "It is impossible for a switch to have more entries than the max "
3761         "representable value of its input integer type's size.");
3762
3763  // If we have a fully covered lookup table, unconditionally branch to the
3764  // lookup table BB. Otherwise, check if the condition value is within the case
3765  // range. If it is so, branch to the new BB. Otherwise branch to SI's default
3766  // destination.
3767  const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
3768  if (GeneratingCoveredLookupTable) {
3769    Builder.CreateBr(LookupBB);
3770    SI->getDefaultDest()->removePredecessor(SI->getParent());
3771  } else {
3772    Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3773                                         MinCaseVal->getType(), TableSize));
3774    Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3775  }
3776
3777  // Populate the BB that does the lookups.
3778  Builder.SetInsertPoint(LookupBB);
3779  bool ReturnedEarly = false;
3780  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3781    PHINode *PHI = PHIs[I];
3782
3783    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3784                            DefaultResults[PHI], TD);
3785
3786    Value *Result = Table.BuildLookup(TableIndex, Builder);
3787
3788    // If the result is used to return immediately from the function, we want to
3789    // do that right here.
3790    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3791        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3792      Builder.CreateRet(Result);
3793      ReturnedEarly = true;
3794      break;
3795    }
3796
3797    PHI->addIncoming(Result, LookupBB);
3798  }
3799
3800  if (!ReturnedEarly)
3801    Builder.CreateBr(CommonDest);
3802
3803  // Remove the switch.
3804  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3805    BasicBlock *Succ = SI->getSuccessor(i);
3806
3807    if (Succ == SI->getDefaultDest())
3808      continue;
3809    Succ->removePredecessor(SI->getParent());
3810  }
3811  SI->eraseFromParent();
3812
3813  ++NumLookupTables;
3814  return true;
3815}
3816
3817bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3818  BasicBlock *BB = SI->getParent();
3819
3820  if (isValueEqualityComparison(SI)) {
3821    // If we only have one predecessor, and if it is a branch on this value,
3822    // see if that predecessor totally determines the outcome of this switch.
3823    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3824      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3825        return SimplifyCFG(BB, TTI, TD) | true;
3826
3827    Value *Cond = SI->getCondition();
3828    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3829      if (SimplifySwitchOnSelect(SI, Select))
3830        return SimplifyCFG(BB, TTI, TD) | true;
3831
3832    // If the block only contains the switch, see if we can fold the block
3833    // away into any preds.
3834    BasicBlock::iterator BBI = BB->begin();
3835    // Ignore dbg intrinsics.
3836    while (isa<DbgInfoIntrinsic>(BBI))
3837      ++BBI;
3838    if (SI == &*BBI)
3839      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3840        return SimplifyCFG(BB, TTI, TD) | true;
3841  }
3842
3843  // Try to transform the switch into an icmp and a branch.
3844  if (TurnSwitchRangeIntoICmp(SI, Builder))
3845    return SimplifyCFG(BB, TTI, TD) | true;
3846
3847  // Remove unreachable cases.
3848  if (EliminateDeadSwitchCases(SI))
3849    return SimplifyCFG(BB, TTI, TD) | true;
3850
3851  if (ForwardSwitchConditionToPHI(SI))
3852    return SimplifyCFG(BB, TTI, TD) | true;
3853
3854  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3855    return SimplifyCFG(BB, TTI, TD) | true;
3856
3857  return false;
3858}
3859
3860bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3861  BasicBlock *BB = IBI->getParent();
3862  bool Changed = false;
3863
3864  // Eliminate redundant destinations.
3865  SmallPtrSet<Value *, 8> Succs;
3866  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3867    BasicBlock *Dest = IBI->getDestination(i);
3868    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3869      Dest->removePredecessor(BB);
3870      IBI->removeDestination(i);
3871      --i; --e;
3872      Changed = true;
3873    }
3874  }
3875
3876  if (IBI->getNumDestinations() == 0) {
3877    // If the indirectbr has no successors, change it to unreachable.
3878    new UnreachableInst(IBI->getContext(), IBI);
3879    EraseTerminatorInstAndDCECond(IBI);
3880    return true;
3881  }
3882
3883  if (IBI->getNumDestinations() == 1) {
3884    // If the indirectbr has one successor, change it to a direct branch.
3885    BranchInst::Create(IBI->getDestination(0), IBI);
3886    EraseTerminatorInstAndDCECond(IBI);
3887    return true;
3888  }
3889
3890  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3891    if (SimplifyIndirectBrOnSelect(IBI, SI))
3892      return SimplifyCFG(BB, TTI, TD) | true;
3893  }
3894  return Changed;
3895}
3896
3897bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3898  BasicBlock *BB = BI->getParent();
3899
3900  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3901    return true;
3902
3903  // If the Terminator is the only non-phi instruction, simplify the block.
3904  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3905  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3906      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3907    return true;
3908
3909  // If the only instruction in the block is a seteq/setne comparison
3910  // against a constant, try to simplify the block.
3911  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3912    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3913      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3914        ;
3915      if (I->isTerminator() &&
3916          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3917        return true;
3918    }
3919
3920  // If this basic block is ONLY a compare and a branch, and if a predecessor
3921  // branches to us and our successor, fold the comparison into the
3922  // predecessor and use logical operations to update the incoming value
3923  // for PHI nodes in common successor.
3924  if (FoldBranchToCommonDest(BI))
3925    return SimplifyCFG(BB, TTI, TD) | true;
3926  return false;
3927}
3928
3929
3930bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3931  BasicBlock *BB = BI->getParent();
3932
3933  // Conditional branch
3934  if (isValueEqualityComparison(BI)) {
3935    // If we only have one predecessor, and if it is a branch on this value,
3936    // see if that predecessor totally determines the outcome of this
3937    // switch.
3938    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3939      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3940        return SimplifyCFG(BB, TTI, TD) | true;
3941
3942    // This block must be empty, except for the setcond inst, if it exists.
3943    // Ignore dbg intrinsics.
3944    BasicBlock::iterator I = BB->begin();
3945    // Ignore dbg intrinsics.
3946    while (isa<DbgInfoIntrinsic>(I))
3947      ++I;
3948    if (&*I == BI) {
3949      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3950        return SimplifyCFG(BB, TTI, TD) | true;
3951    } else if (&*I == cast<Instruction>(BI->getCondition())){
3952      ++I;
3953      // Ignore dbg intrinsics.
3954      while (isa<DbgInfoIntrinsic>(I))
3955        ++I;
3956      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3957        return SimplifyCFG(BB, TTI, TD) | true;
3958    }
3959  }
3960
3961  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3962  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3963    return true;
3964
3965  // If this basic block is ONLY a compare and a branch, and if a predecessor
3966  // branches to us and one of our successors, fold the comparison into the
3967  // predecessor and use logical operations to pick the right destination.
3968  if (FoldBranchToCommonDest(BI))
3969    return SimplifyCFG(BB, TTI, TD) | true;
3970
3971  // We have a conditional branch to two blocks that are only reachable
3972  // from BI.  We know that the condbr dominates the two blocks, so see if
3973  // there is any identical code in the "then" and "else" blocks.  If so, we
3974  // can hoist it up to the branching block.
3975  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3976    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3977      if (HoistThenElseCodeToIf(BI))
3978        return SimplifyCFG(BB, TTI, TD) | true;
3979    } else {
3980      // If Successor #1 has multiple preds, we may be able to conditionally
3981      // execute Successor #0 if it branches to successor #1.
3982      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3983      if (Succ0TI->getNumSuccessors() == 1 &&
3984          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3985        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3986          return SimplifyCFG(BB, TTI, TD) | true;
3987    }
3988  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3989    // If Successor #0 has multiple preds, we may be able to conditionally
3990    // execute Successor #1 if it branches to successor #0.
3991    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3992    if (Succ1TI->getNumSuccessors() == 1 &&
3993        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3994      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3995        return SimplifyCFG(BB, TTI, TD) | true;
3996  }
3997
3998  // If this is a branch on a phi node in the current block, thread control
3999  // through this block if any PHI node entries are constants.
4000  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4001    if (PN->getParent() == BI->getParent())
4002      if (FoldCondBranchOnPHI(BI, TD))
4003        return SimplifyCFG(BB, TTI, TD) | true;
4004
4005  // Scan predecessor blocks for conditional branches.
4006  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4007    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4008      if (PBI != BI && PBI->isConditional())
4009        if (SimplifyCondBranchToCondBranch(PBI, BI))
4010          return SimplifyCFG(BB, TTI, TD) | true;
4011
4012  return false;
4013}
4014
4015/// Check if passing a value to an instruction will cause undefined behavior.
4016static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4017  Constant *C = dyn_cast<Constant>(V);
4018  if (!C)
4019    return false;
4020
4021  if (I->use_empty())
4022    return false;
4023
4024  if (C->isNullValue()) {
4025    // Only look at the first use, avoid hurting compile time with long uselists
4026    User *Use = *I->use_begin();
4027
4028    // Now make sure that there are no instructions in between that can alter
4029    // control flow (eg. calls)
4030    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4031      if (i == I->getParent()->end() || i->mayHaveSideEffects())
4032        return false;
4033
4034    // Look through GEPs. A load from a GEP derived from NULL is still undefined
4035    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4036      if (GEP->getPointerOperand() == I)
4037        return passingValueIsAlwaysUndefined(V, GEP);
4038
4039    // Look through bitcasts.
4040    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4041      return passingValueIsAlwaysUndefined(V, BC);
4042
4043    // Load from null is undefined.
4044    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4045      if (!LI->isVolatile())
4046        return LI->getPointerAddressSpace() == 0;
4047
4048    // Store to null is undefined.
4049    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4050      if (!SI->isVolatile())
4051        return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4052  }
4053  return false;
4054}
4055
4056/// If BB has an incoming value that will always trigger undefined behavior
4057/// (eg. null pointer dereference), remove the branch leading here.
4058static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4059  for (BasicBlock::iterator i = BB->begin();
4060       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4061    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4062      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4063        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4064        IRBuilder<> Builder(T);
4065        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4066          BB->removePredecessor(PHI->getIncomingBlock(i));
4067          // Turn uncoditional branches into unreachables and remove the dead
4068          // destination from conditional branches.
4069          if (BI->isUnconditional())
4070            Builder.CreateUnreachable();
4071          else
4072            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4073                                                         BI->getSuccessor(0));
4074          BI->eraseFromParent();
4075          return true;
4076        }
4077        // TODO: SwitchInst.
4078      }
4079
4080  return false;
4081}
4082
4083bool SimplifyCFGOpt::run(BasicBlock *BB) {
4084  bool Changed = false;
4085
4086  assert(BB && BB->getParent() && "Block not embedded in function!");
4087  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4088
4089  // Remove basic blocks that have no predecessors (except the entry block)...
4090  // or that just have themself as a predecessor.  These are unreachable.
4091  if ((pred_begin(BB) == pred_end(BB) &&
4092       BB != &BB->getParent()->getEntryBlock()) ||
4093      BB->getSinglePredecessor() == BB) {
4094    DEBUG(dbgs() << "Removing BB: \n" << *BB);
4095    DeleteDeadBlock(BB);
4096    return true;
4097  }
4098
4099  // Check to see if we can constant propagate this terminator instruction
4100  // away...
4101  Changed |= ConstantFoldTerminator(BB, true);
4102
4103  // Check for and eliminate duplicate PHI nodes in this block.
4104  Changed |= EliminateDuplicatePHINodes(BB);
4105
4106  // Check for and remove branches that will always cause undefined behavior.
4107  Changed |= removeUndefIntroducingPredecessor(BB);
4108
4109  // Merge basic blocks into their predecessor if there is only one distinct
4110  // pred, and if there is only one distinct successor of the predecessor, and
4111  // if there are no PHI nodes.
4112  //
4113  if (MergeBlockIntoPredecessor(BB))
4114    return true;
4115
4116  IRBuilder<> Builder(BB);
4117
4118  // If there is a trivial two-entry PHI node in this basic block, and we can
4119  // eliminate it, do so now.
4120  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4121    if (PN->getNumIncomingValues() == 2)
4122      Changed |= FoldTwoEntryPHINode(PN, TD);
4123
4124  Builder.SetInsertPoint(BB->getTerminator());
4125  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4126    if (BI->isUnconditional()) {
4127      if (SimplifyUncondBranch(BI, Builder)) return true;
4128    } else {
4129      if (SimplifyCondBranch(BI, Builder)) return true;
4130    }
4131  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4132    if (SimplifyReturn(RI, Builder)) return true;
4133  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4134    if (SimplifyResume(RI, Builder)) return true;
4135  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4136    if (SimplifySwitch(SI, Builder)) return true;
4137  } else if (UnreachableInst *UI =
4138               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4139    if (SimplifyUnreachable(UI)) return true;
4140  } else if (IndirectBrInst *IBI =
4141               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4142    if (SimplifyIndirectBr(IBI)) return true;
4143  }
4144
4145  return Changed;
4146}
4147
4148/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4149/// example, it adjusts branches to branches to eliminate the extra hop, it
4150/// eliminates unreachable basic blocks, and does other "peephole" optimization
4151/// of the CFG.  It returns true if a modification was made.
4152///
4153bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4154                       const DataLayout *TD) {
4155  return SimplifyCFGOpt(TTI, TD).run(BB);
4156}
4157