LoopSimplify.cpp revision 263508
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loop-simplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SetOperations.h"
44#include "llvm/ADT/SetVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/DependenceAnalysis.h"
48#include "llvm/Analysis/Dominators.h"
49#include "llvm/Analysis/InstructionSimplify.h"
50#include "llvm/Analysis/LoopPass.h"
51#include "llvm/Analysis/ScalarEvolution.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/Function.h"
54#include "llvm/IR/Instructions.h"
55#include "llvm/IR/IntrinsicInst.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Type.h"
58#include "llvm/Support/CFG.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Transforms/Utils/BasicBlockUtils.h"
61#include "llvm/Transforms/Utils/Local.h"
62#include "llvm/Transforms/Utils/LoopUtils.h"
63using namespace llvm;
64
65STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
66STATISTIC(NumNested  , "Number of nested loops split out");
67
68namespace {
69  struct LoopSimplify : public LoopPass {
70    static char ID; // Pass identification, replacement for typeid
71    LoopSimplify() : LoopPass(ID) {
72      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
73    }
74
75    // AA - If we have an alias analysis object to update, this is it, otherwise
76    // this is null.
77    AliasAnalysis *AA;
78    LoopInfo *LI;
79    DominatorTree *DT;
80    ScalarEvolution *SE;
81    Loop *L;
82    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      // We need loop information to identify the loops...
86      AU.addRequired<DominatorTree>();
87      AU.addPreserved<DominatorTree>();
88
89      AU.addRequired<LoopInfo>();
90      AU.addPreserved<LoopInfo>();
91
92      AU.addPreserved<AliasAnalysis>();
93      AU.addPreserved<ScalarEvolution>();
94      AU.addPreserved<DependenceAnalysis>();
95      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
96    }
97
98    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
99    void verifyAnalysis() const;
100
101  private:
102    bool ProcessLoop(Loop *L, LPPassManager &LPM);
103    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
104    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
105                             BasicBlock *Preheader);
106    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
107  };
108}
109
110static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
111                                     SmallVectorImpl<BasicBlock*> &SplitPreds,
112                                     Loop *L);
113
114char LoopSimplify::ID = 0;
115INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
116                "Canonicalize natural loops", true, false)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118INITIALIZE_PASS_DEPENDENCY(LoopInfo)
119INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
120                "Canonicalize natural loops", true, false)
121
122// Publicly exposed interface to pass...
123char &llvm::LoopSimplifyID = LoopSimplify::ID;
124Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
125
126/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
127/// it in any convenient order) inserting preheaders...
128///
129bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
130  L = l;
131  bool Changed = false;
132  LI = &getAnalysis<LoopInfo>();
133  AA = getAnalysisIfAvailable<AliasAnalysis>();
134  DT = &getAnalysis<DominatorTree>();
135  SE = getAnalysisIfAvailable<ScalarEvolution>();
136
137  Changed |= ProcessLoop(L, LPM);
138
139  return Changed;
140}
141
142/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
143/// all loops have preheaders.
144///
145bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
146  bool Changed = false;
147ReprocessLoop:
148
149  // Check to see that no blocks (other than the header) in this loop have
150  // predecessors that are not in the loop.  This is not valid for natural
151  // loops, but can occur if the blocks are unreachable.  Since they are
152  // unreachable we can just shamelessly delete those CFG edges!
153  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
154       BB != E; ++BB) {
155    if (*BB == L->getHeader()) continue;
156
157    SmallPtrSet<BasicBlock*, 4> BadPreds;
158    for (pred_iterator PI = pred_begin(*BB),
159         PE = pred_end(*BB); PI != PE; ++PI) {
160      BasicBlock *P = *PI;
161      if (!L->contains(P))
162        BadPreds.insert(P);
163    }
164
165    // Delete each unique out-of-loop (and thus dead) predecessor.
166    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
167         E = BadPreds.end(); I != E; ++I) {
168
169      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
170                   << (*I)->getName() << "\n");
171
172      // Inform each successor of each dead pred.
173      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
174        (*SI)->removePredecessor(*I);
175      // Zap the dead pred's terminator and replace it with unreachable.
176      TerminatorInst *TI = (*I)->getTerminator();
177       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
178      (*I)->getTerminator()->eraseFromParent();
179      new UnreachableInst((*I)->getContext(), *I);
180      Changed = true;
181    }
182  }
183
184  // If there are exiting blocks with branches on undef, resolve the undef in
185  // the direction which will exit the loop. This will help simplify loop
186  // trip count computations.
187  SmallVector<BasicBlock*, 8> ExitingBlocks;
188  L->getExitingBlocks(ExitingBlocks);
189  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
190       E = ExitingBlocks.end(); I != E; ++I)
191    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
192      if (BI->isConditional()) {
193        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
194
195          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
196                       << (*I)->getName() << "\n");
197
198          BI->setCondition(ConstantInt::get(Cond->getType(),
199                                            !L->contains(BI->getSuccessor(0))));
200
201          // This may make the loop analyzable, force SCEV recomputation.
202          if (SE)
203            SE->forgetLoop(L);
204
205          Changed = true;
206        }
207      }
208
209  // Does the loop already have a preheader?  If so, don't insert one.
210  BasicBlock *Preheader = L->getLoopPreheader();
211  if (!Preheader) {
212    Preheader = InsertPreheaderForLoop(L, this);
213    if (Preheader) {
214      ++NumInserted;
215      Changed = true;
216    }
217  }
218
219  // Next, check to make sure that all exit nodes of the loop only have
220  // predecessors that are inside of the loop.  This check guarantees that the
221  // loop preheader/header will dominate the exit blocks.  If the exit block has
222  // predecessors from outside of the loop, split the edge now.
223  SmallVector<BasicBlock*, 8> ExitBlocks;
224  L->getExitBlocks(ExitBlocks);
225
226  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
227                                               ExitBlocks.end());
228  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
229         E = ExitBlockSet.end(); I != E; ++I) {
230    BasicBlock *ExitBlock = *I;
231    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
232         PI != PE; ++PI)
233      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
234      // allowed.
235      if (!L->contains(*PI)) {
236        if (RewriteLoopExitBlock(L, ExitBlock)) {
237          ++NumInserted;
238          Changed = true;
239        }
240        break;
241      }
242  }
243
244  // If the header has more than two predecessors at this point (from the
245  // preheader and from multiple backedges), we must adjust the loop.
246  BasicBlock *LoopLatch = L->getLoopLatch();
247  if (!LoopLatch) {
248    // If this is really a nested loop, rip it out into a child loop.  Don't do
249    // this for loops with a giant number of backedges, just factor them into a
250    // common backedge instead.
251    if (L->getNumBackEdges() < 8) {
252      if (SeparateNestedLoop(L, LPM, Preheader)) {
253        ++NumNested;
254        // This is a big restructuring change, reprocess the whole loop.
255        Changed = true;
256        // GCC doesn't tail recursion eliminate this.
257        goto ReprocessLoop;
258      }
259    }
260
261    // If we either couldn't, or didn't want to, identify nesting of the loops,
262    // insert a new block that all backedges target, then make it jump to the
263    // loop header.
264    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
265    if (LoopLatch) {
266      ++NumInserted;
267      Changed = true;
268    }
269  }
270
271  // Scan over the PHI nodes in the loop header.  Since they now have only two
272  // incoming values (the loop is canonicalized), we may have simplified the PHI
273  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
274  PHINode *PN;
275  for (BasicBlock::iterator I = L->getHeader()->begin();
276       (PN = dyn_cast<PHINode>(I++)); )
277    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
278      if (AA) AA->deleteValue(PN);
279      if (SE) SE->forgetValue(PN);
280      PN->replaceAllUsesWith(V);
281      PN->eraseFromParent();
282    }
283
284  // If this loop has multiple exits and the exits all go to the same
285  // block, attempt to merge the exits. This helps several passes, such
286  // as LoopRotation, which do not support loops with multiple exits.
287  // SimplifyCFG also does this (and this code uses the same utility
288  // function), however this code is loop-aware, where SimplifyCFG is
289  // not. That gives it the advantage of being able to hoist
290  // loop-invariant instructions out of the way to open up more
291  // opportunities, and the disadvantage of having the responsibility
292  // to preserve dominator information.
293  bool UniqueExit = true;
294  if (!ExitBlocks.empty())
295    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
296      if (ExitBlocks[i] != ExitBlocks[0]) {
297        UniqueExit = false;
298        break;
299      }
300  if (UniqueExit) {
301    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
302      BasicBlock *ExitingBlock = ExitingBlocks[i];
303      if (!ExitingBlock->getSinglePredecessor()) continue;
304      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
305      if (!BI || !BI->isConditional()) continue;
306      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
307      if (!CI || CI->getParent() != ExitingBlock) continue;
308
309      // Attempt to hoist out all instructions except for the
310      // comparison and the branch.
311      bool AllInvariant = true;
312      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
313        Instruction *Inst = I++;
314        // Skip debug info intrinsics.
315        if (isa<DbgInfoIntrinsic>(Inst))
316          continue;
317        if (Inst == CI)
318          continue;
319        if (!L->makeLoopInvariant(Inst, Changed,
320                                  Preheader ? Preheader->getTerminator() : 0)) {
321          AllInvariant = false;
322          break;
323        }
324      }
325      if (!AllInvariant) continue;
326
327      // The block has now been cleared of all instructions except for
328      // a comparison and a conditional branch. SimplifyCFG may be able
329      // to fold it now.
330      if (!FoldBranchToCommonDest(BI)) continue;
331
332      // Success. The block is now dead, so remove it from the loop,
333      // update the dominator tree and delete it.
334      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
335                   << ExitingBlock->getName() << "\n");
336
337      // If any reachable control flow within this loop has changed, notify
338      // ScalarEvolution. Currently assume the parent loop doesn't change
339      // (spliting edges doesn't count). If blocks, CFG edges, or other values
340      // in the parent loop change, then we need call to forgetLoop() for the
341      // parent instead.
342      if (SE)
343        SE->forgetLoop(L);
344
345      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
346      Changed = true;
347      LI->removeBlock(ExitingBlock);
348
349      DomTreeNode *Node = DT->getNode(ExitingBlock);
350      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
351        Node->getChildren();
352      while (!Children.empty()) {
353        DomTreeNode *Child = Children.front();
354        DT->changeImmediateDominator(Child, Node->getIDom());
355      }
356      DT->eraseNode(ExitingBlock);
357
358      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
359      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
360      ExitingBlock->eraseFromParent();
361    }
362  }
363
364  return Changed;
365}
366
367/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
368/// preheader, this method is called to insert one.  This method has two phases:
369/// preheader insertion and analysis updating.
370///
371BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
372  BasicBlock *Header = L->getHeader();
373
374  // Compute the set of predecessors of the loop that are not in the loop.
375  SmallVector<BasicBlock*, 8> OutsideBlocks;
376  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
377       PI != PE; ++PI) {
378    BasicBlock *P = *PI;
379    if (!L->contains(P)) {         // Coming in from outside the loop?
380      // If the loop is branched to from an indirect branch, we won't
381      // be able to fully transform the loop, because it prohibits
382      // edge splitting.
383      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
384
385      // Keep track of it.
386      OutsideBlocks.push_back(P);
387    }
388  }
389
390  // Split out the loop pre-header.
391  BasicBlock *PreheaderBB;
392  if (!Header->isLandingPad()) {
393    PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
394                                         PP);
395  } else {
396    SmallVector<BasicBlock*, 2> NewBBs;
397    SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
398                                ".split-lp", PP, NewBBs);
399    PreheaderBB = NewBBs[0];
400  }
401
402  PreheaderBB->getTerminator()->setDebugLoc(
403                                      Header->getFirstNonPHI()->getDebugLoc());
404  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
405               << PreheaderBB->getName() << "\n");
406
407  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
408  // code layout too horribly.
409  PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
410
411  return PreheaderBB;
412}
413
414/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
415/// blocks.  This method is used to split exit blocks that have predecessors
416/// outside of the loop.
417BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
418  SmallVector<BasicBlock*, 8> LoopBlocks;
419  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
420    BasicBlock *P = *I;
421    if (L->contains(P)) {
422      // Don't do this if the loop is exited via an indirect branch.
423      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
424
425      LoopBlocks.push_back(P);
426    }
427  }
428
429  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
430  BasicBlock *NewExitBB = 0;
431
432  if (Exit->isLandingPad()) {
433    SmallVector<BasicBlock*, 2> NewBBs;
434    SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
435                                                            LoopBlocks.size()),
436                                ".loopexit", ".nonloopexit",
437                                this, NewBBs);
438    NewExitBB = NewBBs[0];
439  } else {
440    NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
441  }
442
443  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
444               << NewExitBB->getName() << "\n");
445  return NewExitBB;
446}
447
448/// AddBlockAndPredsToSet - Add the specified block, and all of its
449/// predecessors, to the specified set, if it's not already in there.  Stop
450/// predecessor traversal when we reach StopBlock.
451static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
452                                  std::set<BasicBlock*> &Blocks) {
453  std::vector<BasicBlock *> WorkList;
454  WorkList.push_back(InputBB);
455  do {
456    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
457    if (Blocks.insert(BB).second && BB != StopBlock)
458      // If BB is not already processed and it is not a stop block then
459      // insert its predecessor in the work list
460      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
461        BasicBlock *WBB = *I;
462        WorkList.push_back(WBB);
463      }
464  } while(!WorkList.empty());
465}
466
467/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
468/// PHI node that tells us how to partition the loops.
469static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
470                                        AliasAnalysis *AA, LoopInfo *LI) {
471  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
472    PHINode *PN = cast<PHINode>(I);
473    ++I;
474    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
475      // This is a degenerate PHI already, don't modify it!
476      PN->replaceAllUsesWith(V);
477      if (AA) AA->deleteValue(PN);
478      PN->eraseFromParent();
479      continue;
480    }
481
482    // Scan this PHI node looking for a use of the PHI node by itself.
483    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
484      if (PN->getIncomingValue(i) == PN &&
485          L->contains(PN->getIncomingBlock(i)))
486        // We found something tasty to remove.
487        return PN;
488  }
489  return 0;
490}
491
492// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
493// right after some 'outside block' block.  This prevents the preheader from
494// being placed inside the loop body, e.g. when the loop hasn't been rotated.
495void PlaceSplitBlockCarefully(BasicBlock *NewBB,
496                              SmallVectorImpl<BasicBlock*> &SplitPreds,
497                              Loop *L) {
498  // Check to see if NewBB is already well placed.
499  Function::iterator BBI = NewBB; --BBI;
500  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
501    if (&*BBI == SplitPreds[i])
502      return;
503  }
504
505  // If it isn't already after an outside block, move it after one.  This is
506  // always good as it makes the uncond branch from the outside block into a
507  // fall-through.
508
509  // Figure out *which* outside block to put this after.  Prefer an outside
510  // block that neighbors a BB actually in the loop.
511  BasicBlock *FoundBB = 0;
512  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
513    Function::iterator BBI = SplitPreds[i];
514    if (++BBI != NewBB->getParent()->end() &&
515        L->contains(BBI)) {
516      FoundBB = SplitPreds[i];
517      break;
518    }
519  }
520
521  // If our heuristic for a *good* bb to place this after doesn't find
522  // anything, just pick something.  It's likely better than leaving it within
523  // the loop.
524  if (!FoundBB)
525    FoundBB = SplitPreds[0];
526  NewBB->moveAfter(FoundBB);
527}
528
529
530/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
531/// them out into a nested loop.  This is important for code that looks like
532/// this:
533///
534///  Loop:
535///     ...
536///     br cond, Loop, Next
537///     ...
538///     br cond2, Loop, Out
539///
540/// To identify this common case, we look at the PHI nodes in the header of the
541/// loop.  PHI nodes with unchanging values on one backedge correspond to values
542/// that change in the "outer" loop, but not in the "inner" loop.
543///
544/// If we are able to separate out a loop, return the new outer loop that was
545/// created.
546///
547Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
548                                       BasicBlock *Preheader) {
549  // Don't try to separate loops without a preheader.
550  if (!Preheader)
551    return 0;
552
553  // The header is not a landing pad; preheader insertion should ensure this.
554  assert(!L->getHeader()->isLandingPad() &&
555         "Can't insert backedge to landing pad");
556
557  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
558  if (PN == 0) return 0;  // No known way to partition.
559
560  // Pull out all predecessors that have varying values in the loop.  This
561  // handles the case when a PHI node has multiple instances of itself as
562  // arguments.
563  SmallVector<BasicBlock*, 8> OuterLoopPreds;
564  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
565    if (PN->getIncomingValue(i) != PN ||
566        !L->contains(PN->getIncomingBlock(i))) {
567      // We can't split indirectbr edges.
568      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
569        return 0;
570      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
571    }
572  }
573  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
574
575  // If ScalarEvolution is around and knows anything about values in
576  // this loop, tell it to forget them, because we're about to
577  // substantially change it.
578  if (SE)
579    SE->forgetLoop(L);
580
581  BasicBlock *Header = L->getHeader();
582  BasicBlock *NewBB =
583    SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
584
585  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
586  // code layout too horribly.
587  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
588
589  // Create the new outer loop.
590  Loop *NewOuter = new Loop();
591
592  // Change the parent loop to use the outer loop as its child now.
593  if (Loop *Parent = L->getParentLoop())
594    Parent->replaceChildLoopWith(L, NewOuter);
595  else
596    LI->changeTopLevelLoop(L, NewOuter);
597
598  // L is now a subloop of our outer loop.
599  NewOuter->addChildLoop(L);
600
601  // Add the new loop to the pass manager queue.
602  LPM.insertLoopIntoQueue(NewOuter);
603
604  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
605       I != E; ++I)
606    NewOuter->addBlockEntry(*I);
607
608  // Now reset the header in L, which had been moved by
609  // SplitBlockPredecessors for the outer loop.
610  L->moveToHeader(Header);
611
612  // Determine which blocks should stay in L and which should be moved out to
613  // the Outer loop now.
614  std::set<BasicBlock*> BlocksInL;
615  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
616    BasicBlock *P = *PI;
617    if (DT->dominates(Header, P))
618      AddBlockAndPredsToSet(P, Header, BlocksInL);
619  }
620
621  // Scan all of the loop children of L, moving them to OuterLoop if they are
622  // not part of the inner loop.
623  const std::vector<Loop*> &SubLoops = L->getSubLoops();
624  for (size_t I = 0; I != SubLoops.size(); )
625    if (BlocksInL.count(SubLoops[I]->getHeader()))
626      ++I;   // Loop remains in L
627    else
628      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
629
630  // Now that we know which blocks are in L and which need to be moved to
631  // OuterLoop, move any blocks that need it.
632  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
633    BasicBlock *BB = L->getBlocks()[i];
634    if (!BlocksInL.count(BB)) {
635      // Move this block to the parent, updating the exit blocks sets
636      L->removeBlockFromLoop(BB);
637      if ((*LI)[BB] == L)
638        LI->changeLoopFor(BB, NewOuter);
639      --i;
640    }
641  }
642
643  return NewOuter;
644}
645
646
647
648/// InsertUniqueBackedgeBlock - This method is called when the specified loop
649/// has more than one backedge in it.  If this occurs, revector all of these
650/// backedges to target a new basic block and have that block branch to the loop
651/// header.  This ensures that loops have exactly one backedge.
652///
653BasicBlock *
654LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
655  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
656
657  // Get information about the loop
658  BasicBlock *Header = L->getHeader();
659  Function *F = Header->getParent();
660
661  // Unique backedge insertion currently depends on having a preheader.
662  if (!Preheader)
663    return 0;
664
665  // The header is not a landing pad; preheader insertion should ensure this.
666  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
667
668  // Figure out which basic blocks contain back-edges to the loop header.
669  std::vector<BasicBlock*> BackedgeBlocks;
670  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
671    BasicBlock *P = *I;
672
673    // Indirectbr edges cannot be split, so we must fail if we find one.
674    if (isa<IndirectBrInst>(P->getTerminator()))
675      return 0;
676
677    if (P != Preheader) BackedgeBlocks.push_back(P);
678  }
679
680  // Create and insert the new backedge block...
681  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
682                                           Header->getName()+".backedge", F);
683  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
684
685  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
686               << BEBlock->getName() << "\n");
687
688  // Move the new backedge block to right after the last backedge block.
689  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
690  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
691
692  // Now that the block has been inserted into the function, create PHI nodes in
693  // the backedge block which correspond to any PHI nodes in the header block.
694  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
695    PHINode *PN = cast<PHINode>(I);
696    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
697                                     PN->getName()+".be", BETerminator);
698    if (AA) AA->copyValue(PN, NewPN);
699
700    // Loop over the PHI node, moving all entries except the one for the
701    // preheader over to the new PHI node.
702    unsigned PreheaderIdx = ~0U;
703    bool HasUniqueIncomingValue = true;
704    Value *UniqueValue = 0;
705    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
706      BasicBlock *IBB = PN->getIncomingBlock(i);
707      Value *IV = PN->getIncomingValue(i);
708      if (IBB == Preheader) {
709        PreheaderIdx = i;
710      } else {
711        NewPN->addIncoming(IV, IBB);
712        if (HasUniqueIncomingValue) {
713          if (UniqueValue == 0)
714            UniqueValue = IV;
715          else if (UniqueValue != IV)
716            HasUniqueIncomingValue = false;
717        }
718      }
719    }
720
721    // Delete all of the incoming values from the old PN except the preheader's
722    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
723    if (PreheaderIdx != 0) {
724      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
725      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
726    }
727    // Nuke all entries except the zero'th.
728    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
729      PN->removeIncomingValue(e-i, false);
730
731    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
732    PN->addIncoming(NewPN, BEBlock);
733
734    // As an optimization, if all incoming values in the new PhiNode (which is a
735    // subset of the incoming values of the old PHI node) have the same value,
736    // eliminate the PHI Node.
737    if (HasUniqueIncomingValue) {
738      NewPN->replaceAllUsesWith(UniqueValue);
739      if (AA) AA->deleteValue(NewPN);
740      BEBlock->getInstList().erase(NewPN);
741    }
742  }
743
744  // Now that all of the PHI nodes have been inserted and adjusted, modify the
745  // backedge blocks to just to the BEBlock instead of the header.
746  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
747    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
748    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
749      if (TI->getSuccessor(Op) == Header)
750        TI->setSuccessor(Op, BEBlock);
751  }
752
753  //===--- Update all analyses which we must preserve now -----------------===//
754
755  // Update Loop Information - we know that this block is now in the current
756  // loop and all parent loops.
757  L->addBasicBlockToLoop(BEBlock, LI->getBase());
758
759  // Update dominator information
760  DT->splitBlock(BEBlock);
761
762  return BEBlock;
763}
764
765void LoopSimplify::verifyAnalysis() const {
766  // It used to be possible to just assert L->isLoopSimplifyForm(), however
767  // with the introduction of indirectbr, there are now cases where it's
768  // not possible to transform a loop as necessary. We can at least check
769  // that there is an indirectbr near any time there's trouble.
770
771  // Indirectbr can interfere with preheader and unique backedge insertion.
772  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
773    bool HasIndBrPred = false;
774    for (pred_iterator PI = pred_begin(L->getHeader()),
775         PE = pred_end(L->getHeader()); PI != PE; ++PI)
776      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
777        HasIndBrPred = true;
778        break;
779      }
780    assert(HasIndBrPred &&
781           "LoopSimplify has no excuse for missing loop header info!");
782    (void)HasIndBrPred;
783  }
784
785  // Indirectbr can interfere with exit block canonicalization.
786  if (!L->hasDedicatedExits()) {
787    bool HasIndBrExiting = false;
788    SmallVector<BasicBlock*, 8> ExitingBlocks;
789    L->getExitingBlocks(ExitingBlocks);
790    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
791      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
792        HasIndBrExiting = true;
793        break;
794      }
795    }
796
797    assert(HasIndBrExiting &&
798           "LoopSimplify has no excuse for missing exit block info!");
799    (void)HasIndBrExiting;
800  }
801}
802