1193323Sed//===-- Local.cpp - Functions to perform local transformations ------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This family of functions perform various local transformations to the
11193323Sed// program.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#include "llvm/Transforms/Utils/Local.h"
16201360Srdivacky#include "llvm/ADT/DenseMap.h"
17249423Sdim#include "llvm/ADT/STLExtras.h"
18193323Sed#include "llvm/ADT/SmallPtrSet.h"
19263508Sdim#include "llvm/ADT/Statistic.h"
20218893Sdim#include "llvm/Analysis/Dominators.h"
21199481Srdivacky#include "llvm/Analysis/InstructionSimplify.h"
22234353Sdim#include "llvm/Analysis/MemoryBuiltins.h"
23218893Sdim#include "llvm/Analysis/ValueTracking.h"
24249423Sdim#include "llvm/DIBuilder.h"
25249423Sdim#include "llvm/DebugInfo.h"
26249423Sdim#include "llvm/IR/Constants.h"
27249423Sdim#include "llvm/IR/DataLayout.h"
28249423Sdim#include "llvm/IR/DerivedTypes.h"
29249423Sdim#include "llvm/IR/GlobalAlias.h"
30249423Sdim#include "llvm/IR/GlobalVariable.h"
31249423Sdim#include "llvm/IR/IRBuilder.h"
32249423Sdim#include "llvm/IR/Instructions.h"
33249423Sdim#include "llvm/IR/IntrinsicInst.h"
34249423Sdim#include "llvm/IR/Intrinsics.h"
35249423Sdim#include "llvm/IR/MDBuilder.h"
36249423Sdim#include "llvm/IR/Metadata.h"
37249423Sdim#include "llvm/IR/Operator.h"
38199481Srdivacky#include "llvm/Support/CFG.h"
39199481Srdivacky#include "llvm/Support/Debug.h"
40193323Sed#include "llvm/Support/GetElementPtrTypeIterator.h"
41193323Sed#include "llvm/Support/MathExtras.h"
42201360Srdivacky#include "llvm/Support/ValueHandle.h"
43199481Srdivacky#include "llvm/Support/raw_ostream.h"
44193323Sedusing namespace llvm;
45193323Sed
46263508SdimSTATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
47263508Sdim
48193323Sed//===----------------------------------------------------------------------===//
49193323Sed//  Local constant propagation.
50193323Sed//
51193323Sed
52223017Sdim/// ConstantFoldTerminator - If a terminator instruction is predicated on a
53223017Sdim/// constant value, convert it into an unconditional branch to the constant
54223017Sdim/// destination.  This is a nontrivial operation because the successors of this
55223017Sdim/// basic block must have their PHI nodes updated.
56223017Sdim/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
57223017Sdim/// conditions and indirectbr addresses this might make dead if
58223017Sdim/// DeleteDeadConditions is true.
59243830Sdimbool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
60243830Sdim                                  const TargetLibraryInfo *TLI) {
61193323Sed  TerminatorInst *T = BB->getTerminator();
62223017Sdim  IRBuilder<> Builder(T);
63193323Sed
64193323Sed  // Branch - See if we are conditional jumping on constant
65193323Sed  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
66193323Sed    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
67193323Sed    BasicBlock *Dest1 = BI->getSuccessor(0);
68193323Sed    BasicBlock *Dest2 = BI->getSuccessor(1);
69193323Sed
70193323Sed    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
71193323Sed      // Are we branching on constant?
72193323Sed      // YES.  Change to unconditional branch...
73193323Sed      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
74193323Sed      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
75193323Sed
76193323Sed      //cerr << "Function: " << T->getParent()->getParent()
77193323Sed      //     << "\nRemoving branch from " << T->getParent()
78193323Sed      //     << "\n\nTo: " << OldDest << endl;
79193323Sed
80193323Sed      // Let the basic block know that we are letting go of it.  Based on this,
81193323Sed      // it will adjust it's PHI nodes.
82221345Sdim      OldDest->removePredecessor(BB);
83193323Sed
84218893Sdim      // Replace the conditional branch with an unconditional one.
85223017Sdim      Builder.CreateBr(Destination);
86218893Sdim      BI->eraseFromParent();
87193323Sed      return true;
88198892Srdivacky    }
89263508Sdim
90198892Srdivacky    if (Dest2 == Dest1) {       // Conditional branch to same location?
91193323Sed      // This branch matches something like this:
92193323Sed      //     br bool %cond, label %Dest, label %Dest
93193323Sed      // and changes it into:  br label %Dest
94193323Sed
95193323Sed      // Let the basic block know that we are letting go of one copy of it.
96193323Sed      assert(BI->getParent() && "Terminator not inserted in block!");
97193323Sed      Dest1->removePredecessor(BI->getParent());
98193323Sed
99218893Sdim      // Replace the conditional branch with an unconditional one.
100223017Sdim      Builder.CreateBr(Dest1);
101223017Sdim      Value *Cond = BI->getCondition();
102218893Sdim      BI->eraseFromParent();
103223017Sdim      if (DeleteDeadConditions)
104243830Sdim        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
105193323Sed      return true;
106193323Sed    }
107198892Srdivacky    return false;
108198892Srdivacky  }
109263508Sdim
110198892Srdivacky  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
111193323Sed    // If we are switching on a constant, we can convert the switch into a
112193323Sed    // single branch instruction!
113193323Sed    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
114234353Sdim    BasicBlock *TheOnlyDest = SI->getDefaultDest();
115193323Sed    BasicBlock *DefaultDest = TheOnlyDest;
116193323Sed
117198892Srdivacky    // Figure out which case it goes to.
118234353Sdim    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
119234353Sdim         i != e; ++i) {
120193323Sed      // Found case matching a constant operand?
121234353Sdim      if (i.getCaseValue() == CI) {
122234353Sdim        TheOnlyDest = i.getCaseSuccessor();
123193323Sed        break;
124193323Sed      }
125193323Sed
126193323Sed      // Check to see if this branch is going to the same place as the default
127193323Sed      // dest.  If so, eliminate it as an explicit compare.
128234353Sdim      if (i.getCaseSuccessor() == DefaultDest) {
129243830Sdim        MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
130243830Sdim        // MD should have 2 + NumCases operands.
131243830Sdim        if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
132243830Sdim          // Collect branch weights into a vector.
133243830Sdim          SmallVector<uint32_t, 8> Weights;
134243830Sdim          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
135243830Sdim               ++MD_i) {
136243830Sdim            ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
137243830Sdim            assert(CI);
138243830Sdim            Weights.push_back(CI->getValue().getZExtValue());
139243830Sdim          }
140243830Sdim          // Merge weight of this case to the default weight.
141243830Sdim          unsigned idx = i.getCaseIndex();
142243830Sdim          Weights[0] += Weights[idx+1];
143243830Sdim          // Remove weight for this case.
144243830Sdim          std::swap(Weights[idx+1], Weights.back());
145243830Sdim          Weights.pop_back();
146243830Sdim          SI->setMetadata(LLVMContext::MD_prof,
147243830Sdim                          MDBuilder(BB->getContext()).
148243830Sdim                          createBranchWeights(Weights));
149243830Sdim        }
150198892Srdivacky        // Remove this entry.
151193323Sed        DefaultDest->removePredecessor(SI->getParent());
152193323Sed        SI->removeCase(i);
153234353Sdim        --i; --e;
154193323Sed        continue;
155193323Sed      }
156193323Sed
157193323Sed      // Otherwise, check to see if the switch only branches to one destination.
158193323Sed      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
159193323Sed      // destinations.
160234353Sdim      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
161193323Sed    }
162193323Sed
163193323Sed    if (CI && !TheOnlyDest) {
164193323Sed      // Branching on a constant, but not any of the cases, go to the default
165193323Sed      // successor.
166193323Sed      TheOnlyDest = SI->getDefaultDest();
167193323Sed    }
168193323Sed
169193323Sed    // If we found a single destination that we can fold the switch into, do so
170193323Sed    // now.
171193323Sed    if (TheOnlyDest) {
172198892Srdivacky      // Insert the new branch.
173223017Sdim      Builder.CreateBr(TheOnlyDest);
174193323Sed      BasicBlock *BB = SI->getParent();
175193323Sed
176193323Sed      // Remove entries from PHI nodes which we no longer branch to...
177193323Sed      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
178193323Sed        // Found case matching a constant operand?
179193323Sed        BasicBlock *Succ = SI->getSuccessor(i);
180193323Sed        if (Succ == TheOnlyDest)
181193323Sed          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
182193323Sed        else
183193323Sed          Succ->removePredecessor(BB);
184193323Sed      }
185193323Sed
186198892Srdivacky      // Delete the old switch.
187223017Sdim      Value *Cond = SI->getCondition();
188223017Sdim      SI->eraseFromParent();
189223017Sdim      if (DeleteDeadConditions)
190243830Sdim        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
191193323Sed      return true;
192198892Srdivacky    }
193263508Sdim
194234353Sdim    if (SI->getNumCases() == 1) {
195193323Sed      // Otherwise, we can fold this switch into a conditional branch
196193323Sed      // instruction if it has only one non-default destination.
197234353Sdim      SwitchInst::CaseIt FirstCase = SI->case_begin();
198263508Sdim      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
199263508Sdim          FirstCase.getCaseValue(), "cond");
200223017Sdim
201263508Sdim      // Insert the new branch.
202263508Sdim      BranchInst *NewBr = Builder.CreateCondBr(Cond,
203263508Sdim                                               FirstCase.getCaseSuccessor(),
204263508Sdim                                               SI->getDefaultDest());
205263508Sdim      MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
206263508Sdim      if (MD && MD->getNumOperands() == 3) {
207263508Sdim        ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
208263508Sdim        ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
209263508Sdim        assert(SICase && SIDef);
210263508Sdim        // The TrueWeight should be the weight for the single case of SI.
211263508Sdim        NewBr->setMetadata(LLVMContext::MD_prof,
212263508Sdim                        MDBuilder(BB->getContext()).
213263508Sdim                        createBranchWeights(SICase->getValue().getZExtValue(),
214263508Sdim                                            SIDef->getValue().getZExtValue()));
215263508Sdim      }
216193323Sed
217263508Sdim      // Delete the old switch.
218263508Sdim      SI->eraseFromParent();
219263508Sdim      return true;
220193323Sed    }
221198892Srdivacky    return false;
222193323Sed  }
223198892Srdivacky
224198892Srdivacky  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
225198892Srdivacky    // indirectbr blockaddress(@F, @BB) -> br label @BB
226198892Srdivacky    if (BlockAddress *BA =
227198892Srdivacky          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
228198892Srdivacky      BasicBlock *TheOnlyDest = BA->getBasicBlock();
229198892Srdivacky      // Insert the new branch.
230223017Sdim      Builder.CreateBr(TheOnlyDest);
231263508Sdim
232198892Srdivacky      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
233198892Srdivacky        if (IBI->getDestination(i) == TheOnlyDest)
234198892Srdivacky          TheOnlyDest = 0;
235198892Srdivacky        else
236198892Srdivacky          IBI->getDestination(i)->removePredecessor(IBI->getParent());
237198892Srdivacky      }
238223017Sdim      Value *Address = IBI->getAddress();
239198892Srdivacky      IBI->eraseFromParent();
240223017Sdim      if (DeleteDeadConditions)
241243830Sdim        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
242263508Sdim
243198892Srdivacky      // If we didn't find our destination in the IBI successor list, then we
244198892Srdivacky      // have undefined behavior.  Replace the unconditional branch with an
245198892Srdivacky      // 'unreachable' instruction.
246198892Srdivacky      if (TheOnlyDest) {
247198892Srdivacky        BB->getTerminator()->eraseFromParent();
248198892Srdivacky        new UnreachableInst(BB->getContext(), BB);
249198892Srdivacky      }
250263508Sdim
251198892Srdivacky      return true;
252198892Srdivacky    }
253198892Srdivacky  }
254263508Sdim
255193323Sed  return false;
256193323Sed}
257193323Sed
258193323Sed
259193323Sed//===----------------------------------------------------------------------===//
260199481Srdivacky//  Local dead code elimination.
261193323Sed//
262193323Sed
263193323Sed/// isInstructionTriviallyDead - Return true if the result produced by the
264193323Sed/// instruction is not used, and the instruction has no side effects.
265193323Sed///
266243830Sdimbool llvm::isInstructionTriviallyDead(Instruction *I,
267243830Sdim                                      const TargetLibraryInfo *TLI) {
268193323Sed  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
269193323Sed
270226633Sdim  // We don't want the landingpad instruction removed by anything this general.
271226633Sdim  if (isa<LandingPadInst>(I))
272226633Sdim    return false;
273226633Sdim
274221345Sdim  // We don't want debug info removed by anything this general, unless
275221345Sdim  // debug info is empty.
276221345Sdim  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
277226633Sdim    if (DDI->getAddress())
278221345Sdim      return false;
279221345Sdim    return true;
280226633Sdim  }
281221345Sdim  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
282221345Sdim    if (DVI->getValue())
283221345Sdim      return false;
284221345Sdim    return true;
285221345Sdim  }
286193323Sed
287193323Sed  if (!I->mayHaveSideEffects()) return true;
288193323Sed
289193323Sed  // Special case intrinsics that "may have side effects" but can be deleted
290193323Sed  // when dead.
291226633Sdim  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
292193323Sed    // Safe to delete llvm.stacksave if dead.
293193323Sed    if (II->getIntrinsicID() == Intrinsic::stacksave)
294193323Sed      return true;
295226633Sdim
296226633Sdim    // Lifetime intrinsics are dead when their right-hand is undef.
297226633Sdim    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
298226633Sdim        II->getIntrinsicID() == Intrinsic::lifetime_end)
299226633Sdim      return isa<UndefValue>(II->getArgOperand(1));
300226633Sdim  }
301234353Sdim
302243830Sdim  if (isAllocLikeFn(I, TLI)) return true;
303234353Sdim
304243830Sdim  if (CallInst *CI = isFreeCall(I, TLI))
305234353Sdim    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
306234353Sdim      return C->isNullValue() || isa<UndefValue>(C);
307234353Sdim
308193323Sed  return false;
309193323Sed}
310193323Sed
311193323Sed/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
312193323Sed/// trivially dead instruction, delete it.  If that makes any of its operands
313202375Srdivacky/// trivially dead, delete them too, recursively.  Return true if any
314202375Srdivacky/// instructions were deleted.
315243830Sdimbool
316243830Sdimllvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
317243830Sdim                                                 const TargetLibraryInfo *TLI) {
318193323Sed  Instruction *I = dyn_cast<Instruction>(V);
319243830Sdim  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
320202375Srdivacky    return false;
321263508Sdim
322193323Sed  SmallVector<Instruction*, 16> DeadInsts;
323193323Sed  DeadInsts.push_back(I);
324263508Sdim
325202375Srdivacky  do {
326193323Sed    I = DeadInsts.pop_back_val();
327193323Sed
328193323Sed    // Null out all of the instruction's operands to see if any operand becomes
329193323Sed    // dead as we go.
330193323Sed    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
331193323Sed      Value *OpV = I->getOperand(i);
332193323Sed      I->setOperand(i, 0);
333263508Sdim
334193323Sed      if (!OpV->use_empty()) continue;
335263508Sdim
336193323Sed      // If the operand is an instruction that became dead as we nulled out the
337193323Sed      // operand, and if it is 'trivially' dead, delete it in a future loop
338193323Sed      // iteration.
339193323Sed      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
340243830Sdim        if (isInstructionTriviallyDead(OpI, TLI))
341193323Sed          DeadInsts.push_back(OpI);
342193323Sed    }
343263508Sdim
344193323Sed    I->eraseFromParent();
345202375Srdivacky  } while (!DeadInsts.empty());
346202375Srdivacky
347202375Srdivacky  return true;
348193323Sed}
349193323Sed
350218893Sdim/// areAllUsesEqual - Check whether the uses of a value are all the same.
351218893Sdim/// This is similar to Instruction::hasOneUse() except this will also return
352219077Sdim/// true when there are no uses or multiple uses that all refer to the same
353219077Sdim/// value.
354218893Sdimstatic bool areAllUsesEqual(Instruction *I) {
355218893Sdim  Value::use_iterator UI = I->use_begin();
356218893Sdim  Value::use_iterator UE = I->use_end();
357218893Sdim  if (UI == UE)
358219077Sdim    return true;
359218893Sdim
360218893Sdim  User *TheUse = *UI;
361218893Sdim  for (++UI; UI != UE; ++UI) {
362218893Sdim    if (*UI != TheUse)
363218893Sdim      return false;
364218893Sdim  }
365218893Sdim  return true;
366218893Sdim}
367218893Sdim
368193323Sed/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
369193323Sed/// dead PHI node, due to being a def-use chain of single-use nodes that
370193323Sed/// either forms a cycle or is terminated by a trivially dead instruction,
371193323Sed/// delete it.  If that makes any of its operands trivially dead, delete them
372219077Sdim/// too, recursively.  Return true if a change was made.
373243830Sdimbool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
374243830Sdim                                        const TargetLibraryInfo *TLI) {
375219077Sdim  SmallPtrSet<Instruction*, 4> Visited;
376219077Sdim  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
377219077Sdim       I = cast<Instruction>(*I->use_begin())) {
378219077Sdim    if (I->use_empty())
379243830Sdim      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
380193323Sed
381219077Sdim    // If we find an instruction more than once, we're on a cycle that
382193323Sed    // won't prove fruitful.
383219077Sdim    if (!Visited.insert(I)) {
384219077Sdim      // Break the cycle and delete the instruction and its operands.
385219077Sdim      I->replaceAllUsesWith(UndefValue::get(I->getType()));
386243830Sdim      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
387219077Sdim      return true;
388219077Sdim    }
389219077Sdim  }
390219077Sdim  return false;
391193323Sed}
392193323Sed
393202375Srdivacky/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
394202375Srdivacky/// simplify any instructions in it and recursively delete dead instructions.
395202375Srdivacky///
396202375Srdivacky/// This returns true if it changed the code, note that it can delete
397202375Srdivacky/// instructions in other blocks as well in this block.
398243830Sdimbool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
399243830Sdim                                       const TargetLibraryInfo *TLI) {
400202375Srdivacky  bool MadeChange = false;
401234353Sdim
402234353Sdim#ifndef NDEBUG
403234353Sdim  // In debug builds, ensure that the terminator of the block is never replaced
404234353Sdim  // or deleted by these simplifications. The idea of simplification is that it
405234353Sdim  // cannot introduce new instructions, and there is no way to replace the
406234353Sdim  // terminator of a block without introducing a new instruction.
407234353Sdim  AssertingVH<Instruction> TerminatorVH(--BB->end());
408234353Sdim#endif
409234353Sdim
410234353Sdim  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
411234353Sdim    assert(!BI->isTerminator());
412202375Srdivacky    Instruction *Inst = BI++;
413234353Sdim
414234353Sdim    WeakVH BIHandle(BI);
415263508Sdim    if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
416202375Srdivacky      MadeChange = true;
417210299Sed      if (BIHandle != BI)
418202375Srdivacky        BI = BB->begin();
419202375Srdivacky      continue;
420202375Srdivacky    }
421221345Sdim
422243830Sdim    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
423221345Sdim    if (BIHandle != BI)
424221345Sdim      BI = BB->begin();
425202375Srdivacky  }
426202375Srdivacky  return MadeChange;
427202375Srdivacky}
428202375Srdivacky
429193323Sed//===----------------------------------------------------------------------===//
430199481Srdivacky//  Control Flow Graph Restructuring.
431193323Sed//
432193323Sed
433199481Srdivacky
434199481Srdivacky/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
435199481Srdivacky/// method is called when we're about to delete Pred as a predecessor of BB.  If
436199481Srdivacky/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
437199481Srdivacky///
438199481Srdivacky/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
439199481Srdivacky/// nodes that collapse into identity values.  For example, if we have:
440199481Srdivacky///   x = phi(1, 0, 0, 0)
441199481Srdivacky///   y = and x, z
442199481Srdivacky///
443199481Srdivacky/// .. and delete the predecessor corresponding to the '1', this will attempt to
444199481Srdivacky/// recursively fold the and to 0.
445199481Srdivackyvoid llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
446243830Sdim                                        DataLayout *TD) {
447199481Srdivacky  // This only adjusts blocks with PHI nodes.
448199481Srdivacky  if (!isa<PHINode>(BB->begin()))
449199481Srdivacky    return;
450263508Sdim
451199481Srdivacky  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
452199481Srdivacky  // them down.  This will leave us with single entry phi nodes and other phis
453199481Srdivacky  // that can be removed.
454199481Srdivacky  BB->removePredecessor(Pred, true);
455263508Sdim
456199481Srdivacky  WeakVH PhiIt = &BB->front();
457199481Srdivacky  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
458199481Srdivacky    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
459234353Sdim    Value *OldPhiIt = PhiIt;
460218893Sdim
461234353Sdim    if (!recursivelySimplifyInstruction(PN, TD))
462234353Sdim      continue;
463218893Sdim
464199481Srdivacky    // If recursive simplification ended up deleting the next PHI node we would
465199481Srdivacky    // iterate to, then our iterator is invalid, restart scanning from the top
466199481Srdivacky    // of the block.
467210299Sed    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
468199481Srdivacky  }
469199481Srdivacky}
470199481Srdivacky
471199481Srdivacky
472193323Sed/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
473193323Sed/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
474193323Sed/// between them, moving the instructions in the predecessor into DestBB and
475193323Sed/// deleting the predecessor block.
476193323Sed///
477198090Srdivackyvoid llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
478193323Sed  // If BB has single-entry PHI nodes, fold them.
479193323Sed  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
480193323Sed    Value *NewVal = PN->getIncomingValue(0);
481193323Sed    // Replace self referencing PHI with undef, it must be dead.
482193323Sed    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
483193323Sed    PN->replaceAllUsesWith(NewVal);
484193323Sed    PN->eraseFromParent();
485193323Sed  }
486263508Sdim
487193323Sed  BasicBlock *PredBB = DestBB->getSinglePredecessor();
488193323Sed  assert(PredBB && "Block doesn't have a single predecessor!");
489263508Sdim
490203954Srdivacky  // Zap anything that took the address of DestBB.  Not doing this will give the
491203954Srdivacky  // address an invalid value.
492203954Srdivacky  if (DestBB->hasAddressTaken()) {
493203954Srdivacky    BlockAddress *BA = BlockAddress::get(DestBB);
494203954Srdivacky    Constant *Replacement =
495203954Srdivacky      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
496203954Srdivacky    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
497203954Srdivacky                                                     BA->getType()));
498203954Srdivacky    BA->destroyConstant();
499203954Srdivacky  }
500263508Sdim
501193323Sed  // Anything that branched to PredBB now branches to DestBB.
502193323Sed  PredBB->replaceAllUsesWith(DestBB);
503263508Sdim
504224145Sdim  // Splice all the instructions from PredBB to DestBB.
505224145Sdim  PredBB->getTerminator()->eraseFromParent();
506224145Sdim  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
507224145Sdim
508198090Srdivacky  if (P) {
509218893Sdim    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
510218893Sdim    if (DT) {
511218893Sdim      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
512218893Sdim      DT->changeImmediateDominator(DestBB, PredBBIDom);
513218893Sdim      DT->eraseNode(PredBB);
514218893Sdim    }
515198090Srdivacky  }
516193323Sed  // Nuke BB.
517193323Sed  PredBB->eraseFromParent();
518193323Sed}
519193323Sed
520263508Sdim/// CanMergeValues - Return true if we can choose one of these values to use
521263508Sdim/// in place of the other. Note that we will always choose the non-undef
522263508Sdim/// value to keep.
523263508Sdimstatic bool CanMergeValues(Value *First, Value *Second) {
524263508Sdim  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
525263508Sdim}
526263508Sdim
527199481Srdivacky/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
528263508Sdim/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
529199481Srdivacky///
530199481Srdivacky/// Assumption: Succ is the single successor for BB.
531199481Srdivacky///
532199481Srdivackystatic bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
533199481Srdivacky  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
534199481Srdivacky
535263508Sdim  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
536199481Srdivacky        << Succ->getName() << "\n");
537199481Srdivacky  // Shortcut, if there is only a single predecessor it must be BB and merging
538199481Srdivacky  // is always safe
539199481Srdivacky  if (Succ->getSinglePredecessor()) return true;
540199481Srdivacky
541199481Srdivacky  // Make a list of the predecessors of BB
542234353Sdim  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
543199481Srdivacky
544199481Srdivacky  // Look at all the phi nodes in Succ, to see if they present a conflict when
545199481Srdivacky  // merging these blocks
546199481Srdivacky  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
547199481Srdivacky    PHINode *PN = cast<PHINode>(I);
548199481Srdivacky
549199481Srdivacky    // If the incoming value from BB is again a PHINode in
550199481Srdivacky    // BB which has the same incoming value for *PI as PN does, we can
551199481Srdivacky    // merge the phi nodes and then the blocks can still be merged
552199481Srdivacky    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
553199481Srdivacky    if (BBPN && BBPN->getParent() == BB) {
554234353Sdim      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
555234353Sdim        BasicBlock *IBB = PN->getIncomingBlock(PI);
556234353Sdim        if (BBPreds.count(IBB) &&
557263508Sdim            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
558263508Sdim                            PN->getIncomingValue(PI))) {
559263508Sdim          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
560263508Sdim                << Succ->getName() << " is conflicting with "
561199481Srdivacky                << BBPN->getName() << " with regard to common predecessor "
562234353Sdim                << IBB->getName() << "\n");
563199481Srdivacky          return false;
564199481Srdivacky        }
565199481Srdivacky      }
566199481Srdivacky    } else {
567199481Srdivacky      Value* Val = PN->getIncomingValueForBlock(BB);
568234353Sdim      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
569199481Srdivacky        // See if the incoming value for the common predecessor is equal to the
570199481Srdivacky        // one for BB, in which case this phi node will not prevent the merging
571199481Srdivacky        // of the block.
572234353Sdim        BasicBlock *IBB = PN->getIncomingBlock(PI);
573263508Sdim        if (BBPreds.count(IBB) &&
574263508Sdim            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
575263508Sdim          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
576199481Srdivacky                << Succ->getName() << " is conflicting with regard to common "
577234353Sdim                << "predecessor " << IBB->getName() << "\n");
578199481Srdivacky          return false;
579199481Srdivacky        }
580199481Srdivacky      }
581199481Srdivacky    }
582199481Srdivacky  }
583199481Srdivacky
584199481Srdivacky  return true;
585199481Srdivacky}
586199481Srdivacky
587263508Sdimtypedef SmallVector<BasicBlock *, 16> PredBlockVector;
588263508Sdimtypedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
589263508Sdim
590263508Sdim/// \brief Determines the value to use as the phi node input for a block.
591263508Sdim///
592263508Sdim/// Select between \p OldVal any value that we know flows from \p BB
593263508Sdim/// to a particular phi on the basis of which one (if either) is not
594263508Sdim/// undef. Update IncomingValues based on the selected value.
595263508Sdim///
596263508Sdim/// \param OldVal The value we are considering selecting.
597263508Sdim/// \param BB The block that the value flows in from.
598263508Sdim/// \param IncomingValues A map from block-to-value for other phi inputs
599263508Sdim/// that we have examined.
600263508Sdim///
601263508Sdim/// \returns the selected value.
602263508Sdimstatic Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
603263508Sdim                                          IncomingValueMap &IncomingValues) {
604263508Sdim  if (!isa<UndefValue>(OldVal)) {
605263508Sdim    assert((!IncomingValues.count(BB) ||
606263508Sdim            IncomingValues.find(BB)->second == OldVal) &&
607263508Sdim           "Expected OldVal to match incoming value from BB!");
608263508Sdim
609263508Sdim    IncomingValues.insert(std::make_pair(BB, OldVal));
610263508Sdim    return OldVal;
611263508Sdim  }
612263508Sdim
613263508Sdim  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
614263508Sdim  if (It != IncomingValues.end()) return It->second;
615263508Sdim
616263508Sdim  return OldVal;
617263508Sdim}
618263508Sdim
619263508Sdim/// \brief Create a map from block to value for the operands of a
620263508Sdim/// given phi.
621263508Sdim///
622263508Sdim/// Create a map from block to value for each non-undef value flowing
623263508Sdim/// into \p PN.
624263508Sdim///
625263508Sdim/// \param PN The phi we are collecting the map for.
626263508Sdim/// \param IncomingValues [out] The map from block to value for this phi.
627263508Sdimstatic void gatherIncomingValuesToPhi(PHINode *PN,
628263508Sdim                                      IncomingValueMap &IncomingValues) {
629263508Sdim  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
630263508Sdim    BasicBlock *BB = PN->getIncomingBlock(i);
631263508Sdim    Value *V = PN->getIncomingValue(i);
632263508Sdim
633263508Sdim    if (!isa<UndefValue>(V))
634263508Sdim      IncomingValues.insert(std::make_pair(BB, V));
635263508Sdim  }
636263508Sdim}
637263508Sdim
638263508Sdim/// \brief Replace the incoming undef values to a phi with the values
639263508Sdim/// from a block-to-value map.
640263508Sdim///
641263508Sdim/// \param PN The phi we are replacing the undefs in.
642263508Sdim/// \param IncomingValues A map from block to value.
643263508Sdimstatic void replaceUndefValuesInPhi(PHINode *PN,
644263508Sdim                                    const IncomingValueMap &IncomingValues) {
645263508Sdim  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
646263508Sdim    Value *V = PN->getIncomingValue(i);
647263508Sdim
648263508Sdim    if (!isa<UndefValue>(V)) continue;
649263508Sdim
650263508Sdim    BasicBlock *BB = PN->getIncomingBlock(i);
651263508Sdim    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
652263508Sdim    if (It == IncomingValues.end()) continue;
653263508Sdim
654263508Sdim    PN->setIncomingValue(i, It->second);
655263508Sdim  }
656263508Sdim}
657263508Sdim
658263508Sdim/// \brief Replace a value flowing from a block to a phi with
659263508Sdim/// potentially multiple instances of that value flowing from the
660263508Sdim/// block's predecessors to the phi.
661263508Sdim///
662263508Sdim/// \param BB The block with the value flowing into the phi.
663263508Sdim/// \param BBPreds The predecessors of BB.
664263508Sdim/// \param PN The phi that we are updating.
665263508Sdimstatic void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
666263508Sdim                                                const PredBlockVector &BBPreds,
667263508Sdim                                                PHINode *PN) {
668263508Sdim  Value *OldVal = PN->removeIncomingValue(BB, false);
669263508Sdim  assert(OldVal && "No entry in PHI for Pred BB!");
670263508Sdim
671263508Sdim  IncomingValueMap IncomingValues;
672263508Sdim
673263508Sdim  // We are merging two blocks - BB, and the block containing PN - and
674263508Sdim  // as a result we need to redirect edges from the predecessors of BB
675263508Sdim  // to go to the block containing PN, and update PN
676263508Sdim  // accordingly. Since we allow merging blocks in the case where the
677263508Sdim  // predecessor and successor blocks both share some predecessors,
678263508Sdim  // and where some of those common predecessors might have undef
679263508Sdim  // values flowing into PN, we want to rewrite those values to be
680263508Sdim  // consistent with the non-undef values.
681263508Sdim
682263508Sdim  gatherIncomingValuesToPhi(PN, IncomingValues);
683263508Sdim
684263508Sdim  // If this incoming value is one of the PHI nodes in BB, the new entries
685263508Sdim  // in the PHI node are the entries from the old PHI.
686263508Sdim  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
687263508Sdim    PHINode *OldValPN = cast<PHINode>(OldVal);
688263508Sdim    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
689263508Sdim      // Note that, since we are merging phi nodes and BB and Succ might
690263508Sdim      // have common predecessors, we could end up with a phi node with
691263508Sdim      // identical incoming branches. This will be cleaned up later (and
692263508Sdim      // will trigger asserts if we try to clean it up now, without also
693263508Sdim      // simplifying the corresponding conditional branch).
694263508Sdim      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
695263508Sdim      Value *PredVal = OldValPN->getIncomingValue(i);
696263508Sdim      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
697263508Sdim                                                    IncomingValues);
698263508Sdim
699263508Sdim      // And add a new incoming value for this predecessor for the
700263508Sdim      // newly retargeted branch.
701263508Sdim      PN->addIncoming(Selected, PredBB);
702263508Sdim    }
703263508Sdim  } else {
704263508Sdim    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
705263508Sdim      // Update existing incoming values in PN for this
706263508Sdim      // predecessor of BB.
707263508Sdim      BasicBlock *PredBB = BBPreds[i];
708263508Sdim      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
709263508Sdim                                                    IncomingValues);
710263508Sdim
711263508Sdim      // And add a new incoming value for this predecessor for the
712263508Sdim      // newly retargeted branch.
713263508Sdim      PN->addIncoming(Selected, PredBB);
714263508Sdim    }
715263508Sdim  }
716263508Sdim
717263508Sdim  replaceUndefValuesInPhi(PN, IncomingValues);
718263508Sdim}
719263508Sdim
720199481Srdivacky/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
721199481Srdivacky/// unconditional branch, and contains no instructions other than PHI nodes,
722224145Sdim/// potential side-effect free intrinsics and the branch.  If possible,
723224145Sdim/// eliminate BB by rewriting all the predecessors to branch to the successor
724224145Sdim/// block and return true.  If we can't transform, return false.
725199481Srdivackybool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
726212904Sdim  assert(BB != &BB->getParent()->getEntryBlock() &&
727212904Sdim         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
728212904Sdim
729199481Srdivacky  // We can't eliminate infinite loops.
730199481Srdivacky  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
731199481Srdivacky  if (BB == Succ) return false;
732263508Sdim
733199481Srdivacky  // Check to see if merging these blocks would cause conflicts for any of the
734199481Srdivacky  // phi nodes in BB or Succ. If not, we can safely merge.
735199481Srdivacky  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
736199481Srdivacky
737199481Srdivacky  // Check for cases where Succ has multiple predecessors and a PHI node in BB
738199481Srdivacky  // has uses which will not disappear when the PHI nodes are merged.  It is
739199481Srdivacky  // possible to handle such cases, but difficult: it requires checking whether
740199481Srdivacky  // BB dominates Succ, which is non-trivial to calculate in the case where
741199481Srdivacky  // Succ has multiple predecessors.  Also, it requires checking whether
742249423Sdim  // constructing the necessary self-referential PHI node doesn't introduce any
743199481Srdivacky  // conflicts; this isn't too difficult, but the previous code for doing this
744199481Srdivacky  // was incorrect.
745199481Srdivacky  //
746199481Srdivacky  // Note that if this check finds a live use, BB dominates Succ, so BB is
747199481Srdivacky  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
748199481Srdivacky  // folding the branch isn't profitable in that case anyway.
749199481Srdivacky  if (!Succ->getSinglePredecessor()) {
750199481Srdivacky    BasicBlock::iterator BBI = BB->begin();
751199481Srdivacky    while (isa<PHINode>(*BBI)) {
752199481Srdivacky      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
753199481Srdivacky           UI != E; ++UI) {
754199481Srdivacky        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
755199481Srdivacky          if (PN->getIncomingBlock(UI) != BB)
756199481Srdivacky            return false;
757199481Srdivacky        } else {
758199481Srdivacky          return false;
759199481Srdivacky        }
760199481Srdivacky      }
761199481Srdivacky      ++BBI;
762199481Srdivacky    }
763199481Srdivacky  }
764199481Srdivacky
765202375Srdivacky  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
766263508Sdim
767199481Srdivacky  if (isa<PHINode>(Succ->begin())) {
768199481Srdivacky    // If there is more than one pred of succ, and there are PHI nodes in
769199481Srdivacky    // the successor, then we need to add incoming edges for the PHI nodes
770199481Srdivacky    //
771263508Sdim    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
772263508Sdim
773199481Srdivacky    // Loop over all of the PHI nodes in the successor of BB.
774199481Srdivacky    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
775199481Srdivacky      PHINode *PN = cast<PHINode>(I);
776263508Sdim
777263508Sdim      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
778199481Srdivacky    }
779199481Srdivacky  }
780263508Sdim
781224145Sdim  if (Succ->getSinglePredecessor()) {
782224145Sdim    // BB is the only predecessor of Succ, so Succ will end up with exactly
783224145Sdim    // the same predecessors BB had.
784224145Sdim
785224145Sdim    // Copy over any phi, debug or lifetime instruction.
786224145Sdim    BB->getTerminator()->eraseFromParent();
787224145Sdim    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
788224145Sdim  } else {
789224145Sdim    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
790199481Srdivacky      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
791199481Srdivacky      assert(PN->use_empty() && "There shouldn't be any uses here!");
792199481Srdivacky      PN->eraseFromParent();
793199481Srdivacky    }
794199481Srdivacky  }
795263508Sdim
796199481Srdivacky  // Everything that jumped to BB now goes to Succ.
797199481Srdivacky  BB->replaceAllUsesWith(Succ);
798199481Srdivacky  if (!Succ->hasName()) Succ->takeName(BB);
799199481Srdivacky  BB->eraseFromParent();              // Delete the old basic block.
800199481Srdivacky  return true;
801199481Srdivacky}
802199481Srdivacky
803200581Srdivacky/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
804200581Srdivacky/// nodes in this block. This doesn't try to be clever about PHI nodes
805200581Srdivacky/// which differ only in the order of the incoming values, but instcombine
806200581Srdivacky/// orders them so it usually won't matter.
807200581Srdivacky///
808200581Srdivackybool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
809200581Srdivacky  bool Changed = false;
810200581Srdivacky
811200581Srdivacky  // This implementation doesn't currently consider undef operands
812224145Sdim  // specially. Theoretically, two phis which are identical except for
813200581Srdivacky  // one having an undef where the other doesn't could be collapsed.
814200581Srdivacky
815200581Srdivacky  // Map from PHI hash values to PHI nodes. If multiple PHIs have
816200581Srdivacky  // the same hash value, the element is the first PHI in the
817200581Srdivacky  // linked list in CollisionMap.
818200581Srdivacky  DenseMap<uintptr_t, PHINode *> HashMap;
819200581Srdivacky
820200581Srdivacky  // Maintain linked lists of PHI nodes with common hash values.
821200581Srdivacky  DenseMap<PHINode *, PHINode *> CollisionMap;
822200581Srdivacky
823200581Srdivacky  // Examine each PHI.
824200581Srdivacky  for (BasicBlock::iterator I = BB->begin();
825200581Srdivacky       PHINode *PN = dyn_cast<PHINode>(I++); ) {
826200581Srdivacky    // Compute a hash value on the operands. Instcombine will likely have sorted
827200581Srdivacky    // them, which helps expose duplicates, but we have to check all the
828200581Srdivacky    // operands to be safe in case instcombine hasn't run.
829200581Srdivacky    uintptr_t Hash = 0;
830224145Sdim    // This hash algorithm is quite weak as hash functions go, but it seems
831224145Sdim    // to do a good enough job for this particular purpose, and is very quick.
832200581Srdivacky    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
833200581Srdivacky      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
834200581Srdivacky      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
835200581Srdivacky    }
836224145Sdim    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
837224145Sdim         I != E; ++I) {
838224145Sdim      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
839224145Sdim      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
840224145Sdim    }
841221345Sdim    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
842221345Sdim    Hash >>= 1;
843200581Srdivacky    // If we've never seen this hash value before, it's a unique PHI.
844200581Srdivacky    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
845200581Srdivacky      HashMap.insert(std::make_pair(Hash, PN));
846200581Srdivacky    if (Pair.second) continue;
847200581Srdivacky    // Otherwise it's either a duplicate or a hash collision.
848200581Srdivacky    for (PHINode *OtherPN = Pair.first->second; ; ) {
849200581Srdivacky      if (OtherPN->isIdenticalTo(PN)) {
850200581Srdivacky        // A duplicate. Replace this PHI with its duplicate.
851200581Srdivacky        PN->replaceAllUsesWith(OtherPN);
852200581Srdivacky        PN->eraseFromParent();
853200581Srdivacky        Changed = true;
854200581Srdivacky        break;
855200581Srdivacky      }
856200581Srdivacky      // A non-duplicate hash collision.
857200581Srdivacky      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
858200581Srdivacky      if (I == CollisionMap.end()) {
859200581Srdivacky        // Set this PHI to be the head of the linked list of colliding PHIs.
860200581Srdivacky        PHINode *Old = Pair.first->second;
861200581Srdivacky        Pair.first->second = PN;
862200581Srdivacky        CollisionMap[PN] = Old;
863200581Srdivacky        break;
864200581Srdivacky      }
865239462Sdim      // Proceed to the next PHI in the list.
866200581Srdivacky      OtherPN = I->second;
867200581Srdivacky    }
868200581Srdivacky  }
869200581Srdivacky
870200581Srdivacky  return Changed;
871200581Srdivacky}
872218893Sdim
873218893Sdim/// enforceKnownAlignment - If the specified pointer points to an object that
874218893Sdim/// we control, modify the object's alignment to PrefAlign. This isn't
875218893Sdim/// often possible though. If alignment is important, a more reliable approach
876218893Sdim/// is to simply align all global variables and allocation instructions to
877218893Sdim/// their preferred alignment from the beginning.
878218893Sdim///
879218893Sdimstatic unsigned enforceKnownAlignment(Value *V, unsigned Align,
880243830Sdim                                      unsigned PrefAlign, const DataLayout *TD) {
881224145Sdim  V = V->stripPointerCasts();
882218893Sdim
883224145Sdim  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
884226633Sdim    // If the preferred alignment is greater than the natural stack alignment
885226633Sdim    // then don't round up. This avoids dynamic stack realignment.
886226633Sdim    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
887226633Sdim      return Align;
888218893Sdim    // If there is a requested alignment and if this is an alloca, round up.
889218893Sdim    if (AI->getAlignment() >= PrefAlign)
890218893Sdim      return AI->getAlignment();
891218893Sdim    AI->setAlignment(PrefAlign);
892218893Sdim    return PrefAlign;
893218893Sdim  }
894218893Sdim
895218893Sdim  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
896218893Sdim    // If there is a large requested alignment and we can, bump up the alignment
897218893Sdim    // of the global.
898218893Sdim    if (GV->isDeclaration()) return Align;
899234353Sdim    // If the memory we set aside for the global may not be the memory used by
900234353Sdim    // the final program then it is impossible for us to reliably enforce the
901234353Sdim    // preferred alignment.
902234353Sdim    if (GV->isWeakForLinker()) return Align;
903263508Sdim
904218893Sdim    if (GV->getAlignment() >= PrefAlign)
905218893Sdim      return GV->getAlignment();
906218893Sdim    // We can only increase the alignment of the global if it has no alignment
907218893Sdim    // specified or if it is not assigned a section.  If it is assigned a
908218893Sdim    // section, the global could be densely packed with other objects in the
909218893Sdim    // section, increasing the alignment could cause padding issues.
910218893Sdim    if (!GV->hasSection() || GV->getAlignment() == 0)
911218893Sdim      GV->setAlignment(PrefAlign);
912218893Sdim    return GV->getAlignment();
913218893Sdim  }
914218893Sdim
915218893Sdim  return Align;
916218893Sdim}
917218893Sdim
918218893Sdim/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
919218893Sdim/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
920218893Sdim/// and it is more than the alignment of the ultimate object, see if we can
921218893Sdim/// increase the alignment of the ultimate object, making this check succeed.
922218893Sdimunsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
923263508Sdim                                          const DataLayout *DL) {
924218893Sdim  assert(V->getType()->isPointerTy() &&
925218893Sdim         "getOrEnforceKnownAlignment expects a pointer!");
926263508Sdim  unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
927263508Sdim
928218893Sdim  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
929263508Sdim  ComputeMaskedBits(V, KnownZero, KnownOne, DL);
930218893Sdim  unsigned TrailZ = KnownZero.countTrailingOnes();
931263508Sdim
932263508Sdim  // Avoid trouble with ridiculously large TrailZ values, such as
933218893Sdim  // those computed from a null pointer.
934218893Sdim  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
935263508Sdim
936218893Sdim  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
937263508Sdim
938218893Sdim  // LLVM doesn't support alignments larger than this currently.
939218893Sdim  Align = std::min(Align, +Value::MaximumAlignment);
940263508Sdim
941218893Sdim  if (PrefAlign > Align)
942263508Sdim    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
943263508Sdim
944218893Sdim  // We don't need to make any adjustment.
945218893Sdim  return Align;
946218893Sdim}
947218893Sdim
948221345Sdim///===---------------------------------------------------------------------===//
949221345Sdim///  Dbg Intrinsic utilities
950221345Sdim///
951221345Sdim
952251662Sdim/// See if there is a dbg.value intrinsic for DIVar before I.
953251662Sdimstatic bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
954251662Sdim  // Since we can't guarantee that the original dbg.declare instrinsic
955251662Sdim  // is removed by LowerDbgDeclare(), we need to make sure that we are
956251662Sdim  // not inserting the same dbg.value intrinsic over and over.
957251662Sdim  llvm::BasicBlock::InstListType::iterator PrevI(I);
958251662Sdim  if (PrevI != I->getParent()->getInstList().begin()) {
959251662Sdim    --PrevI;
960251662Sdim    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
961251662Sdim      if (DVI->getValue() == I->getOperand(0) &&
962251662Sdim          DVI->getOffset() == 0 &&
963251662Sdim          DVI->getVariable() == DIVar)
964251662Sdim        return true;
965251662Sdim  }
966251662Sdim  return false;
967251662Sdim}
968251662Sdim
969251662Sdim/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
970221345Sdim/// that has an associated llvm.dbg.decl intrinsic.
971221345Sdimbool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
972221345Sdim                                           StoreInst *SI, DIBuilder &Builder) {
973221345Sdim  DIVariable DIVar(DDI->getVariable());
974263508Sdim  assert((!DIVar || DIVar.isVariable()) &&
975263508Sdim         "Variable in DbgDeclareInst should be either null or a DIVariable.");
976263508Sdim  if (!DIVar)
977221345Sdim    return false;
978221345Sdim
979251662Sdim  if (LdStHasDebugValue(DIVar, SI))
980251662Sdim    return true;
981251662Sdim
982223017Sdim  Instruction *DbgVal = NULL;
983223017Sdim  // If an argument is zero extended then use argument directly. The ZExt
984223017Sdim  // may be zapped by an optimization pass in future.
985223017Sdim  Argument *ExtendedArg = NULL;
986223017Sdim  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
987223017Sdim    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
988223017Sdim  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
989223017Sdim    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
990223017Sdim  if (ExtendedArg)
991223017Sdim    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
992223017Sdim  else
993223017Sdim    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
994223017Sdim
995221345Sdim  // Propagate any debug metadata from the store onto the dbg.value.
996221345Sdim  DebugLoc SIDL = SI->getDebugLoc();
997221345Sdim  if (!SIDL.isUnknown())
998221345Sdim    DbgVal->setDebugLoc(SIDL);
999221345Sdim  // Otherwise propagate debug metadata from dbg.declare.
1000221345Sdim  else
1001221345Sdim    DbgVal->setDebugLoc(DDI->getDebugLoc());
1002221345Sdim  return true;
1003221345Sdim}
1004221345Sdim
1005251662Sdim/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1006221345Sdim/// that has an associated llvm.dbg.decl intrinsic.
1007221345Sdimbool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1008221345Sdim                                           LoadInst *LI, DIBuilder &Builder) {
1009221345Sdim  DIVariable DIVar(DDI->getVariable());
1010263508Sdim  assert((!DIVar || DIVar.isVariable()) &&
1011263508Sdim         "Variable in DbgDeclareInst should be either null or a DIVariable.");
1012263508Sdim  if (!DIVar)
1013221345Sdim    return false;
1014221345Sdim
1015251662Sdim  if (LdStHasDebugValue(DIVar, LI))
1016251662Sdim    return true;
1017251662Sdim
1018263508Sdim  Instruction *DbgVal =
1019221345Sdim    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
1020221345Sdim                                    DIVar, LI);
1021263508Sdim
1022221345Sdim  // Propagate any debug metadata from the store onto the dbg.value.
1023221345Sdim  DebugLoc LIDL = LI->getDebugLoc();
1024221345Sdim  if (!LIDL.isUnknown())
1025221345Sdim    DbgVal->setDebugLoc(LIDL);
1026221345Sdim  // Otherwise propagate debug metadata from dbg.declare.
1027221345Sdim  else
1028221345Sdim    DbgVal->setDebugLoc(DDI->getDebugLoc());
1029221345Sdim  return true;
1030221345Sdim}
1031221345Sdim
1032221345Sdim/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1033221345Sdim/// of llvm.dbg.value intrinsics.
1034221345Sdimbool llvm::LowerDbgDeclare(Function &F) {
1035221345Sdim  DIBuilder DIB(*F.getParent());
1036221345Sdim  SmallVector<DbgDeclareInst *, 4> Dbgs;
1037221345Sdim  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1038221345Sdim    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
1039221345Sdim      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
1040221345Sdim        Dbgs.push_back(DDI);
1041221345Sdim    }
1042221345Sdim  if (Dbgs.empty())
1043221345Sdim    return false;
1044221345Sdim
1045263508Sdim  for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
1046221345Sdim         E = Dbgs.end(); I != E; ++I) {
1047221345Sdim    DbgDeclareInst *DDI = *I;
1048263508Sdim    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1049263508Sdim    // If this is an alloca for a scalar variable, insert a dbg.value
1050263508Sdim    // at each load and store to the alloca and erase the dbg.declare.
1051263508Sdim    if (AI && !AI->isArrayAllocation()) {
1052263508Sdim
1053251662Sdim      // We only remove the dbg.declare intrinsic if all uses are
1054251662Sdim      // converted to dbg.value intrinsics.
1055221345Sdim      bool RemoveDDI = true;
1056221345Sdim      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1057221345Sdim           UI != E; ++UI)
1058221345Sdim        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
1059221345Sdim          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1060221345Sdim        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1061221345Sdim          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1062221345Sdim        else
1063221345Sdim          RemoveDDI = false;
1064221345Sdim      if (RemoveDDI)
1065221345Sdim        DDI->eraseFromParent();
1066221345Sdim    }
1067221345Sdim  }
1068221345Sdim  return true;
1069221345Sdim}
1070223017Sdim
1071223017Sdim/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1072223017Sdim/// alloca 'V', if any.
1073223017SdimDbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1074223017Sdim  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
1075223017Sdim    for (Value::use_iterator UI = DebugNode->use_begin(),
1076223017Sdim         E = DebugNode->use_end(); UI != E; ++UI)
1077223017Sdim      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1078223017Sdim        return DDI;
1079223017Sdim
1080223017Sdim  return 0;
1081223017Sdim}
1082249423Sdim
1083249423Sdimbool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1084249423Sdim                                      DIBuilder &Builder) {
1085249423Sdim  DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1086249423Sdim  if (!DDI)
1087249423Sdim    return false;
1088249423Sdim  DIVariable DIVar(DDI->getVariable());
1089263508Sdim  assert((!DIVar || DIVar.isVariable()) &&
1090263508Sdim         "Variable in DbgDeclareInst should be either null or a DIVariable.");
1091263508Sdim  if (!DIVar)
1092249423Sdim    return false;
1093249423Sdim
1094249423Sdim  // Create a copy of the original DIDescriptor for user variable, appending
1095249423Sdim  // "deref" operation to a list of address elements, as new llvm.dbg.declare
1096249423Sdim  // will take a value storing address of the memory for variable, not
1097249423Sdim  // alloca itself.
1098249423Sdim  Type *Int64Ty = Type::getInt64Ty(AI->getContext());
1099249423Sdim  SmallVector<Value*, 4> NewDIVarAddress;
1100249423Sdim  if (DIVar.hasComplexAddress()) {
1101249423Sdim    for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
1102249423Sdim      NewDIVarAddress.push_back(
1103249423Sdim          ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
1104249423Sdim    }
1105249423Sdim  }
1106249423Sdim  NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
1107249423Sdim  DIVariable NewDIVar = Builder.createComplexVariable(
1108249423Sdim      DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
1109249423Sdim      DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
1110249423Sdim      NewDIVarAddress, DIVar.getArgNumber());
1111249423Sdim
1112249423Sdim  // Insert llvm.dbg.declare in the same basic block as the original alloca,
1113249423Sdim  // and remove old llvm.dbg.declare.
1114249423Sdim  BasicBlock *BB = AI->getParent();
1115249423Sdim  Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
1116249423Sdim  DDI->eraseFromParent();
1117249423Sdim  return true;
1118249423Sdim}
1119249423Sdim
1120263508Sdim/// changeToUnreachable - Insert an unreachable instruction before the specified
1121263508Sdim/// instruction, making it and the rest of the code in the block dead.
1122263508Sdimstatic void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1123263508Sdim  BasicBlock *BB = I->getParent();
1124263508Sdim  // Loop over all of the successors, removing BB's entry from any PHI
1125263508Sdim  // nodes.
1126263508Sdim  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1127263508Sdim    (*SI)->removePredecessor(BB);
1128263508Sdim
1129263508Sdim  // Insert a call to llvm.trap right before this.  This turns the undefined
1130263508Sdim  // behavior into a hard fail instead of falling through into random code.
1131263508Sdim  if (UseLLVMTrap) {
1132263508Sdim    Function *TrapFn =
1133263508Sdim      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1134263508Sdim    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1135263508Sdim    CallTrap->setDebugLoc(I->getDebugLoc());
1136263508Sdim  }
1137263508Sdim  new UnreachableInst(I->getContext(), I);
1138263508Sdim
1139263508Sdim  // All instructions after this are dead.
1140263508Sdim  BasicBlock::iterator BBI = I, BBE = BB->end();
1141263508Sdim  while (BBI != BBE) {
1142263508Sdim    if (!BBI->use_empty())
1143263508Sdim      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1144263508Sdim    BB->getInstList().erase(BBI++);
1145263508Sdim  }
1146263508Sdim}
1147263508Sdim
1148263508Sdim/// changeToCall - Convert the specified invoke into a normal call.
1149263508Sdimstatic void changeToCall(InvokeInst *II) {
1150263508Sdim  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
1151263508Sdim  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
1152263508Sdim  NewCall->takeName(II);
1153263508Sdim  NewCall->setCallingConv(II->getCallingConv());
1154263508Sdim  NewCall->setAttributes(II->getAttributes());
1155263508Sdim  NewCall->setDebugLoc(II->getDebugLoc());
1156263508Sdim  II->replaceAllUsesWith(NewCall);
1157263508Sdim
1158263508Sdim  // Follow the call by a branch to the normal destination.
1159263508Sdim  BranchInst::Create(II->getNormalDest(), II);
1160263508Sdim
1161263508Sdim  // Update PHI nodes in the unwind destination
1162263508Sdim  II->getUnwindDest()->removePredecessor(II->getParent());
1163263508Sdim  II->eraseFromParent();
1164263508Sdim}
1165263508Sdim
1166263508Sdimstatic bool markAliveBlocks(BasicBlock *BB,
1167263508Sdim                            SmallPtrSet<BasicBlock*, 128> &Reachable) {
1168263508Sdim
1169249423Sdim  SmallVector<BasicBlock*, 128> Worklist;
1170263508Sdim  Worklist.push_back(BB);
1171263508Sdim  Reachable.insert(BB);
1172263508Sdim  bool Changed = false;
1173249423Sdim  do {
1174263508Sdim    BB = Worklist.pop_back_val();
1175263508Sdim
1176263508Sdim    // Do a quick scan of the basic block, turning any obviously unreachable
1177263508Sdim    // instructions into LLVM unreachable insts.  The instruction combining pass
1178263508Sdim    // canonicalizes unreachable insts into stores to null or undef.
1179263508Sdim    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1180263508Sdim      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1181263508Sdim        if (CI->doesNotReturn()) {
1182263508Sdim          // If we found a call to a no-return function, insert an unreachable
1183263508Sdim          // instruction after it.  Make sure there isn't *already* one there
1184263508Sdim          // though.
1185263508Sdim          ++BBI;
1186263508Sdim          if (!isa<UnreachableInst>(BBI)) {
1187263508Sdim            // Don't insert a call to llvm.trap right before the unreachable.
1188263508Sdim            changeToUnreachable(BBI, false);
1189263508Sdim            Changed = true;
1190263508Sdim          }
1191263508Sdim          break;
1192263508Sdim        }
1193263508Sdim      }
1194263508Sdim
1195263508Sdim      // Store to undef and store to null are undefined and used to signal that
1196263508Sdim      // they should be changed to unreachable by passes that can't modify the
1197263508Sdim      // CFG.
1198263508Sdim      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1199263508Sdim        // Don't touch volatile stores.
1200263508Sdim        if (SI->isVolatile()) continue;
1201263508Sdim
1202263508Sdim        Value *Ptr = SI->getOperand(1);
1203263508Sdim
1204263508Sdim        if (isa<UndefValue>(Ptr) ||
1205263508Sdim            (isa<ConstantPointerNull>(Ptr) &&
1206263508Sdim             SI->getPointerAddressSpace() == 0)) {
1207263508Sdim          changeToUnreachable(SI, true);
1208263508Sdim          Changed = true;
1209263508Sdim          break;
1210263508Sdim        }
1211263508Sdim      }
1212263508Sdim    }
1213263508Sdim
1214263508Sdim    // Turn invokes that call 'nounwind' functions into ordinary calls.
1215263508Sdim    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1216263508Sdim      Value *Callee = II->getCalledValue();
1217263508Sdim      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1218263508Sdim        changeToUnreachable(II, true);
1219263508Sdim        Changed = true;
1220263508Sdim      } else if (II->doesNotThrow()) {
1221263508Sdim        if (II->use_empty() && II->onlyReadsMemory()) {
1222263508Sdim          // jump to the normal destination branch.
1223263508Sdim          BranchInst::Create(II->getNormalDest(), II);
1224263508Sdim          II->getUnwindDest()->removePredecessor(II->getParent());
1225263508Sdim          II->eraseFromParent();
1226263508Sdim        } else
1227263508Sdim          changeToCall(II);
1228263508Sdim        Changed = true;
1229263508Sdim      }
1230263508Sdim    }
1231263508Sdim
1232263508Sdim    Changed |= ConstantFoldTerminator(BB, true);
1233249423Sdim    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1234249423Sdim      if (Reachable.insert(*SI))
1235249423Sdim        Worklist.push_back(*SI);
1236249423Sdim  } while (!Worklist.empty());
1237263508Sdim  return Changed;
1238263508Sdim}
1239249423Sdim
1240263508Sdim/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1241263508Sdim/// if they are in a dead cycle.  Return true if a change was made, false
1242263508Sdim/// otherwise.
1243263508Sdimbool llvm::removeUnreachableBlocks(Function &F) {
1244263508Sdim  SmallPtrSet<BasicBlock*, 128> Reachable;
1245263508Sdim  bool Changed = markAliveBlocks(F.begin(), Reachable);
1246263508Sdim
1247263508Sdim  // If there are unreachable blocks in the CFG...
1248249423Sdim  if (Reachable.size() == F.size())
1249263508Sdim    return Changed;
1250249423Sdim
1251249423Sdim  assert(Reachable.size() < F.size());
1252263508Sdim  NumRemoved += F.size()-Reachable.size();
1253263508Sdim
1254263508Sdim  // Loop over all of the basic blocks that are not reachable, dropping all of
1255263508Sdim  // their internal references...
1256263508Sdim  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1257263508Sdim    if (Reachable.count(BB))
1258249423Sdim      continue;
1259249423Sdim
1260263508Sdim    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1261249423Sdim      if (Reachable.count(*SI))
1262263508Sdim        (*SI)->removePredecessor(BB);
1263263508Sdim    BB->dropAllReferences();
1264249423Sdim  }
1265249423Sdim
1266263508Sdim  for (Function::iterator I = ++F.begin(); I != F.end();)
1267249423Sdim    if (!Reachable.count(I))
1268249423Sdim      I = F.getBasicBlockList().erase(I);
1269249423Sdim    else
1270249423Sdim      ++I;
1271249423Sdim
1272249423Sdim  return true;
1273249423Sdim}
1274