TailRecursionElimination.cpp revision 263508
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/Analysis/CaptureTracking.h"
59#include "llvm/Analysis/InlineCost.h"
60#include "llvm/Analysis/InstructionSimplify.h"
61#include "llvm/Analysis/Loads.h"
62#include "llvm/Analysis/TargetTransformInfo.h"
63#include "llvm/IR/Constants.h"
64#include "llvm/IR/DerivedTypes.h"
65#include "llvm/IR/Function.h"
66#include "llvm/IR/Instructions.h"
67#include "llvm/IR/IntrinsicInst.h"
68#include "llvm/IR/Module.h"
69#include "llvm/Pass.h"
70#include "llvm/Support/CFG.h"
71#include "llvm/Support/CallSite.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ValueHandle.h"
74#include "llvm/Support/raw_ostream.h"
75#include "llvm/Transforms/Utils/BasicBlockUtils.h"
76#include "llvm/Transforms/Utils/Local.h"
77using namespace llvm;
78
79STATISTIC(NumEliminated, "Number of tail calls removed");
80STATISTIC(NumRetDuped,   "Number of return duplicated");
81STATISTIC(NumAccumAdded, "Number of accumulators introduced");
82
83namespace {
84  struct TailCallElim : public FunctionPass {
85    const TargetTransformInfo *TTI;
86
87    static char ID; // Pass identification, replacement for typeid
88    TailCallElim() : FunctionPass(ID) {
89      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
90    }
91
92    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
93
94    virtual bool runOnFunction(Function &F);
95
96  private:
97    CallInst *FindTRECandidate(Instruction *I,
98                               bool CannotTailCallElimCallsMarkedTail);
99    bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
100                                    BasicBlock *&OldEntry,
101                                    bool &TailCallsAreMarkedTail,
102                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
103                                    bool CannotTailCallElimCallsMarkedTail);
104    bool FoldReturnAndProcessPred(BasicBlock *BB,
105                                  ReturnInst *Ret, BasicBlock *&OldEntry,
106                                  bool &TailCallsAreMarkedTail,
107                                  SmallVectorImpl<PHINode *> &ArgumentPHIs,
108                                  bool CannotTailCallElimCallsMarkedTail);
109    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
110                               bool &TailCallsAreMarkedTail,
111                               SmallVectorImpl<PHINode *> &ArgumentPHIs,
112                               bool CannotTailCallElimCallsMarkedTail);
113    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
114    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
115  };
116}
117
118char TailCallElim::ID = 0;
119INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
120                      "Tail Call Elimination", false, false)
121INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
122INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
123                    "Tail Call Elimination", false, false)
124
125// Public interface to the TailCallElimination pass
126FunctionPass *llvm::createTailCallEliminationPass() {
127  return new TailCallElim();
128}
129
130void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
131  AU.addRequired<TargetTransformInfo>();
132}
133
134/// CanTRE - Scan the specified basic block for alloca instructions.
135/// If it contains any that are variable-sized or not in the entry block,
136/// returns false.
137static bool CanTRE(AllocaInst *AI) {
138  // Because of PR962, we don't TRE allocas outside the entry block.
139
140  // If this alloca is in the body of the function, or if it is a variable
141  // sized allocation, we cannot tail call eliminate calls marked 'tail'
142  // with this mechanism.
143  BasicBlock *BB = AI->getParent();
144  return BB == &BB->getParent()->getEntryBlock() &&
145         isa<ConstantInt>(AI->getArraySize());
146}
147
148namespace {
149struct AllocaCaptureTracker : public CaptureTracker {
150  AllocaCaptureTracker() : Captured(false) {}
151
152  void tooManyUses() LLVM_OVERRIDE { Captured = true; }
153
154  bool shouldExplore(Use *U) LLVM_OVERRIDE {
155    Value *V = U->getUser();
156    if (isa<CallInst>(V) || isa<InvokeInst>(V))
157      UsesAlloca.insert(V);
158    return true;
159  }
160
161  bool captured(Use *U) LLVM_OVERRIDE {
162    if (isa<ReturnInst>(U->getUser()))
163      return false;
164    Captured = true;
165    return true;
166  }
167
168  bool Captured;
169  SmallPtrSet<const Value *, 16> UsesAlloca;
170};
171} // end anonymous namespace
172
173bool TailCallElim::runOnFunction(Function &F) {
174  // If this function is a varargs function, we won't be able to PHI the args
175  // right, so don't even try to convert it...
176  if (F.getFunctionType()->isVarArg()) return false;
177
178  TTI = &getAnalysis<TargetTransformInfo>();
179  BasicBlock *OldEntry = 0;
180  bool TailCallsAreMarkedTail = false;
181  SmallVector<PHINode*, 8> ArgumentPHIs;
182  bool MadeChange = false;
183
184  // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
185  // marked with the 'tail' attribute, because doing so would cause the stack
186  // size to increase (real TRE would deallocate variable sized allocas, TRE
187  // doesn't).
188  bool CanTRETailMarkedCall = true;
189
190  // Find calls that can be marked tail.
191  AllocaCaptureTracker ACT;
192  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) {
193    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
194      if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
195        CanTRETailMarkedCall &= CanTRE(AI);
196        PointerMayBeCaptured(AI, &ACT);
197        // If any allocas are captured, exit.
198        if (ACT.Captured)
199          return false;
200      }
201    }
202  }
203
204  // Second pass, change any tail recursive calls to loops.
205  //
206  // FIXME: The code generator produces really bad code when an 'escaping
207  // alloca' is changed from being a static alloca to being a dynamic alloca.
208  // Until this is resolved, disable this transformation if that would ever
209  // happen.  This bug is PR962.
210  if (ACT.UsesAlloca.empty()) {
211    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
212      if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
213        bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
214                                            ArgumentPHIs, !CanTRETailMarkedCall);
215        if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
216          Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
217                                            TailCallsAreMarkedTail, ArgumentPHIs,
218                                            !CanTRETailMarkedCall);
219        MadeChange |= Change;
220      }
221    }
222  }
223
224  // If we eliminated any tail recursions, it's possible that we inserted some
225  // silly PHI nodes which just merge an initial value (the incoming operand)
226  // with themselves.  Check to see if we did and clean up our mess if so.  This
227  // occurs when a function passes an argument straight through to its tail
228  // call.
229  if (!ArgumentPHIs.empty()) {
230    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
231      PHINode *PN = ArgumentPHIs[i];
232
233      // If the PHI Node is a dynamic constant, replace it with the value it is.
234      if (Value *PNV = SimplifyInstruction(PN)) {
235        PN->replaceAllUsesWith(PNV);
236        PN->eraseFromParent();
237      }
238    }
239  }
240
241  // At this point, we know that the function does not have any captured
242  // allocas. If additionally the function does not call setjmp, mark all calls
243  // in the function that do not access stack memory with the tail keyword. This
244  // implies ensuring that there does not exist any path from a call that takes
245  // in an alloca but does not capture it and the call which we wish to mark
246  // with "tail".
247  if (!F.callsFunctionThatReturnsTwice()) {
248    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
249      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
250        if (CallInst *CI = dyn_cast<CallInst>(I)) {
251          if (!ACT.UsesAlloca.count(CI)) {
252            CI->setTailCall();
253            MadeChange = true;
254          }
255        }
256      }
257    }
258  }
259
260  return MadeChange;
261}
262
263
264/// CanMoveAboveCall - Return true if it is safe to move the specified
265/// instruction from after the call to before the call, assuming that all
266/// instructions between the call and this instruction are movable.
267///
268bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
269  // FIXME: We can move load/store/call/free instructions above the call if the
270  // call does not mod/ref the memory location being processed.
271  if (I->mayHaveSideEffects())  // This also handles volatile loads.
272    return false;
273
274  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
275    // Loads may always be moved above calls without side effects.
276    if (CI->mayHaveSideEffects()) {
277      // Non-volatile loads may be moved above a call with side effects if it
278      // does not write to memory and the load provably won't trap.
279      // FIXME: Writes to memory only matter if they may alias the pointer
280      // being loaded from.
281      if (CI->mayWriteToMemory() ||
282          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
283                                       L->getAlignment()))
284        return false;
285    }
286  }
287
288  // Otherwise, if this is a side-effect free instruction, check to make sure
289  // that it does not use the return value of the call.  If it doesn't use the
290  // return value of the call, it must only use things that are defined before
291  // the call, or movable instructions between the call and the instruction
292  // itself.
293  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
294    if (I->getOperand(i) == CI)
295      return false;
296  return true;
297}
298
299// isDynamicConstant - Return true if the specified value is the same when the
300// return would exit as it was when the initial iteration of the recursive
301// function was executed.
302//
303// We currently handle static constants and arguments that are not modified as
304// part of the recursion.
305//
306static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
307  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
308
309  // Check to see if this is an immutable argument, if so, the value
310  // will be available to initialize the accumulator.
311  if (Argument *Arg = dyn_cast<Argument>(V)) {
312    // Figure out which argument number this is...
313    unsigned ArgNo = 0;
314    Function *F = CI->getParent()->getParent();
315    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
316      ++ArgNo;
317
318    // If we are passing this argument into call as the corresponding
319    // argument operand, then the argument is dynamically constant.
320    // Otherwise, we cannot transform this function safely.
321    if (CI->getArgOperand(ArgNo) == Arg)
322      return true;
323  }
324
325  // Switch cases are always constant integers. If the value is being switched
326  // on and the return is only reachable from one of its cases, it's
327  // effectively constant.
328  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
329    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
330      if (SI->getCondition() == V)
331        return SI->getDefaultDest() != RI->getParent();
332
333  // Not a constant or immutable argument, we can't safely transform.
334  return false;
335}
336
337// getCommonReturnValue - Check to see if the function containing the specified
338// tail call consistently returns the same runtime-constant value at all exit
339// points except for IgnoreRI.  If so, return the returned value.
340//
341static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
342  Function *F = CI->getParent()->getParent();
343  Value *ReturnedValue = 0;
344
345  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
346    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
347    if (RI == 0 || RI == IgnoreRI) continue;
348
349    // We can only perform this transformation if the value returned is
350    // evaluatable at the start of the initial invocation of the function,
351    // instead of at the end of the evaluation.
352    //
353    Value *RetOp = RI->getOperand(0);
354    if (!isDynamicConstant(RetOp, CI, RI))
355      return 0;
356
357    if (ReturnedValue && RetOp != ReturnedValue)
358      return 0;     // Cannot transform if differing values are returned.
359    ReturnedValue = RetOp;
360  }
361  return ReturnedValue;
362}
363
364/// CanTransformAccumulatorRecursion - If the specified instruction can be
365/// transformed using accumulator recursion elimination, return the constant
366/// which is the start of the accumulator value.  Otherwise return null.
367///
368Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
369                                                      CallInst *CI) {
370  if (!I->isAssociative() || !I->isCommutative()) return 0;
371  assert(I->getNumOperands() == 2 &&
372         "Associative/commutative operations should have 2 args!");
373
374  // Exactly one operand should be the result of the call instruction.
375  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
376      (I->getOperand(0) != CI && I->getOperand(1) != CI))
377    return 0;
378
379  // The only user of this instruction we allow is a single return instruction.
380  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
381    return 0;
382
383  // Ok, now we have to check all of the other return instructions in this
384  // function.  If they return non-constants or differing values, then we cannot
385  // transform the function safely.
386  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
387}
388
389static Instruction *FirstNonDbg(BasicBlock::iterator I) {
390  while (isa<DbgInfoIntrinsic>(I))
391    ++I;
392  return &*I;
393}
394
395CallInst*
396TailCallElim::FindTRECandidate(Instruction *TI,
397                               bool CannotTailCallElimCallsMarkedTail) {
398  BasicBlock *BB = TI->getParent();
399  Function *F = BB->getParent();
400
401  if (&BB->front() == TI) // Make sure there is something before the terminator.
402    return 0;
403
404  // Scan backwards from the return, checking to see if there is a tail call in
405  // this block.  If so, set CI to it.
406  CallInst *CI = 0;
407  BasicBlock::iterator BBI = TI;
408  while (true) {
409    CI = dyn_cast<CallInst>(BBI);
410    if (CI && CI->getCalledFunction() == F)
411      break;
412
413    if (BBI == BB->begin())
414      return 0;          // Didn't find a potential tail call.
415    --BBI;
416  }
417
418  // If this call is marked as a tail call, and if there are dynamic allocas in
419  // the function, we cannot perform this optimization.
420  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
421    return 0;
422
423  // As a special case, detect code like this:
424  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
425  // and disable this xform in this case, because the code generator will
426  // lower the call to fabs into inline code.
427  if (BB == &F->getEntryBlock() &&
428      FirstNonDbg(BB->front()) == CI &&
429      FirstNonDbg(llvm::next(BB->begin())) == TI &&
430      CI->getCalledFunction() &&
431      !TTI->isLoweredToCall(CI->getCalledFunction())) {
432    // A single-block function with just a call and a return. Check that
433    // the arguments match.
434    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
435                           E = CallSite(CI).arg_end();
436    Function::arg_iterator FI = F->arg_begin(),
437                           FE = F->arg_end();
438    for (; I != E && FI != FE; ++I, ++FI)
439      if (*I != &*FI) break;
440    if (I == E && FI == FE)
441      return 0;
442  }
443
444  return CI;
445}
446
447bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
448                                       BasicBlock *&OldEntry,
449                                       bool &TailCallsAreMarkedTail,
450                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
451                                       bool CannotTailCallElimCallsMarkedTail) {
452  // If we are introducing accumulator recursion to eliminate operations after
453  // the call instruction that are both associative and commutative, the initial
454  // value for the accumulator is placed in this variable.  If this value is set
455  // then we actually perform accumulator recursion elimination instead of
456  // simple tail recursion elimination.  If the operation is an LLVM instruction
457  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
458  // we are handling the case when the return instruction returns a constant C
459  // which is different to the constant returned by other return instructions
460  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
461  // special case of accumulator recursion, the operation being "return C".
462  Value *AccumulatorRecursionEliminationInitVal = 0;
463  Instruction *AccumulatorRecursionInstr = 0;
464
465  // Ok, we found a potential tail call.  We can currently only transform the
466  // tail call if all of the instructions between the call and the return are
467  // movable to above the call itself, leaving the call next to the return.
468  // Check that this is the case now.
469  BasicBlock::iterator BBI = CI;
470  for (++BBI; &*BBI != Ret; ++BBI) {
471    if (CanMoveAboveCall(BBI, CI)) continue;
472
473    // If we can't move the instruction above the call, it might be because it
474    // is an associative and commutative operation that could be transformed
475    // using accumulator recursion elimination.  Check to see if this is the
476    // case, and if so, remember the initial accumulator value for later.
477    if ((AccumulatorRecursionEliminationInitVal =
478                           CanTransformAccumulatorRecursion(BBI, CI))) {
479      // Yes, this is accumulator recursion.  Remember which instruction
480      // accumulates.
481      AccumulatorRecursionInstr = BBI;
482    } else {
483      return false;   // Otherwise, we cannot eliminate the tail recursion!
484    }
485  }
486
487  // We can only transform call/return pairs that either ignore the return value
488  // of the call and return void, ignore the value of the call and return a
489  // constant, return the value returned by the tail call, or that are being
490  // accumulator recursion variable eliminated.
491  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
492      !isa<UndefValue>(Ret->getReturnValue()) &&
493      AccumulatorRecursionEliminationInitVal == 0 &&
494      !getCommonReturnValue(0, CI)) {
495    // One case remains that we are able to handle: the current return
496    // instruction returns a constant, and all other return instructions
497    // return a different constant.
498    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
499      return false; // Current return instruction does not return a constant.
500    // Check that all other return instructions return a common constant.  If
501    // so, record it in AccumulatorRecursionEliminationInitVal.
502    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
503    if (!AccumulatorRecursionEliminationInitVal)
504      return false;
505  }
506
507  BasicBlock *BB = Ret->getParent();
508  Function *F = BB->getParent();
509
510  // OK! We can transform this tail call.  If this is the first one found,
511  // create the new entry block, allowing us to branch back to the old entry.
512  if (OldEntry == 0) {
513    OldEntry = &F->getEntryBlock();
514    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
515    NewEntry->takeName(OldEntry);
516    OldEntry->setName("tailrecurse");
517    BranchInst::Create(OldEntry, NewEntry);
518
519    // If this tail call is marked 'tail' and if there are any allocas in the
520    // entry block, move them up to the new entry block.
521    TailCallsAreMarkedTail = CI->isTailCall();
522    if (TailCallsAreMarkedTail)
523      // Move all fixed sized allocas from OldEntry to NewEntry.
524      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
525             NEBI = NewEntry->begin(); OEBI != E; )
526        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
527          if (isa<ConstantInt>(AI->getArraySize()))
528            AI->moveBefore(NEBI);
529
530    // Now that we have created a new block, which jumps to the entry
531    // block, insert a PHI node for each argument of the function.
532    // For now, we initialize each PHI to only have the real arguments
533    // which are passed in.
534    Instruction *InsertPos = OldEntry->begin();
535    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
536         I != E; ++I) {
537      PHINode *PN = PHINode::Create(I->getType(), 2,
538                                    I->getName() + ".tr", InsertPos);
539      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
540      PN->addIncoming(I, NewEntry);
541      ArgumentPHIs.push_back(PN);
542    }
543  }
544
545  // If this function has self recursive calls in the tail position where some
546  // are marked tail and some are not, only transform one flavor or another.  We
547  // have to choose whether we move allocas in the entry block to the new entry
548  // block or not, so we can't make a good choice for both.  NOTE: We could do
549  // slightly better here in the case that the function has no entry block
550  // allocas.
551  if (TailCallsAreMarkedTail && !CI->isTailCall())
552    return false;
553
554  // Ok, now that we know we have a pseudo-entry block WITH all of the
555  // required PHI nodes, add entries into the PHI node for the actual
556  // parameters passed into the tail-recursive call.
557  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
558    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
559
560  // If we are introducing an accumulator variable to eliminate the recursion,
561  // do so now.  Note that we _know_ that no subsequent tail recursion
562  // eliminations will happen on this function because of the way the
563  // accumulator recursion predicate is set up.
564  //
565  if (AccumulatorRecursionEliminationInitVal) {
566    Instruction *AccRecInstr = AccumulatorRecursionInstr;
567    // Start by inserting a new PHI node for the accumulator.
568    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
569    PHINode *AccPN =
570      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
571                      std::distance(PB, PE) + 1,
572                      "accumulator.tr", OldEntry->begin());
573
574    // Loop over all of the predecessors of the tail recursion block.  For the
575    // real entry into the function we seed the PHI with the initial value,
576    // computed earlier.  For any other existing branches to this block (due to
577    // other tail recursions eliminated) the accumulator is not modified.
578    // Because we haven't added the branch in the current block to OldEntry yet,
579    // it will not show up as a predecessor.
580    for (pred_iterator PI = PB; PI != PE; ++PI) {
581      BasicBlock *P = *PI;
582      if (P == &F->getEntryBlock())
583        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
584      else
585        AccPN->addIncoming(AccPN, P);
586    }
587
588    if (AccRecInstr) {
589      // Add an incoming argument for the current block, which is computed by
590      // our associative and commutative accumulator instruction.
591      AccPN->addIncoming(AccRecInstr, BB);
592
593      // Next, rewrite the accumulator recursion instruction so that it does not
594      // use the result of the call anymore, instead, use the PHI node we just
595      // inserted.
596      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
597    } else {
598      // Add an incoming argument for the current block, which is just the
599      // constant returned by the current return instruction.
600      AccPN->addIncoming(Ret->getReturnValue(), BB);
601    }
602
603    // Finally, rewrite any return instructions in the program to return the PHI
604    // node instead of the "initval" that they do currently.  This loop will
605    // actually rewrite the return value we are destroying, but that's ok.
606    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
607      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
608        RI->setOperand(0, AccPN);
609    ++NumAccumAdded;
610  }
611
612  // Now that all of the PHI nodes are in place, remove the call and
613  // ret instructions, replacing them with an unconditional branch.
614  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
615  NewBI->setDebugLoc(CI->getDebugLoc());
616
617  BB->getInstList().erase(Ret);  // Remove return.
618  BB->getInstList().erase(CI);   // Remove call.
619  ++NumEliminated;
620  return true;
621}
622
623bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
624                                       ReturnInst *Ret, BasicBlock *&OldEntry,
625                                       bool &TailCallsAreMarkedTail,
626                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
627                                       bool CannotTailCallElimCallsMarkedTail) {
628  bool Change = false;
629
630  // If the return block contains nothing but the return and PHI's,
631  // there might be an opportunity to duplicate the return in its
632  // predecessors and perform TRC there. Look for predecessors that end
633  // in unconditional branch and recursive call(s).
634  SmallVector<BranchInst*, 8> UncondBranchPreds;
635  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
636    BasicBlock *Pred = *PI;
637    TerminatorInst *PTI = Pred->getTerminator();
638    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
639      if (BI->isUnconditional())
640        UncondBranchPreds.push_back(BI);
641  }
642
643  while (!UncondBranchPreds.empty()) {
644    BranchInst *BI = UncondBranchPreds.pop_back_val();
645    BasicBlock *Pred = BI->getParent();
646    if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
647      DEBUG(dbgs() << "FOLDING: " << *BB
648            << "INTO UNCOND BRANCH PRED: " << *Pred);
649      EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
650                                 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
651                                 CannotTailCallElimCallsMarkedTail);
652      ++NumRetDuped;
653      Change = true;
654    }
655  }
656
657  return Change;
658}
659
660bool
661TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
662                                    bool &TailCallsAreMarkedTail,
663                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
664                                    bool CannotTailCallElimCallsMarkedTail) {
665  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
666  if (!CI)
667    return false;
668
669  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
670                                    ArgumentPHIs,
671                                    CannotTailCallElimCallsMarkedTail);
672}
673