ScalarReplAggregates.cpp revision 221345
1177633Sdfr//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2177633Sdfr//
3177633Sdfr//                     The LLVM Compiler Infrastructure
4177633Sdfr//
5177633Sdfr// This file is distributed under the University of Illinois Open Source
6177633Sdfr// License. See LICENSE.TXT for details.
7177633Sdfr//
8177633Sdfr//===----------------------------------------------------------------------===//
9177633Sdfr//
10177633Sdfr// This transformation implements the well known scalar replacement of
11177633Sdfr// aggregates transformation.  This xform breaks up alloca instructions of
12177633Sdfr// aggregate type (structure or array) into individual alloca instructions for
13177633Sdfr// each member (if possible).  Then, if possible, it transforms the individual
14177633Sdfr// alloca instructions into nice clean scalar SSA form.
15177633Sdfr//
16177633Sdfr// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17177633Sdfr// often interact, especially for C++ programs.  As such, iterating between
18177633Sdfr// SRoA, then Mem2Reg until we run out of things to promote works well.
19177633Sdfr//
20177633Sdfr//===----------------------------------------------------------------------===//
21177633Sdfr
22177633Sdfr#define DEBUG_TYPE "scalarrepl"
23177633Sdfr#include "llvm/Transforms/Scalar.h"
24177633Sdfr#include "llvm/Constants.h"
25177633Sdfr#include "llvm/DerivedTypes.h"
26177633Sdfr#include "llvm/Function.h"
27177633Sdfr#include "llvm/GlobalVariable.h"
28177633Sdfr#include "llvm/Instructions.h"
29177633Sdfr#include "llvm/IntrinsicInst.h"
30177633Sdfr#include "llvm/LLVMContext.h"
31177633Sdfr#include "llvm/Module.h"
32177633Sdfr#include "llvm/Pass.h"
33184588Sdfr#include "llvm/Analysis/Dominators.h"
34180025Sdfr#include "llvm/Analysis/Loads.h"
35177633Sdfr#include "llvm/Analysis/ValueTracking.h"
36177633Sdfr#include "llvm/Target/TargetData.h"
37177633Sdfr#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38177633Sdfr#include "llvm/Transforms/Utils/Local.h"
39177633Sdfr#include "llvm/Transforms/Utils/SSAUpdater.h"
40177633Sdfr#include "llvm/Support/CallSite.h"
41177633Sdfr#include "llvm/Support/Debug.h"
42177633Sdfr#include "llvm/Support/ErrorHandling.h"
43177633Sdfr#include "llvm/Support/GetElementPtrTypeIterator.h"
44177633Sdfr#include "llvm/Support/IRBuilder.h"
45177633Sdfr#include "llvm/Support/MathExtras.h"
46177633Sdfr#include "llvm/Support/raw_ostream.h"
47177685Sdfr#include "llvm/ADT/SetVector.h"
48244008Srmacklem#include "llvm/ADT/SmallVector.h"
49177633Sdfr#include "llvm/ADT/Statistic.h"
50180025Sdfrusing namespace llvm;
51184588Sdfr
52177633SdfrSTATISTIC(NumReplaced,  "Number of allocas broken up");
53177633SdfrSTATISTIC(NumPromoted,  "Number of allocas promoted");
54177633SdfrSTATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55177633SdfrSTATISTIC(NumConverted, "Number of aggregates converted to scalar");
56184588SdfrSTATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57177633Sdfr
58177633Sdfrnamespace {
59177633Sdfr  struct SROA : public FunctionPass {
60177633Sdfr    SROA(int T, bool hasDT, char &ID)
61177633Sdfr      : FunctionPass(ID), HasDomTree(hasDT) {
62177633Sdfr      if (T == -1)
63177633Sdfr        SRThreshold = 128;
64184588Sdfr      else
65177633Sdfr        SRThreshold = T;
66177633Sdfr    }
67177633Sdfr
68177633Sdfr    bool runOnFunction(Function &F);
69184588Sdfr
70184588Sdfr    bool performScalarRepl(Function &F);
71177633Sdfr    bool performPromotion(Function &F);
72177633Sdfr
73177633Sdfr  private:
74177633Sdfr    bool HasDomTree;
75177633Sdfr    TargetData *TD;
76177633Sdfr
77177633Sdfr    /// DeadInsts - Keep track of instructions we have made dead, so that
78177633Sdfr    /// we can remove them after we are done working.
79177633Sdfr    SmallVector<Value*, 32> DeadInsts;
80177633Sdfr
81177633Sdfr    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82177633Sdfr    /// information about the uses.  All these fields are initialized to false
83177633Sdfr    /// and set to true when something is learned.
84177633Sdfr    struct AllocaInfo {
85177633Sdfr      /// The alloca to promote.
86177633Sdfr      AllocaInst *AI;
87177633Sdfr
88177633Sdfr      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89177633Sdfr      /// looping and avoid redundant work.
90180025Sdfr      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91177633Sdfr
92177633Sdfr      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93177633Sdfr      bool isUnsafe : 1;
94177633Sdfr
95177633Sdfr      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96177633Sdfr      bool isMemCpySrc : 1;
97177633Sdfr
98177633Sdfr      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99180025Sdfr      bool isMemCpyDst : 1;
100177633Sdfr
101180025Sdfr      /// hasSubelementAccess - This is true if a subelement of the alloca is
102184588Sdfr      /// ever accessed, or false if the alloca is only accessed with mem
103177633Sdfr      /// intrinsics or load/store that only access the entire alloca at once.
104177633Sdfr      bool hasSubelementAccess : 1;
105180025Sdfr
106184588Sdfr      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107184588Sdfr      /// The alloca may just be accessed with memcpy, for example, which would
108177633Sdfr      /// not set this.
109177633Sdfr      bool hasALoadOrStore : 1;
110180025Sdfr
111177633Sdfr      explicit AllocaInfo(AllocaInst *ai)
112177633Sdfr        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113177633Sdfr          hasSubelementAccess(false), hasALoadOrStore(false) {}
114177633Sdfr    };
115177633Sdfr
116177633Sdfr    unsigned SRThreshold;
117177633Sdfr
118177633Sdfr    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119177633Sdfr      I.isUnsafe = true;
120177633Sdfr      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121177633Sdfr    }
122184588Sdfr
123177633Sdfr    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124177633Sdfr
125180025Sdfr    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126180025Sdfr    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127177633Sdfr                                         AllocaInfo &Info);
128184588Sdfr    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129194934Srmacklem    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130177633Sdfr                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131180025Sdfr                         Instruction *TheAccess, bool AllowWholeAccess);
132194934Srmacklem    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133194934Srmacklem    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134194934Srmacklem                                  const Type *&IdxTy);
135194934Srmacklem
136194934Srmacklem    void DoScalarReplacement(AllocaInst *AI,
137194934Srmacklem                             std::vector<AllocaInst*> &WorkList);
138194934Srmacklem    void DeleteDeadInstructions();
139194934Srmacklem
140184588Sdfr    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141184588Sdfr                              SmallVector<AllocaInst*, 32> &NewElts);
142184588Sdfr    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143184588Sdfr                        SmallVector<AllocaInst*, 32> &NewElts);
144194934Srmacklem    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145180025Sdfr                    SmallVector<AllocaInst*, 32> &NewElts);
146180025Sdfr    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147180025Sdfr                                      AllocaInst *AI,
148194934Srmacklem                                      SmallVector<AllocaInst*, 32> &NewElts);
149194934Srmacklem    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150194934Srmacklem                                       SmallVector<AllocaInst*, 32> &NewElts);
151194934Srmacklem    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152194934Srmacklem                                      SmallVector<AllocaInst*, 32> &NewElts);
153194934Srmacklem
154194934Srmacklem    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155194934Srmacklem  };
156180025Sdfr
157180025Sdfr  // SROA_DT - SROA that uses DominatorTree.
158196503Szec  struct SROA_DT : public SROA {
159196503Szec    static char ID;
160177633Sdfr  public:
161177633Sdfr    SROA_DT(int T = -1) : SROA(T, true, ID) {
162180025Sdfr      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163177633Sdfr    }
164196503Szec
165180025Sdfr    // getAnalysisUsage - This pass does not require any passes, but we know it
166177633Sdfr    // will not alter the CFG, so say so.
167188142Sdfr    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168184588Sdfr      AU.addRequired<DominatorTree>();
169184588Sdfr      AU.setPreservesCFG();
170177633Sdfr    }
171177633Sdfr  };
172194934Srmacklem
173177633Sdfr  // SROA_SSAUp - SROA that uses SSAUpdater.
174177633Sdfr  struct SROA_SSAUp : public SROA {
175177633Sdfr    static char ID;
176194934Srmacklem  public:
177177633Sdfr    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178221127Srmacklem      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179184588Sdfr    }
180177633Sdfr
181194934Srmacklem    // getAnalysisUsage - This pass does not require any passes, but we know it
182184588Sdfr    // will not alter the CFG, so say so.
183184588Sdfr    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184180025Sdfr      AU.setPreservesCFG();
185180025Sdfr    }
186180025Sdfr  };
187178112Sdfr
188194934Srmacklem}
189194934Srmacklem
190194934Srmacklemchar SROA_DT::ID = 0;
191194934Srmacklemchar SROA_SSAUp::ID = 0;
192194934Srmacklem
193194934SrmacklemINITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194244008Srmacklem                "Scalar Replacement of Aggregates (DT)", false, false)
195244008SrmacklemINITIALIZE_PASS_DEPENDENCY(DominatorTree)
196180025SdfrINITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197177633Sdfr                "Scalar Replacement of Aggregates (DT)", false, false)
198180025Sdfr
199180025SdfrINITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200194934Srmacklem                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201194934SrmacklemINITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202194934Srmacklem                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203194934Srmacklem
204184588Sdfr// Public interface to the ScalarReplAggregates pass
205180025SdfrFunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206180025Sdfr                                                   bool UseDomTree) {
207180025Sdfr  if (UseDomTree)
208180025Sdfr    return new SROA_DT(Threshold);
209194934Srmacklem  return new SROA_SSAUp(Threshold);
210194934Srmacklem}
211194934Srmacklem
212194934Srmacklem
213194934Srmacklem//===----------------------------------------------------------------------===//
214194934Srmacklem// Convert To Scalar Optimization.
215194934Srmacklem//===----------------------------------------------------------------------===//
216194934Srmacklem
217194934Srmacklemnamespace {
218194934Srmacklem/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219194934Srmacklem/// optimization, which scans the uses of an alloca and determines if it can
220180025Sdfr/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221177633Sdfrclass ConvertToScalarInfo {
222177633Sdfr  /// AllocaSize - The size of the alloca being considered in bytes.
223177633Sdfr  unsigned AllocaSize;
224177633Sdfr  const TargetData &TD;
225180025Sdfr
226180025Sdfr  /// IsNotTrivial - This is set to true if there is some access to the object
227177633Sdfr  /// which means that mem2reg can't promote it.
228184588Sdfr  bool IsNotTrivial;
229184588Sdfr
230184588Sdfr  /// VectorTy - This tracks the type that we should promote the vector to if
231177633Sdfr  /// it is possible to turn it into a vector.  This starts out null, and if it
232177633Sdfr  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233180025Sdfr  const Type *VectorTy;
234177633Sdfr
235194934Srmacklem  /// HadAVector - True if there is at least one vector access to the alloca.
236177633Sdfr  /// We don't want to turn random arrays into vectors and use vector element
237180025Sdfr  /// insert/extract, but if there are element accesses to something that is
238177633Sdfr  /// also declared as a vector, we do want to promote to a vector.
239194934Srmacklem  bool HadAVector;
240184588Sdfr
241194934Srmacklem  /// HadNonMemTransferAccess - True if there is at least one access to the
242184588Sdfr  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
243184588Sdfr  /// large integers unless there is some potential for optimization.
244184588Sdfr  bool HadNonMemTransferAccess;
245178112Sdfr
246194934Srmacklempublic:
247178112Sdfr  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
248184588Sdfr    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
249194934Srmacklem      HadAVector(false), HadNonMemTransferAccess(false) { }
250248255Sjhb
251194934Srmacklem  AllocaInst *TryConvert(AllocaInst *AI);
252194934Srmacklem
253184588Sdfrprivate:
254184588Sdfr  bool CanConvertToScalar(Value *V, uint64_t Offset);
255184588Sdfr  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
256184588Sdfr  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
257184588Sdfr  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
258178112Sdfr
259178112Sdfr  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260194934Srmacklem                                    uint64_t Offset, IRBuilder<> &Builder);
261178112Sdfr  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262177633Sdfr                                   uint64_t Offset, IRBuilder<> &Builder);
263184588Sdfr};
264184588Sdfr} // end anonymous namespace.
265184588Sdfr
266184588Sdfr
267184588Sdfr/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268180025Sdfr/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
269180025Sdfr/// alloca if possible or null if not.
270180025SdfrAllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271184588Sdfr  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272184588Sdfr  // out.
273177633Sdfr  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274184588Sdfr    return 0;
275184588Sdfr
276184588Sdfr  // If we were able to find a vector type that can handle this with
277184588Sdfr  // insert/extract elements, and if there was at least one use that had
278184588Sdfr  // a vector type, promote this to a vector.  We don't want to promote
279177633Sdfr  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280177633Sdfr  // we just get a lot of insert/extracts.  If at least one vector is
281177633Sdfr  // involved, then we probably really do have a union of vector/array.
282177633Sdfr  const Type *NewTy;
283177633Sdfr  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
284177633Sdfr    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
285177633Sdfr          << *VectorTy << '\n');
286177633Sdfr    NewTy = VectorTy;  // Use the vector type.
287177633Sdfr  } else {
288180025Sdfr    unsigned BitWidth = AllocaSize * 8;
289194934Srmacklem    if (!HadAVector && !HadNonMemTransferAccess &&
290177633Sdfr        !TD.fitsInLegalInteger(BitWidth))
291180025Sdfr      return 0;
292177633Sdfr
293177633Sdfr    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294184588Sdfr    // Create and insert the integer alloca.
295184588Sdfr    NewTy = IntegerType::get(AI->getContext(), BitWidth);
296180025Sdfr  }
297194934Srmacklem  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298194934Srmacklem  ConvertUsesToScalar(AI, NewAI, 0);
299180025Sdfr  return NewAI;
300194934Srmacklem}
301180025Sdfr
302180025Sdfr/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303180025Sdfr/// so far at the offset specified by Offset (which is specified in bytes).
304180025Sdfr///
305180025Sdfr/// There are three cases we handle here:
306180025Sdfr///   1) A union of vector types of the same size and potentially its elements.
307180025Sdfr///      Here we turn element accesses into insert/extract element operations.
308180025Sdfr///      This promotes a <4 x float> with a store of float to the third element
309194934Srmacklem///      into a <4 x float> that uses insert element.
310194934Srmacklem///   2) A union of vector types with power-of-2 size differences, e.g. a float,
311194934Srmacklem///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
312194934Srmacklem///      and extract element operations, and <2 x float> accesses into a cast to
313194934Srmacklem///      <2 x double>, an extract, and a cast back to <2 x float>.
314180025Sdfr///   3) A fully general blob of memory, which we turn into some (potentially
315180025Sdfr///      large) integer type with extract and insert operations where the loads
316180025Sdfr///      and stores would mutate the memory.  We mark this by setting VectorTy
317194934Srmacklem///      to VoidTy.
318194934Srmacklemvoid ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319194934Srmacklem                                      bool IsLoadOrStore) {
320194934Srmacklem  // If we already decided to turn this into a blob of integer memory, there is
321180025Sdfr  // nothing to be done.
322194934Srmacklem  if (VectorTy && VectorTy->isVoidTy())
323184588Sdfr    return;
324194934Srmacklem
325184588Sdfr  // If this could be contributing to a vector, analyze it.
326177633Sdfr
327177633Sdfr  // If the In type is a vector that is the same size as the alloca, see if it
328177633Sdfr  // matches the existing VecTy.
329184588Sdfr  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
330184588Sdfr    if (MergeInVectorType(VInTy, Offset))
331184588Sdfr      return;
332177633Sdfr  } else if (In->isFloatTy() || In->isDoubleTy() ||
333177633Sdfr             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334177633Sdfr              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
335177633Sdfr    // Full width accesses can be ignored, because they can always be turned
336177633Sdfr    // into bitcasts.
337177633Sdfr    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338177633Sdfr    if (IsLoadOrStore && EltSize == AllocaSize)
339177633Sdfr      return;
340184588Sdfr
341177633Sdfr    // If we're accessing something that could be an element of a vector, see
342177633Sdfr    // if the implied vector agrees with what we already have and if Offset is
343194934Srmacklem    // compatible with it.
344194934Srmacklem    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0) {
345194934Srmacklem      if (!VectorTy) {
346194934Srmacklem        VectorTy = VectorType::get(In, AllocaSize/EltSize);
347177633Sdfr        return;
348177633Sdfr      }
349177633Sdfr
350177633Sdfr      unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
351177633Sdfr                                ->getPrimitiveSizeInBits()/8;
352177633Sdfr      if (EltSize == CurrentEltSize)
353177633Sdfr        return;
354177633Sdfr
355177633Sdfr      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
356177633Sdfr        return;
357177633Sdfr    }
358177633Sdfr  }
359177633Sdfr
360177633Sdfr  // Otherwise, we have a case that we can't handle with an optimized vector
361194934Srmacklem  // form.  We can still turn this into a large integer.
362194934Srmacklem  VectorTy = Type::getVoidTy(In->getContext());
363194934Srmacklem}
364194934Srmacklem
365177633Sdfr/// MergeInVectorType - Handles the vector case of MergeInType, returning true
366177633Sdfr/// if the type was successfully merged and false otherwise.
367177633Sdfrbool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
368177633Sdfr                                            uint64_t Offset) {
369244008Srmacklem  // Remember if we saw a vector type.
370177633Sdfr  HadAVector = true;
371177633Sdfr
372177633Sdfr  // TODO: Support nonzero offsets?
373177633Sdfr  if (Offset != 0)
374177633Sdfr    return false;
375177633Sdfr
376177633Sdfr  // Only allow vectors that are a power-of-2 away from the size of the alloca.
377177633Sdfr  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
378177633Sdfr    return false;
379177633Sdfr
380177633Sdfr  // If this the first vector we see, remember the type so that we know the
381177633Sdfr  // element size.
382177633Sdfr  if (!VectorTy) {
383177633Sdfr    VectorTy = VInTy;
384177633Sdfr    return true;
385177633Sdfr  }
386177633Sdfr
387177633Sdfr  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
388177633Sdfr  unsigned InBitWidth = VInTy->getBitWidth();
389177633Sdfr
390177633Sdfr  // Vectors of the same size can be converted using a simple bitcast.
391177633Sdfr  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
392177633Sdfr    return true;
393177633Sdfr
394177633Sdfr  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
395177633Sdfr  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
396177633Sdfr
397177633Sdfr  // Do not allow mixed integer and floating-point accesses from vectors of
398177633Sdfr  // different sizes.
399177633Sdfr  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
400177633Sdfr    return false;
401177633Sdfr
402177633Sdfr  if (ElementTy->isFloatingPointTy()) {
403177633Sdfr    // Only allow floating-point vectors of different sizes if they have the
404177633Sdfr    // same element type.
405177633Sdfr    // TODO: This could be loosened a bit, but would anything benefit?
406177633Sdfr    if (ElementTy != InElementTy)
407177633Sdfr      return false;
408177633Sdfr
409177633Sdfr    // There are no arbitrary-precision floating-point types, which limits the
410177633Sdfr    // number of legal vector types with larger element types that we can form
411177633Sdfr    // to bitcast and extract a subvector.
412177633Sdfr    // TODO: We could support some more cases with mixed fp128 and double here.
413177633Sdfr    if (!(BitWidth == 64 || BitWidth == 128) ||
414177633Sdfr        !(InBitWidth == 64 || InBitWidth == 128))
415177633Sdfr      return false;
416184588Sdfr  } else {
417177633Sdfr    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
418177633Sdfr                                       "or floating-point.");
419177633Sdfr    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
420177633Sdfr    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
421177633Sdfr
422177633Sdfr    // Do not allow integer types smaller than a byte or types whose widths are
423177633Sdfr    // not a multiple of a byte.
424177633Sdfr    if (BitWidth < 8 || InBitWidth < 8 ||
425177633Sdfr        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
426177633Sdfr      return false;
427177633Sdfr  }
428177633Sdfr
429177633Sdfr  // Pick the largest of the two vector types.
430177633Sdfr  if (InBitWidth > BitWidth)
431177633Sdfr    VectorTy = VInTy;
432177633Sdfr
433177633Sdfr  return true;
434177633Sdfr}
435180025Sdfr
436180025Sdfr/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
437180025Sdfr/// its accesses to a single vector type, return true and set VecTy to
438180025Sdfr/// the new type.  If we could convert the alloca into a single promotable
439180025Sdfr/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
440180025Sdfr/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
441180025Sdfr/// is the current offset from the base of the alloca being analyzed.
442180025Sdfr///
443184588Sdfr/// If we see at least one access to the value that is as a vector type, set the
444184588Sdfr/// SawVec flag.
445184588Sdfrbool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
446184588Sdfr  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
447184588Sdfr    Instruction *User = cast<Instruction>(*UI);
448184588Sdfr
449184588Sdfr    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
450184588Sdfr      // Don't break volatile loads.
451244008Srmacklem      if (LI->isVolatile())
452244008Srmacklem        return false;
453244008Srmacklem      // Don't touch MMX operations.
454244008Srmacklem      if (LI->getType()->isX86_MMXTy())
455244008Srmacklem        return false;
456244008Srmacklem      HadNonMemTransferAccess = true;
457244008Srmacklem      MergeInType(LI->getType(), Offset, true);
458177633Sdfr      continue;
459177633Sdfr    }
460177633Sdfr
461177633Sdfr    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
462177633Sdfr      // Storing the pointer, not into the value?
463177633Sdfr      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
464177633Sdfr      // Don't touch MMX operations.
465177633Sdfr      if (SI->getOperand(0)->getType()->isX86_MMXTy())
466184588Sdfr        return false;
467184588Sdfr      HadNonMemTransferAccess = true;
468184588Sdfr      MergeInType(SI->getOperand(0)->getType(), Offset, true);
469184588Sdfr      continue;
470184588Sdfr    }
471184588Sdfr
472184588Sdfr    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
473184588Sdfr      IsNotTrivial = true;  // Can't be mem2reg'd.
474184588Sdfr      if (!CanConvertToScalar(BCI, Offset))
475184588Sdfr        return false;
476184588Sdfr      continue;
477184588Sdfr    }
478184588Sdfr
479184588Sdfr    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
480184588Sdfr      // If this is a GEP with a variable indices, we can't handle it.
481184588Sdfr      if (!GEP->hasAllConstantIndices())
482184588Sdfr        return false;
483184588Sdfr
484184588Sdfr      // Compute the offset that this GEP adds to the pointer.
485184588Sdfr      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
486184588Sdfr      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
487184588Sdfr                                               &Indices[0], Indices.size());
488184588Sdfr      // See if all uses can be converted.
489184588Sdfr      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
490184588Sdfr        return false;
491177633Sdfr      IsNotTrivial = true;  // Can't be mem2reg'd.
492177633Sdfr      HadNonMemTransferAccess = true;
493177633Sdfr      continue;
494244008Srmacklem    }
495177633Sdfr
496177633Sdfr    // If this is a constant sized memset of a constant value (e.g. 0) we can
497177633Sdfr    // handle it.
498244008Srmacklem    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
499244008Srmacklem      // Store of constant value and constant size.
500244008Srmacklem      if (!isa<ConstantInt>(MSI->getValue()) ||
501244008Srmacklem          !isa<ConstantInt>(MSI->getLength()))
502244008Srmacklem        return false;
503184588Sdfr      IsNotTrivial = true;  // Can't be mem2reg'd.
504181684Sdfr      HadNonMemTransferAccess = true;
505177633Sdfr      continue;
506177633Sdfr    }
507177633Sdfr
508    // If this is a memcpy or memmove into or out of the whole allocation, we
509    // can handle it like a load or store of the scalar type.
510    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
511      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
512      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
513        return false;
514
515      IsNotTrivial = true;  // Can't be mem2reg'd.
516      continue;
517    }
518
519    // Otherwise, we cannot handle this!
520    return false;
521  }
522
523  return true;
524}
525
526/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
527/// directly.  This happens when we are converting an "integer union" to a
528/// single integer scalar, or when we are converting a "vector union" to a
529/// vector with insert/extractelement instructions.
530///
531/// Offset is an offset from the original alloca, in bits that need to be
532/// shifted to the right.  By the end of this, there should be no uses of Ptr.
533void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
534                                              uint64_t Offset) {
535  while (!Ptr->use_empty()) {
536    Instruction *User = cast<Instruction>(Ptr->use_back());
537
538    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
539      ConvertUsesToScalar(CI, NewAI, Offset);
540      CI->eraseFromParent();
541      continue;
542    }
543
544    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
545      // Compute the offset that this GEP adds to the pointer.
546      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
547      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
548                                               &Indices[0], Indices.size());
549      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
550      GEP->eraseFromParent();
551      continue;
552    }
553
554    IRBuilder<> Builder(User);
555
556    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
557      // The load is a bit extract from NewAI shifted right by Offset bits.
558      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
559      Value *NewLoadVal
560        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
561      LI->replaceAllUsesWith(NewLoadVal);
562      LI->eraseFromParent();
563      continue;
564    }
565
566    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
567      assert(SI->getOperand(0) != Ptr && "Consistency error!");
568      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
569      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
570                                             Builder);
571      Builder.CreateStore(New, NewAI);
572      SI->eraseFromParent();
573
574      // If the load we just inserted is now dead, then the inserted store
575      // overwrote the entire thing.
576      if (Old->use_empty())
577        Old->eraseFromParent();
578      continue;
579    }
580
581    // If this is a constant sized memset of a constant value (e.g. 0) we can
582    // transform it into a store of the expanded constant value.
583    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
584      assert(MSI->getRawDest() == Ptr && "Consistency error!");
585      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
586      if (NumBytes != 0) {
587        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
588
589        // Compute the value replicated the right number of times.
590        APInt APVal(NumBytes*8, Val);
591
592        // Splat the value if non-zero.
593        if (Val)
594          for (unsigned i = 1; i != NumBytes; ++i)
595            APVal |= APVal << 8;
596
597        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
598        Value *New = ConvertScalar_InsertValue(
599                                    ConstantInt::get(User->getContext(), APVal),
600                                               Old, Offset, Builder);
601        Builder.CreateStore(New, NewAI);
602
603        // If the load we just inserted is now dead, then the memset overwrote
604        // the entire thing.
605        if (Old->use_empty())
606          Old->eraseFromParent();
607      }
608      MSI->eraseFromParent();
609      continue;
610    }
611
612    // If this is a memcpy or memmove into or out of the whole allocation, we
613    // can handle it like a load or store of the scalar type.
614    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
615      assert(Offset == 0 && "must be store to start of alloca");
616
617      // If the source and destination are both to the same alloca, then this is
618      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
619      // as appropriate.
620      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
621
622      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
623        // Dest must be OrigAI, change this to be a load from the original
624        // pointer (bitcasted), then a store to our new alloca.
625        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
626        Value *SrcPtr = MTI->getSource();
627        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
628        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
629        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
630          AIPTy = PointerType::get(AIPTy->getElementType(),
631                                   SPTy->getAddressSpace());
632        }
633        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
634
635        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
636        SrcVal->setAlignment(MTI->getAlignment());
637        Builder.CreateStore(SrcVal, NewAI);
638      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
639        // Src must be OrigAI, change this to be a load from NewAI then a store
640        // through the original dest pointer (bitcasted).
641        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
642        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
643
644        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
645        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
646        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
647          AIPTy = PointerType::get(AIPTy->getElementType(),
648                                   DPTy->getAddressSpace());
649        }
650        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
651
652        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
653        NewStore->setAlignment(MTI->getAlignment());
654      } else {
655        // Noop transfer. Src == Dst
656      }
657
658      MTI->eraseFromParent();
659      continue;
660    }
661
662    llvm_unreachable("Unsupported operation!");
663  }
664}
665
666/// getScaledElementType - Gets a scaled element type for a partial vector
667/// access of an alloca. The input types must be integer or floating-point
668/// scalar or vector types, and the resulting type is an integer, float or
669/// double.
670static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
671                                        unsigned NewBitWidth) {
672  bool IsFP1 = Ty1->isFloatingPointTy() ||
673               (Ty1->isVectorTy() &&
674                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
675  bool IsFP2 = Ty2->isFloatingPointTy() ||
676               (Ty2->isVectorTy() &&
677                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
678
679  LLVMContext &Context = Ty1->getContext();
680
681  // Prefer floating-point types over integer types, as integer types may have
682  // been created by earlier scalar replacement.
683  if (IsFP1 || IsFP2) {
684    if (NewBitWidth == 32)
685      return Type::getFloatTy(Context);
686    if (NewBitWidth == 64)
687      return Type::getDoubleTy(Context);
688  }
689
690  return Type::getIntNTy(Context, NewBitWidth);
691}
692
693/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
694/// to another vector of the same element type which has the same allocation
695/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
696static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
697                                      IRBuilder<> &Builder) {
698  const Type *FromType = FromVal->getType();
699  const VectorType *FromVTy = cast<VectorType>(FromType);
700  const VectorType *ToVTy = cast<VectorType>(ToType);
701  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
702         "Vectors must have the same element type");
703   Value *UnV = UndefValue::get(FromType);
704   unsigned numEltsFrom = FromVTy->getNumElements();
705   unsigned numEltsTo = ToVTy->getNumElements();
706
707   SmallVector<Constant*, 3> Args;
708   const Type* Int32Ty = Builder.getInt32Ty();
709   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
710   unsigned i;
711   for (i=0; i != minNumElts; ++i)
712     Args.push_back(ConstantInt::get(Int32Ty, i));
713
714   if (i < numEltsTo) {
715     Constant* UnC = UndefValue::get(Int32Ty);
716     for (; i != numEltsTo; ++i)
717       Args.push_back(UnC);
718   }
719   Constant *Mask = ConstantVector::get(Args);
720   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
721}
722
723/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
724/// or vector value FromVal, extracting the bits from the offset specified by
725/// Offset.  This returns the value, which is of type ToType.
726///
727/// This happens when we are converting an "integer union" to a single
728/// integer scalar, or when we are converting a "vector union" to a vector with
729/// insert/extractelement instructions.
730///
731/// Offset is an offset from the original alloca, in bits that need to be
732/// shifted to the right.
733Value *ConvertToScalarInfo::
734ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
735                           uint64_t Offset, IRBuilder<> &Builder) {
736  // If the load is of the whole new alloca, no conversion is needed.
737  const Type *FromType = FromVal->getType();
738  if (FromType == ToType && Offset == 0)
739    return FromVal;
740
741  // If the result alloca is a vector type, this is either an element
742  // access or a bitcast to another vector type of the same size.
743  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
744    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
745    if (ToTypeSize == AllocaSize) {
746      // If the two types have the same primitive size, use a bit cast.
747      // Otherwise, it is two vectors with the same element type that has
748      // the same allocation size but different number of elements so use
749      // a shuffle vector.
750      if (FromType->getPrimitiveSizeInBits() ==
751          ToType->getPrimitiveSizeInBits())
752        return Builder.CreateBitCast(FromVal, ToType, "tmp");
753      else
754        return CreateShuffleVectorCast(FromVal, ToType, Builder);
755    }
756
757    if (isPowerOf2_64(AllocaSize / ToTypeSize)) {
758      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
759             "of a smaller vector type at a nonzero offset.");
760
761      const Type *CastElementTy = getScaledElementType(FromType, ToType,
762                                                       ToTypeSize * 8);
763      unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
764
765      LLVMContext &Context = FromVal->getContext();
766      const Type *CastTy = VectorType::get(CastElementTy,
767                                           NumCastVectorElements);
768      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
769
770      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
771      unsigned Elt = Offset/EltSize;
772      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
773      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
774                                        Type::getInt32Ty(Context), Elt), "tmp");
775      return Builder.CreateBitCast(Extract, ToType, "tmp");
776    }
777
778    // Otherwise it must be an element access.
779    unsigned Elt = 0;
780    if (Offset) {
781      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
782      Elt = Offset/EltSize;
783      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
784    }
785    // Return the element extracted out of it.
786    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
787                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
788    if (V->getType() != ToType)
789      V = Builder.CreateBitCast(V, ToType, "tmp");
790    return V;
791  }
792
793  // If ToType is a first class aggregate, extract out each of the pieces and
794  // use insertvalue's to form the FCA.
795  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
796    const StructLayout &Layout = *TD.getStructLayout(ST);
797    Value *Res = UndefValue::get(ST);
798    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
799      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
800                                        Offset+Layout.getElementOffsetInBits(i),
801                                              Builder);
802      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
803    }
804    return Res;
805  }
806
807  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
808    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
809    Value *Res = UndefValue::get(AT);
810    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
811      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
812                                              Offset+i*EltSize, Builder);
813      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
814    }
815    return Res;
816  }
817
818  // Otherwise, this must be a union that was converted to an integer value.
819  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
820
821  // If this is a big-endian system and the load is narrower than the
822  // full alloca type, we need to do a shift to get the right bits.
823  int ShAmt = 0;
824  if (TD.isBigEndian()) {
825    // On big-endian machines, the lowest bit is stored at the bit offset
826    // from the pointer given by getTypeStoreSizeInBits.  This matters for
827    // integers with a bitwidth that is not a multiple of 8.
828    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
829            TD.getTypeStoreSizeInBits(ToType) - Offset;
830  } else {
831    ShAmt = Offset;
832  }
833
834  // Note: we support negative bitwidths (with shl) which are not defined.
835  // We do this to support (f.e.) loads off the end of a structure where
836  // only some bits are used.
837  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
838    FromVal = Builder.CreateLShr(FromVal,
839                                 ConstantInt::get(FromVal->getType(),
840                                                           ShAmt), "tmp");
841  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
842    FromVal = Builder.CreateShl(FromVal,
843                                ConstantInt::get(FromVal->getType(),
844                                                          -ShAmt), "tmp");
845
846  // Finally, unconditionally truncate the integer to the right width.
847  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
848  if (LIBitWidth < NTy->getBitWidth())
849    FromVal =
850      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
851                                                    LIBitWidth), "tmp");
852  else if (LIBitWidth > NTy->getBitWidth())
853    FromVal =
854       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
855                                                    LIBitWidth), "tmp");
856
857  // If the result is an integer, this is a trunc or bitcast.
858  if (ToType->isIntegerTy()) {
859    // Should be done.
860  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
861    // Just do a bitcast, we know the sizes match up.
862    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
863  } else {
864    // Otherwise must be a pointer.
865    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
866  }
867  assert(FromVal->getType() == ToType && "Didn't convert right?");
868  return FromVal;
869}
870
871/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
872/// or vector value "Old" at the offset specified by Offset.
873///
874/// This happens when we are converting an "integer union" to a
875/// single integer scalar, or when we are converting a "vector union" to a
876/// vector with insert/extractelement instructions.
877///
878/// Offset is an offset from the original alloca, in bits that need to be
879/// shifted to the right.
880Value *ConvertToScalarInfo::
881ConvertScalar_InsertValue(Value *SV, Value *Old,
882                          uint64_t Offset, IRBuilder<> &Builder) {
883  // Convert the stored type to the actual type, shift it left to insert
884  // then 'or' into place.
885  const Type *AllocaType = Old->getType();
886  LLVMContext &Context = Old->getContext();
887
888  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
889    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
890    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
891
892    // Changing the whole vector with memset or with an access of a different
893    // vector type?
894    if (ValSize == VecSize) {
895      // If the two types have the same primitive size, use a bit cast.
896      // Otherwise, it is two vectors with the same element type that has
897      // the same allocation size but different number of elements so use
898      // a shuffle vector.
899      if (VTy->getPrimitiveSizeInBits() ==
900          SV->getType()->getPrimitiveSizeInBits())
901        return Builder.CreateBitCast(SV, AllocaType, "tmp");
902      else
903        return CreateShuffleVectorCast(SV, VTy, Builder);
904    }
905
906    if (isPowerOf2_64(VecSize / ValSize)) {
907      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
908             "value of a smaller vector type at a nonzero offset.");
909
910      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
911                                                       ValSize);
912      unsigned NumCastVectorElements = VecSize / ValSize;
913
914      LLVMContext &Context = SV->getContext();
915      const Type *OldCastTy = VectorType::get(CastElementTy,
916                                              NumCastVectorElements);
917      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
918
919      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
920
921      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
922      unsigned Elt = Offset/EltSize;
923      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
924      Value *Insert =
925        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
926                                        Type::getInt32Ty(Context), Elt), "tmp");
927      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
928    }
929
930    // Must be an element insertion.
931    assert(SV->getType() == VTy->getElementType());
932    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
933    unsigned Elt = Offset/EltSize;
934    return Builder.CreateInsertElement(Old, SV,
935                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
936                                     "tmp");
937  }
938
939  // If SV is a first-class aggregate value, insert each value recursively.
940  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
941    const StructLayout &Layout = *TD.getStructLayout(ST);
942    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
943      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
944      Old = ConvertScalar_InsertValue(Elt, Old,
945                                      Offset+Layout.getElementOffsetInBits(i),
946                                      Builder);
947    }
948    return Old;
949  }
950
951  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
952    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
953    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
954      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
955      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
956    }
957    return Old;
958  }
959
960  // If SV is a float, convert it to the appropriate integer type.
961  // If it is a pointer, do the same.
962  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
963  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
964  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
965  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
966  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
967    SV = Builder.CreateBitCast(SV,
968                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
969  else if (SV->getType()->isPointerTy())
970    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
971
972  // Zero extend or truncate the value if needed.
973  if (SV->getType() != AllocaType) {
974    if (SV->getType()->getPrimitiveSizeInBits() <
975             AllocaType->getPrimitiveSizeInBits())
976      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
977    else {
978      // Truncation may be needed if storing more than the alloca can hold
979      // (undefined behavior).
980      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
981      SrcWidth = DestWidth;
982      SrcStoreWidth = DestStoreWidth;
983    }
984  }
985
986  // If this is a big-endian system and the store is narrower than the
987  // full alloca type, we need to do a shift to get the right bits.
988  int ShAmt = 0;
989  if (TD.isBigEndian()) {
990    // On big-endian machines, the lowest bit is stored at the bit offset
991    // from the pointer given by getTypeStoreSizeInBits.  This matters for
992    // integers with a bitwidth that is not a multiple of 8.
993    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
994  } else {
995    ShAmt = Offset;
996  }
997
998  // Note: we support negative bitwidths (with shr) which are not defined.
999  // We do this to support (f.e.) stores off the end of a structure where
1000  // only some bits in the structure are set.
1001  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1002  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1003    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1004                           ShAmt), "tmp");
1005    Mask <<= ShAmt;
1006  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1007    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1008                            -ShAmt), "tmp");
1009    Mask = Mask.lshr(-ShAmt);
1010  }
1011
1012  // Mask out the bits we are about to insert from the old value, and or
1013  // in the new bits.
1014  if (SrcWidth != DestWidth) {
1015    assert(DestWidth > SrcWidth);
1016    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1017    SV = Builder.CreateOr(Old, SV, "ins");
1018  }
1019  return SV;
1020}
1021
1022
1023//===----------------------------------------------------------------------===//
1024// SRoA Driver
1025//===----------------------------------------------------------------------===//
1026
1027
1028bool SROA::runOnFunction(Function &F) {
1029  TD = getAnalysisIfAvailable<TargetData>();
1030
1031  bool Changed = performPromotion(F);
1032
1033  // FIXME: ScalarRepl currently depends on TargetData more than it
1034  // theoretically needs to. It should be refactored in order to support
1035  // target-independent IR. Until this is done, just skip the actual
1036  // scalar-replacement portion of this pass.
1037  if (!TD) return Changed;
1038
1039  while (1) {
1040    bool LocalChange = performScalarRepl(F);
1041    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1042    Changed = true;
1043    LocalChange = performPromotion(F);
1044    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1045  }
1046
1047  return Changed;
1048}
1049
1050namespace {
1051class AllocaPromoter : public LoadAndStorePromoter {
1052  AllocaInst *AI;
1053public:
1054  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
1055    : LoadAndStorePromoter(Insts, S), AI(0) {}
1056
1057  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1058    // Remember which alloca we're promoting (for isInstInList).
1059    this->AI = AI;
1060    LoadAndStorePromoter::run(Insts);
1061    AI->eraseFromParent();
1062  }
1063
1064  virtual bool isInstInList(Instruction *I,
1065                            const SmallVectorImpl<Instruction*> &Insts) const {
1066    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1067      return LI->getOperand(0) == AI;
1068    return cast<StoreInst>(I)->getPointerOperand() == AI;
1069  }
1070};
1071} // end anon namespace
1072
1073/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1074/// subsequently loaded can be rewritten to load both input pointers and then
1075/// select between the result, allowing the load of the alloca to be promoted.
1076/// From this:
1077///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1078///   %V = load i32* %P2
1079/// to:
1080///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1081///   %V2 = load i32* %Other
1082///   %V = select i1 %cond, i32 %V1, i32 %V2
1083///
1084/// We can do this to a select if its only uses are loads and if the operand to
1085/// the select can be loaded unconditionally.
1086static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1087  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1088  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1089
1090  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1091       UI != UE; ++UI) {
1092    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1093    if (LI == 0 || LI->isVolatile()) return false;
1094
1095    // Both operands to the select need to be dereferencable, either absolutely
1096    // (e.g. allocas) or at this point because we can see other accesses to it.
1097    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1098                                                    LI->getAlignment(), TD))
1099      return false;
1100    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1101                                                    LI->getAlignment(), TD))
1102      return false;
1103  }
1104
1105  return true;
1106}
1107
1108/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1109/// subsequently loaded can be rewritten to load both input pointers in the pred
1110/// blocks and then PHI the results, allowing the load of the alloca to be
1111/// promoted.
1112/// From this:
1113///   %P2 = phi [i32* %Alloca, i32* %Other]
1114///   %V = load i32* %P2
1115/// to:
1116///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1117///   ...
1118///   %V2 = load i32* %Other
1119///   ...
1120///   %V = phi [i32 %V1, i32 %V2]
1121///
1122/// We can do this to a select if its only uses are loads and if the operand to
1123/// the select can be loaded unconditionally.
1124static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1125  // For now, we can only do this promotion if the load is in the same block as
1126  // the PHI, and if there are no stores between the phi and load.
1127  // TODO: Allow recursive phi users.
1128  // TODO: Allow stores.
1129  BasicBlock *BB = PN->getParent();
1130  unsigned MaxAlign = 0;
1131  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1132       UI != UE; ++UI) {
1133    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1134    if (LI == 0 || LI->isVolatile()) return false;
1135
1136    // For now we only allow loads in the same block as the PHI.  This is a
1137    // common case that happens when instcombine merges two loads through a PHI.
1138    if (LI->getParent() != BB) return false;
1139
1140    // Ensure that there are no instructions between the PHI and the load that
1141    // could store.
1142    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1143      if (BBI->mayWriteToMemory())
1144        return false;
1145
1146    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1147  }
1148
1149  // Okay, we know that we have one or more loads in the same block as the PHI.
1150  // We can transform this if it is safe to push the loads into the predecessor
1151  // blocks.  The only thing to watch out for is that we can't put a possibly
1152  // trapping load in the predecessor if it is a critical edge.
1153  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1154    BasicBlock *Pred = PN->getIncomingBlock(i);
1155
1156    // If the predecessor has a single successor, then the edge isn't critical.
1157    if (Pred->getTerminator()->getNumSuccessors() == 1)
1158      continue;
1159
1160    Value *InVal = PN->getIncomingValue(i);
1161
1162    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1163    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1164      if (II->getParent() == Pred)
1165        return false;
1166
1167    // If this pointer is always safe to load, or if we can prove that there is
1168    // already a load in the block, then we can move the load to the pred block.
1169    if (InVal->isDereferenceablePointer() ||
1170        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1171      continue;
1172
1173    return false;
1174  }
1175
1176  return true;
1177}
1178
1179
1180/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1181/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1182/// not quite there, this will transform the code to allow promotion.  As such,
1183/// it is a non-pure predicate.
1184static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1185  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1186            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1187
1188  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1189       UI != UE; ++UI) {
1190    User *U = *UI;
1191    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1192      if (LI->isVolatile())
1193        return false;
1194      continue;
1195    }
1196
1197    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1198      if (SI->getOperand(0) == AI || SI->isVolatile())
1199        return false;   // Don't allow a store OF the AI, only INTO the AI.
1200      continue;
1201    }
1202
1203    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1204      // If the condition being selected on is a constant, fold the select, yes
1205      // this does (rarely) happen early on.
1206      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1207        Value *Result = SI->getOperand(1+CI->isZero());
1208        SI->replaceAllUsesWith(Result);
1209        SI->eraseFromParent();
1210
1211        // This is very rare and we just scrambled the use list of AI, start
1212        // over completely.
1213        return tryToMakeAllocaBePromotable(AI, TD);
1214      }
1215
1216      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1217      // loads, then we can transform this by rewriting the select.
1218      if (!isSafeSelectToSpeculate(SI, TD))
1219        return false;
1220
1221      InstsToRewrite.insert(SI);
1222      continue;
1223    }
1224
1225    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1226      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1227        InstsToRewrite.insert(PN);
1228        continue;
1229      }
1230
1231      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1232      // in the pred blocks, then we can transform this by rewriting the PHI.
1233      if (!isSafePHIToSpeculate(PN, TD))
1234        return false;
1235
1236      InstsToRewrite.insert(PN);
1237      continue;
1238    }
1239
1240    return false;
1241  }
1242
1243  // If there are no instructions to rewrite, then all uses are load/stores and
1244  // we're done!
1245  if (InstsToRewrite.empty())
1246    return true;
1247
1248  // If we have instructions that need to be rewritten for this to be promotable
1249  // take care of it now.
1250  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1251    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1252      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1253      // loads with a new select.
1254      while (!SI->use_empty()) {
1255        LoadInst *LI = cast<LoadInst>(SI->use_back());
1256
1257        IRBuilder<> Builder(LI);
1258        LoadInst *TrueLoad =
1259          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1260        LoadInst *FalseLoad =
1261          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1262
1263        // Transfer alignment and TBAA info if present.
1264        TrueLoad->setAlignment(LI->getAlignment());
1265        FalseLoad->setAlignment(LI->getAlignment());
1266        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1267          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1268          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1269        }
1270
1271        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1272        V->takeName(LI);
1273        LI->replaceAllUsesWith(V);
1274        LI->eraseFromParent();
1275      }
1276
1277      // Now that all the loads are gone, the select is gone too.
1278      SI->eraseFromParent();
1279      continue;
1280    }
1281
1282    // Otherwise, we have a PHI node which allows us to push the loads into the
1283    // predecessors.
1284    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1285    if (PN->use_empty()) {
1286      PN->eraseFromParent();
1287      continue;
1288    }
1289
1290    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1291    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1292                                     PN->getName()+".ld", PN);
1293
1294    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1295    // matter which one we get and if any differ, it doesn't matter.
1296    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1297    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1298    unsigned Align = SomeLoad->getAlignment();
1299
1300    // Rewrite all loads of the PN to use the new PHI.
1301    while (!PN->use_empty()) {
1302      LoadInst *LI = cast<LoadInst>(PN->use_back());
1303      LI->replaceAllUsesWith(NewPN);
1304      LI->eraseFromParent();
1305    }
1306
1307    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1308    // insert them into in case we have multiple edges from the same block.
1309    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1310
1311    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1312      BasicBlock *Pred = PN->getIncomingBlock(i);
1313      LoadInst *&Load = InsertedLoads[Pred];
1314      if (Load == 0) {
1315        Load = new LoadInst(PN->getIncomingValue(i),
1316                            PN->getName() + "." + Pred->getName(),
1317                            Pred->getTerminator());
1318        Load->setAlignment(Align);
1319        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1320      }
1321
1322      NewPN->addIncoming(Load, Pred);
1323    }
1324
1325    PN->eraseFromParent();
1326  }
1327
1328  ++NumAdjusted;
1329  return true;
1330}
1331
1332
1333bool SROA::performPromotion(Function &F) {
1334  std::vector<AllocaInst*> Allocas;
1335  DominatorTree *DT = 0;
1336  if (HasDomTree)
1337    DT = &getAnalysis<DominatorTree>();
1338
1339  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1340
1341  bool Changed = false;
1342  SmallVector<Instruction*, 64> Insts;
1343  while (1) {
1344    Allocas.clear();
1345
1346    // Find allocas that are safe to promote, by looking at all instructions in
1347    // the entry node
1348    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1349      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1350        if (tryToMakeAllocaBePromotable(AI, TD))
1351          Allocas.push_back(AI);
1352
1353    if (Allocas.empty()) break;
1354
1355    if (HasDomTree)
1356      PromoteMemToReg(Allocas, *DT);
1357    else {
1358      SSAUpdater SSA;
1359      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1360        AllocaInst *AI = Allocas[i];
1361
1362        // Build list of instructions to promote.
1363        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1364             UI != E; ++UI)
1365          Insts.push_back(cast<Instruction>(*UI));
1366
1367        AllocaPromoter(Insts, SSA).run(AI, Insts);
1368        Insts.clear();
1369      }
1370    }
1371    NumPromoted += Allocas.size();
1372    Changed = true;
1373  }
1374
1375  return Changed;
1376}
1377
1378
1379/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1380/// SROA.  It must be a struct or array type with a small number of elements.
1381static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1382  const Type *T = AI->getAllocatedType();
1383  // Do not promote any struct into more than 32 separate vars.
1384  if (const StructType *ST = dyn_cast<StructType>(T))
1385    return ST->getNumElements() <= 32;
1386  // Arrays are much less likely to be safe for SROA; only consider
1387  // them if they are very small.
1388  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1389    return AT->getNumElements() <= 8;
1390  return false;
1391}
1392
1393
1394// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1395// which runs on all of the malloc/alloca instructions in the function, removing
1396// them if they are only used by getelementptr instructions.
1397//
1398bool SROA::performScalarRepl(Function &F) {
1399  std::vector<AllocaInst*> WorkList;
1400
1401  // Scan the entry basic block, adding allocas to the worklist.
1402  BasicBlock &BB = F.getEntryBlock();
1403  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1404    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1405      WorkList.push_back(A);
1406
1407  // Process the worklist
1408  bool Changed = false;
1409  while (!WorkList.empty()) {
1410    AllocaInst *AI = WorkList.back();
1411    WorkList.pop_back();
1412
1413    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1414    // with unused elements.
1415    if (AI->use_empty()) {
1416      AI->eraseFromParent();
1417      Changed = true;
1418      continue;
1419    }
1420
1421    // If this alloca is impossible for us to promote, reject it early.
1422    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1423      continue;
1424
1425    // Check to see if this allocation is only modified by a memcpy/memmove from
1426    // a constant global.  If this is the case, we can change all users to use
1427    // the constant global instead.  This is commonly produced by the CFE by
1428    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1429    // is only subsequently read.
1430    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1431      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1432      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1433      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1434      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1435      TheCopy->eraseFromParent();  // Don't mutate the global.
1436      AI->eraseFromParent();
1437      ++NumGlobals;
1438      Changed = true;
1439      continue;
1440    }
1441
1442    // Check to see if we can perform the core SROA transformation.  We cannot
1443    // transform the allocation instruction if it is an array allocation
1444    // (allocations OF arrays are ok though), and an allocation of a scalar
1445    // value cannot be decomposed at all.
1446    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1447
1448    // Do not promote [0 x %struct].
1449    if (AllocaSize == 0) continue;
1450
1451    // Do not promote any struct whose size is too big.
1452    if (AllocaSize > SRThreshold) continue;
1453
1454    // If the alloca looks like a good candidate for scalar replacement, and if
1455    // all its users can be transformed, then split up the aggregate into its
1456    // separate elements.
1457    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1458      DoScalarReplacement(AI, WorkList);
1459      Changed = true;
1460      continue;
1461    }
1462
1463    // If we can turn this aggregate value (potentially with casts) into a
1464    // simple scalar value that can be mem2reg'd into a register value.
1465    // IsNotTrivial tracks whether this is something that mem2reg could have
1466    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1467    // that we can't just check based on the type: the alloca may be of an i32
1468    // but that has pointer arithmetic to set byte 3 of it or something.
1469    if (AllocaInst *NewAI =
1470          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1471      NewAI->takeName(AI);
1472      AI->eraseFromParent();
1473      ++NumConverted;
1474      Changed = true;
1475      continue;
1476    }
1477
1478    // Otherwise, couldn't process this alloca.
1479  }
1480
1481  return Changed;
1482}
1483
1484/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1485/// predicate, do SROA now.
1486void SROA::DoScalarReplacement(AllocaInst *AI,
1487                               std::vector<AllocaInst*> &WorkList) {
1488  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1489  SmallVector<AllocaInst*, 32> ElementAllocas;
1490  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1491    ElementAllocas.reserve(ST->getNumContainedTypes());
1492    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1493      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1494                                      AI->getAlignment(),
1495                                      AI->getName() + "." + Twine(i), AI);
1496      ElementAllocas.push_back(NA);
1497      WorkList.push_back(NA);  // Add to worklist for recursive processing
1498    }
1499  } else {
1500    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1501    ElementAllocas.reserve(AT->getNumElements());
1502    const Type *ElTy = AT->getElementType();
1503    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1504      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1505                                      AI->getName() + "." + Twine(i), AI);
1506      ElementAllocas.push_back(NA);
1507      WorkList.push_back(NA);  // Add to worklist for recursive processing
1508    }
1509  }
1510
1511  // Now that we have created the new alloca instructions, rewrite all the
1512  // uses of the old alloca.
1513  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1514
1515  // Now erase any instructions that were made dead while rewriting the alloca.
1516  DeleteDeadInstructions();
1517  AI->eraseFromParent();
1518
1519  ++NumReplaced;
1520}
1521
1522/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1523/// recursively including all their operands that become trivially dead.
1524void SROA::DeleteDeadInstructions() {
1525  while (!DeadInsts.empty()) {
1526    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1527
1528    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1529      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1530        // Zero out the operand and see if it becomes trivially dead.
1531        // (But, don't add allocas to the dead instruction list -- they are
1532        // already on the worklist and will be deleted separately.)
1533        *OI = 0;
1534        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1535          DeadInsts.push_back(U);
1536      }
1537
1538    I->eraseFromParent();
1539  }
1540}
1541
1542/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1543/// performing scalar replacement of alloca AI.  The results are flagged in
1544/// the Info parameter.  Offset indicates the position within AI that is
1545/// referenced by this instruction.
1546void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1547                               AllocaInfo &Info) {
1548  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1549    Instruction *User = cast<Instruction>(*UI);
1550
1551    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1552      isSafeForScalarRepl(BC, Offset, Info);
1553    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1554      uint64_t GEPOffset = Offset;
1555      isSafeGEP(GEPI, GEPOffset, Info);
1556      if (!Info.isUnsafe)
1557        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1558    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1559      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1560      if (Length == 0)
1561        return MarkUnsafe(Info, User);
1562      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1563                      UI.getOperandNo() == 0, Info, MI,
1564                      true /*AllowWholeAccess*/);
1565    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1566      if (LI->isVolatile())
1567        return MarkUnsafe(Info, User);
1568      const Type *LIType = LI->getType();
1569      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1570                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1571      Info.hasALoadOrStore = true;
1572
1573    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1574      // Store is ok if storing INTO the pointer, not storing the pointer
1575      if (SI->isVolatile() || SI->getOperand(0) == I)
1576        return MarkUnsafe(Info, User);
1577
1578      const Type *SIType = SI->getOperand(0)->getType();
1579      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1580                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1581      Info.hasALoadOrStore = true;
1582    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1583      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1584    } else {
1585      return MarkUnsafe(Info, User);
1586    }
1587    if (Info.isUnsafe) return;
1588  }
1589}
1590
1591
1592/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1593/// derived from the alloca, we can often still split the alloca into elements.
1594/// This is useful if we have a large alloca where one element is phi'd
1595/// together somewhere: we can SRoA and promote all the other elements even if
1596/// we end up not being able to promote this one.
1597///
1598/// All we require is that the uses of the PHI do not index into other parts of
1599/// the alloca.  The most important use case for this is single load and stores
1600/// that are PHI'd together, which can happen due to code sinking.
1601void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1602                                           AllocaInfo &Info) {
1603  // If we've already checked this PHI, don't do it again.
1604  if (PHINode *PN = dyn_cast<PHINode>(I))
1605    if (!Info.CheckedPHIs.insert(PN))
1606      return;
1607
1608  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1609    Instruction *User = cast<Instruction>(*UI);
1610
1611    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1612      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1613    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1614      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1615      // but would have to prove that we're staying inside of an element being
1616      // promoted.
1617      if (!GEPI->hasAllZeroIndices())
1618        return MarkUnsafe(Info, User);
1619      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1620    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1621      if (LI->isVolatile())
1622        return MarkUnsafe(Info, User);
1623      const Type *LIType = LI->getType();
1624      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1625                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1626      Info.hasALoadOrStore = true;
1627
1628    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1629      // Store is ok if storing INTO the pointer, not storing the pointer
1630      if (SI->isVolatile() || SI->getOperand(0) == I)
1631        return MarkUnsafe(Info, User);
1632
1633      const Type *SIType = SI->getOperand(0)->getType();
1634      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1635                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1636      Info.hasALoadOrStore = true;
1637    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1638      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1639    } else {
1640      return MarkUnsafe(Info, User);
1641    }
1642    if (Info.isUnsafe) return;
1643  }
1644}
1645
1646/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1647/// replacement.  It is safe when all the indices are constant, in-bounds
1648/// references, and when the resulting offset corresponds to an element within
1649/// the alloca type.  The results are flagged in the Info parameter.  Upon
1650/// return, Offset is adjusted as specified by the GEP indices.
1651void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1652                     uint64_t &Offset, AllocaInfo &Info) {
1653  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1654  if (GEPIt == E)
1655    return;
1656
1657  // Walk through the GEP type indices, checking the types that this indexes
1658  // into.
1659  for (; GEPIt != E; ++GEPIt) {
1660    // Ignore struct elements, no extra checking needed for these.
1661    if ((*GEPIt)->isStructTy())
1662      continue;
1663
1664    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1665    if (!IdxVal)
1666      return MarkUnsafe(Info, GEPI);
1667  }
1668
1669  // Compute the offset due to this GEP and check if the alloca has a
1670  // component element at that offset.
1671  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1672  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1673                                 &Indices[0], Indices.size());
1674  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1675    MarkUnsafe(Info, GEPI);
1676}
1677
1678/// isHomogeneousAggregate - Check if type T is a struct or array containing
1679/// elements of the same type (which is always true for arrays).  If so,
1680/// return true with NumElts and EltTy set to the number of elements and the
1681/// element type, respectively.
1682static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1683                                   const Type *&EltTy) {
1684  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1685    NumElts = AT->getNumElements();
1686    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1687    return true;
1688  }
1689  if (const StructType *ST = dyn_cast<StructType>(T)) {
1690    NumElts = ST->getNumContainedTypes();
1691    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1692    for (unsigned n = 1; n < NumElts; ++n) {
1693      if (ST->getContainedType(n) != EltTy)
1694        return false;
1695    }
1696    return true;
1697  }
1698  return false;
1699}
1700
1701/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1702/// "homogeneous" aggregates with the same element type and number of elements.
1703static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1704  if (T1 == T2)
1705    return true;
1706
1707  unsigned NumElts1, NumElts2;
1708  const Type *EltTy1, *EltTy2;
1709  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1710      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1711      NumElts1 == NumElts2 &&
1712      EltTy1 == EltTy2)
1713    return true;
1714
1715  return false;
1716}
1717
1718/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1719/// alloca or has an offset and size that corresponds to a component element
1720/// within it.  The offset checked here may have been formed from a GEP with a
1721/// pointer bitcasted to a different type.
1722///
1723/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1724/// unit.  If false, it only allows accesses known to be in a single element.
1725void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1726                           const Type *MemOpType, bool isStore,
1727                           AllocaInfo &Info, Instruction *TheAccess,
1728                           bool AllowWholeAccess) {
1729  // Check if this is a load/store of the entire alloca.
1730  if (Offset == 0 && AllowWholeAccess &&
1731      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1732    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1733    // loads/stores (which are essentially the same as the MemIntrinsics with
1734    // regard to copying padding between elements).  But, if an alloca is
1735    // flagged as both a source and destination of such operations, we'll need
1736    // to check later for padding between elements.
1737    if (!MemOpType || MemOpType->isIntegerTy()) {
1738      if (isStore)
1739        Info.isMemCpyDst = true;
1740      else
1741        Info.isMemCpySrc = true;
1742      return;
1743    }
1744    // This is also safe for references using a type that is compatible with
1745    // the type of the alloca, so that loads/stores can be rewritten using
1746    // insertvalue/extractvalue.
1747    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1748      Info.hasSubelementAccess = true;
1749      return;
1750    }
1751  }
1752  // Check if the offset/size correspond to a component within the alloca type.
1753  const Type *T = Info.AI->getAllocatedType();
1754  if (TypeHasComponent(T, Offset, MemSize)) {
1755    Info.hasSubelementAccess = true;
1756    return;
1757  }
1758
1759  return MarkUnsafe(Info, TheAccess);
1760}
1761
1762/// TypeHasComponent - Return true if T has a component type with the
1763/// specified offset and size.  If Size is zero, do not check the size.
1764bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1765  const Type *EltTy;
1766  uint64_t EltSize;
1767  if (const StructType *ST = dyn_cast<StructType>(T)) {
1768    const StructLayout *Layout = TD->getStructLayout(ST);
1769    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1770    EltTy = ST->getContainedType(EltIdx);
1771    EltSize = TD->getTypeAllocSize(EltTy);
1772    Offset -= Layout->getElementOffset(EltIdx);
1773  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1774    EltTy = AT->getElementType();
1775    EltSize = TD->getTypeAllocSize(EltTy);
1776    if (Offset >= AT->getNumElements() * EltSize)
1777      return false;
1778    Offset %= EltSize;
1779  } else {
1780    return false;
1781  }
1782  if (Offset == 0 && (Size == 0 || EltSize == Size))
1783    return true;
1784  // Check if the component spans multiple elements.
1785  if (Offset + Size > EltSize)
1786    return false;
1787  return TypeHasComponent(EltTy, Offset, Size);
1788}
1789
1790/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1791/// the instruction I, which references it, to use the separate elements.
1792/// Offset indicates the position within AI that is referenced by this
1793/// instruction.
1794void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1795                                SmallVector<AllocaInst*, 32> &NewElts) {
1796  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1797    Use &TheUse = UI.getUse();
1798    Instruction *User = cast<Instruction>(*UI++);
1799
1800    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1801      RewriteBitCast(BC, AI, Offset, NewElts);
1802      continue;
1803    }
1804
1805    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1806      RewriteGEP(GEPI, AI, Offset, NewElts);
1807      continue;
1808    }
1809
1810    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1811      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1812      uint64_t MemSize = Length->getZExtValue();
1813      if (Offset == 0 &&
1814          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1815        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1816      // Otherwise the intrinsic can only touch a single element and the
1817      // address operand will be updated, so nothing else needs to be done.
1818      continue;
1819    }
1820
1821    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1822      const Type *LIType = LI->getType();
1823
1824      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1825        // Replace:
1826        //   %res = load { i32, i32 }* %alloc
1827        // with:
1828        //   %load.0 = load i32* %alloc.0
1829        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1830        //   %load.1 = load i32* %alloc.1
1831        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1832        // (Also works for arrays instead of structs)
1833        Value *Insert = UndefValue::get(LIType);
1834        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1835          Value *Load = new LoadInst(NewElts[i], "load", LI);
1836          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1837        }
1838        LI->replaceAllUsesWith(Insert);
1839        DeadInsts.push_back(LI);
1840      } else if (LIType->isIntegerTy() &&
1841                 TD->getTypeAllocSize(LIType) ==
1842                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1843        // If this is a load of the entire alloca to an integer, rewrite it.
1844        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1845      }
1846      continue;
1847    }
1848
1849    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1850      Value *Val = SI->getOperand(0);
1851      const Type *SIType = Val->getType();
1852      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1853        // Replace:
1854        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1855        // with:
1856        //   %val.0 = extractvalue { i32, i32 } %val, 0
1857        //   store i32 %val.0, i32* %alloc.0
1858        //   %val.1 = extractvalue { i32, i32 } %val, 1
1859        //   store i32 %val.1, i32* %alloc.1
1860        // (Also works for arrays instead of structs)
1861        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1862          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1863          new StoreInst(Extract, NewElts[i], SI);
1864        }
1865        DeadInsts.push_back(SI);
1866      } else if (SIType->isIntegerTy() &&
1867                 TD->getTypeAllocSize(SIType) ==
1868                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1869        // If this is a store of the entire alloca from an integer, rewrite it.
1870        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1871      }
1872      continue;
1873    }
1874
1875    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1876      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1877      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1878      // the new pointer.
1879      if (!isa<AllocaInst>(I)) continue;
1880
1881      assert(Offset == 0 && NewElts[0] &&
1882             "Direct alloca use should have a zero offset");
1883
1884      // If we have a use of the alloca, we know the derived uses will be
1885      // utilizing just the first element of the scalarized result.  Insert a
1886      // bitcast of the first alloca before the user as required.
1887      AllocaInst *NewAI = NewElts[0];
1888      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1889      NewAI->moveBefore(BCI);
1890      TheUse = BCI;
1891      continue;
1892    }
1893  }
1894}
1895
1896/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1897/// and recursively continue updating all of its uses.
1898void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1899                          SmallVector<AllocaInst*, 32> &NewElts) {
1900  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1901  if (BC->getOperand(0) != AI)
1902    return;
1903
1904  // The bitcast references the original alloca.  Replace its uses with
1905  // references to the first new element alloca.
1906  Instruction *Val = NewElts[0];
1907  if (Val->getType() != BC->getDestTy()) {
1908    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1909    Val->takeName(BC);
1910  }
1911  BC->replaceAllUsesWith(Val);
1912  DeadInsts.push_back(BC);
1913}
1914
1915/// FindElementAndOffset - Return the index of the element containing Offset
1916/// within the specified type, which must be either a struct or an array.
1917/// Sets T to the type of the element and Offset to the offset within that
1918/// element.  IdxTy is set to the type of the index result to be used in a
1919/// GEP instruction.
1920uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1921                                    const Type *&IdxTy) {
1922  uint64_t Idx = 0;
1923  if (const StructType *ST = dyn_cast<StructType>(T)) {
1924    const StructLayout *Layout = TD->getStructLayout(ST);
1925    Idx = Layout->getElementContainingOffset(Offset);
1926    T = ST->getContainedType(Idx);
1927    Offset -= Layout->getElementOffset(Idx);
1928    IdxTy = Type::getInt32Ty(T->getContext());
1929    return Idx;
1930  }
1931  const ArrayType *AT = cast<ArrayType>(T);
1932  T = AT->getElementType();
1933  uint64_t EltSize = TD->getTypeAllocSize(T);
1934  Idx = Offset / EltSize;
1935  Offset -= Idx * EltSize;
1936  IdxTy = Type::getInt64Ty(T->getContext());
1937  return Idx;
1938}
1939
1940/// RewriteGEP - Check if this GEP instruction moves the pointer across
1941/// elements of the alloca that are being split apart, and if so, rewrite
1942/// the GEP to be relative to the new element.
1943void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1944                      SmallVector<AllocaInst*, 32> &NewElts) {
1945  uint64_t OldOffset = Offset;
1946  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1947  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1948                                 &Indices[0], Indices.size());
1949
1950  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1951
1952  const Type *T = AI->getAllocatedType();
1953  const Type *IdxTy;
1954  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1955  if (GEPI->getOperand(0) == AI)
1956    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1957
1958  T = AI->getAllocatedType();
1959  uint64_t EltOffset = Offset;
1960  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1961
1962  // If this GEP does not move the pointer across elements of the alloca
1963  // being split, then it does not needs to be rewritten.
1964  if (Idx == OldIdx)
1965    return;
1966
1967  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1968  SmallVector<Value*, 8> NewArgs;
1969  NewArgs.push_back(Constant::getNullValue(i32Ty));
1970  while (EltOffset != 0) {
1971    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1972    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1973  }
1974  Instruction *Val = NewElts[Idx];
1975  if (NewArgs.size() > 1) {
1976    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1977                                            NewArgs.end(), "", GEPI);
1978    Val->takeName(GEPI);
1979  }
1980  if (Val->getType() != GEPI->getType())
1981    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1982  GEPI->replaceAllUsesWith(Val);
1983  DeadInsts.push_back(GEPI);
1984}
1985
1986/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1987/// Rewrite it to copy or set the elements of the scalarized memory.
1988void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1989                                        AllocaInst *AI,
1990                                        SmallVector<AllocaInst*, 32> &NewElts) {
1991  // If this is a memcpy/memmove, construct the other pointer as the
1992  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1993  // that doesn't have anything to do with the alloca that we are promoting. For
1994  // memset, this Value* stays null.
1995  Value *OtherPtr = 0;
1996  unsigned MemAlignment = MI->getAlignment();
1997  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1998    if (Inst == MTI->getRawDest())
1999      OtherPtr = MTI->getRawSource();
2000    else {
2001      assert(Inst == MTI->getRawSource());
2002      OtherPtr = MTI->getRawDest();
2003    }
2004  }
2005
2006  // If there is an other pointer, we want to convert it to the same pointer
2007  // type as AI has, so we can GEP through it safely.
2008  if (OtherPtr) {
2009    unsigned AddrSpace =
2010      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2011
2012    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2013    // optimization, but it's also required to detect the corner case where
2014    // both pointer operands are referencing the same memory, and where
2015    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2016    // function is only called for mem intrinsics that access the whole
2017    // aggregate, so non-zero GEPs are not an issue here.)
2018    OtherPtr = OtherPtr->stripPointerCasts();
2019
2020    // Copying the alloca to itself is a no-op: just delete it.
2021    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2022      // This code will run twice for a no-op memcpy -- once for each operand.
2023      // Put only one reference to MI on the DeadInsts list.
2024      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2025             E = DeadInsts.end(); I != E; ++I)
2026        if (*I == MI) return;
2027      DeadInsts.push_back(MI);
2028      return;
2029    }
2030
2031    // If the pointer is not the right type, insert a bitcast to the right
2032    // type.
2033    const Type *NewTy =
2034      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2035
2036    if (OtherPtr->getType() != NewTy)
2037      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2038  }
2039
2040  // Process each element of the aggregate.
2041  bool SROADest = MI->getRawDest() == Inst;
2042
2043  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2044
2045  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2046    // If this is a memcpy/memmove, emit a GEP of the other element address.
2047    Value *OtherElt = 0;
2048    unsigned OtherEltAlign = MemAlignment;
2049
2050    if (OtherPtr) {
2051      Value *Idx[2] = { Zero,
2052                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2053      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2054                                              OtherPtr->getName()+"."+Twine(i),
2055                                                   MI);
2056      uint64_t EltOffset;
2057      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2058      const Type *OtherTy = OtherPtrTy->getElementType();
2059      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2060        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2061      } else {
2062        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2063        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2064      }
2065
2066      // The alignment of the other pointer is the guaranteed alignment of the
2067      // element, which is affected by both the known alignment of the whole
2068      // mem intrinsic and the alignment of the element.  If the alignment of
2069      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2070      // known alignment is just 4 bytes.
2071      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2072    }
2073
2074    Value *EltPtr = NewElts[i];
2075    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2076
2077    // If we got down to a scalar, insert a load or store as appropriate.
2078    if (EltTy->isSingleValueType()) {
2079      if (isa<MemTransferInst>(MI)) {
2080        if (SROADest) {
2081          // From Other to Alloca.
2082          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2083          new StoreInst(Elt, EltPtr, MI);
2084        } else {
2085          // From Alloca to Other.
2086          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2087          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2088        }
2089        continue;
2090      }
2091      assert(isa<MemSetInst>(MI));
2092
2093      // If the stored element is zero (common case), just store a null
2094      // constant.
2095      Constant *StoreVal;
2096      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2097        if (CI->isZero()) {
2098          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2099        } else {
2100          // If EltTy is a vector type, get the element type.
2101          const Type *ValTy = EltTy->getScalarType();
2102
2103          // Construct an integer with the right value.
2104          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2105          APInt OneVal(EltSize, CI->getZExtValue());
2106          APInt TotalVal(OneVal);
2107          // Set each byte.
2108          for (unsigned i = 0; 8*i < EltSize; ++i) {
2109            TotalVal = TotalVal.shl(8);
2110            TotalVal |= OneVal;
2111          }
2112
2113          // Convert the integer value to the appropriate type.
2114          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2115          if (ValTy->isPointerTy())
2116            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2117          else if (ValTy->isFloatingPointTy())
2118            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2119          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2120
2121          // If the requested value was a vector constant, create it.
2122          if (EltTy != ValTy) {
2123            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2124            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2125            StoreVal = ConstantVector::get(Elts);
2126          }
2127        }
2128        new StoreInst(StoreVal, EltPtr, MI);
2129        continue;
2130      }
2131      // Otherwise, if we're storing a byte variable, use a memset call for
2132      // this element.
2133    }
2134
2135    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2136
2137    IRBuilder<> Builder(MI);
2138
2139    // Finally, insert the meminst for this element.
2140    if (isa<MemSetInst>(MI)) {
2141      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2142                           MI->isVolatile());
2143    } else {
2144      assert(isa<MemTransferInst>(MI));
2145      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2146      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2147
2148      if (isa<MemCpyInst>(MI))
2149        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2150      else
2151        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2152    }
2153  }
2154  DeadInsts.push_back(MI);
2155}
2156
2157/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2158/// overwrites the entire allocation.  Extract out the pieces of the stored
2159/// integer and store them individually.
2160void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2161                                         SmallVector<AllocaInst*, 32> &NewElts){
2162  // Extract each element out of the integer according to its structure offset
2163  // and store the element value to the individual alloca.
2164  Value *SrcVal = SI->getOperand(0);
2165  const Type *AllocaEltTy = AI->getAllocatedType();
2166  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2167
2168  IRBuilder<> Builder(SI);
2169
2170  // Handle tail padding by extending the operand
2171  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2172    SrcVal = Builder.CreateZExt(SrcVal,
2173                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2174
2175  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2176               << '\n');
2177
2178  // There are two forms here: AI could be an array or struct.  Both cases
2179  // have different ways to compute the element offset.
2180  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2181    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2182
2183    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2184      // Get the number of bits to shift SrcVal to get the value.
2185      const Type *FieldTy = EltSTy->getElementType(i);
2186      uint64_t Shift = Layout->getElementOffsetInBits(i);
2187
2188      if (TD->isBigEndian())
2189        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2190
2191      Value *EltVal = SrcVal;
2192      if (Shift) {
2193        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2194        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2195      }
2196
2197      // Truncate down to an integer of the right size.
2198      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2199
2200      // Ignore zero sized fields like {}, they obviously contain no data.
2201      if (FieldSizeBits == 0) continue;
2202
2203      if (FieldSizeBits != AllocaSizeBits)
2204        EltVal = Builder.CreateTrunc(EltVal,
2205                             IntegerType::get(SI->getContext(), FieldSizeBits));
2206      Value *DestField = NewElts[i];
2207      if (EltVal->getType() == FieldTy) {
2208        // Storing to an integer field of this size, just do it.
2209      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2210        // Bitcast to the right element type (for fp/vector values).
2211        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2212      } else {
2213        // Otherwise, bitcast the dest pointer (for aggregates).
2214        DestField = Builder.CreateBitCast(DestField,
2215                                     PointerType::getUnqual(EltVal->getType()));
2216      }
2217      new StoreInst(EltVal, DestField, SI);
2218    }
2219
2220  } else {
2221    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2222    const Type *ArrayEltTy = ATy->getElementType();
2223    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2224    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2225
2226    uint64_t Shift;
2227
2228    if (TD->isBigEndian())
2229      Shift = AllocaSizeBits-ElementOffset;
2230    else
2231      Shift = 0;
2232
2233    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2234      // Ignore zero sized fields like {}, they obviously contain no data.
2235      if (ElementSizeBits == 0) continue;
2236
2237      Value *EltVal = SrcVal;
2238      if (Shift) {
2239        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2240        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2241      }
2242
2243      // Truncate down to an integer of the right size.
2244      if (ElementSizeBits != AllocaSizeBits)
2245        EltVal = Builder.CreateTrunc(EltVal,
2246                                     IntegerType::get(SI->getContext(),
2247                                                      ElementSizeBits));
2248      Value *DestField = NewElts[i];
2249      if (EltVal->getType() == ArrayEltTy) {
2250        // Storing to an integer field of this size, just do it.
2251      } else if (ArrayEltTy->isFloatingPointTy() ||
2252                 ArrayEltTy->isVectorTy()) {
2253        // Bitcast to the right element type (for fp/vector values).
2254        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2255      } else {
2256        // Otherwise, bitcast the dest pointer (for aggregates).
2257        DestField = Builder.CreateBitCast(DestField,
2258                                     PointerType::getUnqual(EltVal->getType()));
2259      }
2260      new StoreInst(EltVal, DestField, SI);
2261
2262      if (TD->isBigEndian())
2263        Shift -= ElementOffset;
2264      else
2265        Shift += ElementOffset;
2266    }
2267  }
2268
2269  DeadInsts.push_back(SI);
2270}
2271
2272/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2273/// an integer.  Load the individual pieces to form the aggregate value.
2274void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2275                                        SmallVector<AllocaInst*, 32> &NewElts) {
2276  // Extract each element out of the NewElts according to its structure offset
2277  // and form the result value.
2278  const Type *AllocaEltTy = AI->getAllocatedType();
2279  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2280
2281  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2282               << '\n');
2283
2284  // There are two forms here: AI could be an array or struct.  Both cases
2285  // have different ways to compute the element offset.
2286  const StructLayout *Layout = 0;
2287  uint64_t ArrayEltBitOffset = 0;
2288  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2289    Layout = TD->getStructLayout(EltSTy);
2290  } else {
2291    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2292    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2293  }
2294
2295  Value *ResultVal =
2296    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2297
2298  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2299    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2300    // the pointer to an integer of the same size before doing the load.
2301    Value *SrcField = NewElts[i];
2302    const Type *FieldTy =
2303      cast<PointerType>(SrcField->getType())->getElementType();
2304    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2305
2306    // Ignore zero sized fields like {}, they obviously contain no data.
2307    if (FieldSizeBits == 0) continue;
2308
2309    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2310                                                     FieldSizeBits);
2311    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2312        !FieldTy->isVectorTy())
2313      SrcField = new BitCastInst(SrcField,
2314                                 PointerType::getUnqual(FieldIntTy),
2315                                 "", LI);
2316    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2317
2318    // If SrcField is a fp or vector of the right size but that isn't an
2319    // integer type, bitcast to an integer so we can shift it.
2320    if (SrcField->getType() != FieldIntTy)
2321      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2322
2323    // Zero extend the field to be the same size as the final alloca so that
2324    // we can shift and insert it.
2325    if (SrcField->getType() != ResultVal->getType())
2326      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2327
2328    // Determine the number of bits to shift SrcField.
2329    uint64_t Shift;
2330    if (Layout) // Struct case.
2331      Shift = Layout->getElementOffsetInBits(i);
2332    else  // Array case.
2333      Shift = i*ArrayEltBitOffset;
2334
2335    if (TD->isBigEndian())
2336      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2337
2338    if (Shift) {
2339      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2340      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2341    }
2342
2343    // Don't create an 'or x, 0' on the first iteration.
2344    if (!isa<Constant>(ResultVal) ||
2345        !cast<Constant>(ResultVal)->isNullValue())
2346      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2347    else
2348      ResultVal = SrcField;
2349  }
2350
2351  // Handle tail padding by truncating the result
2352  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2353    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2354
2355  LI->replaceAllUsesWith(ResultVal);
2356  DeadInsts.push_back(LI);
2357}
2358
2359/// HasPadding - Return true if the specified type has any structure or
2360/// alignment padding in between the elements that would be split apart
2361/// by SROA; return false otherwise.
2362static bool HasPadding(const Type *Ty, const TargetData &TD) {
2363  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2364    Ty = ATy->getElementType();
2365    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2366  }
2367
2368  // SROA currently handles only Arrays and Structs.
2369  const StructType *STy = cast<StructType>(Ty);
2370  const StructLayout *SL = TD.getStructLayout(STy);
2371  unsigned PrevFieldBitOffset = 0;
2372  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2373    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2374
2375    // Check to see if there is any padding between this element and the
2376    // previous one.
2377    if (i) {
2378      unsigned PrevFieldEnd =
2379        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2380      if (PrevFieldEnd < FieldBitOffset)
2381        return true;
2382    }
2383    PrevFieldBitOffset = FieldBitOffset;
2384  }
2385  // Check for tail padding.
2386  if (unsigned EltCount = STy->getNumElements()) {
2387    unsigned PrevFieldEnd = PrevFieldBitOffset +
2388      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2389    if (PrevFieldEnd < SL->getSizeInBits())
2390      return true;
2391  }
2392  return false;
2393}
2394
2395/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2396/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2397/// or 1 if safe after canonicalization has been performed.
2398bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2399  // Loop over the use list of the alloca.  We can only transform it if all of
2400  // the users are safe to transform.
2401  AllocaInfo Info(AI);
2402
2403  isSafeForScalarRepl(AI, 0, Info);
2404  if (Info.isUnsafe) {
2405    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2406    return false;
2407  }
2408
2409  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2410  // source and destination, we have to be careful.  In particular, the memcpy
2411  // could be moving around elements that live in structure padding of the LLVM
2412  // types, but may actually be used.  In these cases, we refuse to promote the
2413  // struct.
2414  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2415      HasPadding(AI->getAllocatedType(), *TD))
2416    return false;
2417
2418  // If the alloca never has an access to just *part* of it, but is accessed
2419  // via loads and stores, then we should use ConvertToScalarInfo to promote
2420  // the alloca instead of promoting each piece at a time and inserting fission
2421  // and fusion code.
2422  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2423    // If the struct/array just has one element, use basic SRoA.
2424    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2425      if (ST->getNumElements() > 1) return false;
2426    } else {
2427      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2428        return false;
2429    }
2430  }
2431
2432  return true;
2433}
2434
2435
2436
2437/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2438/// some part of a constant global variable.  This intentionally only accepts
2439/// constant expressions because we don't can't rewrite arbitrary instructions.
2440static bool PointsToConstantGlobal(Value *V) {
2441  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2442    return GV->isConstant();
2443  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2444    if (CE->getOpcode() == Instruction::BitCast ||
2445        CE->getOpcode() == Instruction::GetElementPtr)
2446      return PointsToConstantGlobal(CE->getOperand(0));
2447  return false;
2448}
2449
2450/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2451/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2452/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2453/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2454/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2455/// the alloca, and if the source pointer is a pointer to a constant global, we
2456/// can optimize this.
2457static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2458                                           bool isOffset) {
2459  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2460    User *U = cast<Instruction>(*UI);
2461
2462    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2463      // Ignore non-volatile loads, they are always ok.
2464      if (LI->isVolatile()) return false;
2465      continue;
2466    }
2467
2468    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2469      // If uses of the bitcast are ok, we are ok.
2470      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2471        return false;
2472      continue;
2473    }
2474    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2475      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2476      // doesn't, it does.
2477      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2478                                         isOffset || !GEP->hasAllZeroIndices()))
2479        return false;
2480      continue;
2481    }
2482
2483    if (CallSite CS = U) {
2484      // If this is a readonly/readnone call site, then we know it is just a
2485      // load and we can ignore it.
2486      if (CS.onlyReadsMemory())
2487        continue;
2488
2489      // If this is the function being called then we treat it like a load and
2490      // ignore it.
2491      if (CS.isCallee(UI))
2492        continue;
2493
2494      // If this is being passed as a byval argument, the caller is making a
2495      // copy, so it is only a read of the alloca.
2496      unsigned ArgNo = CS.getArgumentNo(UI);
2497      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2498        continue;
2499    }
2500
2501    // If this is isn't our memcpy/memmove, reject it as something we can't
2502    // handle.
2503    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2504    if (MI == 0)
2505      return false;
2506
2507    // If the transfer is using the alloca as a source of the transfer, then
2508    // ignore it since it is a load (unless the transfer is volatile).
2509    if (UI.getOperandNo() == 1) {
2510      if (MI->isVolatile()) return false;
2511      continue;
2512    }
2513
2514    // If we already have seen a copy, reject the second one.
2515    if (TheCopy) return false;
2516
2517    // If the pointer has been offset from the start of the alloca, we can't
2518    // safely handle this.
2519    if (isOffset) return false;
2520
2521    // If the memintrinsic isn't using the alloca as the dest, reject it.
2522    if (UI.getOperandNo() != 0) return false;
2523
2524    // If the source of the memcpy/move is not a constant global, reject it.
2525    if (!PointsToConstantGlobal(MI->getSource()))
2526      return false;
2527
2528    // Otherwise, the transform is safe.  Remember the copy instruction.
2529    TheCopy = MI;
2530  }
2531  return true;
2532}
2533
2534/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2535/// modified by a copy from a constant global.  If we can prove this, we can
2536/// replace any uses of the alloca with uses of the global directly.
2537MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2538  MemTransferInst *TheCopy = 0;
2539  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2540    return TheCopy;
2541  return 0;
2542}
2543