LICM.cpp revision 223017
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66namespace {
67  struct LICM : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LICM() : LoopPass(ID) {
70      initializeLICMPass(*PassRegistry::getPassRegistry());
71    }
72
73    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
74
75    /// This transformation requires natural loop information & requires that
76    /// loop preheaders be inserted into the CFG...
77    ///
78    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79      AU.setPreservesCFG();
80      AU.addRequired<DominatorTree>();
81      AU.addRequired<LoopInfo>();
82      AU.addRequiredID(LoopSimplifyID);
83      AU.addRequired<AliasAnalysis>();
84      AU.addPreserved<AliasAnalysis>();
85      AU.addPreserved("scalar-evolution");
86      AU.addPreservedID(LoopSimplifyID);
87    }
88
89    bool doFinalization() {
90      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
91      return false;
92    }
93
94  private:
95    AliasAnalysis *AA;       // Current AliasAnalysis information
96    LoopInfo      *LI;       // Current LoopInfo
97    DominatorTree *DT;       // Dominator Tree for the current Loop.
98
99    // State that is updated as we process loops.
100    bool Changed;            // Set to true when we change anything.
101    BasicBlock *Preheader;   // The preheader block of the current loop...
102    Loop *CurLoop;           // The current loop we are working on...
103    AliasSetTracker *CurAST; // AliasSet information for the current loop...
104    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
105
106    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
107    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
108
109    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
110    /// set.
111    void deleteAnalysisValue(Value *V, Loop *L);
112
113    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
114    /// dominated by the specified block, and that are in the current loop) in
115    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
116    /// visit uses before definitions, allowing us to sink a loop body in one
117    /// pass without iteration.
118    ///
119    void SinkRegion(DomTreeNode *N);
120
121    /// HoistRegion - Walk the specified region of the CFG (defined by all
122    /// blocks dominated by the specified block, and that are in the current
123    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
124    /// visit definitions before uses, allowing us to hoist a loop body in one
125    /// pass without iteration.
126    ///
127    void HoistRegion(DomTreeNode *N);
128
129    /// inSubLoop - Little predicate that returns true if the specified basic
130    /// block is in a subloop of the current one, not the current one itself.
131    ///
132    bool inSubLoop(BasicBlock *BB) {
133      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
134      return LI->getLoopFor(BB) != CurLoop;
135    }
136
137    /// sink - When an instruction is found to only be used outside of the loop,
138    /// this function moves it to the exit blocks and patches up SSA form as
139    /// needed.
140    ///
141    void sink(Instruction &I);
142
143    /// hoist - When an instruction is found to only use loop invariant operands
144    /// that is safe to hoist, this instruction is called to do the dirty work.
145    ///
146    void hoist(Instruction &I);
147
148    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
149    /// is not a trapping instruction or if it is a trapping instruction and is
150    /// guaranteed to execute.
151    ///
152    bool isSafeToExecuteUnconditionally(Instruction &I);
153
154    /// pointerInvalidatedByLoop - Return true if the body of this loop may
155    /// store into the memory location pointed to by V.
156    ///
157    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
158                                  const MDNode *TBAAInfo) {
159      // Check to see if any of the basic blocks in CurLoop invalidate *V.
160      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
161    }
162
163    bool canSinkOrHoistInst(Instruction &I);
164    bool isNotUsedInLoop(Instruction &I);
165
166    void PromoteAliasSet(AliasSet &AS);
167  };
168}
169
170char LICM::ID = 0;
171INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
172INITIALIZE_PASS_DEPENDENCY(DominatorTree)
173INITIALIZE_PASS_DEPENDENCY(LoopInfo)
174INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
175INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
176INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
177
178Pass *llvm::createLICMPass() { return new LICM(); }
179
180/// Hoist expressions out of the specified loop. Note, alias info for inner
181/// loop is not preserved so it is not a good idea to run LICM multiple
182/// times on one loop.
183///
184bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
185  Changed = false;
186
187  // Get our Loop and Alias Analysis information...
188  LI = &getAnalysis<LoopInfo>();
189  AA = &getAnalysis<AliasAnalysis>();
190  DT = &getAnalysis<DominatorTree>();
191
192  CurAST = new AliasSetTracker(*AA);
193  // Collect Alias info from subloops.
194  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
195       LoopItr != LoopItrE; ++LoopItr) {
196    Loop *InnerL = *LoopItr;
197    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
198    assert(InnerAST && "Where is my AST?");
199
200    // What if InnerLoop was modified by other passes ?
201    CurAST->add(*InnerAST);
202
203    // Once we've incorporated the inner loop's AST into ours, we don't need the
204    // subloop's anymore.
205    delete InnerAST;
206    LoopToAliasSetMap.erase(InnerL);
207  }
208
209  CurLoop = L;
210
211  // Get the preheader block to move instructions into...
212  Preheader = L->getLoopPreheader();
213
214  // Loop over the body of this loop, looking for calls, invokes, and stores.
215  // Because subloops have already been incorporated into AST, we skip blocks in
216  // subloops.
217  //
218  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
219       I != E; ++I) {
220    BasicBlock *BB = *I;
221    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
222      CurAST->add(*BB);                 // Incorporate the specified basic block
223  }
224
225  // We want to visit all of the instructions in this loop... that are not parts
226  // of our subloops (they have already had their invariants hoisted out of
227  // their loop, into this loop, so there is no need to process the BODIES of
228  // the subloops).
229  //
230  // Traverse the body of the loop in depth first order on the dominator tree so
231  // that we are guaranteed to see definitions before we see uses.  This allows
232  // us to sink instructions in one pass, without iteration.  After sinking
233  // instructions, we perform another pass to hoist them out of the loop.
234  //
235  if (L->hasDedicatedExits())
236    SinkRegion(DT->getNode(L->getHeader()));
237  if (Preheader)
238    HoistRegion(DT->getNode(L->getHeader()));
239
240  // Now that all loop invariants have been removed from the loop, promote any
241  // memory references to scalars that we can.
242  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
243    // Loop over all of the alias sets in the tracker object.
244    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
245         I != E; ++I)
246      PromoteAliasSet(*I);
247  }
248
249  // Clear out loops state information for the next iteration
250  CurLoop = 0;
251  Preheader = 0;
252
253  // If this loop is nested inside of another one, save the alias information
254  // for when we process the outer loop.
255  if (L->getParentLoop())
256    LoopToAliasSetMap[L] = CurAST;
257  else
258    delete CurAST;
259  return Changed;
260}
261
262/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
263/// dominated by the specified block, and that are in the current loop) in
264/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
265/// uses before definitions, allowing us to sink a loop body in one pass without
266/// iteration.
267///
268void LICM::SinkRegion(DomTreeNode *N) {
269  assert(N != 0 && "Null dominator tree node?");
270  BasicBlock *BB = N->getBlock();
271
272  // If this subregion is not in the top level loop at all, exit.
273  if (!CurLoop->contains(BB)) return;
274
275  // We are processing blocks in reverse dfo, so process children first.
276  const std::vector<DomTreeNode*> &Children = N->getChildren();
277  for (unsigned i = 0, e = Children.size(); i != e; ++i)
278    SinkRegion(Children[i]);
279
280  // Only need to process the contents of this block if it is not part of a
281  // subloop (which would already have been processed).
282  if (inSubLoop(BB)) return;
283
284  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
285    Instruction &I = *--II;
286
287    // If the instruction is dead, we would try to sink it because it isn't used
288    // in the loop, instead, just delete it.
289    if (isInstructionTriviallyDead(&I)) {
290      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
291      ++II;
292      CurAST->deleteValue(&I);
293      I.eraseFromParent();
294      Changed = true;
295      continue;
296    }
297
298    // Check to see if we can sink this instruction to the exit blocks
299    // of the loop.  We can do this if the all users of the instruction are
300    // outside of the loop.  In this case, it doesn't even matter if the
301    // operands of the instruction are loop invariant.
302    //
303    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
304      ++II;
305      sink(I);
306    }
307  }
308}
309
310/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
311/// dominated by the specified block, and that are in the current loop) in depth
312/// first order w.r.t the DominatorTree.  This allows us to visit definitions
313/// before uses, allowing us to hoist a loop body in one pass without iteration.
314///
315void LICM::HoistRegion(DomTreeNode *N) {
316  assert(N != 0 && "Null dominator tree node?");
317  BasicBlock *BB = N->getBlock();
318
319  // If this subregion is not in the top level loop at all, exit.
320  if (!CurLoop->contains(BB)) return;
321
322  // Only need to process the contents of this block if it is not part of a
323  // subloop (which would already have been processed).
324  if (!inSubLoop(BB))
325    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
326      Instruction &I = *II++;
327
328      // Try constant folding this instruction.  If all the operands are
329      // constants, it is technically hoistable, but it would be better to just
330      // fold it.
331      if (Constant *C = ConstantFoldInstruction(&I)) {
332        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
333        CurAST->copyValue(&I, C);
334        CurAST->deleteValue(&I);
335        I.replaceAllUsesWith(C);
336        I.eraseFromParent();
337        continue;
338      }
339
340      // Try hoisting the instruction out to the preheader.  We can only do this
341      // if all of the operands of the instruction are loop invariant and if it
342      // is safe to hoist the instruction.
343      //
344      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
345          isSafeToExecuteUnconditionally(I))
346        hoist(I);
347    }
348
349  const std::vector<DomTreeNode*> &Children = N->getChildren();
350  for (unsigned i = 0, e = Children.size(); i != e; ++i)
351    HoistRegion(Children[i]);
352}
353
354/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
355/// instruction.
356///
357bool LICM::canSinkOrHoistInst(Instruction &I) {
358  // Loads have extra constraints we have to verify before we can hoist them.
359  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
360    if (LI->isVolatile())
361      return false;        // Don't hoist volatile loads!
362
363    // Loads from constant memory are always safe to move, even if they end up
364    // in the same alias set as something that ends up being modified.
365    if (AA->pointsToConstantMemory(LI->getOperand(0)))
366      return true;
367
368    // Don't hoist loads which have may-aliased stores in loop.
369    uint64_t Size = 0;
370    if (LI->getType()->isSized())
371      Size = AA->getTypeStoreSize(LI->getType());
372    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
373                                     LI->getMetadata(LLVMContext::MD_tbaa));
374  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
375    // Don't sink or hoist dbg info; it's legal, but not useful.
376    if (isa<DbgInfoIntrinsic>(I))
377      return false;
378
379    // Handle simple cases by querying alias analysis.
380    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
381    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
382      return true;
383    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
384      // If this call only reads from memory and there are no writes to memory
385      // in the loop, we can hoist or sink the call as appropriate.
386      bool FoundMod = false;
387      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
388           I != E; ++I) {
389        AliasSet &AS = *I;
390        if (!AS.isForwardingAliasSet() && AS.isMod()) {
391          FoundMod = true;
392          break;
393        }
394      }
395      if (!FoundMod) return true;
396    }
397
398    // FIXME: This should use mod/ref information to see if we can hoist or sink
399    // the call.
400
401    return false;
402  }
403
404  // Otherwise these instructions are hoistable/sinkable
405  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
406         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
407         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
408         isa<ShuffleVectorInst>(I);
409}
410
411/// isNotUsedInLoop - Return true if the only users of this instruction are
412/// outside of the loop.  If this is true, we can sink the instruction to the
413/// exit blocks of the loop.
414///
415bool LICM::isNotUsedInLoop(Instruction &I) {
416  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
417    Instruction *User = cast<Instruction>(*UI);
418    if (PHINode *PN = dyn_cast<PHINode>(User)) {
419      // PHI node uses occur in predecessor blocks!
420      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
421        if (PN->getIncomingValue(i) == &I)
422          if (CurLoop->contains(PN->getIncomingBlock(i)))
423            return false;
424    } else if (CurLoop->contains(User)) {
425      return false;
426    }
427  }
428  return true;
429}
430
431
432/// sink - When an instruction is found to only be used outside of the loop,
433/// this function moves it to the exit blocks and patches up SSA form as needed.
434/// This method is guaranteed to remove the original instruction from its
435/// position, and may either delete it or move it to outside of the loop.
436///
437void LICM::sink(Instruction &I) {
438  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
439
440  SmallVector<BasicBlock*, 8> ExitBlocks;
441  CurLoop->getUniqueExitBlocks(ExitBlocks);
442
443  if (isa<LoadInst>(I)) ++NumMovedLoads;
444  else if (isa<CallInst>(I)) ++NumMovedCalls;
445  ++NumSunk;
446  Changed = true;
447
448  // The case where there is only a single exit node of this loop is common
449  // enough that we handle it as a special (more efficient) case.  It is more
450  // efficient to handle because there are no PHI nodes that need to be placed.
451  if (ExitBlocks.size() == 1) {
452    if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
453      // Instruction is not used, just delete it.
454      CurAST->deleteValue(&I);
455      // If I has users in unreachable blocks, eliminate.
456      // If I is not void type then replaceAllUsesWith undef.
457      // This allows ValueHandlers and custom metadata to adjust itself.
458      if (!I.use_empty())
459        I.replaceAllUsesWith(UndefValue::get(I.getType()));
460      I.eraseFromParent();
461    } else {
462      // Move the instruction to the start of the exit block, after any PHI
463      // nodes in it.
464      I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
465
466      // This instruction is no longer in the AST for the current loop, because
467      // we just sunk it out of the loop.  If we just sunk it into an outer
468      // loop, we will rediscover the operation when we process it.
469      CurAST->deleteValue(&I);
470    }
471    return;
472  }
473
474  if (ExitBlocks.empty()) {
475    // The instruction is actually dead if there ARE NO exit blocks.
476    CurAST->deleteValue(&I);
477    // If I has users in unreachable blocks, eliminate.
478    // If I is not void type then replaceAllUsesWith undef.
479    // This allows ValueHandlers and custom metadata to adjust itself.
480    if (!I.use_empty())
481      I.replaceAllUsesWith(UndefValue::get(I.getType()));
482    I.eraseFromParent();
483    return;
484  }
485
486  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
487  // hard work of inserting PHI nodes as necessary.
488  SmallVector<PHINode*, 8> NewPHIs;
489  SSAUpdater SSA(&NewPHIs);
490
491  if (!I.use_empty())
492    SSA.Initialize(I.getType(), I.getName());
493
494  // Insert a copy of the instruction in each exit block of the loop that is
495  // dominated by the instruction.  Each exit block is known to only be in the
496  // ExitBlocks list once.
497  BasicBlock *InstOrigBB = I.getParent();
498  unsigned NumInserted = 0;
499
500  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
501    BasicBlock *ExitBlock = ExitBlocks[i];
502
503    if (!DT->dominates(InstOrigBB, ExitBlock))
504      continue;
505
506    // Insert the code after the last PHI node.
507    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
508
509    // If this is the first exit block processed, just move the original
510    // instruction, otherwise clone the original instruction and insert
511    // the copy.
512    Instruction *New;
513    if (NumInserted++ == 0) {
514      I.moveBefore(InsertPt);
515      New = &I;
516    } else {
517      New = I.clone();
518      if (!I.getName().empty())
519        New->setName(I.getName()+".le");
520      ExitBlock->getInstList().insert(InsertPt, New);
521    }
522
523    // Now that we have inserted the instruction, inform SSAUpdater.
524    if (!I.use_empty())
525      SSA.AddAvailableValue(ExitBlock, New);
526  }
527
528  // If the instruction doesn't dominate any exit blocks, it must be dead.
529  if (NumInserted == 0) {
530    CurAST->deleteValue(&I);
531    if (!I.use_empty())
532      I.replaceAllUsesWith(UndefValue::get(I.getType()));
533    I.eraseFromParent();
534    return;
535  }
536
537  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
538  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
539    // Grab the use before incrementing the iterator.
540    Use &U = UI.getUse();
541    // Increment the iterator before removing the use from the list.
542    ++UI;
543    SSA.RewriteUseAfterInsertions(U);
544  }
545
546  // Update CurAST for NewPHIs if I had pointer type.
547  if (I.getType()->isPointerTy())
548    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
549      CurAST->copyValue(&I, NewPHIs[i]);
550
551  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
552  CurAST->deleteValue(&I);
553}
554
555/// hoist - When an instruction is found to only use loop invariant operands
556/// that is safe to hoist, this instruction is called to do the dirty work.
557///
558void LICM::hoist(Instruction &I) {
559  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
560        << I << "\n");
561
562  // Move the new node to the Preheader, before its terminator.
563  I.moveBefore(Preheader->getTerminator());
564
565  if (isa<LoadInst>(I)) ++NumMovedLoads;
566  else if (isa<CallInst>(I)) ++NumMovedCalls;
567  ++NumHoisted;
568  Changed = true;
569}
570
571/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
572/// not a trapping instruction or if it is a trapping instruction and is
573/// guaranteed to execute.
574///
575bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
576  // If it is not a trapping instruction, it is always safe to hoist.
577  if (Inst.isSafeToSpeculativelyExecute())
578    return true;
579
580  // Otherwise we have to check to make sure that the instruction dominates all
581  // of the exit blocks.  If it doesn't, then there is a path out of the loop
582  // which does not execute this instruction, so we can't hoist it.
583
584  // If the instruction is in the header block for the loop (which is very
585  // common), it is always guaranteed to dominate the exit blocks.  Since this
586  // is a common case, and can save some work, check it now.
587  if (Inst.getParent() == CurLoop->getHeader())
588    return true;
589
590  // Get the exit blocks for the current loop.
591  SmallVector<BasicBlock*, 8> ExitBlocks;
592  CurLoop->getExitBlocks(ExitBlocks);
593
594  // Verify that the block dominates each of the exit blocks of the loop.
595  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
596    if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
597      return false;
598
599  return true;
600}
601
602namespace {
603  class LoopPromoter : public LoadAndStorePromoter {
604    Value *SomePtr;  // Designated pointer to store to.
605    SmallPtrSet<Value*, 4> &PointerMustAliases;
606    SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
607    AliasSetTracker &AST;
608    DebugLoc DL;
609  public:
610    LoopPromoter(Value *SP,
611                 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
612                 SmallPtrSet<Value*, 4> &PMA,
613                 SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
614                 DebugLoc dl)
615      : LoadAndStorePromoter(Insts, S, 0, 0), SomePtr(SP),
616        PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl) {}
617
618    virtual bool isInstInList(Instruction *I,
619                              const SmallVectorImpl<Instruction*> &) const {
620      Value *Ptr;
621      if (LoadInst *LI = dyn_cast<LoadInst>(I))
622        Ptr = LI->getOperand(0);
623      else
624        Ptr = cast<StoreInst>(I)->getPointerOperand();
625      return PointerMustAliases.count(Ptr);
626    }
627
628    virtual void doExtraRewritesBeforeFinalDeletion() const {
629      // Insert stores after in the loop exit blocks.  Each exit block gets a
630      // store of the live-out values that feed them.  Since we've already told
631      // the SSA updater about the defs in the loop and the preheader
632      // definition, it is all set and we can start using it.
633      for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
634        BasicBlock *ExitBlock = LoopExitBlocks[i];
635        Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
636        Instruction *InsertPos = ExitBlock->getFirstNonPHI();
637        StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
638        NewSI->setDebugLoc(DL);
639      }
640    }
641
642    virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
643      // Update alias analysis.
644      AST.copyValue(LI, V);
645    }
646    virtual void instructionDeleted(Instruction *I) const {
647      AST.deleteValue(I);
648    }
649  };
650} // end anon namespace
651
652/// PromoteAliasSet - Try to promote memory values to scalars by sinking
653/// stores out of the loop and moving loads to before the loop.  We do this by
654/// looping over the stores in the loop, looking for stores to Must pointers
655/// which are loop invariant.
656///
657void LICM::PromoteAliasSet(AliasSet &AS) {
658  // We can promote this alias set if it has a store, if it is a "Must" alias
659  // set, if the pointer is loop invariant, and if we are not eliminating any
660  // volatile loads or stores.
661  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
662      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
663    return;
664
665  assert(!AS.empty() &&
666         "Must alias set should have at least one pointer element in it!");
667  Value *SomePtr = AS.begin()->getValue();
668
669  // It isn't safe to promote a load/store from the loop if the load/store is
670  // conditional.  For example, turning:
671  //
672  //    for () { if (c) *P += 1; }
673  //
674  // into:
675  //
676  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
677  //
678  // is not safe, because *P may only be valid to access if 'c' is true.
679  //
680  // It is safe to promote P if all uses are direct load/stores and if at
681  // least one is guaranteed to be executed.
682  bool GuaranteedToExecute = false;
683
684  SmallVector<Instruction*, 64> LoopUses;
685  SmallPtrSet<Value*, 4> PointerMustAliases;
686
687  // Check that all of the pointers in the alias set have the same type.  We
688  // cannot (yet) promote a memory location that is loaded and stored in
689  // different sizes.
690  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
691    Value *ASIV = ASI->getValue();
692    PointerMustAliases.insert(ASIV);
693
694    // Check that all of the pointers in the alias set have the same type.  We
695    // cannot (yet) promote a memory location that is loaded and stored in
696    // different sizes.
697    if (SomePtr->getType() != ASIV->getType())
698      return;
699
700    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
701         UI != UE; ++UI) {
702      // Ignore instructions that are outside the loop.
703      Instruction *Use = dyn_cast<Instruction>(*UI);
704      if (!Use || !CurLoop->contains(Use))
705        continue;
706
707      // If there is an non-load/store instruction in the loop, we can't promote
708      // it.
709      if (isa<LoadInst>(Use))
710        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
711      else if (isa<StoreInst>(Use)) {
712        // Stores *of* the pointer are not interesting, only stores *to* the
713        // pointer.
714        if (Use->getOperand(1) != ASIV)
715          continue;
716        assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
717      } else
718        return; // Not a load or store.
719
720      if (!GuaranteedToExecute)
721        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
722
723      LoopUses.push_back(Use);
724    }
725  }
726
727  // If there isn't a guaranteed-to-execute instruction, we can't promote.
728  if (!GuaranteedToExecute)
729    return;
730
731  // Otherwise, this is safe to promote, lets do it!
732  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
733  Changed = true;
734  ++NumPromoted;
735
736  // Grab a debug location for the inserted loads/stores; given that the
737  // inserted loads/stores have little relation to the original loads/stores,
738  // this code just arbitrarily picks a location from one, since any debug
739  // location is better than none.
740  DebugLoc DL = LoopUses[0]->getDebugLoc();
741
742  SmallVector<BasicBlock*, 8> ExitBlocks;
743  CurLoop->getUniqueExitBlocks(ExitBlocks);
744
745  // We use the SSAUpdater interface to insert phi nodes as required.
746  SmallVector<PHINode*, 16> NewPHIs;
747  SSAUpdater SSA(&NewPHIs);
748  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
749                        *CurAST, DL);
750
751  // Set up the preheader to have a definition of the value.  It is the live-out
752  // value from the preheader that uses in the loop will use.
753  LoadInst *PreheaderLoad =
754    new LoadInst(SomePtr, SomePtr->getName()+".promoted",
755                 Preheader->getTerminator());
756  PreheaderLoad->setDebugLoc(DL);
757  SSA.AddAvailableValue(Preheader, PreheaderLoad);
758
759  // Rewrite all the loads in the loop and remember all the definitions from
760  // stores in the loop.
761  Promoter.run(LoopUses);
762
763  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
764  if (PreheaderLoad->use_empty())
765    PreheaderLoad->eraseFromParent();
766}
767
768
769/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
770void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
771  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
772  if (!AST)
773    return;
774
775  AST->copyValue(From, To);
776}
777
778/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
779/// set.
780void LICM::deleteAnalysisValue(Value *V, Loop *L) {
781  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
782  if (!AST)
783    return;
784
785  AST->deleteValue(V);
786}
787