MemorySanitizer.cpp revision 263508
1//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
46///
47///                           Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
63/// practice.
64///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
69///
70///                            Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
94//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
98#include "llvm/Transforms/Instrumentation.h"
99#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
102#include "llvm/ADT/Triple.h"
103#include "llvm/ADT/ValueMap.h"
104#include "llvm/IR/DataLayout.h"
105#include "llvm/IR/Function.h"
106#include "llvm/IR/IRBuilder.h"
107#include "llvm/IR/InlineAsm.h"
108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
113#include "llvm/InstVisitor.h"
114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
117#include "llvm/Support/raw_ostream.h"
118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
119#include "llvm/Transforms/Utils/Local.h"
120#include "llvm/Transforms/Utils/ModuleUtils.h"
121#include "llvm/Transforms/Utils/SpecialCaseList.h"
122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
131
132/// \brief Track origins of uninitialized values.
133///
134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
136static cl::opt<bool> ClTrackOrigins("msan-track-origins",
137       cl::desc("Track origins (allocation sites) of poisoned memory"),
138       cl::Hidden, cl::init(false));
139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140       cl::desc("keep going after reporting a UMR"),
141       cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143       cl::desc("poison uninitialized stack variables"),
144       cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146       cl::desc("poison uninitialized stack variables with a call"),
147       cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149       cl::desc("poison uninitialized stack variables with the given patter"),
150       cl::Hidden, cl::init(0xff));
151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152       cl::desc("poison undef temps"),
153       cl::Hidden, cl::init(true));
154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157       cl::Hidden, cl::init(true));
158
159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160       cl::desc("exact handling of relational integer ICmp"),
161       cl::Hidden, cl::init(false));
162
163static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
164       cl::desc("store origin for clean (fully initialized) values"),
165       cl::Hidden, cl::init(false));
166
167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174       cl::desc("report accesses through a pointer which has poisoned shadow"),
175       cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178       cl::desc("print out instructions with default strict semantics"),
179       cl::Hidden, cl::init(false));
180
181static cl::opt<std::string>  ClBlacklistFile("msan-blacklist",
182       cl::desc("File containing the list of functions where MemorySanitizer "
183                "should not report bugs"), cl::Hidden);
184
185// Experimental. Wraps all indirect calls in the instrumented code with
186// a call to the given function. This is needed to assist the dynamic
187// helper tool (MSanDR) to regain control on transition between instrumented and
188// non-instrumented code.
189static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
190       cl::desc("Wrap indirect calls with a given function"),
191       cl::Hidden);
192
193static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
194       cl::desc("Do not wrap indirect calls with target in the same module"),
195       cl::Hidden, cl::init(true));
196
197namespace {
198
199/// \brief An instrumentation pass implementing detection of uninitialized
200/// reads.
201///
202/// MemorySanitizer: instrument the code in module to find
203/// uninitialized reads.
204class MemorySanitizer : public FunctionPass {
205 public:
206  MemorySanitizer(bool TrackOrigins = false,
207                  StringRef BlacklistFile = StringRef())
208      : FunctionPass(ID),
209        TrackOrigins(TrackOrigins || ClTrackOrigins),
210        TD(0),
211        WarningFn(0),
212        BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
213        WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
214  const char *getPassName() const { return "MemorySanitizer"; }
215  bool runOnFunction(Function &F);
216  bool doInitialization(Module &M);
217  static char ID;  // Pass identification, replacement for typeid.
218
219 private:
220  void initializeCallbacks(Module &M);
221
222  /// \brief Track origins (allocation points) of uninitialized values.
223  bool TrackOrigins;
224
225  DataLayout *TD;
226  LLVMContext *C;
227  Type *IntptrTy;
228  Type *OriginTy;
229  /// \brief Thread-local shadow storage for function parameters.
230  GlobalVariable *ParamTLS;
231  /// \brief Thread-local origin storage for function parameters.
232  GlobalVariable *ParamOriginTLS;
233  /// \brief Thread-local shadow storage for function return value.
234  GlobalVariable *RetvalTLS;
235  /// \brief Thread-local origin storage for function return value.
236  GlobalVariable *RetvalOriginTLS;
237  /// \brief Thread-local shadow storage for in-register va_arg function
238  /// parameters (x86_64-specific).
239  GlobalVariable *VAArgTLS;
240  /// \brief Thread-local shadow storage for va_arg overflow area
241  /// (x86_64-specific).
242  GlobalVariable *VAArgOverflowSizeTLS;
243  /// \brief Thread-local space used to pass origin value to the UMR reporting
244  /// function.
245  GlobalVariable *OriginTLS;
246
247  GlobalVariable *MsandrModuleStart;
248  GlobalVariable *MsandrModuleEnd;
249
250  /// \brief The run-time callback to print a warning.
251  Value *WarningFn;
252  /// \brief Run-time helper that copies origin info for a memory range.
253  Value *MsanCopyOriginFn;
254  /// \brief Run-time helper that generates a new origin value for a stack
255  /// allocation.
256  Value *MsanSetAllocaOrigin4Fn;
257  /// \brief Run-time helper that poisons stack on function entry.
258  Value *MsanPoisonStackFn;
259  /// \brief MSan runtime replacements for memmove, memcpy and memset.
260  Value *MemmoveFn, *MemcpyFn, *MemsetFn;
261
262  /// \brief Address mask used in application-to-shadow address calculation.
263  /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
264  uint64_t ShadowMask;
265  /// \brief Offset of the origin shadow from the "normal" shadow.
266  /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
267  uint64_t OriginOffset;
268  /// \brief Branch weights for error reporting.
269  MDNode *ColdCallWeights;
270  /// \brief Branch weights for origin store.
271  MDNode *OriginStoreWeights;
272  /// \brief Path to blacklist file.
273  SmallString<64> BlacklistFile;
274  /// \brief The blacklist.
275  OwningPtr<SpecialCaseList> BL;
276  /// \brief An empty volatile inline asm that prevents callback merge.
277  InlineAsm *EmptyAsm;
278
279  bool WrapIndirectCalls;
280  /// \brief Run-time wrapper for indirect calls.
281  Value *IndirectCallWrapperFn;
282  // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
283  Type *AnyFunctionPtrTy;
284
285  friend struct MemorySanitizerVisitor;
286  friend struct VarArgAMD64Helper;
287};
288}  // namespace
289
290char MemorySanitizer::ID = 0;
291INITIALIZE_PASS(MemorySanitizer, "msan",
292                "MemorySanitizer: detects uninitialized reads.",
293                false, false)
294
295FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
296                                              StringRef BlacklistFile) {
297  return new MemorySanitizer(TrackOrigins, BlacklistFile);
298}
299
300/// \brief Create a non-const global initialized with the given string.
301///
302/// Creates a writable global for Str so that we can pass it to the
303/// run-time lib. Runtime uses first 4 bytes of the string to store the
304/// frame ID, so the string needs to be mutable.
305static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
306                                                            StringRef Str) {
307  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
308  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
309                            GlobalValue::PrivateLinkage, StrConst, "");
310}
311
312
313/// \brief Insert extern declaration of runtime-provided functions and globals.
314void MemorySanitizer::initializeCallbacks(Module &M) {
315  // Only do this once.
316  if (WarningFn)
317    return;
318
319  IRBuilder<> IRB(*C);
320  // Create the callback.
321  // FIXME: this function should have "Cold" calling conv,
322  // which is not yet implemented.
323  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
324                                        : "__msan_warning_noreturn";
325  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
326
327  MsanCopyOriginFn = M.getOrInsertFunction(
328    "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
329    IRB.getInt8PtrTy(), IntptrTy, NULL);
330  MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
331    "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
332    IRB.getInt8PtrTy(), IntptrTy, NULL);
333  MsanPoisonStackFn = M.getOrInsertFunction(
334    "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
335  MemmoveFn = M.getOrInsertFunction(
336    "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
337    IRB.getInt8PtrTy(), IntptrTy, NULL);
338  MemcpyFn = M.getOrInsertFunction(
339    "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
340    IntptrTy, NULL);
341  MemsetFn = M.getOrInsertFunction(
342    "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
343    IntptrTy, NULL);
344
345  // Create globals.
346  RetvalTLS = new GlobalVariable(
347    M, ArrayType::get(IRB.getInt64Ty(), 8), false,
348    GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
349    GlobalVariable::InitialExecTLSModel);
350  RetvalOriginTLS = new GlobalVariable(
351    M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
352    "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
353
354  ParamTLS = new GlobalVariable(
355    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
356    GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
357    GlobalVariable::InitialExecTLSModel);
358  ParamOriginTLS = new GlobalVariable(
359    M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
360    0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
361
362  VAArgTLS = new GlobalVariable(
363    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
364    GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
365    GlobalVariable::InitialExecTLSModel);
366  VAArgOverflowSizeTLS = new GlobalVariable(
367    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
368    "__msan_va_arg_overflow_size_tls", 0,
369    GlobalVariable::InitialExecTLSModel);
370  OriginTLS = new GlobalVariable(
371    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
372    "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
373
374  // We insert an empty inline asm after __msan_report* to avoid callback merge.
375  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
376                            StringRef(""), StringRef(""),
377                            /*hasSideEffects=*/true);
378
379  if (WrapIndirectCalls) {
380    AnyFunctionPtrTy =
381        PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
382    IndirectCallWrapperFn = M.getOrInsertFunction(
383        ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
384  }
385
386  if (ClWrapIndirectCallsFast) {
387    MsandrModuleStart = new GlobalVariable(
388        M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
389        0, "__executable_start");
390    MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
391    MsandrModuleEnd = new GlobalVariable(
392        M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
393        0, "_end");
394    MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
395  }
396}
397
398/// \brief Module-level initialization.
399///
400/// inserts a call to __msan_init to the module's constructor list.
401bool MemorySanitizer::doInitialization(Module &M) {
402  TD = getAnalysisIfAvailable<DataLayout>();
403  if (!TD)
404    return false;
405  BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
406  C = &(M.getContext());
407  unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
408  switch (PtrSize) {
409    case 64:
410      ShadowMask = kShadowMask64;
411      OriginOffset = kOriginOffset64;
412      break;
413    case 32:
414      ShadowMask = kShadowMask32;
415      OriginOffset = kOriginOffset32;
416      break;
417    default:
418      report_fatal_error("unsupported pointer size");
419      break;
420  }
421
422  IRBuilder<> IRB(*C);
423  IntptrTy = IRB.getIntPtrTy(TD);
424  OriginTy = IRB.getInt32Ty();
425
426  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
427  OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
428
429  // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
430  appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
431                      "__msan_init", IRB.getVoidTy(), NULL)), 0);
432
433  if (TrackOrigins)
434    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
435                       IRB.getInt32(TrackOrigins), "__msan_track_origins");
436
437  if (ClKeepGoing)
438    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
439                       IRB.getInt32(ClKeepGoing), "__msan_keep_going");
440
441  return true;
442}
443
444namespace {
445
446/// \brief A helper class that handles instrumentation of VarArg
447/// functions on a particular platform.
448///
449/// Implementations are expected to insert the instrumentation
450/// necessary to propagate argument shadow through VarArg function
451/// calls. Visit* methods are called during an InstVisitor pass over
452/// the function, and should avoid creating new basic blocks. A new
453/// instance of this class is created for each instrumented function.
454struct VarArgHelper {
455  /// \brief Visit a CallSite.
456  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
457
458  /// \brief Visit a va_start call.
459  virtual void visitVAStartInst(VAStartInst &I) = 0;
460
461  /// \brief Visit a va_copy call.
462  virtual void visitVACopyInst(VACopyInst &I) = 0;
463
464  /// \brief Finalize function instrumentation.
465  ///
466  /// This method is called after visiting all interesting (see above)
467  /// instructions in a function.
468  virtual void finalizeInstrumentation() = 0;
469
470  virtual ~VarArgHelper() {}
471};
472
473struct MemorySanitizerVisitor;
474
475VarArgHelper*
476CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
477                   MemorySanitizerVisitor &Visitor);
478
479/// This class does all the work for a given function. Store and Load
480/// instructions store and load corresponding shadow and origin
481/// values. Most instructions propagate shadow from arguments to their
482/// return values. Certain instructions (most importantly, BranchInst)
483/// test their argument shadow and print reports (with a runtime call) if it's
484/// non-zero.
485struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
486  Function &F;
487  MemorySanitizer &MS;
488  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
489  ValueMap<Value*, Value*> ShadowMap, OriginMap;
490  OwningPtr<VarArgHelper> VAHelper;
491
492  // The following flags disable parts of MSan instrumentation based on
493  // blacklist contents and command-line options.
494  bool InsertChecks;
495  bool LoadShadow;
496  bool PoisonStack;
497  bool PoisonUndef;
498  bool CheckReturnValue;
499
500  struct ShadowOriginAndInsertPoint {
501    Value *Shadow;
502    Value *Origin;
503    Instruction *OrigIns;
504    ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
505      : Shadow(S), Origin(O), OrigIns(I) { }
506    ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
507  };
508  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
509  SmallVector<Instruction*, 16> StoreList;
510  SmallVector<CallSite, 16> IndirectCallList;
511
512  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
513      : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
514    bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
515                                                   AttributeSet::FunctionIndex,
516                                                   Attribute::SanitizeMemory);
517    InsertChecks = SanitizeFunction;
518    LoadShadow = SanitizeFunction;
519    PoisonStack = SanitizeFunction && ClPoisonStack;
520    PoisonUndef = SanitizeFunction && ClPoisonUndef;
521    // FIXME: Consider using SpecialCaseList to specify a list of functions that
522    // must always return fully initialized values. For now, we hardcode "main".
523    CheckReturnValue = SanitizeFunction && (F.getName() == "main");
524
525    DEBUG(if (!InsertChecks)
526          dbgs() << "MemorySanitizer is not inserting checks into '"
527                 << F.getName() << "'\n");
528  }
529
530  void materializeStores() {
531    for (size_t i = 0, n = StoreList.size(); i < n; i++) {
532      StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
533
534      IRBuilder<> IRB(&I);
535      Value *Val = I.getValueOperand();
536      Value *Addr = I.getPointerOperand();
537      Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
538      Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
539
540      StoreInst *NewSI =
541        IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
542      DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
543      (void)NewSI;
544
545      if (ClCheckAccessAddress)
546        insertShadowCheck(Addr, &I);
547
548      if (I.isAtomic())
549        I.setOrdering(addReleaseOrdering(I.getOrdering()));
550
551      if (MS.TrackOrigins) {
552        unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
553        if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
554          IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
555                                 Alignment);
556        } else {
557          Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
558
559          // TODO(eugenis): handle non-zero constant shadow by inserting an
560          // unconditional check (can not simply fail compilation as this could
561          // be in the dead code).
562          if (isa<Constant>(ConvertedShadow))
563            continue;
564
565          Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
566              getCleanShadow(ConvertedShadow), "_mscmp");
567          Instruction *CheckTerm =
568            SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
569                                      MS.OriginStoreWeights);
570          IRBuilder<> IRBNew(CheckTerm);
571          IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
572                                    Alignment);
573        }
574      }
575    }
576  }
577
578  void materializeChecks() {
579    for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
580      Value *Shadow = InstrumentationList[i].Shadow;
581      Instruction *OrigIns = InstrumentationList[i].OrigIns;
582      IRBuilder<> IRB(OrigIns);
583      DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
584      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
585      DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
586      // See the comment in materializeStores().
587      if (isa<Constant>(ConvertedShadow))
588        continue;
589      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
590                                    getCleanShadow(ConvertedShadow), "_mscmp");
591      Instruction *CheckTerm =
592        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
593                                  /* Unreachable */ !ClKeepGoing,
594                                  MS.ColdCallWeights);
595
596      IRB.SetInsertPoint(CheckTerm);
597      if (MS.TrackOrigins) {
598        Value *Origin = InstrumentationList[i].Origin;
599        IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
600                        MS.OriginTLS);
601      }
602      CallInst *Call = IRB.CreateCall(MS.WarningFn);
603      Call->setDebugLoc(OrigIns->getDebugLoc());
604      IRB.CreateCall(MS.EmptyAsm);
605      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
606    }
607    DEBUG(dbgs() << "DONE:\n" << F);
608  }
609
610  void materializeIndirectCalls() {
611    for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
612      CallSite CS = IndirectCallList[i];
613      Instruction *I = CS.getInstruction();
614      BasicBlock *B = I->getParent();
615      IRBuilder<> IRB(I);
616      Value *Fn0 = CS.getCalledValue();
617      Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
618
619      if (ClWrapIndirectCallsFast) {
620        // Check that call target is inside this module limits.
621        Value *Start =
622            IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
623        Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
624
625        Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
626                                              IRB.CreateICmpUGE(Fn, End));
627
628        PHINode *NewFnPhi =
629            IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
630
631        Instruction *CheckTerm = SplitBlockAndInsertIfThen(
632            cast<Instruction>(NotInThisModule),
633            /* Unreachable */ false, MS.ColdCallWeights);
634
635        IRB.SetInsertPoint(CheckTerm);
636        // Slow path: call wrapper function to possibly transform the call
637        // target.
638        Value *NewFn = IRB.CreateBitCast(
639            IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
640
641        NewFnPhi->addIncoming(Fn0, B);
642        NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
643        CS.setCalledFunction(NewFnPhi);
644      } else {
645        Value *NewFn = IRB.CreateBitCast(
646            IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
647        CS.setCalledFunction(NewFn);
648      }
649    }
650  }
651
652  /// \brief Add MemorySanitizer instrumentation to a function.
653  bool runOnFunction() {
654    MS.initializeCallbacks(*F.getParent());
655    if (!MS.TD) return false;
656
657    // In the presence of unreachable blocks, we may see Phi nodes with
658    // incoming nodes from such blocks. Since InstVisitor skips unreachable
659    // blocks, such nodes will not have any shadow value associated with them.
660    // It's easier to remove unreachable blocks than deal with missing shadow.
661    removeUnreachableBlocks(F);
662
663    // Iterate all BBs in depth-first order and create shadow instructions
664    // for all instructions (where applicable).
665    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
666    for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
667         DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
668      BasicBlock *BB = *DI;
669      visit(*BB);
670    }
671
672    // Finalize PHI nodes.
673    for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
674      PHINode *PN = ShadowPHINodes[i];
675      PHINode *PNS = cast<PHINode>(getShadow(PN));
676      PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
677      size_t NumValues = PN->getNumIncomingValues();
678      for (size_t v = 0; v < NumValues; v++) {
679        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
680        if (PNO)
681          PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
682      }
683    }
684
685    VAHelper->finalizeInstrumentation();
686
687    // Delayed instrumentation of StoreInst.
688    // This may add new checks to be inserted later.
689    materializeStores();
690
691    // Insert shadow value checks.
692    materializeChecks();
693
694    // Wrap indirect calls.
695    materializeIndirectCalls();
696
697    return true;
698  }
699
700  /// \brief Compute the shadow type that corresponds to a given Value.
701  Type *getShadowTy(Value *V) {
702    return getShadowTy(V->getType());
703  }
704
705  /// \brief Compute the shadow type that corresponds to a given Type.
706  Type *getShadowTy(Type *OrigTy) {
707    if (!OrigTy->isSized()) {
708      return 0;
709    }
710    // For integer type, shadow is the same as the original type.
711    // This may return weird-sized types like i1.
712    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
713      return IT;
714    if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
715      uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
716      return VectorType::get(IntegerType::get(*MS.C, EltSize),
717                             VT->getNumElements());
718    }
719    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
720      SmallVector<Type*, 4> Elements;
721      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
722        Elements.push_back(getShadowTy(ST->getElementType(i)));
723      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
724      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
725      return Res;
726    }
727    uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
728    return IntegerType::get(*MS.C, TypeSize);
729  }
730
731  /// \brief Flatten a vector type.
732  Type *getShadowTyNoVec(Type *ty) {
733    if (VectorType *vt = dyn_cast<VectorType>(ty))
734      return IntegerType::get(*MS.C, vt->getBitWidth());
735    return ty;
736  }
737
738  /// \brief Convert a shadow value to it's flattened variant.
739  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
740    Type *Ty = V->getType();
741    Type *NoVecTy = getShadowTyNoVec(Ty);
742    if (Ty == NoVecTy) return V;
743    return IRB.CreateBitCast(V, NoVecTy);
744  }
745
746  /// \brief Compute the shadow address that corresponds to a given application
747  /// address.
748  ///
749  /// Shadow = Addr & ~ShadowMask.
750  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
751                      IRBuilder<> &IRB) {
752    Value *ShadowLong =
753      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
754                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
755    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
756  }
757
758  /// \brief Compute the origin address that corresponds to a given application
759  /// address.
760  ///
761  /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
762  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
763    Value *ShadowLong =
764      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
765                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
766    Value *Add =
767      IRB.CreateAdd(ShadowLong,
768                    ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
769    Value *SecondAnd =
770      IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
771    return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
772  }
773
774  /// \brief Compute the shadow address for a given function argument.
775  ///
776  /// Shadow = ParamTLS+ArgOffset.
777  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
778                                 int ArgOffset) {
779    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
780    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
781    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
782                              "_msarg");
783  }
784
785  /// \brief Compute the origin address for a given function argument.
786  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
787                                 int ArgOffset) {
788    if (!MS.TrackOrigins) return 0;
789    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
790    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
791    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
792                              "_msarg_o");
793  }
794
795  /// \brief Compute the shadow address for a retval.
796  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
797    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
798    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
799                              "_msret");
800  }
801
802  /// \brief Compute the origin address for a retval.
803  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
804    // We keep a single origin for the entire retval. Might be too optimistic.
805    return MS.RetvalOriginTLS;
806  }
807
808  /// \brief Set SV to be the shadow value for V.
809  void setShadow(Value *V, Value *SV) {
810    assert(!ShadowMap.count(V) && "Values may only have one shadow");
811    ShadowMap[V] = SV;
812  }
813
814  /// \brief Set Origin to be the origin value for V.
815  void setOrigin(Value *V, Value *Origin) {
816    if (!MS.TrackOrigins) return;
817    assert(!OriginMap.count(V) && "Values may only have one origin");
818    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
819    OriginMap[V] = Origin;
820  }
821
822  /// \brief Create a clean shadow value for a given value.
823  ///
824  /// Clean shadow (all zeroes) means all bits of the value are defined
825  /// (initialized).
826  Constant *getCleanShadow(Value *V) {
827    Type *ShadowTy = getShadowTy(V);
828    if (!ShadowTy)
829      return 0;
830    return Constant::getNullValue(ShadowTy);
831  }
832
833  /// \brief Create a dirty shadow of a given shadow type.
834  Constant *getPoisonedShadow(Type *ShadowTy) {
835    assert(ShadowTy);
836    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
837      return Constant::getAllOnesValue(ShadowTy);
838    StructType *ST = cast<StructType>(ShadowTy);
839    SmallVector<Constant *, 4> Vals;
840    for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
841      Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
842    return ConstantStruct::get(ST, Vals);
843  }
844
845  /// \brief Create a dirty shadow for a given value.
846  Constant *getPoisonedShadow(Value *V) {
847    Type *ShadowTy = getShadowTy(V);
848    if (!ShadowTy)
849      return 0;
850    return getPoisonedShadow(ShadowTy);
851  }
852
853  /// \brief Create a clean (zero) origin.
854  Value *getCleanOrigin() {
855    return Constant::getNullValue(MS.OriginTy);
856  }
857
858  /// \brief Get the shadow value for a given Value.
859  ///
860  /// This function either returns the value set earlier with setShadow,
861  /// or extracts if from ParamTLS (for function arguments).
862  Value *getShadow(Value *V) {
863    if (Instruction *I = dyn_cast<Instruction>(V)) {
864      // For instructions the shadow is already stored in the map.
865      Value *Shadow = ShadowMap[V];
866      if (!Shadow) {
867        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
868        (void)I;
869        assert(Shadow && "No shadow for a value");
870      }
871      return Shadow;
872    }
873    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
874      Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
875      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
876      (void)U;
877      return AllOnes;
878    }
879    if (Argument *A = dyn_cast<Argument>(V)) {
880      // For arguments we compute the shadow on demand and store it in the map.
881      Value **ShadowPtr = &ShadowMap[V];
882      if (*ShadowPtr)
883        return *ShadowPtr;
884      Function *F = A->getParent();
885      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
886      unsigned ArgOffset = 0;
887      for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
888           AI != AE; ++AI) {
889        if (!AI->getType()->isSized()) {
890          DEBUG(dbgs() << "Arg is not sized\n");
891          continue;
892        }
893        unsigned Size = AI->hasByValAttr()
894          ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
895          : MS.TD->getTypeAllocSize(AI->getType());
896        if (A == AI) {
897          Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
898          if (AI->hasByValAttr()) {
899            // ByVal pointer itself has clean shadow. We copy the actual
900            // argument shadow to the underlying memory.
901            // Figure out maximal valid memcpy alignment.
902            unsigned ArgAlign = AI->getParamAlignment();
903            if (ArgAlign == 0) {
904              Type *EltType = A->getType()->getPointerElementType();
905              ArgAlign = MS.TD->getABITypeAlignment(EltType);
906            }
907            unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
908            Value *Cpy = EntryIRB.CreateMemCpy(
909                getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
910                CopyAlign);
911            DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
912            (void)Cpy;
913            *ShadowPtr = getCleanShadow(V);
914          } else {
915            *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
916          }
917          DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
918                **ShadowPtr << "\n");
919          if (MS.TrackOrigins) {
920            Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
921            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
922          }
923        }
924        ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
925      }
926      assert(*ShadowPtr && "Could not find shadow for an argument");
927      return *ShadowPtr;
928    }
929    // For everything else the shadow is zero.
930    return getCleanShadow(V);
931  }
932
933  /// \brief Get the shadow for i-th argument of the instruction I.
934  Value *getShadow(Instruction *I, int i) {
935    return getShadow(I->getOperand(i));
936  }
937
938  /// \brief Get the origin for a value.
939  Value *getOrigin(Value *V) {
940    if (!MS.TrackOrigins) return 0;
941    if (isa<Instruction>(V) || isa<Argument>(V)) {
942      Value *Origin = OriginMap[V];
943      if (!Origin) {
944        DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
945        Origin = getCleanOrigin();
946      }
947      return Origin;
948    }
949    return getCleanOrigin();
950  }
951
952  /// \brief Get the origin for i-th argument of the instruction I.
953  Value *getOrigin(Instruction *I, int i) {
954    return getOrigin(I->getOperand(i));
955  }
956
957  /// \brief Remember the place where a shadow check should be inserted.
958  ///
959  /// This location will be later instrumented with a check that will print a
960  /// UMR warning in runtime if the shadow value is not 0.
961  void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
962    assert(Shadow);
963    if (!InsertChecks) return;
964#ifndef NDEBUG
965    Type *ShadowTy = Shadow->getType();
966    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
967           "Can only insert checks for integer and vector shadow types");
968#endif
969    InstrumentationList.push_back(
970        ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
971  }
972
973  /// \brief Remember the place where a shadow check should be inserted.
974  ///
975  /// This location will be later instrumented with a check that will print a
976  /// UMR warning in runtime if the value is not fully defined.
977  void insertShadowCheck(Value *Val, Instruction *OrigIns) {
978    assert(Val);
979    Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
980    if (!Shadow) return;
981    Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
982    insertShadowCheck(Shadow, Origin, OrigIns);
983  }
984
985  AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
986    switch (a) {
987      case NotAtomic:
988        return NotAtomic;
989      case Unordered:
990      case Monotonic:
991      case Release:
992        return Release;
993      case Acquire:
994      case AcquireRelease:
995        return AcquireRelease;
996      case SequentiallyConsistent:
997        return SequentiallyConsistent;
998    }
999    llvm_unreachable("Unknown ordering");
1000  }
1001
1002  AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1003    switch (a) {
1004      case NotAtomic:
1005        return NotAtomic;
1006      case Unordered:
1007      case Monotonic:
1008      case Acquire:
1009        return Acquire;
1010      case Release:
1011      case AcquireRelease:
1012        return AcquireRelease;
1013      case SequentiallyConsistent:
1014        return SequentiallyConsistent;
1015    }
1016    llvm_unreachable("Unknown ordering");
1017  }
1018
1019  // ------------------- Visitors.
1020
1021  /// \brief Instrument LoadInst
1022  ///
1023  /// Loads the corresponding shadow and (optionally) origin.
1024  /// Optionally, checks that the load address is fully defined.
1025  void visitLoadInst(LoadInst &I) {
1026    assert(I.getType()->isSized() && "Load type must have size");
1027    IRBuilder<> IRB(I.getNextNode());
1028    Type *ShadowTy = getShadowTy(&I);
1029    Value *Addr = I.getPointerOperand();
1030    if (LoadShadow) {
1031      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1032      setShadow(&I,
1033                IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1034    } else {
1035      setShadow(&I, getCleanShadow(&I));
1036    }
1037
1038    if (ClCheckAccessAddress)
1039      insertShadowCheck(I.getPointerOperand(), &I);
1040
1041    if (I.isAtomic())
1042      I.setOrdering(addAcquireOrdering(I.getOrdering()));
1043
1044    if (MS.TrackOrigins) {
1045      if (LoadShadow) {
1046        unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1047        setOrigin(&I,
1048                  IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1049      } else {
1050        setOrigin(&I, getCleanOrigin());
1051      }
1052    }
1053  }
1054
1055  /// \brief Instrument StoreInst
1056  ///
1057  /// Stores the corresponding shadow and (optionally) origin.
1058  /// Optionally, checks that the store address is fully defined.
1059  void visitStoreInst(StoreInst &I) {
1060    StoreList.push_back(&I);
1061  }
1062
1063  void handleCASOrRMW(Instruction &I) {
1064    assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1065
1066    IRBuilder<> IRB(&I);
1067    Value *Addr = I.getOperand(0);
1068    Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1069
1070    if (ClCheckAccessAddress)
1071      insertShadowCheck(Addr, &I);
1072
1073    // Only test the conditional argument of cmpxchg instruction.
1074    // The other argument can potentially be uninitialized, but we can not
1075    // detect this situation reliably without possible false positives.
1076    if (isa<AtomicCmpXchgInst>(I))
1077      insertShadowCheck(I.getOperand(1), &I);
1078
1079    IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1080
1081    setShadow(&I, getCleanShadow(&I));
1082  }
1083
1084  void visitAtomicRMWInst(AtomicRMWInst &I) {
1085    handleCASOrRMW(I);
1086    I.setOrdering(addReleaseOrdering(I.getOrdering()));
1087  }
1088
1089  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1090    handleCASOrRMW(I);
1091    I.setOrdering(addReleaseOrdering(I.getOrdering()));
1092  }
1093
1094  // Vector manipulation.
1095  void visitExtractElementInst(ExtractElementInst &I) {
1096    insertShadowCheck(I.getOperand(1), &I);
1097    IRBuilder<> IRB(&I);
1098    setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1099              "_msprop"));
1100    setOrigin(&I, getOrigin(&I, 0));
1101  }
1102
1103  void visitInsertElementInst(InsertElementInst &I) {
1104    insertShadowCheck(I.getOperand(2), &I);
1105    IRBuilder<> IRB(&I);
1106    setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1107              I.getOperand(2), "_msprop"));
1108    setOriginForNaryOp(I);
1109  }
1110
1111  void visitShuffleVectorInst(ShuffleVectorInst &I) {
1112    insertShadowCheck(I.getOperand(2), &I);
1113    IRBuilder<> IRB(&I);
1114    setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1115              I.getOperand(2), "_msprop"));
1116    setOriginForNaryOp(I);
1117  }
1118
1119  // Casts.
1120  void visitSExtInst(SExtInst &I) {
1121    IRBuilder<> IRB(&I);
1122    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1123    setOrigin(&I, getOrigin(&I, 0));
1124  }
1125
1126  void visitZExtInst(ZExtInst &I) {
1127    IRBuilder<> IRB(&I);
1128    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1129    setOrigin(&I, getOrigin(&I, 0));
1130  }
1131
1132  void visitTruncInst(TruncInst &I) {
1133    IRBuilder<> IRB(&I);
1134    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1135    setOrigin(&I, getOrigin(&I, 0));
1136  }
1137
1138  void visitBitCastInst(BitCastInst &I) {
1139    IRBuilder<> IRB(&I);
1140    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1141    setOrigin(&I, getOrigin(&I, 0));
1142  }
1143
1144  void visitPtrToIntInst(PtrToIntInst &I) {
1145    IRBuilder<> IRB(&I);
1146    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1147             "_msprop_ptrtoint"));
1148    setOrigin(&I, getOrigin(&I, 0));
1149  }
1150
1151  void visitIntToPtrInst(IntToPtrInst &I) {
1152    IRBuilder<> IRB(&I);
1153    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1154             "_msprop_inttoptr"));
1155    setOrigin(&I, getOrigin(&I, 0));
1156  }
1157
1158  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1159  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1160  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1161  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1162  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1163  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1164
1165  /// \brief Propagate shadow for bitwise AND.
1166  ///
1167  /// This code is exact, i.e. if, for example, a bit in the left argument
1168  /// is defined and 0, then neither the value not definedness of the
1169  /// corresponding bit in B don't affect the resulting shadow.
1170  void visitAnd(BinaryOperator &I) {
1171    IRBuilder<> IRB(&I);
1172    //  "And" of 0 and a poisoned value results in unpoisoned value.
1173    //  1&1 => 1;     0&1 => 0;     p&1 => p;
1174    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1175    //  1&p => p;     0&p => 0;     p&p => p;
1176    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1177    Value *S1 = getShadow(&I, 0);
1178    Value *S2 = getShadow(&I, 1);
1179    Value *V1 = I.getOperand(0);
1180    Value *V2 = I.getOperand(1);
1181    if (V1->getType() != S1->getType()) {
1182      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1183      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1184    }
1185    Value *S1S2 = IRB.CreateAnd(S1, S2);
1186    Value *V1S2 = IRB.CreateAnd(V1, S2);
1187    Value *S1V2 = IRB.CreateAnd(S1, V2);
1188    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1189    setOriginForNaryOp(I);
1190  }
1191
1192  void visitOr(BinaryOperator &I) {
1193    IRBuilder<> IRB(&I);
1194    //  "Or" of 1 and a poisoned value results in unpoisoned value.
1195    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1196    //  1|0 => 1;     0|0 => 0;     p|0 => p;
1197    //  1|p => 1;     0|p => p;     p|p => p;
1198    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1199    Value *S1 = getShadow(&I, 0);
1200    Value *S2 = getShadow(&I, 1);
1201    Value *V1 = IRB.CreateNot(I.getOperand(0));
1202    Value *V2 = IRB.CreateNot(I.getOperand(1));
1203    if (V1->getType() != S1->getType()) {
1204      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1205      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1206    }
1207    Value *S1S2 = IRB.CreateAnd(S1, S2);
1208    Value *V1S2 = IRB.CreateAnd(V1, S2);
1209    Value *S1V2 = IRB.CreateAnd(S1, V2);
1210    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1211    setOriginForNaryOp(I);
1212  }
1213
1214  /// \brief Default propagation of shadow and/or origin.
1215  ///
1216  /// This class implements the general case of shadow propagation, used in all
1217  /// cases where we don't know and/or don't care about what the operation
1218  /// actually does. It converts all input shadow values to a common type
1219  /// (extending or truncating as necessary), and bitwise OR's them.
1220  ///
1221  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1222  /// fully initialized), and less prone to false positives.
1223  ///
1224  /// This class also implements the general case of origin propagation. For a
1225  /// Nary operation, result origin is set to the origin of an argument that is
1226  /// not entirely initialized. If there is more than one such arguments, the
1227  /// rightmost of them is picked. It does not matter which one is picked if all
1228  /// arguments are initialized.
1229  template <bool CombineShadow>
1230  class Combiner {
1231    Value *Shadow;
1232    Value *Origin;
1233    IRBuilder<> &IRB;
1234    MemorySanitizerVisitor *MSV;
1235
1236  public:
1237    Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1238      Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1239
1240    /// \brief Add a pair of shadow and origin values to the mix.
1241    Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1242      if (CombineShadow) {
1243        assert(OpShadow);
1244        if (!Shadow)
1245          Shadow = OpShadow;
1246        else {
1247          OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1248          Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1249        }
1250      }
1251
1252      if (MSV->MS.TrackOrigins) {
1253        assert(OpOrigin);
1254        if (!Origin) {
1255          Origin = OpOrigin;
1256        } else {
1257          Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1258          Value *Cond = IRB.CreateICmpNE(FlatShadow,
1259                                         MSV->getCleanShadow(FlatShadow));
1260          Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1261        }
1262      }
1263      return *this;
1264    }
1265
1266    /// \brief Add an application value to the mix.
1267    Combiner &Add(Value *V) {
1268      Value *OpShadow = MSV->getShadow(V);
1269      Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
1270      return Add(OpShadow, OpOrigin);
1271    }
1272
1273    /// \brief Set the current combined values as the given instruction's shadow
1274    /// and origin.
1275    void Done(Instruction *I) {
1276      if (CombineShadow) {
1277        assert(Shadow);
1278        Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1279        MSV->setShadow(I, Shadow);
1280      }
1281      if (MSV->MS.TrackOrigins) {
1282        assert(Origin);
1283        MSV->setOrigin(I, Origin);
1284      }
1285    }
1286  };
1287
1288  typedef Combiner<true> ShadowAndOriginCombiner;
1289  typedef Combiner<false> OriginCombiner;
1290
1291  /// \brief Propagate origin for arbitrary operation.
1292  void setOriginForNaryOp(Instruction &I) {
1293    if (!MS.TrackOrigins) return;
1294    IRBuilder<> IRB(&I);
1295    OriginCombiner OC(this, IRB);
1296    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1297      OC.Add(OI->get());
1298    OC.Done(&I);
1299  }
1300
1301  size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1302    assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1303           "Vector of pointers is not a valid shadow type");
1304    return Ty->isVectorTy() ?
1305      Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1306      Ty->getPrimitiveSizeInBits();
1307  }
1308
1309  /// \brief Cast between two shadow types, extending or truncating as
1310  /// necessary.
1311  Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1312                          bool Signed = false) {
1313    Type *srcTy = V->getType();
1314    if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1315      return IRB.CreateIntCast(V, dstTy, Signed);
1316    if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1317        dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1318      return IRB.CreateIntCast(V, dstTy, Signed);
1319    size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1320    size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1321    Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1322    Value *V2 =
1323      IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1324    return IRB.CreateBitCast(V2, dstTy);
1325    // TODO: handle struct types.
1326  }
1327
1328  /// \brief Propagate shadow for arbitrary operation.
1329  void handleShadowOr(Instruction &I) {
1330    IRBuilder<> IRB(&I);
1331    ShadowAndOriginCombiner SC(this, IRB);
1332    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1333      SC.Add(OI->get());
1334    SC.Done(&I);
1335  }
1336
1337  void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1338  void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1339  void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1340  void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1341  void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1342  void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1343  void visitMul(BinaryOperator &I) { handleShadowOr(I); }
1344
1345  void handleDiv(Instruction &I) {
1346    IRBuilder<> IRB(&I);
1347    // Strict on the second argument.
1348    insertShadowCheck(I.getOperand(1), &I);
1349    setShadow(&I, getShadow(&I, 0));
1350    setOrigin(&I, getOrigin(&I, 0));
1351  }
1352
1353  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1354  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1355  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1356  void visitURem(BinaryOperator &I) { handleDiv(I); }
1357  void visitSRem(BinaryOperator &I) { handleDiv(I); }
1358  void visitFRem(BinaryOperator &I) { handleDiv(I); }
1359
1360  /// \brief Instrument == and != comparisons.
1361  ///
1362  /// Sometimes the comparison result is known even if some of the bits of the
1363  /// arguments are not.
1364  void handleEqualityComparison(ICmpInst &I) {
1365    IRBuilder<> IRB(&I);
1366    Value *A = I.getOperand(0);
1367    Value *B = I.getOperand(1);
1368    Value *Sa = getShadow(A);
1369    Value *Sb = getShadow(B);
1370
1371    // Get rid of pointers and vectors of pointers.
1372    // For ints (and vectors of ints), types of A and Sa match,
1373    // and this is a no-op.
1374    A = IRB.CreatePointerCast(A, Sa->getType());
1375    B = IRB.CreatePointerCast(B, Sb->getType());
1376
1377    // A == B  <==>  (C = A^B) == 0
1378    // A != B  <==>  (C = A^B) != 0
1379    // Sc = Sa | Sb
1380    Value *C = IRB.CreateXor(A, B);
1381    Value *Sc = IRB.CreateOr(Sa, Sb);
1382    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1383    // Result is defined if one of the following is true
1384    // * there is a defined 1 bit in C
1385    // * C is fully defined
1386    // Si = !(C & ~Sc) && Sc
1387    Value *Zero = Constant::getNullValue(Sc->getType());
1388    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1389    Value *Si =
1390      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1391                    IRB.CreateICmpEQ(
1392                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1393    Si->setName("_msprop_icmp");
1394    setShadow(&I, Si);
1395    setOriginForNaryOp(I);
1396  }
1397
1398  /// \brief Build the lowest possible value of V, taking into account V's
1399  ///        uninitialized bits.
1400  Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1401                                bool isSigned) {
1402    if (isSigned) {
1403      // Split shadow into sign bit and other bits.
1404      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1405      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1406      // Maximise the undefined shadow bit, minimize other undefined bits.
1407      return
1408        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1409    } else {
1410      // Minimize undefined bits.
1411      return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1412    }
1413  }
1414
1415  /// \brief Build the highest possible value of V, taking into account V's
1416  ///        uninitialized bits.
1417  Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1418                                bool isSigned) {
1419    if (isSigned) {
1420      // Split shadow into sign bit and other bits.
1421      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1422      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1423      // Minimise the undefined shadow bit, maximise other undefined bits.
1424      return
1425        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1426    } else {
1427      // Maximize undefined bits.
1428      return IRB.CreateOr(A, Sa);
1429    }
1430  }
1431
1432  /// \brief Instrument relational comparisons.
1433  ///
1434  /// This function does exact shadow propagation for all relational
1435  /// comparisons of integers, pointers and vectors of those.
1436  /// FIXME: output seems suboptimal when one of the operands is a constant
1437  void handleRelationalComparisonExact(ICmpInst &I) {
1438    IRBuilder<> IRB(&I);
1439    Value *A = I.getOperand(0);
1440    Value *B = I.getOperand(1);
1441    Value *Sa = getShadow(A);
1442    Value *Sb = getShadow(B);
1443
1444    // Get rid of pointers and vectors of pointers.
1445    // For ints (and vectors of ints), types of A and Sa match,
1446    // and this is a no-op.
1447    A = IRB.CreatePointerCast(A, Sa->getType());
1448    B = IRB.CreatePointerCast(B, Sb->getType());
1449
1450    // Let [a0, a1] be the interval of possible values of A, taking into account
1451    // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1452    // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1453    bool IsSigned = I.isSigned();
1454    Value *S1 = IRB.CreateICmp(I.getPredicate(),
1455                               getLowestPossibleValue(IRB, A, Sa, IsSigned),
1456                               getHighestPossibleValue(IRB, B, Sb, IsSigned));
1457    Value *S2 = IRB.CreateICmp(I.getPredicate(),
1458                               getHighestPossibleValue(IRB, A, Sa, IsSigned),
1459                               getLowestPossibleValue(IRB, B, Sb, IsSigned));
1460    Value *Si = IRB.CreateXor(S1, S2);
1461    setShadow(&I, Si);
1462    setOriginForNaryOp(I);
1463  }
1464
1465  /// \brief Instrument signed relational comparisons.
1466  ///
1467  /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1468  /// propagating the highest bit of the shadow. Everything else is delegated
1469  /// to handleShadowOr().
1470  void handleSignedRelationalComparison(ICmpInst &I) {
1471    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1472    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1473    Value* op = NULL;
1474    CmpInst::Predicate pre = I.getPredicate();
1475    if (constOp0 && constOp0->isNullValue() &&
1476        (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1477      op = I.getOperand(1);
1478    } else if (constOp1 && constOp1->isNullValue() &&
1479               (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1480      op = I.getOperand(0);
1481    }
1482    if (op) {
1483      IRBuilder<> IRB(&I);
1484      Value* Shadow =
1485        IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1486      setShadow(&I, Shadow);
1487      setOrigin(&I, getOrigin(op));
1488    } else {
1489      handleShadowOr(I);
1490    }
1491  }
1492
1493  void visitICmpInst(ICmpInst &I) {
1494    if (!ClHandleICmp) {
1495      handleShadowOr(I);
1496      return;
1497    }
1498    if (I.isEquality()) {
1499      handleEqualityComparison(I);
1500      return;
1501    }
1502
1503    assert(I.isRelational());
1504    if (ClHandleICmpExact) {
1505      handleRelationalComparisonExact(I);
1506      return;
1507    }
1508    if (I.isSigned()) {
1509      handleSignedRelationalComparison(I);
1510      return;
1511    }
1512
1513    assert(I.isUnsigned());
1514    if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1515      handleRelationalComparisonExact(I);
1516      return;
1517    }
1518
1519    handleShadowOr(I);
1520  }
1521
1522  void visitFCmpInst(FCmpInst &I) {
1523    handleShadowOr(I);
1524  }
1525
1526  void handleShift(BinaryOperator &I) {
1527    IRBuilder<> IRB(&I);
1528    // If any of the S2 bits are poisoned, the whole thing is poisoned.
1529    // Otherwise perform the same shift on S1.
1530    Value *S1 = getShadow(&I, 0);
1531    Value *S2 = getShadow(&I, 1);
1532    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1533                                   S2->getType());
1534    Value *V2 = I.getOperand(1);
1535    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1536    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1537    setOriginForNaryOp(I);
1538  }
1539
1540  void visitShl(BinaryOperator &I) { handleShift(I); }
1541  void visitAShr(BinaryOperator &I) { handleShift(I); }
1542  void visitLShr(BinaryOperator &I) { handleShift(I); }
1543
1544  /// \brief Instrument llvm.memmove
1545  ///
1546  /// At this point we don't know if llvm.memmove will be inlined or not.
1547  /// If we don't instrument it and it gets inlined,
1548  /// our interceptor will not kick in and we will lose the memmove.
1549  /// If we instrument the call here, but it does not get inlined,
1550  /// we will memove the shadow twice: which is bad in case
1551  /// of overlapping regions. So, we simply lower the intrinsic to a call.
1552  ///
1553  /// Similar situation exists for memcpy and memset.
1554  void visitMemMoveInst(MemMoveInst &I) {
1555    IRBuilder<> IRB(&I);
1556    IRB.CreateCall3(
1557      MS.MemmoveFn,
1558      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1559      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1560      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1561    I.eraseFromParent();
1562  }
1563
1564  // Similar to memmove: avoid copying shadow twice.
1565  // This is somewhat unfortunate as it may slowdown small constant memcpys.
1566  // FIXME: consider doing manual inline for small constant sizes and proper
1567  // alignment.
1568  void visitMemCpyInst(MemCpyInst &I) {
1569    IRBuilder<> IRB(&I);
1570    IRB.CreateCall3(
1571      MS.MemcpyFn,
1572      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1573      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1574      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1575    I.eraseFromParent();
1576  }
1577
1578  // Same as memcpy.
1579  void visitMemSetInst(MemSetInst &I) {
1580    IRBuilder<> IRB(&I);
1581    IRB.CreateCall3(
1582      MS.MemsetFn,
1583      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1584      IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1585      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1586    I.eraseFromParent();
1587  }
1588
1589  void visitVAStartInst(VAStartInst &I) {
1590    VAHelper->visitVAStartInst(I);
1591  }
1592
1593  void visitVACopyInst(VACopyInst &I) {
1594    VAHelper->visitVACopyInst(I);
1595  }
1596
1597  enum IntrinsicKind {
1598    IK_DoesNotAccessMemory,
1599    IK_OnlyReadsMemory,
1600    IK_WritesMemory
1601  };
1602
1603  static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1604    const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1605    const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1606    const int OnlyReadsMemory = IK_OnlyReadsMemory;
1607    const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1608    const int UnknownModRefBehavior = IK_WritesMemory;
1609#define GET_INTRINSIC_MODREF_BEHAVIOR
1610#define ModRefBehavior IntrinsicKind
1611#include "llvm/IR/Intrinsics.gen"
1612#undef ModRefBehavior
1613#undef GET_INTRINSIC_MODREF_BEHAVIOR
1614  }
1615
1616  /// \brief Handle vector store-like intrinsics.
1617  ///
1618  /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1619  /// has 1 pointer argument and 1 vector argument, returns void.
1620  bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1621    IRBuilder<> IRB(&I);
1622    Value* Addr = I.getArgOperand(0);
1623    Value *Shadow = getShadow(&I, 1);
1624    Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1625
1626    // We don't know the pointer alignment (could be unaligned SSE store!).
1627    // Have to assume to worst case.
1628    IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1629
1630    if (ClCheckAccessAddress)
1631      insertShadowCheck(Addr, &I);
1632
1633    // FIXME: use ClStoreCleanOrigin
1634    // FIXME: factor out common code from materializeStores
1635    if (MS.TrackOrigins)
1636      IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1637    return true;
1638  }
1639
1640  /// \brief Handle vector load-like intrinsics.
1641  ///
1642  /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1643  /// has 1 pointer argument, returns a vector.
1644  bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1645    IRBuilder<> IRB(&I);
1646    Value *Addr = I.getArgOperand(0);
1647
1648    Type *ShadowTy = getShadowTy(&I);
1649    if (LoadShadow) {
1650      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1651      // We don't know the pointer alignment (could be unaligned SSE load!).
1652      // Have to assume to worst case.
1653      setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1654    } else {
1655      setShadow(&I, getCleanShadow(&I));
1656    }
1657
1658    if (ClCheckAccessAddress)
1659      insertShadowCheck(Addr, &I);
1660
1661    if (MS.TrackOrigins) {
1662      if (LoadShadow)
1663        setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1664      else
1665        setOrigin(&I, getCleanOrigin());
1666    }
1667    return true;
1668  }
1669
1670  /// \brief Handle (SIMD arithmetic)-like intrinsics.
1671  ///
1672  /// Instrument intrinsics with any number of arguments of the same type,
1673  /// equal to the return type. The type should be simple (no aggregates or
1674  /// pointers; vectors are fine).
1675  /// Caller guarantees that this intrinsic does not access memory.
1676  bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1677    Type *RetTy = I.getType();
1678    if (!(RetTy->isIntOrIntVectorTy() ||
1679          RetTy->isFPOrFPVectorTy() ||
1680          RetTy->isX86_MMXTy()))
1681      return false;
1682
1683    unsigned NumArgOperands = I.getNumArgOperands();
1684
1685    for (unsigned i = 0; i < NumArgOperands; ++i) {
1686      Type *Ty = I.getArgOperand(i)->getType();
1687      if (Ty != RetTy)
1688        return false;
1689    }
1690
1691    IRBuilder<> IRB(&I);
1692    ShadowAndOriginCombiner SC(this, IRB);
1693    for (unsigned i = 0; i < NumArgOperands; ++i)
1694      SC.Add(I.getArgOperand(i));
1695    SC.Done(&I);
1696
1697    return true;
1698  }
1699
1700  /// \brief Heuristically instrument unknown intrinsics.
1701  ///
1702  /// The main purpose of this code is to do something reasonable with all
1703  /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1704  /// We recognize several classes of intrinsics by their argument types and
1705  /// ModRefBehaviour and apply special intrumentation when we are reasonably
1706  /// sure that we know what the intrinsic does.
1707  ///
1708  /// We special-case intrinsics where this approach fails. See llvm.bswap
1709  /// handling as an example of that.
1710  bool handleUnknownIntrinsic(IntrinsicInst &I) {
1711    unsigned NumArgOperands = I.getNumArgOperands();
1712    if (NumArgOperands == 0)
1713      return false;
1714
1715    Intrinsic::ID iid = I.getIntrinsicID();
1716    IntrinsicKind IK = getIntrinsicKind(iid);
1717    bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1718    bool WritesMemory = IK == IK_WritesMemory;
1719    assert(!(OnlyReadsMemory && WritesMemory));
1720
1721    if (NumArgOperands == 2 &&
1722        I.getArgOperand(0)->getType()->isPointerTy() &&
1723        I.getArgOperand(1)->getType()->isVectorTy() &&
1724        I.getType()->isVoidTy() &&
1725        WritesMemory) {
1726      // This looks like a vector store.
1727      return handleVectorStoreIntrinsic(I);
1728    }
1729
1730    if (NumArgOperands == 1 &&
1731        I.getArgOperand(0)->getType()->isPointerTy() &&
1732        I.getType()->isVectorTy() &&
1733        OnlyReadsMemory) {
1734      // This looks like a vector load.
1735      return handleVectorLoadIntrinsic(I);
1736    }
1737
1738    if (!OnlyReadsMemory && !WritesMemory)
1739      if (maybeHandleSimpleNomemIntrinsic(I))
1740        return true;
1741
1742    // FIXME: detect and handle SSE maskstore/maskload
1743    return false;
1744  }
1745
1746  void handleBswap(IntrinsicInst &I) {
1747    IRBuilder<> IRB(&I);
1748    Value *Op = I.getArgOperand(0);
1749    Type *OpType = Op->getType();
1750    Function *BswapFunc = Intrinsic::getDeclaration(
1751      F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1752    setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1753    setOrigin(&I, getOrigin(Op));
1754  }
1755
1756  // \brief Instrument vector convert instrinsic.
1757  //
1758  // This function instruments intrinsics like cvtsi2ss:
1759  // %Out = int_xxx_cvtyyy(%ConvertOp)
1760  // or
1761  // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1762  // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1763  // number \p Out elements, and (if has 2 arguments) copies the rest of the
1764  // elements from \p CopyOp.
1765  // In most cases conversion involves floating-point value which may trigger a
1766  // hardware exception when not fully initialized. For this reason we require
1767  // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1768  // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1769  // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1770  // return a fully initialized value.
1771  void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1772    IRBuilder<> IRB(&I);
1773    Value *CopyOp, *ConvertOp;
1774
1775    switch (I.getNumArgOperands()) {
1776    case 2:
1777      CopyOp = I.getArgOperand(0);
1778      ConvertOp = I.getArgOperand(1);
1779      break;
1780    case 1:
1781      ConvertOp = I.getArgOperand(0);
1782      CopyOp = NULL;
1783      break;
1784    default:
1785      llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1786    }
1787
1788    // The first *NumUsedElements* elements of ConvertOp are converted to the
1789    // same number of output elements. The rest of the output is copied from
1790    // CopyOp, or (if not available) filled with zeroes.
1791    // Combine shadow for elements of ConvertOp that are used in this operation,
1792    // and insert a check.
1793    // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1794    // int->any conversion.
1795    Value *ConvertShadow = getShadow(ConvertOp);
1796    Value *AggShadow = 0;
1797    if (ConvertOp->getType()->isVectorTy()) {
1798      AggShadow = IRB.CreateExtractElement(
1799          ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1800      for (int i = 1; i < NumUsedElements; ++i) {
1801        Value *MoreShadow = IRB.CreateExtractElement(
1802            ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1803        AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1804      }
1805    } else {
1806      AggShadow = ConvertShadow;
1807    }
1808    assert(AggShadow->getType()->isIntegerTy());
1809    insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1810
1811    // Build result shadow by zero-filling parts of CopyOp shadow that come from
1812    // ConvertOp.
1813    if (CopyOp) {
1814      assert(CopyOp->getType() == I.getType());
1815      assert(CopyOp->getType()->isVectorTy());
1816      Value *ResultShadow = getShadow(CopyOp);
1817      Type *EltTy = ResultShadow->getType()->getVectorElementType();
1818      for (int i = 0; i < NumUsedElements; ++i) {
1819        ResultShadow = IRB.CreateInsertElement(
1820            ResultShadow, ConstantInt::getNullValue(EltTy),
1821            ConstantInt::get(IRB.getInt32Ty(), i));
1822      }
1823      setShadow(&I, ResultShadow);
1824      setOrigin(&I, getOrigin(CopyOp));
1825    } else {
1826      setShadow(&I, getCleanShadow(&I));
1827    }
1828  }
1829
1830  void visitIntrinsicInst(IntrinsicInst &I) {
1831    switch (I.getIntrinsicID()) {
1832    case llvm::Intrinsic::bswap:
1833      handleBswap(I);
1834      break;
1835    case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1836    case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1837    case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1838    case llvm::Intrinsic::x86_avx512_cvtss2usi:
1839    case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1840    case llvm::Intrinsic::x86_avx512_cvttss2usi:
1841    case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1842    case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1843    case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1844    case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1845    case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1846    case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1847    case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1848    case llvm::Intrinsic::x86_sse2_cvtsd2si:
1849    case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1850    case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1851    case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1852    case llvm::Intrinsic::x86_sse2_cvtss2sd:
1853    case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1854    case llvm::Intrinsic::x86_sse2_cvttsd2si:
1855    case llvm::Intrinsic::x86_sse_cvtsi2ss:
1856    case llvm::Intrinsic::x86_sse_cvtsi642ss:
1857    case llvm::Intrinsic::x86_sse_cvtss2si64:
1858    case llvm::Intrinsic::x86_sse_cvtss2si:
1859    case llvm::Intrinsic::x86_sse_cvttss2si64:
1860    case llvm::Intrinsic::x86_sse_cvttss2si:
1861      handleVectorConvertIntrinsic(I, 1);
1862      break;
1863    case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1864    case llvm::Intrinsic::x86_sse2_cvtps2pd:
1865    case llvm::Intrinsic::x86_sse_cvtps2pi:
1866    case llvm::Intrinsic::x86_sse_cvttps2pi:
1867      handleVectorConvertIntrinsic(I, 2);
1868      break;
1869    default:
1870      if (!handleUnknownIntrinsic(I))
1871        visitInstruction(I);
1872      break;
1873    }
1874  }
1875
1876  void visitCallSite(CallSite CS) {
1877    Instruction &I = *CS.getInstruction();
1878    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1879    if (CS.isCall()) {
1880      CallInst *Call = cast<CallInst>(&I);
1881
1882      // For inline asm, do the usual thing: check argument shadow and mark all
1883      // outputs as clean. Note that any side effects of the inline asm that are
1884      // not immediately visible in its constraints are not handled.
1885      if (Call->isInlineAsm()) {
1886        visitInstruction(I);
1887        return;
1888      }
1889
1890      // Allow only tail calls with the same types, otherwise
1891      // we may have a false positive: shadow for a non-void RetVal
1892      // will get propagated to a void RetVal.
1893      if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1894        Call->setTailCall(false);
1895
1896      assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
1897
1898      // We are going to insert code that relies on the fact that the callee
1899      // will become a non-readonly function after it is instrumented by us. To
1900      // prevent this code from being optimized out, mark that function
1901      // non-readonly in advance.
1902      if (Function *Func = Call->getCalledFunction()) {
1903        // Clear out readonly/readnone attributes.
1904        AttrBuilder B;
1905        B.addAttribute(Attribute::ReadOnly)
1906          .addAttribute(Attribute::ReadNone);
1907        Func->removeAttributes(AttributeSet::FunctionIndex,
1908                               AttributeSet::get(Func->getContext(),
1909                                                 AttributeSet::FunctionIndex,
1910                                                 B));
1911      }
1912    }
1913    IRBuilder<> IRB(&I);
1914
1915    if (MS.WrapIndirectCalls && !CS.getCalledFunction())
1916      IndirectCallList.push_back(CS);
1917
1918    unsigned ArgOffset = 0;
1919    DEBUG(dbgs() << "  CallSite: " << I << "\n");
1920    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1921         ArgIt != End; ++ArgIt) {
1922      Value *A = *ArgIt;
1923      unsigned i = ArgIt - CS.arg_begin();
1924      if (!A->getType()->isSized()) {
1925        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1926        continue;
1927      }
1928      unsigned Size = 0;
1929      Value *Store = 0;
1930      // Compute the Shadow for arg even if it is ByVal, because
1931      // in that case getShadow() will copy the actual arg shadow to
1932      // __msan_param_tls.
1933      Value *ArgShadow = getShadow(A);
1934      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1935      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
1936            " Shadow: " << *ArgShadow << "\n");
1937      if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
1938        assert(A->getType()->isPointerTy() &&
1939               "ByVal argument is not a pointer!");
1940        Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1941        unsigned Alignment = CS.getParamAlignment(i + 1);
1942        Store = IRB.CreateMemCpy(ArgShadowBase,
1943                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1944                                 Size, Alignment);
1945      } else {
1946        Size = MS.TD->getTypeAllocSize(A->getType());
1947        Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1948                                       kShadowTLSAlignment);
1949      }
1950      if (MS.TrackOrigins)
1951        IRB.CreateStore(getOrigin(A),
1952                        getOriginPtrForArgument(A, IRB, ArgOffset));
1953      (void)Store;
1954      assert(Size != 0 && Store != 0);
1955      DEBUG(dbgs() << "  Param:" << *Store << "\n");
1956      ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1957    }
1958    DEBUG(dbgs() << "  done with call args\n");
1959
1960    FunctionType *FT =
1961      cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
1962    if (FT->isVarArg()) {
1963      VAHelper->visitCallSite(CS, IRB);
1964    }
1965
1966    // Now, get the shadow for the RetVal.
1967    if (!I.getType()->isSized()) return;
1968    IRBuilder<> IRBBefore(&I);
1969    // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1970    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
1971    IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
1972    Instruction *NextInsn = 0;
1973    if (CS.isCall()) {
1974      NextInsn = I.getNextNode();
1975    } else {
1976      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1977      if (!NormalDest->getSinglePredecessor()) {
1978        // FIXME: this case is tricky, so we are just conservative here.
1979        // Perhaps we need to split the edge between this BB and NormalDest,
1980        // but a naive attempt to use SplitEdge leads to a crash.
1981        setShadow(&I, getCleanShadow(&I));
1982        setOrigin(&I, getCleanOrigin());
1983        return;
1984      }
1985      NextInsn = NormalDest->getFirstInsertionPt();
1986      assert(NextInsn &&
1987             "Could not find insertion point for retval shadow load");
1988    }
1989    IRBuilder<> IRBAfter(NextInsn);
1990    Value *RetvalShadow =
1991      IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1992                                 kShadowTLSAlignment, "_msret");
1993    setShadow(&I, RetvalShadow);
1994    if (MS.TrackOrigins)
1995      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1996  }
1997
1998  void visitReturnInst(ReturnInst &I) {
1999    IRBuilder<> IRB(&I);
2000    Value *RetVal = I.getReturnValue();
2001    if (!RetVal) return;
2002    Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2003    if (CheckReturnValue) {
2004      insertShadowCheck(RetVal, &I);
2005      Value *Shadow = getCleanShadow(RetVal);
2006      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2007    } else {
2008      Value *Shadow = getShadow(RetVal);
2009      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2010      // FIXME: make it conditional if ClStoreCleanOrigin==0
2011      if (MS.TrackOrigins)
2012        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2013    }
2014  }
2015
2016  void visitPHINode(PHINode &I) {
2017    IRBuilder<> IRB(&I);
2018    ShadowPHINodes.push_back(&I);
2019    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2020                                "_msphi_s"));
2021    if (MS.TrackOrigins)
2022      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2023                                  "_msphi_o"));
2024  }
2025
2026  void visitAllocaInst(AllocaInst &I) {
2027    setShadow(&I, getCleanShadow(&I));
2028    IRBuilder<> IRB(I.getNextNode());
2029    uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
2030    if (PoisonStack && ClPoisonStackWithCall) {
2031      IRB.CreateCall2(MS.MsanPoisonStackFn,
2032                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2033                      ConstantInt::get(MS.IntptrTy, Size));
2034    } else {
2035      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2036      Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2037      IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2038    }
2039
2040    if (PoisonStack && MS.TrackOrigins) {
2041      setOrigin(&I, getCleanOrigin());
2042      SmallString<2048> StackDescriptionStorage;
2043      raw_svector_ostream StackDescription(StackDescriptionStorage);
2044      // We create a string with a description of the stack allocation and
2045      // pass it into __msan_set_alloca_origin.
2046      // It will be printed by the run-time if stack-originated UMR is found.
2047      // The first 4 bytes of the string are set to '----' and will be replaced
2048      // by __msan_va_arg_overflow_size_tls at the first call.
2049      StackDescription << "----" << I.getName() << "@" << F.getName();
2050      Value *Descr =
2051          createPrivateNonConstGlobalForString(*F.getParent(),
2052                                               StackDescription.str());
2053
2054      IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
2055                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2056                      ConstantInt::get(MS.IntptrTy, Size),
2057                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2058                      IRB.CreatePointerCast(&F, MS.IntptrTy));
2059    }
2060  }
2061
2062  void visitSelectInst(SelectInst& I) {
2063    IRBuilder<> IRB(&I);
2064    // a = select b, c, d
2065    Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
2066                                getShadow(I.getFalseValue()));
2067    if (I.getType()->isAggregateType()) {
2068      // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2069      // an extra "select". This results in much more compact IR.
2070      // Sa = select Sb, poisoned, (select b, Sc, Sd)
2071      S = IRB.CreateSelect(getShadow(I.getCondition()),
2072                           getPoisonedShadow(getShadowTy(I.getType())), S,
2073                           "_msprop_select_agg");
2074    } else {
2075      // Sa = (sext Sb) | (select b, Sc, Sd)
2076      S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
2077                                           S->getType(), true),
2078                       "_msprop_select");
2079    }
2080    setShadow(&I, S);
2081    if (MS.TrackOrigins) {
2082      // Origins are always i32, so any vector conditions must be flattened.
2083      // FIXME: consider tracking vector origins for app vectors?
2084      Value *Cond = I.getCondition();
2085      if (Cond->getType()->isVectorTy()) {
2086        Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
2087        Cond = IRB.CreateICmpNE(ConvertedShadow,
2088                                getCleanShadow(ConvertedShadow), "_mso_select");
2089      }
2090      setOrigin(&I, IRB.CreateSelect(Cond,
2091                getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
2092    }
2093  }
2094
2095  void visitLandingPadInst(LandingPadInst &I) {
2096    // Do nothing.
2097    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2098    setShadow(&I, getCleanShadow(&I));
2099    setOrigin(&I, getCleanOrigin());
2100  }
2101
2102  void visitGetElementPtrInst(GetElementPtrInst &I) {
2103    handleShadowOr(I);
2104  }
2105
2106  void visitExtractValueInst(ExtractValueInst &I) {
2107    IRBuilder<> IRB(&I);
2108    Value *Agg = I.getAggregateOperand();
2109    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
2110    Value *AggShadow = getShadow(Agg);
2111    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2112    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2113    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
2114    setShadow(&I, ResShadow);
2115    setOriginForNaryOp(I);
2116  }
2117
2118  void visitInsertValueInst(InsertValueInst &I) {
2119    IRBuilder<> IRB(&I);
2120    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
2121    Value *AggShadow = getShadow(I.getAggregateOperand());
2122    Value *InsShadow = getShadow(I.getInsertedValueOperand());
2123    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2124    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
2125    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2126    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
2127    setShadow(&I, Res);
2128    setOriginForNaryOp(I);
2129  }
2130
2131  void dumpInst(Instruction &I) {
2132    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2133      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2134    } else {
2135      errs() << "ZZZ " << I.getOpcodeName() << "\n";
2136    }
2137    errs() << "QQQ " << I << "\n";
2138  }
2139
2140  void visitResumeInst(ResumeInst &I) {
2141    DEBUG(dbgs() << "Resume: " << I << "\n");
2142    // Nothing to do here.
2143  }
2144
2145  void visitInstruction(Instruction &I) {
2146    // Everything else: stop propagating and check for poisoned shadow.
2147    if (ClDumpStrictInstructions)
2148      dumpInst(I);
2149    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2150    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2151      insertShadowCheck(I.getOperand(i), &I);
2152    setShadow(&I, getCleanShadow(&I));
2153    setOrigin(&I, getCleanOrigin());
2154  }
2155};
2156
2157/// \brief AMD64-specific implementation of VarArgHelper.
2158struct VarArgAMD64Helper : public VarArgHelper {
2159  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2160  // See a comment in visitCallSite for more details.
2161  static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
2162  static const unsigned AMD64FpEndOffset = 176;
2163
2164  Function &F;
2165  MemorySanitizer &MS;
2166  MemorySanitizerVisitor &MSV;
2167  Value *VAArgTLSCopy;
2168  Value *VAArgOverflowSize;
2169
2170  SmallVector<CallInst*, 16> VAStartInstrumentationList;
2171
2172  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2173                    MemorySanitizerVisitor &MSV)
2174    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2175
2176  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2177
2178  ArgKind classifyArgument(Value* arg) {
2179    // A very rough approximation of X86_64 argument classification rules.
2180    Type *T = arg->getType();
2181    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2182      return AK_FloatingPoint;
2183    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2184      return AK_GeneralPurpose;
2185    if (T->isPointerTy())
2186      return AK_GeneralPurpose;
2187    return AK_Memory;
2188  }
2189
2190  // For VarArg functions, store the argument shadow in an ABI-specific format
2191  // that corresponds to va_list layout.
2192  // We do this because Clang lowers va_arg in the frontend, and this pass
2193  // only sees the low level code that deals with va_list internals.
2194  // A much easier alternative (provided that Clang emits va_arg instructions)
2195  // would have been to associate each live instance of va_list with a copy of
2196  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2197  // order.
2198  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
2199    unsigned GpOffset = 0;
2200    unsigned FpOffset = AMD64GpEndOffset;
2201    unsigned OverflowOffset = AMD64FpEndOffset;
2202    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2203         ArgIt != End; ++ArgIt) {
2204      Value *A = *ArgIt;
2205      ArgKind AK = classifyArgument(A);
2206      if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2207        AK = AK_Memory;
2208      if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2209        AK = AK_Memory;
2210      Value *Base;
2211      switch (AK) {
2212      case AK_GeneralPurpose:
2213        Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
2214        GpOffset += 8;
2215        break;
2216      case AK_FloatingPoint:
2217        Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
2218        FpOffset += 16;
2219        break;
2220      case AK_Memory:
2221        uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
2222        Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
2223        OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2224      }
2225      IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2226    }
2227    Constant *OverflowSize =
2228      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2229    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2230  }
2231
2232  /// \brief Compute the shadow address for a given va_arg.
2233  Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
2234                                   int ArgOffset) {
2235    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2236    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2237    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
2238                              "_msarg");
2239  }
2240
2241  void visitVAStartInst(VAStartInst &I) {
2242    IRBuilder<> IRB(&I);
2243    VAStartInstrumentationList.push_back(&I);
2244    Value *VAListTag = I.getArgOperand(0);
2245    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2246
2247    // Unpoison the whole __va_list_tag.
2248    // FIXME: magic ABI constants.
2249    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2250                     /* size */24, /* alignment */8, false);
2251  }
2252
2253  void visitVACopyInst(VACopyInst &I) {
2254    IRBuilder<> IRB(&I);
2255    Value *VAListTag = I.getArgOperand(0);
2256    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2257
2258    // Unpoison the whole __va_list_tag.
2259    // FIXME: magic ABI constants.
2260    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2261                     /* size */24, /* alignment */8, false);
2262  }
2263
2264  void finalizeInstrumentation() {
2265    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2266           "finalizeInstrumentation called twice");
2267    if (!VAStartInstrumentationList.empty()) {
2268      // If there is a va_start in this function, make a backup copy of
2269      // va_arg_tls somewhere in the function entry block.
2270      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2271      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2272      Value *CopySize =
2273        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2274                      VAArgOverflowSize);
2275      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2276      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2277    }
2278
2279    // Instrument va_start.
2280    // Copy va_list shadow from the backup copy of the TLS contents.
2281    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2282      CallInst *OrigInst = VAStartInstrumentationList[i];
2283      IRBuilder<> IRB(OrigInst->getNextNode());
2284      Value *VAListTag = OrigInst->getArgOperand(0);
2285
2286      Value *RegSaveAreaPtrPtr =
2287        IRB.CreateIntToPtr(
2288          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2289                        ConstantInt::get(MS.IntptrTy, 16)),
2290          Type::getInt64PtrTy(*MS.C));
2291      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2292      Value *RegSaveAreaShadowPtr =
2293        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2294      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2295                       AMD64FpEndOffset, 16);
2296
2297      Value *OverflowArgAreaPtrPtr =
2298        IRB.CreateIntToPtr(
2299          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2300                        ConstantInt::get(MS.IntptrTy, 8)),
2301          Type::getInt64PtrTy(*MS.C));
2302      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2303      Value *OverflowArgAreaShadowPtr =
2304        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
2305      Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
2306      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2307    }
2308  }
2309};
2310
2311/// \brief A no-op implementation of VarArgHelper.
2312struct VarArgNoOpHelper : public VarArgHelper {
2313  VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2314                   MemorySanitizerVisitor &MSV) {}
2315
2316  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {}
2317
2318  void visitVAStartInst(VAStartInst &I) {}
2319
2320  void visitVACopyInst(VACopyInst &I) {}
2321
2322  void finalizeInstrumentation() {}
2323};
2324
2325VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
2326                                 MemorySanitizerVisitor &Visitor) {
2327  // VarArg handling is only implemented on AMD64. False positives are possible
2328  // on other platforms.
2329  llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2330  if (TargetTriple.getArch() == llvm::Triple::x86_64)
2331    return new VarArgAMD64Helper(Func, Msan, Visitor);
2332  else
2333    return new VarArgNoOpHelper(Func, Msan, Visitor);
2334}
2335
2336}  // namespace
2337
2338bool MemorySanitizer::runOnFunction(Function &F) {
2339  MemorySanitizerVisitor Visitor(F, *this);
2340
2341  // Clear out readonly/readnone attributes.
2342  AttrBuilder B;
2343  B.addAttribute(Attribute::ReadOnly)
2344    .addAttribute(Attribute::ReadNone);
2345  F.removeAttributes(AttributeSet::FunctionIndex,
2346                     AttributeSet::get(F.getContext(),
2347                                       AttributeSet::FunctionIndex, B));
2348
2349  return Visitor.runOnFunction();
2350}
2351