InstCombineMulDivRem.cpp revision 263508
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero.  If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27  // If V has multiple uses, then we would have to do more analysis to determine
28  // if this is safe.  For example, the use could be in dynamically unreached
29  // code.
30  if (!V->hasOneUse()) return 0;
31
32  bool MadeChange = false;
33
34  // ((1 << A) >>u B) --> (1 << (A-B))
35  // Because V cannot be zero, we know that B is less than A.
36  Value *A = 0, *B = 0, *PowerOf2 = 0;
37  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38                      m_Value(B))) &&
39      // The "1" can be any value known to be a power of 2.
40      isKnownToBeAPowerOfTwo(PowerOf2)) {
41    A = IC.Builder->CreateSub(A, B);
42    return IC.Builder->CreateShl(PowerOf2, A);
43  }
44
45  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46  // inexact.  Similarly for <<.
47  if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48    if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
49      // We know that this is an exact/nuw shift and that the input is a
50      // non-zero context as well.
51      if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52        I->setOperand(0, V2);
53        MadeChange = true;
54      }
55
56      if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57        I->setIsExact();
58        MadeChange = true;
59      }
60
61      if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62        I->setHasNoUnsignedWrap();
63        MadeChange = true;
64      }
65    }
66
67  // TODO: Lots more we could do here:
68  //    If V is a phi node, we can call this on each of its operands.
69  //    "select cond, X, 0" can simplify to "X".
70
71  return MadeChange ? V : 0;
72}
73
74
75/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78  uint32_t W = C1->getBitWidth();
79  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80  if (sign) {
81    LHSExt = LHSExt.sext(W * 2);
82    RHSExt = RHSExt.sext(W * 2);
83  } else {
84    LHSExt = LHSExt.zext(W * 2);
85    RHSExt = RHSExt.zext(W * 2);
86  }
87
88  APInt MulExt = LHSExt * RHSExt;
89
90  if (!sign)
91    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95  return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
98/// \brief A helper routine of InstCombiner::visitMul().
99///
100/// If C is a vector of known powers of 2, then this function returns
101/// a new vector obtained from C replacing each element with its logBase2.
102/// Return a null pointer otherwise.
103static Constant *getLogBase2Vector(ConstantDataVector *CV) {
104  const APInt *IVal;
105  SmallVector<Constant *, 4> Elts;
106
107  for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
108    Constant *Elt = CV->getElementAsConstant(I);
109    if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
110      return 0;
111    Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
112  }
113
114  return ConstantVector::get(Elts);
115}
116
117Instruction *InstCombiner::visitMul(BinaryOperator &I) {
118  bool Changed = SimplifyAssociativeOrCommutative(I);
119  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
120
121  if (Value *V = SimplifyMulInst(Op0, Op1, TD))
122    return ReplaceInstUsesWith(I, V);
123
124  if (Value *V = SimplifyUsingDistributiveLaws(I))
125    return ReplaceInstUsesWith(I, V);
126
127  if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
128    return BinaryOperator::CreateNeg(Op0, I.getName());
129
130  // Also allow combining multiply instructions on vectors.
131  {
132    Value *NewOp;
133    Constant *C1, *C2;
134    const APInt *IVal;
135    if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
136                        m_Constant(C1))) &&
137        match(C1, m_APInt(IVal)))
138      // ((X << C1)*C2) == (X * (C2 << C1))
139      return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
140
141    if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
142      Constant *NewCst = 0;
143      if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
144        // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
145        NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
146      else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
147        // Replace X*(2^C) with X << C, where C is a vector of known
148        // constant powers of 2.
149        NewCst = getLogBase2Vector(CV);
150
151      if (NewCst) {
152        BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
153        if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
154        if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
155        return Shl;
156      }
157    }
158  }
159
160  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
161    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
162    { Value *X; ConstantInt *C1;
163      if (Op0->hasOneUse() &&
164          match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
165        Value *Add = Builder->CreateMul(X, CI);
166        return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
167      }
168    }
169
170    // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
171    // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
172    // The "* (2**n)" thus becomes a potential shifting opportunity.
173    {
174      const APInt &   Val = CI->getValue();
175      const APInt &PosVal = Val.abs();
176      if (Val.isNegative() && PosVal.isPowerOf2()) {
177        Value *X = 0, *Y = 0;
178        if (Op0->hasOneUse()) {
179          ConstantInt *C1;
180          Value *Sub = 0;
181          if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
182            Sub = Builder->CreateSub(X, Y, "suba");
183          else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
184            Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
185          if (Sub)
186            return
187              BinaryOperator::CreateMul(Sub,
188                                        ConstantInt::get(Y->getType(), PosVal));
189        }
190      }
191    }
192  }
193
194  // Simplify mul instructions with a constant RHS.
195  if (isa<Constant>(Op1)) {
196    // Try to fold constant mul into select arguments.
197    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
198      if (Instruction *R = FoldOpIntoSelect(I, SI))
199        return R;
200
201    if (isa<PHINode>(Op0))
202      if (Instruction *NV = FoldOpIntoPhi(I))
203        return NV;
204  }
205
206  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
207    if (Value *Op1v = dyn_castNegVal(Op1))
208      return BinaryOperator::CreateMul(Op0v, Op1v);
209
210  // (X / Y) *  Y = X - (X % Y)
211  // (X / Y) * -Y = (X % Y) - X
212  {
213    Value *Op1C = Op1;
214    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
215    if (!BO ||
216        (BO->getOpcode() != Instruction::UDiv &&
217         BO->getOpcode() != Instruction::SDiv)) {
218      Op1C = Op0;
219      BO = dyn_cast<BinaryOperator>(Op1);
220    }
221    Value *Neg = dyn_castNegVal(Op1C);
222    if (BO && BO->hasOneUse() &&
223        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
224        (BO->getOpcode() == Instruction::UDiv ||
225         BO->getOpcode() == Instruction::SDiv)) {
226      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
227
228      // If the division is exact, X % Y is zero, so we end up with X or -X.
229      if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
230        if (SDiv->isExact()) {
231          if (Op1BO == Op1C)
232            return ReplaceInstUsesWith(I, Op0BO);
233          return BinaryOperator::CreateNeg(Op0BO);
234        }
235
236      Value *Rem;
237      if (BO->getOpcode() == Instruction::UDiv)
238        Rem = Builder->CreateURem(Op0BO, Op1BO);
239      else
240        Rem = Builder->CreateSRem(Op0BO, Op1BO);
241      Rem->takeName(BO);
242
243      if (Op1BO == Op1C)
244        return BinaryOperator::CreateSub(Op0BO, Rem);
245      return BinaryOperator::CreateSub(Rem, Op0BO);
246    }
247  }
248
249  /// i1 mul -> i1 and.
250  if (I.getType()->isIntegerTy(1))
251    return BinaryOperator::CreateAnd(Op0, Op1);
252
253  // X*(1 << Y) --> X << Y
254  // (1 << Y)*X --> X << Y
255  {
256    Value *Y;
257    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
258      return BinaryOperator::CreateShl(Op1, Y);
259    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
260      return BinaryOperator::CreateShl(Op0, Y);
261  }
262
263  // If one of the operands of the multiply is a cast from a boolean value, then
264  // we know the bool is either zero or one, so this is a 'masking' multiply.
265  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
266  if (!I.getType()->isVectorTy()) {
267    // -2 is "-1 << 1" so it is all bits set except the low one.
268    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
269
270    Value *BoolCast = 0, *OtherOp = 0;
271    if (MaskedValueIsZero(Op0, Negative2))
272      BoolCast = Op0, OtherOp = Op1;
273    else if (MaskedValueIsZero(Op1, Negative2))
274      BoolCast = Op1, OtherOp = Op0;
275
276    if (BoolCast) {
277      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
278                                    BoolCast);
279      return BinaryOperator::CreateAnd(V, OtherOp);
280    }
281  }
282
283  return Changed ? &I : 0;
284}
285
286//
287// Detect pattern:
288//
289// log2(Y*0.5)
290//
291// And check for corresponding fast math flags
292//
293
294static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
295
296   if (!Op->hasOneUse())
297     return;
298
299   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
300   if (!II)
301     return;
302   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
303     return;
304   Log2 = II;
305
306   Value *OpLog2Of = II->getArgOperand(0);
307   if (!OpLog2Of->hasOneUse())
308     return;
309
310   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
311   if (!I)
312     return;
313   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
314     return;
315
316   ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
317   if (CFP && CFP->isExactlyValue(0.5)) {
318     Y = I->getOperand(1);
319     return;
320   }
321   CFP = dyn_cast<ConstantFP>(I->getOperand(1));
322   if (CFP && CFP->isExactlyValue(0.5))
323     Y = I->getOperand(0);
324}
325
326/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
327/// true iff the given value is FMul or FDiv with one and only one operand
328/// being a normal constant (i.e. not Zero/NaN/Infinity).
329static bool isFMulOrFDivWithConstant(Value *V) {
330  Instruction *I = dyn_cast<Instruction>(V);
331  if (!I || (I->getOpcode() != Instruction::FMul &&
332             I->getOpcode() != Instruction::FDiv))
333    return false;
334
335  ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
336  ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
337
338  if (C0 && C1)
339    return false;
340
341  return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
342         (C1 && C1->getValueAPF().isFiniteNonZero());
343}
344
345static bool isNormalFp(const ConstantFP *C) {
346  const APFloat &Flt = C->getValueAPF();
347  return Flt.isNormal();
348}
349
350/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
351/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
352/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
353/// This function is to simplify "FMulOrDiv * C" and returns the
354/// resulting expression. Note that this function could return NULL in
355/// case the constants cannot be folded into a normal floating-point.
356///
357Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
358                                   Instruction *InsertBefore) {
359  assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
360
361  Value *Opnd0 = FMulOrDiv->getOperand(0);
362  Value *Opnd1 = FMulOrDiv->getOperand(1);
363
364  ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
365  ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
366
367  BinaryOperator *R = 0;
368
369  // (X * C0) * C => X * (C0*C)
370  if (FMulOrDiv->getOpcode() == Instruction::FMul) {
371    Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
372    if (isNormalFp(cast<ConstantFP>(F)))
373      R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
374  } else {
375    if (C0) {
376      // (C0 / X) * C => (C0 * C) / X
377      if (FMulOrDiv->hasOneUse()) {
378        // It would otherwise introduce another div.
379        ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
380        if (isNormalFp(F))
381          R = BinaryOperator::CreateFDiv(F, Opnd1);
382      }
383    } else {
384      // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
385      ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
386      if (isNormalFp(F)) {
387        R = BinaryOperator::CreateFMul(Opnd0, F);
388      } else {
389        // (X / C1) * C => X / (C1/C)
390        Constant *F = ConstantExpr::getFDiv(C1, C);
391        if (isNormalFp(cast<ConstantFP>(F)))
392          R = BinaryOperator::CreateFDiv(Opnd0, F);
393      }
394    }
395  }
396
397  if (R) {
398    R->setHasUnsafeAlgebra(true);
399    InsertNewInstWith(R, *InsertBefore);
400  }
401
402  return R;
403}
404
405Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
406  bool Changed = SimplifyAssociativeOrCommutative(I);
407  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
408
409  if (isa<Constant>(Op0))
410    std::swap(Op0, Op1);
411
412  if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
413    return ReplaceInstUsesWith(I, V);
414
415  bool AllowReassociate = I.hasUnsafeAlgebra();
416
417  // Simplify mul instructions with a constant RHS.
418  if (isa<Constant>(Op1)) {
419    // Try to fold constant mul into select arguments.
420    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
421      if (Instruction *R = FoldOpIntoSelect(I, SI))
422        return R;
423
424    if (isa<PHINode>(Op0))
425      if (Instruction *NV = FoldOpIntoPhi(I))
426        return NV;
427
428    ConstantFP *C = dyn_cast<ConstantFP>(Op1);
429    if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
430      // Let MDC denote an expression in one of these forms:
431      // X * C, C/X, X/C, where C is a constant.
432      //
433      // Try to simplify "MDC * Constant"
434      if (isFMulOrFDivWithConstant(Op0)) {
435        Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
436        if (V)
437          return ReplaceInstUsesWith(I, V);
438      }
439
440      // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
441      Instruction *FAddSub = dyn_cast<Instruction>(Op0);
442      if (FAddSub &&
443          (FAddSub->getOpcode() == Instruction::FAdd ||
444           FAddSub->getOpcode() == Instruction::FSub)) {
445        Value *Opnd0 = FAddSub->getOperand(0);
446        Value *Opnd1 = FAddSub->getOperand(1);
447        ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
448        ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
449        bool Swap = false;
450        if (C0) {
451          std::swap(C0, C1);
452          std::swap(Opnd0, Opnd1);
453          Swap = true;
454        }
455
456        if (C1 && C1->getValueAPF().isFiniteNonZero() &&
457            isFMulOrFDivWithConstant(Opnd0)) {
458          Value *M1 = ConstantExpr::getFMul(C1, C);
459          Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
460                      foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
461                      0;
462          if (M0 && M1) {
463            if (Swap && FAddSub->getOpcode() == Instruction::FSub)
464              std::swap(M0, M1);
465
466            Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
467                                  ? BinaryOperator::CreateFAdd(M0, M1)
468                                  : BinaryOperator::CreateFSub(M0, M1);
469            RI->copyFastMathFlags(&I);
470            return RI;
471          }
472        }
473      }
474    }
475  }
476
477
478  // Under unsafe algebra do:
479  // X * log2(0.5*Y) = X*log2(Y) - X
480  if (I.hasUnsafeAlgebra()) {
481    Value *OpX = NULL;
482    Value *OpY = NULL;
483    IntrinsicInst *Log2;
484    detectLog2OfHalf(Op0, OpY, Log2);
485    if (OpY) {
486      OpX = Op1;
487    } else {
488      detectLog2OfHalf(Op1, OpY, Log2);
489      if (OpY) {
490        OpX = Op0;
491      }
492    }
493    // if pattern detected emit alternate sequence
494    if (OpX && OpY) {
495      BuilderTy::FastMathFlagGuard Guard(*Builder);
496      Builder->SetFastMathFlags(Log2->getFastMathFlags());
497      Log2->setArgOperand(0, OpY);
498      Value *FMulVal = Builder->CreateFMul(OpX, Log2);
499      Value *FSub = Builder->CreateFSub(FMulVal, OpX);
500      FSub->takeName(&I);
501      return ReplaceInstUsesWith(I, FSub);
502    }
503  }
504
505  // Handle symmetric situation in a 2-iteration loop
506  Value *Opnd0 = Op0;
507  Value *Opnd1 = Op1;
508  for (int i = 0; i < 2; i++) {
509    bool IgnoreZeroSign = I.hasNoSignedZeros();
510    if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
511      BuilderTy::FastMathFlagGuard Guard(*Builder);
512      Builder->SetFastMathFlags(I.getFastMathFlags());
513
514      Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
515      Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
516
517      // -X * -Y => X*Y
518      if (N1)
519        return BinaryOperator::CreateFMul(N0, N1);
520
521      if (Opnd0->hasOneUse()) {
522        // -X * Y => -(X*Y) (Promote negation as high as possible)
523        Value *T = Builder->CreateFMul(N0, Opnd1);
524        Value *Neg = Builder->CreateFNeg(T);
525        Neg->takeName(&I);
526        return ReplaceInstUsesWith(I, Neg);
527      }
528    }
529
530    // (X*Y) * X => (X*X) * Y where Y != X
531    //  The purpose is two-fold:
532    //   1) to form a power expression (of X).
533    //   2) potentially shorten the critical path: After transformation, the
534    //  latency of the instruction Y is amortized by the expression of X*X,
535    //  and therefore Y is in a "less critical" position compared to what it
536    //  was before the transformation.
537    //
538    if (AllowReassociate) {
539      Value *Opnd0_0, *Opnd0_1;
540      if (Opnd0->hasOneUse() &&
541          match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
542        Value *Y = 0;
543        if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
544          Y = Opnd0_1;
545        else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
546          Y = Opnd0_0;
547
548        if (Y) {
549          BuilderTy::FastMathFlagGuard Guard(*Builder);
550          Builder->SetFastMathFlags(I.getFastMathFlags());
551          Value *T = Builder->CreateFMul(Opnd1, Opnd1);
552
553          Value *R = Builder->CreateFMul(T, Y);
554          R->takeName(&I);
555          return ReplaceInstUsesWith(I, R);
556        }
557      }
558    }
559
560    // B * (uitofp i1 C) -> select C, B, 0
561    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
562      Value *LHS = Op0, *RHS = Op1;
563      Value *B, *C;
564      if (!match(RHS, m_UIToFP(m_Value(C))))
565        std::swap(LHS, RHS);
566
567      if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
568        B = LHS;
569        Value *Zero = ConstantFP::getNegativeZero(B->getType());
570        return SelectInst::Create(C, B, Zero);
571      }
572    }
573
574    // A * (1 - uitofp i1 C) -> select C, 0, A
575    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
576      Value *LHS = Op0, *RHS = Op1;
577      Value *A, *C;
578      if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
579        std::swap(LHS, RHS);
580
581      if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
582          C->getType()->isIntegerTy(1)) {
583        A = LHS;
584        Value *Zero = ConstantFP::getNegativeZero(A->getType());
585        return SelectInst::Create(C, Zero, A);
586      }
587    }
588
589    if (!isa<Constant>(Op1))
590      std::swap(Opnd0, Opnd1);
591    else
592      break;
593  }
594
595  return Changed ? &I : 0;
596}
597
598/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
599/// instruction.
600bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
601  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
602
603  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
604  int NonNullOperand = -1;
605  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
606    if (ST->isNullValue())
607      NonNullOperand = 2;
608  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
609  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
610    if (ST->isNullValue())
611      NonNullOperand = 1;
612
613  if (NonNullOperand == -1)
614    return false;
615
616  Value *SelectCond = SI->getOperand(0);
617
618  // Change the div/rem to use 'Y' instead of the select.
619  I.setOperand(1, SI->getOperand(NonNullOperand));
620
621  // Okay, we know we replace the operand of the div/rem with 'Y' with no
622  // problem.  However, the select, or the condition of the select may have
623  // multiple uses.  Based on our knowledge that the operand must be non-zero,
624  // propagate the known value for the select into other uses of it, and
625  // propagate a known value of the condition into its other users.
626
627  // If the select and condition only have a single use, don't bother with this,
628  // early exit.
629  if (SI->use_empty() && SelectCond->hasOneUse())
630    return true;
631
632  // Scan the current block backward, looking for other uses of SI.
633  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
634
635  while (BBI != BBFront) {
636    --BBI;
637    // If we found a call to a function, we can't assume it will return, so
638    // information from below it cannot be propagated above it.
639    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
640      break;
641
642    // Replace uses of the select or its condition with the known values.
643    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
644         I != E; ++I) {
645      if (*I == SI) {
646        *I = SI->getOperand(NonNullOperand);
647        Worklist.Add(BBI);
648      } else if (*I == SelectCond) {
649        *I = Builder->getInt1(NonNullOperand == 1);
650        Worklist.Add(BBI);
651      }
652    }
653
654    // If we past the instruction, quit looking for it.
655    if (&*BBI == SI)
656      SI = 0;
657    if (&*BBI == SelectCond)
658      SelectCond = 0;
659
660    // If we ran out of things to eliminate, break out of the loop.
661    if (SelectCond == 0 && SI == 0)
662      break;
663
664  }
665  return true;
666}
667
668
669/// This function implements the transforms common to both integer division
670/// instructions (udiv and sdiv). It is called by the visitors to those integer
671/// division instructions.
672/// @brief Common integer divide transforms
673Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
674  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
675
676  // The RHS is known non-zero.
677  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
678    I.setOperand(1, V);
679    return &I;
680  }
681
682  // Handle cases involving: [su]div X, (select Cond, Y, Z)
683  // This does not apply for fdiv.
684  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
685    return &I;
686
687  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
688    // (X / C1) / C2  -> X / (C1*C2)
689    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
690      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
691        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
692          if (MultiplyOverflows(RHS, LHSRHS,
693                                I.getOpcode()==Instruction::SDiv))
694            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
695          return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
696                                        ConstantExpr::getMul(RHS, LHSRHS));
697        }
698
699    if (!RHS->isZero()) { // avoid X udiv 0
700      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
701        if (Instruction *R = FoldOpIntoSelect(I, SI))
702          return R;
703      if (isa<PHINode>(Op0))
704        if (Instruction *NV = FoldOpIntoPhi(I))
705          return NV;
706    }
707  }
708
709  // See if we can fold away this div instruction.
710  if (SimplifyDemandedInstructionBits(I))
711    return &I;
712
713  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
714  Value *X = 0, *Z = 0;
715  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
716    bool isSigned = I.getOpcode() == Instruction::SDiv;
717    if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
718        (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
719      return BinaryOperator::Create(I.getOpcode(), X, Op1);
720  }
721
722  return 0;
723}
724
725/// dyn_castZExtVal - Checks if V is a zext or constant that can
726/// be truncated to Ty without losing bits.
727static Value *dyn_castZExtVal(Value *V, Type *Ty) {
728  if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
729    if (Z->getSrcTy() == Ty)
730      return Z->getOperand(0);
731  } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
732    if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
733      return ConstantExpr::getTrunc(C, Ty);
734  }
735  return 0;
736}
737
738namespace {
739const unsigned MaxDepth = 6;
740typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
741                                          const BinaryOperator &I,
742                                          InstCombiner &IC);
743
744/// \brief Used to maintain state for visitUDivOperand().
745struct UDivFoldAction {
746  FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
747                                ///< operand.  This can be zero if this action
748                                ///< joins two actions together.
749
750  Value *OperandToFold;         ///< Which operand to fold.
751  union {
752    Instruction *FoldResult;    ///< The instruction returned when FoldAction is
753                                ///< invoked.
754
755    size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
756                                ///< joins two actions together.
757  };
758
759  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
760      : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
761  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
762      : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
763};
764}
765
766// X udiv 2^C -> X >> C
767static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
768                                    const BinaryOperator &I, InstCombiner &IC) {
769  const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
770  BinaryOperator *LShr = BinaryOperator::CreateLShr(
771      Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
772  if (I.isExact()) LShr->setIsExact();
773  return LShr;
774}
775
776// X udiv C, where C >= signbit
777static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
778                                   const BinaryOperator &I, InstCombiner &IC) {
779  Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
780
781  return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
782                            ConstantInt::get(I.getType(), 1));
783}
784
785// X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
786static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
787                                InstCombiner &IC) {
788  Instruction *ShiftLeft = cast<Instruction>(Op1);
789  if (isa<ZExtInst>(ShiftLeft))
790    ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
791
792  const APInt &CI =
793      cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
794  Value *N = ShiftLeft->getOperand(1);
795  if (CI != 1)
796    N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
797  if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
798    N = IC.Builder->CreateZExt(N, Z->getDestTy());
799  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
800  if (I.isExact()) LShr->setIsExact();
801  return LShr;
802}
803
804// \brief Recursively visits the possible right hand operands of a udiv
805// instruction, seeing through select instructions, to determine if we can
806// replace the udiv with something simpler.  If we find that an operand is not
807// able to simplify the udiv, we abort the entire transformation.
808static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
809                               SmallVectorImpl<UDivFoldAction> &Actions,
810                               unsigned Depth = 0) {
811  // Check to see if this is an unsigned division with an exact power of 2,
812  // if so, convert to a right shift.
813  if (match(Op1, m_Power2())) {
814    Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
815    return Actions.size();
816  }
817
818  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
819    // X udiv C, where C >= signbit
820    if (C->getValue().isNegative()) {
821      Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
822      return Actions.size();
823    }
824
825  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
826  if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
827      match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
828    Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
829    return Actions.size();
830  }
831
832  // The remaining tests are all recursive, so bail out if we hit the limit.
833  if (Depth++ == MaxDepth)
834    return 0;
835
836  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
837    if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
838      if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
839        Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
840        return Actions.size();
841      }
842
843  return 0;
844}
845
846Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
847  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
848
849  if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
850    return ReplaceInstUsesWith(I, V);
851
852  // Handle the integer div common cases
853  if (Instruction *Common = commonIDivTransforms(I))
854    return Common;
855
856  // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
857  if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
858    Value *X;
859    ConstantInt *C1;
860    if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
861      APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
862      return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
863    }
864  }
865
866  // (zext A) udiv (zext B) --> zext (A udiv B)
867  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
868    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
869      return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
870                                              I.isExact()),
871                          I.getType());
872
873  // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
874  SmallVector<UDivFoldAction, 6> UDivActions;
875  if (visitUDivOperand(Op0, Op1, I, UDivActions))
876    for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
877      FoldUDivOperandCb Action = UDivActions[i].FoldAction;
878      Value *ActionOp1 = UDivActions[i].OperandToFold;
879      Instruction *Inst;
880      if (Action)
881        Inst = Action(Op0, ActionOp1, I, *this);
882      else {
883        // This action joins two actions together.  The RHS of this action is
884        // simply the last action we processed, we saved the LHS action index in
885        // the joining action.
886        size_t SelectRHSIdx = i - 1;
887        Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
888        size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
889        Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
890        Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
891                                  SelectLHS, SelectRHS);
892      }
893
894      // If this is the last action to process, return it to the InstCombiner.
895      // Otherwise, we insert it before the UDiv and record it so that we may
896      // use it as part of a joining action (i.e., a SelectInst).
897      if (e - i != 1) {
898        Inst->insertBefore(&I);
899        UDivActions[i].FoldResult = Inst;
900      } else
901        return Inst;
902    }
903
904  return 0;
905}
906
907Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
908  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
909
910  if (Value *V = SimplifySDivInst(Op0, Op1, TD))
911    return ReplaceInstUsesWith(I, V);
912
913  // Handle the integer div common cases
914  if (Instruction *Common = commonIDivTransforms(I))
915    return Common;
916
917  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
918    // sdiv X, -1 == -X
919    if (RHS->isAllOnesValue())
920      return BinaryOperator::CreateNeg(Op0);
921
922    // sdiv X, C  -->  ashr exact X, log2(C)
923    if (I.isExact() && RHS->getValue().isNonNegative() &&
924        RHS->getValue().isPowerOf2()) {
925      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
926                                            RHS->getValue().exactLogBase2());
927      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
928    }
929
930    // -X/C  -->  X/-C  provided the negation doesn't overflow.
931    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
932      if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
933        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
934                                          ConstantExpr::getNeg(RHS));
935  }
936
937  // If the sign bits of both operands are zero (i.e. we can prove they are
938  // unsigned inputs), turn this into a udiv.
939  if (I.getType()->isIntegerTy()) {
940    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
941    if (MaskedValueIsZero(Op0, Mask)) {
942      if (MaskedValueIsZero(Op1, Mask)) {
943        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
944        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
945      }
946
947      if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
948        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
949        // Safe because the only negative value (1 << Y) can take on is
950        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
951        // the sign bit set.
952        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
953      }
954    }
955  }
956
957  return 0;
958}
959
960/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
961/// FP value and:
962///    1) 1/C is exact, or
963///    2) reciprocal is allowed.
964/// If the conversion was successful, the simplified expression "X * 1/C" is
965/// returned; otherwise, NULL is returned.
966///
967static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
968                                             ConstantFP *Divisor,
969                                             bool AllowReciprocal) {
970  const APFloat &FpVal = Divisor->getValueAPF();
971  APFloat Reciprocal(FpVal.getSemantics());
972  bool Cvt = FpVal.getExactInverse(&Reciprocal);
973
974  if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
975    Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
976    (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
977    Cvt = !Reciprocal.isDenormal();
978  }
979
980  if (!Cvt)
981    return 0;
982
983  ConstantFP *R;
984  R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
985  return BinaryOperator::CreateFMul(Dividend, R);
986}
987
988Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
989  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
990
991  if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
992    return ReplaceInstUsesWith(I, V);
993
994  if (isa<Constant>(Op0))
995    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
996      if (Instruction *R = FoldOpIntoSelect(I, SI))
997        return R;
998
999  bool AllowReassociate = I.hasUnsafeAlgebra();
1000  bool AllowReciprocal = I.hasAllowReciprocal();
1001
1002  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1003    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1004      if (Instruction *R = FoldOpIntoSelect(I, SI))
1005        return R;
1006
1007    if (AllowReassociate) {
1008      ConstantFP *C1 = 0;
1009      ConstantFP *C2 = Op1C;
1010      Value *X;
1011      Instruction *Res = 0;
1012
1013      if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
1014        // (X*C1)/C2 => X * (C1/C2)
1015        //
1016        Constant *C = ConstantExpr::getFDiv(C1, C2);
1017        const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
1018        if (F.isNormal())
1019          Res = BinaryOperator::CreateFMul(X, C);
1020      } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
1021        // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1022        //
1023        Constant *C = ConstantExpr::getFMul(C1, C2);
1024        const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
1025        if (F.isNormal()) {
1026          Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
1027                                         AllowReciprocal);
1028          if (!Res)
1029            Res = BinaryOperator::CreateFDiv(X, C);
1030        }
1031      }
1032
1033      if (Res) {
1034        Res->setFastMathFlags(I.getFastMathFlags());
1035        return Res;
1036      }
1037    }
1038
1039    // X / C => X * 1/C
1040    if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
1041      return T;
1042
1043    return 0;
1044  }
1045
1046  if (AllowReassociate && isa<ConstantFP>(Op0)) {
1047    ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
1048    Constant *Fold = 0;
1049    Value *X;
1050    bool CreateDiv = true;
1051
1052    // C1 / (X*C2) => (C1/C2) / X
1053    if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
1054      Fold = ConstantExpr::getFDiv(C1, C2);
1055    else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
1056      // C1 / (X/C2) => (C1*C2) / X
1057      Fold = ConstantExpr::getFMul(C1, C2);
1058    } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
1059      // C1 / (C2/X) => (C1/C2) * X
1060      Fold = ConstantExpr::getFDiv(C1, C2);
1061      CreateDiv = false;
1062    }
1063
1064    if (Fold) {
1065      const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
1066      if (FoldC.isNormal()) {
1067        Instruction *R = CreateDiv ?
1068                         BinaryOperator::CreateFDiv(Fold, X) :
1069                         BinaryOperator::CreateFMul(X, Fold);
1070        R->setFastMathFlags(I.getFastMathFlags());
1071        return R;
1072      }
1073    }
1074    return 0;
1075  }
1076
1077  if (AllowReassociate) {
1078    Value *X, *Y;
1079    Value *NewInst = 0;
1080    Instruction *SimpR = 0;
1081
1082    if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1083      // (X/Y) / Z => X / (Y*Z)
1084      //
1085      if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
1086        NewInst = Builder->CreateFMul(Y, Op1);
1087        SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1088      }
1089    } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1090      // Z / (X/Y) => Z*Y / X
1091      //
1092      if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
1093        NewInst = Builder->CreateFMul(Op0, Y);
1094        SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1095      }
1096    }
1097
1098    if (NewInst) {
1099      if (Instruction *T = dyn_cast<Instruction>(NewInst))
1100        T->setDebugLoc(I.getDebugLoc());
1101      SimpR->setFastMathFlags(I.getFastMathFlags());
1102      return SimpR;
1103    }
1104  }
1105
1106  return 0;
1107}
1108
1109/// This function implements the transforms common to both integer remainder
1110/// instructions (urem and srem). It is called by the visitors to those integer
1111/// remainder instructions.
1112/// @brief Common integer remainder transforms
1113Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1114  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1115
1116  // The RHS is known non-zero.
1117  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
1118    I.setOperand(1, V);
1119    return &I;
1120  }
1121
1122  // Handle cases involving: rem X, (select Cond, Y, Z)
1123  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1124    return &I;
1125
1126  if (isa<ConstantInt>(Op1)) {
1127    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1128      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1129        if (Instruction *R = FoldOpIntoSelect(I, SI))
1130          return R;
1131      } else if (isa<PHINode>(Op0I)) {
1132        if (Instruction *NV = FoldOpIntoPhi(I))
1133          return NV;
1134      }
1135
1136      // See if we can fold away this rem instruction.
1137      if (SimplifyDemandedInstructionBits(I))
1138        return &I;
1139    }
1140  }
1141
1142  return 0;
1143}
1144
1145Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1146  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1147
1148  if (Value *V = SimplifyURemInst(Op0, Op1, TD))
1149    return ReplaceInstUsesWith(I, V);
1150
1151  if (Instruction *common = commonIRemTransforms(I))
1152    return common;
1153
1154  // (zext A) urem (zext B) --> zext (A urem B)
1155  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1156    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1157      return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1158                          I.getType());
1159
1160  // X urem Y -> X and Y-1, where Y is a power of 2,
1161  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
1162    Constant *N1 = Constant::getAllOnesValue(I.getType());
1163    Value *Add = Builder->CreateAdd(Op1, N1);
1164    return BinaryOperator::CreateAnd(Op0, Add);
1165  }
1166
1167  // 1 urem X -> zext(X != 1)
1168  if (match(Op0, m_One())) {
1169    Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1170    Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1171    return ReplaceInstUsesWith(I, Ext);
1172  }
1173
1174  return 0;
1175}
1176
1177Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1178  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1179
1180  if (Value *V = SimplifySRemInst(Op0, Op1, TD))
1181    return ReplaceInstUsesWith(I, V);
1182
1183  // Handle the integer rem common cases
1184  if (Instruction *Common = commonIRemTransforms(I))
1185    return Common;
1186
1187  if (Value *RHSNeg = dyn_castNegVal(Op1))
1188    if (!isa<Constant>(RHSNeg) ||
1189        (isa<ConstantInt>(RHSNeg) &&
1190         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1191      // X % -Y -> X % Y
1192      Worklist.AddValue(I.getOperand(1));
1193      I.setOperand(1, RHSNeg);
1194      return &I;
1195    }
1196
1197  // If the sign bits of both operands are zero (i.e. we can prove they are
1198  // unsigned inputs), turn this into a urem.
1199  if (I.getType()->isIntegerTy()) {
1200    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1201    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
1202      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1203      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1204    }
1205  }
1206
1207  // If it's a constant vector, flip any negative values positive.
1208  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1209    Constant *C = cast<Constant>(Op1);
1210    unsigned VWidth = C->getType()->getVectorNumElements();
1211
1212    bool hasNegative = false;
1213    bool hasMissing = false;
1214    for (unsigned i = 0; i != VWidth; ++i) {
1215      Constant *Elt = C->getAggregateElement(i);
1216      if (Elt == 0) {
1217        hasMissing = true;
1218        break;
1219      }
1220
1221      if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1222        if (RHS->isNegative())
1223          hasNegative = true;
1224    }
1225
1226    if (hasNegative && !hasMissing) {
1227      SmallVector<Constant *, 16> Elts(VWidth);
1228      for (unsigned i = 0; i != VWidth; ++i) {
1229        Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1230        if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1231          if (RHS->isNegative())
1232            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1233        }
1234      }
1235
1236      Constant *NewRHSV = ConstantVector::get(Elts);
1237      if (NewRHSV != C) {  // Don't loop on -MININT
1238        Worklist.AddValue(I.getOperand(1));
1239        I.setOperand(1, NewRHSV);
1240        return &I;
1241      }
1242    }
1243  }
1244
1245  return 0;
1246}
1247
1248Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1249  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1250
1251  if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
1252    return ReplaceInstUsesWith(I, V);
1253
1254  // Handle cases involving: rem X, (select Cond, Y, Z)
1255  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1256    return &I;
1257
1258  return 0;
1259}
1260