MergeFunctions.cpp revision 263508
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/STLExtras.h"
51#include "llvm/ADT/SmallSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/IRBuilder.h"
56#include "llvm/IR/InlineAsm.h"
57#include "llvm/IR/Instructions.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/Pass.h"
62#include "llvm/Support/CallSite.h"
63#include "llvm/Support/Debug.h"
64#include "llvm/Support/ErrorHandling.h"
65#include "llvm/Support/ValueHandle.h"
66#include "llvm/Support/raw_ostream.h"
67#include <vector>
68using namespace llvm;
69
70STATISTIC(NumFunctionsMerged, "Number of functions merged");
71STATISTIC(NumThunksWritten, "Number of thunks generated");
72STATISTIC(NumAliasesWritten, "Number of aliases generated");
73STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75/// Returns the type id for a type to be hashed. We turn pointer types into
76/// integers here because the actual compare logic below considers pointers and
77/// integers of the same size as equal.
78static Type::TypeID getTypeIDForHash(Type *Ty) {
79  if (Ty->isPointerTy())
80    return Type::IntegerTyID;
81  return Ty->getTypeID();
82}
83
84/// Creates a hash-code for the function which is the same for any two
85/// functions that will compare equal, without looking at the instructions
86/// inside the function.
87static unsigned profileFunction(const Function *F) {
88  FunctionType *FTy = F->getFunctionType();
89
90  FoldingSetNodeID ID;
91  ID.AddInteger(F->size());
92  ID.AddInteger(F->getCallingConv());
93  ID.AddBoolean(F->hasGC());
94  ID.AddBoolean(FTy->isVarArg());
95  ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
96  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
97    ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
98  return ID.ComputeHash();
99}
100
101namespace {
102
103/// ComparableFunction - A struct that pairs together functions with a
104/// DataLayout so that we can keep them together as elements in the DenseSet.
105class ComparableFunction {
106public:
107  static const ComparableFunction EmptyKey;
108  static const ComparableFunction TombstoneKey;
109  static DataLayout * const LookupOnly;
110
111  ComparableFunction(Function *Func, DataLayout *TD)
112    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
113
114  Function *getFunc() const { return Func; }
115  unsigned getHash() const { return Hash; }
116  DataLayout *getTD() const { return TD; }
117
118  // Drops AssertingVH reference to the function. Outside of debug mode, this
119  // does nothing.
120  void release() {
121    assert(Func &&
122           "Attempted to release function twice, or release empty/tombstone!");
123    Func = NULL;
124  }
125
126private:
127  explicit ComparableFunction(unsigned Hash)
128    : Func(NULL), Hash(Hash), TD(NULL) {}
129
130  AssertingVH<Function> Func;
131  unsigned Hash;
132  DataLayout *TD;
133};
134
135const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
136const ComparableFunction ComparableFunction::TombstoneKey =
137    ComparableFunction(1);
138DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
139
140}
141
142namespace llvm {
143  template <>
144  struct DenseMapInfo<ComparableFunction> {
145    static ComparableFunction getEmptyKey() {
146      return ComparableFunction::EmptyKey;
147    }
148    static ComparableFunction getTombstoneKey() {
149      return ComparableFunction::TombstoneKey;
150    }
151    static unsigned getHashValue(const ComparableFunction &CF) {
152      return CF.getHash();
153    }
154    static bool isEqual(const ComparableFunction &LHS,
155                        const ComparableFunction &RHS);
156  };
157}
158
159namespace {
160
161/// FunctionComparator - Compares two functions to determine whether or not
162/// they will generate machine code with the same behaviour. DataLayout is
163/// used if available. The comparator always fails conservatively (erring on the
164/// side of claiming that two functions are different).
165class FunctionComparator {
166public:
167  FunctionComparator(const DataLayout *TD, const Function *F1,
168                     const Function *F2)
169    : F1(F1), F2(F2), TD(TD) {}
170
171  /// Test whether the two functions have equivalent behaviour.
172  bool compare();
173
174private:
175  /// Test whether two basic blocks have equivalent behaviour.
176  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
177
178  /// Assign or look up previously assigned numbers for the two values, and
179  /// return whether the numbers are equal. Numbers are assigned in the order
180  /// visited.
181  bool enumerate(const Value *V1, const Value *V2);
182
183  /// Compare two Instructions for equivalence, similar to
184  /// Instruction::isSameOperationAs but with modifications to the type
185  /// comparison.
186  bool isEquivalentOperation(const Instruction *I1,
187                             const Instruction *I2) const;
188
189  /// Compare two GEPs for equivalent pointer arithmetic.
190  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
191  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
192                       const GetElementPtrInst *GEP2) {
193    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
194  }
195
196  /// Compare two Types, treating all pointer types as equal.
197  bool isEquivalentType(Type *Ty1, Type *Ty2) const;
198
199  // The two functions undergoing comparison.
200  const Function *F1, *F2;
201
202  const DataLayout *TD;
203
204  DenseMap<const Value *, const Value *> id_map;
205  DenseSet<const Value *> seen_values;
206};
207
208}
209
210// Any two pointers in the same address space are equivalent, intptr_t and
211// pointers are equivalent. Otherwise, standard type equivalence rules apply.
212bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const {
213
214  PointerType *PTy1 = dyn_cast<PointerType>(Ty1);
215  PointerType *PTy2 = dyn_cast<PointerType>(Ty2);
216
217  if (TD) {
218    if (PTy1 && PTy1->getAddressSpace() == 0) Ty1 = TD->getIntPtrType(Ty1);
219    if (PTy2 && PTy2->getAddressSpace() == 0) Ty2 = TD->getIntPtrType(Ty2);
220  }
221
222  if (Ty1 == Ty2)
223    return true;
224
225  if (Ty1->getTypeID() != Ty2->getTypeID())
226    return false;
227
228  switch (Ty1->getTypeID()) {
229  default:
230    llvm_unreachable("Unknown type!");
231    // Fall through in Release mode.
232  case Type::IntegerTyID:
233  case Type::VectorTyID:
234    // Ty1 == Ty2 would have returned true earlier.
235    return false;
236
237  case Type::VoidTyID:
238  case Type::FloatTyID:
239  case Type::DoubleTyID:
240  case Type::X86_FP80TyID:
241  case Type::FP128TyID:
242  case Type::PPC_FP128TyID:
243  case Type::LabelTyID:
244  case Type::MetadataTyID:
245    return true;
246
247  case Type::PointerTyID: {
248    assert(PTy1 && PTy2 && "Both types must be pointers here.");
249    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
250  }
251
252  case Type::StructTyID: {
253    StructType *STy1 = cast<StructType>(Ty1);
254    StructType *STy2 = cast<StructType>(Ty2);
255    if (STy1->getNumElements() != STy2->getNumElements())
256      return false;
257
258    if (STy1->isPacked() != STy2->isPacked())
259      return false;
260
261    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
262      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
263        return false;
264    }
265    return true;
266  }
267
268  case Type::FunctionTyID: {
269    FunctionType *FTy1 = cast<FunctionType>(Ty1);
270    FunctionType *FTy2 = cast<FunctionType>(Ty2);
271    if (FTy1->getNumParams() != FTy2->getNumParams() ||
272        FTy1->isVarArg() != FTy2->isVarArg())
273      return false;
274
275    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
276      return false;
277
278    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
279      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
280        return false;
281    }
282    return true;
283  }
284
285  case Type::ArrayTyID: {
286    ArrayType *ATy1 = cast<ArrayType>(Ty1);
287    ArrayType *ATy2 = cast<ArrayType>(Ty2);
288    return ATy1->getNumElements() == ATy2->getNumElements() &&
289           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
290  }
291  }
292}
293
294// Determine whether the two operations are the same except that pointer-to-A
295// and pointer-to-B are equivalent. This should be kept in sync with
296// Instruction::isSameOperationAs.
297bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
298                                               const Instruction *I2) const {
299  // Differences from Instruction::isSameOperationAs:
300  //  * replace type comparison with calls to isEquivalentType.
301  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
302  //  * because of the above, we don't test for the tail bit on calls later on
303  if (I1->getOpcode() != I2->getOpcode() ||
304      I1->getNumOperands() != I2->getNumOperands() ||
305      !isEquivalentType(I1->getType(), I2->getType()) ||
306      !I1->hasSameSubclassOptionalData(I2))
307    return false;
308
309  // We have two instructions of identical opcode and #operands.  Check to see
310  // if all operands are the same type
311  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
312    if (!isEquivalentType(I1->getOperand(i)->getType(),
313                          I2->getOperand(i)->getType()))
314      return false;
315
316  // Check special state that is a part of some instructions.
317  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
318    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
319           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
320           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
321           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
322  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
323    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
324           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
325           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
326           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
327  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
328    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
329  if (const CallInst *CI = dyn_cast<CallInst>(I1))
330    return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
331           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
332  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
333    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
334           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
335  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
336    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
337  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
338    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
339  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
340    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
341           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
342  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
343    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
344           CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
345           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
346  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
347    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
348           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
349           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
350           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
351
352  return true;
353}
354
355// Determine whether two GEP operations perform the same underlying arithmetic.
356bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
357                                         const GEPOperator *GEP2) {
358  unsigned AS = GEP1->getPointerAddressSpace();
359  if (AS != GEP2->getPointerAddressSpace())
360    return false;
361
362  if (TD) {
363    // When we have target data, we can reduce the GEP down to the value in bytes
364    // added to the address.
365    unsigned BitWidth = TD ? TD->getPointerSizeInBits(AS) : 1;
366    APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
367    if (GEP1->accumulateConstantOffset(*TD, Offset1) &&
368        GEP2->accumulateConstantOffset(*TD, Offset2)) {
369      return Offset1 == Offset2;
370    }
371  }
372
373  if (GEP1->getPointerOperand()->getType() !=
374      GEP2->getPointerOperand()->getType())
375    return false;
376
377  if (GEP1->getNumOperands() != GEP2->getNumOperands())
378    return false;
379
380  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
381    if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
382      return false;
383  }
384
385  return true;
386}
387
388// Compare two values used by the two functions under pair-wise comparison. If
389// this is the first time the values are seen, they're added to the mapping so
390// that we will detect mismatches on next use.
391bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
392  // Check for function @f1 referring to itself and function @f2 referring to
393  // itself, or referring to each other, or both referring to either of them.
394  // They're all equivalent if the two functions are otherwise equivalent.
395  if (V1 == F1 && V2 == F2)
396    return true;
397  if (V1 == F2 && V2 == F1)
398    return true;
399
400  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
401    if (V1 == V2) return true;
402    const Constant *C2 = dyn_cast<Constant>(V2);
403    if (!C2) return false;
404    // TODO: constant expressions with GEP or references to F1 or F2.
405    if (C1->isNullValue() && C2->isNullValue() &&
406        isEquivalentType(C1->getType(), C2->getType()))
407      return true;
408    // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
409    // then they must have equal bit patterns.
410    return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
411      C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
412  }
413
414  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
415    return V1 == V2;
416
417  // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
418  // check whether it's equal to V2. When there is no mapping then we need to
419  // ensure that V2 isn't already equivalent to something else. For this
420  // purpose, we track the V2 values in a set.
421
422  const Value *&map_elem = id_map[V1];
423  if (map_elem)
424    return map_elem == V2;
425  if (!seen_values.insert(V2).second)
426    return false;
427  map_elem = V2;
428  return true;
429}
430
431// Test whether two basic blocks have equivalent behaviour.
432bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
433  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
434  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
435
436  do {
437    if (!enumerate(F1I, F2I))
438      return false;
439
440    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
441      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
442      if (!GEP2)
443        return false;
444
445      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
446        return false;
447
448      if (!isEquivalentGEP(GEP1, GEP2))
449        return false;
450    } else {
451      if (!isEquivalentOperation(F1I, F2I))
452        return false;
453
454      assert(F1I->getNumOperands() == F2I->getNumOperands());
455      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
456        Value *OpF1 = F1I->getOperand(i);
457        Value *OpF2 = F2I->getOperand(i);
458
459        if (!enumerate(OpF1, OpF2))
460          return false;
461
462        if (OpF1->getValueID() != OpF2->getValueID() ||
463            !isEquivalentType(OpF1->getType(), OpF2->getType()))
464          return false;
465      }
466    }
467
468    ++F1I, ++F2I;
469  } while (F1I != F1E && F2I != F2E);
470
471  return F1I == F1E && F2I == F2E;
472}
473
474// Test whether the two functions have equivalent behaviour.
475bool FunctionComparator::compare() {
476  // We need to recheck everything, but check the things that weren't included
477  // in the hash first.
478
479  if (F1->getAttributes() != F2->getAttributes())
480    return false;
481
482  if (F1->hasGC() != F2->hasGC())
483    return false;
484
485  if (F1->hasGC() && F1->getGC() != F2->getGC())
486    return false;
487
488  if (F1->hasSection() != F2->hasSection())
489    return false;
490
491  if (F1->hasSection() && F1->getSection() != F2->getSection())
492    return false;
493
494  if (F1->isVarArg() != F2->isVarArg())
495    return false;
496
497  // TODO: if it's internal and only used in direct calls, we could handle this
498  // case too.
499  if (F1->getCallingConv() != F2->getCallingConv())
500    return false;
501
502  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
503    return false;
504
505  assert(F1->arg_size() == F2->arg_size() &&
506         "Identically typed functions have different numbers of args!");
507
508  // Visit the arguments so that they get enumerated in the order they're
509  // passed in.
510  for (Function::const_arg_iterator f1i = F1->arg_begin(),
511         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
512    if (!enumerate(f1i, f2i))
513      llvm_unreachable("Arguments repeat!");
514  }
515
516  // We do a CFG-ordered walk since the actual ordering of the blocks in the
517  // linked list is immaterial. Our walk starts at the entry block for both
518  // functions, then takes each block from each terminator in order. As an
519  // artifact, this also means that unreachable blocks are ignored.
520  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
521  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
522
523  F1BBs.push_back(&F1->getEntryBlock());
524  F2BBs.push_back(&F2->getEntryBlock());
525
526  VisitedBBs.insert(F1BBs[0]);
527  while (!F1BBs.empty()) {
528    const BasicBlock *F1BB = F1BBs.pop_back_val();
529    const BasicBlock *F2BB = F2BBs.pop_back_val();
530
531    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
532      return false;
533
534    const TerminatorInst *F1TI = F1BB->getTerminator();
535    const TerminatorInst *F2TI = F2BB->getTerminator();
536
537    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
538    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
539      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
540        continue;
541
542      F1BBs.push_back(F1TI->getSuccessor(i));
543      F2BBs.push_back(F2TI->getSuccessor(i));
544    }
545  }
546  return true;
547}
548
549namespace {
550
551/// MergeFunctions finds functions which will generate identical machine code,
552/// by considering all pointer types to be equivalent. Once identified,
553/// MergeFunctions will fold them by replacing a call to one to a call to a
554/// bitcast of the other.
555///
556class MergeFunctions : public ModulePass {
557public:
558  static char ID;
559  MergeFunctions()
560    : ModulePass(ID), HasGlobalAliases(false) {
561    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
562  }
563
564  bool runOnModule(Module &M);
565
566private:
567  typedef DenseSet<ComparableFunction> FnSetType;
568
569  /// A work queue of functions that may have been modified and should be
570  /// analyzed again.
571  std::vector<WeakVH> Deferred;
572
573  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
574  /// equal to one that's already present.
575  bool insert(ComparableFunction &NewF);
576
577  /// Remove a Function from the FnSet and queue it up for a second sweep of
578  /// analysis.
579  void remove(Function *F);
580
581  /// Find the functions that use this Value and remove them from FnSet and
582  /// queue the functions.
583  void removeUsers(Value *V);
584
585  /// Replace all direct calls of Old with calls of New. Will bitcast New if
586  /// necessary to make types match.
587  void replaceDirectCallers(Function *Old, Function *New);
588
589  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
590  /// be converted into a thunk. In either case, it should never be visited
591  /// again.
592  void mergeTwoFunctions(Function *F, Function *G);
593
594  /// Replace G with a thunk or an alias to F. Deletes G.
595  void writeThunkOrAlias(Function *F, Function *G);
596
597  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
598  /// of G with bitcast(F). Deletes G.
599  void writeThunk(Function *F, Function *G);
600
601  /// Replace G with an alias to F. Deletes G.
602  void writeAlias(Function *F, Function *G);
603
604  /// The set of all distinct functions. Use the insert() and remove() methods
605  /// to modify it.
606  FnSetType FnSet;
607
608  /// DataLayout for more accurate GEP comparisons. May be NULL.
609  DataLayout *TD;
610
611  /// Whether or not the target supports global aliases.
612  bool HasGlobalAliases;
613};
614
615}  // end anonymous namespace
616
617char MergeFunctions::ID = 0;
618INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
619
620ModulePass *llvm::createMergeFunctionsPass() {
621  return new MergeFunctions();
622}
623
624bool MergeFunctions::runOnModule(Module &M) {
625  bool Changed = false;
626  TD = getAnalysisIfAvailable<DataLayout>();
627
628  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
629    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
630      Deferred.push_back(WeakVH(I));
631  }
632  FnSet.resize(Deferred.size());
633
634  do {
635    std::vector<WeakVH> Worklist;
636    Deferred.swap(Worklist);
637
638    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
639    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
640
641    // Insert only strong functions and merge them. Strong function merging
642    // always deletes one of them.
643    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
644           E = Worklist.end(); I != E; ++I) {
645      if (!*I) continue;
646      Function *F = cast<Function>(*I);
647      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
648          !F->mayBeOverridden()) {
649        ComparableFunction CF = ComparableFunction(F, TD);
650        Changed |= insert(CF);
651      }
652    }
653
654    // Insert only weak functions and merge them. By doing these second we
655    // create thunks to the strong function when possible. When two weak
656    // functions are identical, we create a new strong function with two weak
657    // weak thunks to it which are identical but not mergable.
658    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
659           E = Worklist.end(); I != E; ++I) {
660      if (!*I) continue;
661      Function *F = cast<Function>(*I);
662      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
663          F->mayBeOverridden()) {
664        ComparableFunction CF = ComparableFunction(F, TD);
665        Changed |= insert(CF);
666      }
667    }
668    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
669  } while (!Deferred.empty());
670
671  FnSet.clear();
672
673  return Changed;
674}
675
676bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
677                                               const ComparableFunction &RHS) {
678  if (LHS.getFunc() == RHS.getFunc() &&
679      LHS.getHash() == RHS.getHash())
680    return true;
681  if (!LHS.getFunc() || !RHS.getFunc())
682    return false;
683
684  // One of these is a special "underlying pointer comparison only" object.
685  if (LHS.getTD() == ComparableFunction::LookupOnly ||
686      RHS.getTD() == ComparableFunction::LookupOnly)
687    return false;
688
689  assert(LHS.getTD() == RHS.getTD() &&
690         "Comparing functions for different targets");
691
692  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
693                            RHS.getFunc()).compare();
694}
695
696// Replace direct callers of Old with New.
697void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
698  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
699  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
700       UI != UE;) {
701    Value::use_iterator TheIter = UI;
702    ++UI;
703    CallSite CS(*TheIter);
704    if (CS && CS.isCallee(TheIter)) {
705      remove(CS.getInstruction()->getParent()->getParent());
706      TheIter.getUse().set(BitcastNew);
707    }
708  }
709}
710
711// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
712void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
713  if (HasGlobalAliases && G->hasUnnamedAddr()) {
714    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
715        G->hasWeakLinkage()) {
716      writeAlias(F, G);
717      return;
718    }
719  }
720
721  writeThunk(F, G);
722}
723
724// Helper for writeThunk,
725// Selects proper bitcast operation,
726// but a bit simplier then CastInst::getCastOpcode.
727static Value* createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
728  Type *SrcTy = V->getType();
729  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
730    return Builder.CreateIntToPtr(V, DestTy);
731  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
732    return Builder.CreatePtrToInt(V, DestTy);
733  else
734    return Builder.CreateBitCast(V, DestTy);
735}
736
737// Replace G with a simple tail call to bitcast(F). Also replace direct uses
738// of G with bitcast(F). Deletes G.
739void MergeFunctions::writeThunk(Function *F, Function *G) {
740  if (!G->mayBeOverridden()) {
741    // Redirect direct callers of G to F.
742    replaceDirectCallers(G, F);
743  }
744
745  // If G was internal then we may have replaced all uses of G with F. If so,
746  // stop here and delete G. There's no need for a thunk.
747  if (G->hasLocalLinkage() && G->use_empty()) {
748    G->eraseFromParent();
749    return;
750  }
751
752  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
753                                    G->getParent());
754  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
755  IRBuilder<false> Builder(BB);
756
757  SmallVector<Value *, 16> Args;
758  unsigned i = 0;
759  FunctionType *FFTy = F->getFunctionType();
760  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
761       AI != AE; ++AI) {
762    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
763    ++i;
764  }
765
766  CallInst *CI = Builder.CreateCall(F, Args);
767  CI->setTailCall();
768  CI->setCallingConv(F->getCallingConv());
769  if (NewG->getReturnType()->isVoidTy()) {
770    Builder.CreateRetVoid();
771  } else {
772    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
773  }
774
775  NewG->copyAttributesFrom(G);
776  NewG->takeName(G);
777  removeUsers(G);
778  G->replaceAllUsesWith(NewG);
779  G->eraseFromParent();
780
781  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
782  ++NumThunksWritten;
783}
784
785// Replace G with an alias to F and delete G.
786void MergeFunctions::writeAlias(Function *F, Function *G) {
787  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
788  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
789                                    BitcastF, G->getParent());
790  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
791  GA->takeName(G);
792  GA->setVisibility(G->getVisibility());
793  removeUsers(G);
794  G->replaceAllUsesWith(GA);
795  G->eraseFromParent();
796
797  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
798  ++NumAliasesWritten;
799}
800
801// Merge two equivalent functions. Upon completion, Function G is deleted.
802void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
803  if (F->mayBeOverridden()) {
804    assert(G->mayBeOverridden());
805
806    if (HasGlobalAliases) {
807      // Make them both thunks to the same internal function.
808      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
809                                     F->getParent());
810      H->copyAttributesFrom(F);
811      H->takeName(F);
812      removeUsers(F);
813      F->replaceAllUsesWith(H);
814
815      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
816
817      writeAlias(F, G);
818      writeAlias(F, H);
819
820      F->setAlignment(MaxAlignment);
821      F->setLinkage(GlobalValue::PrivateLinkage);
822    } else {
823      // We can't merge them. Instead, pick one and update all direct callers
824      // to call it and hope that we improve the instruction cache hit rate.
825      replaceDirectCallers(G, F);
826    }
827
828    ++NumDoubleWeak;
829  } else {
830    writeThunkOrAlias(F, G);
831  }
832
833  ++NumFunctionsMerged;
834}
835
836// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
837// that was already inserted.
838bool MergeFunctions::insert(ComparableFunction &NewF) {
839  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
840  if (Result.second) {
841    DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
842    return false;
843  }
844
845  const ComparableFunction &OldF = *Result.first;
846
847  // Don't merge tiny functions, since it can just end up making the function
848  // larger.
849  // FIXME: Should still merge them if they are unnamed_addr and produce an
850  // alias.
851  if (NewF.getFunc()->size() == 1) {
852    if (NewF.getFunc()->front().size() <= 2) {
853      DEBUG(dbgs() << NewF.getFunc()->getName()
854            << " is to small to bother merging\n");
855      return false;
856    }
857  }
858
859  // Never thunk a strong function to a weak function.
860  assert(!OldF.getFunc()->mayBeOverridden() ||
861         NewF.getFunc()->mayBeOverridden());
862
863  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
864               << NewF.getFunc()->getName() << '\n');
865
866  Function *DeleteF = NewF.getFunc();
867  NewF.release();
868  mergeTwoFunctions(OldF.getFunc(), DeleteF);
869  return true;
870}
871
872// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
873// so that we'll look at it in the next round.
874void MergeFunctions::remove(Function *F) {
875  // We need to make sure we remove F, not a function "equal" to F per the
876  // function equality comparator.
877  //
878  // The special "lookup only" ComparableFunction bypasses the expensive
879  // function comparison in favour of a pointer comparison on the underlying
880  // Function*'s.
881  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
882  if (FnSet.erase(CF)) {
883    DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
884    Deferred.push_back(F);
885  }
886}
887
888// For each instruction used by the value, remove() the function that contains
889// the instruction. This should happen right before a call to RAUW.
890void MergeFunctions::removeUsers(Value *V) {
891  std::vector<Value *> Worklist;
892  Worklist.push_back(V);
893  while (!Worklist.empty()) {
894    Value *V = Worklist.back();
895    Worklist.pop_back();
896
897    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
898         UI != UE; ++UI) {
899      Use &U = UI.getUse();
900      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
901        remove(I->getParent()->getParent());
902      } else if (isa<GlobalValue>(U.getUser())) {
903        // do nothing
904      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
905        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
906             CUI != CUE; ++CUI)
907          Worklist.push_back(*CUI);
908      }
909    }
910  }
911}
912