DeadArgumentElimination.cpp revision 263508
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/DIBuilder.h"
27#include "llvm/DebugInfo.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40#include <set>
41using namespace llvm;
42
43STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
44STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
45STATISTIC(NumArgumentsReplacedWithUndef,
46          "Number of unread args replaced with undef");
47namespace {
48  /// DAE - The dead argument elimination pass.
49  ///
50  class DAE : public ModulePass {
51  public:
52
53    /// Struct that represents (part of) either a return value or a function
54    /// argument.  Used so that arguments and return values can be used
55    /// interchangeably.
56    struct RetOrArg {
57      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58               IsArg(IsArg) {}
59      const Function *F;
60      unsigned Idx;
61      bool IsArg;
62
63      /// Make RetOrArg comparable, so we can put it into a map.
64      bool operator<(const RetOrArg &O) const {
65        if (F != O.F)
66          return F < O.F;
67        else if (Idx != O.Idx)
68          return Idx < O.Idx;
69        else
70          return IsArg < O.IsArg;
71      }
72
73      /// Make RetOrArg comparable, so we can easily iterate the multimap.
74      bool operator==(const RetOrArg &O) const {
75        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
76      }
77
78      std::string getDescription() const {
79        return std::string((IsArg ? "Argument #" : "Return value #"))
80               + utostr(Idx) + " of function " + F->getName().str();
81      }
82    };
83
84    /// Liveness enum - During our initial pass over the program, we determine
85    /// that things are either alive or maybe alive. We don't mark anything
86    /// explicitly dead (even if we know they are), since anything not alive
87    /// with no registered uses (in Uses) will never be marked alive and will
88    /// thus become dead in the end.
89    enum Liveness { Live, MaybeLive };
90
91    /// Convenience wrapper
92    RetOrArg CreateRet(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, false);
94    }
95    /// Convenience wrapper
96    RetOrArg CreateArg(const Function *F, unsigned Idx) {
97      return RetOrArg(F, Idx, true);
98    }
99
100    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
101    /// This maps a return value or argument to any MaybeLive return values or
102    /// arguments it uses. This allows the MaybeLive values to be marked live
103    /// when any of its users is marked live.
104    /// For example (indices are left out for clarity):
105    ///  - Uses[ret F] = ret G
106    ///    This means that F calls G, and F returns the value returned by G.
107    ///  - Uses[arg F] = ret G
108    ///    This means that some function calls G and passes its result as an
109    ///    argument to F.
110    ///  - Uses[ret F] = arg F
111    ///    This means that F returns one of its own arguments.
112    ///  - Uses[arg F] = arg G
113    ///    This means that G calls F and passes one of its own (G's) arguments
114    ///    directly to F.
115    UseMap Uses;
116
117    typedef std::set<RetOrArg> LiveSet;
118    typedef std::set<const Function*> LiveFuncSet;
119
120    /// This set contains all values that have been determined to be live.
121    LiveSet LiveValues;
122    /// This set contains all values that are cannot be changed in any way.
123    LiveFuncSet LiveFunctions;
124
125    typedef SmallVector<RetOrArg, 5> UseVector;
126
127    // Map each LLVM function to corresponding metadata with debug info. If
128    // the function is replaced with another one, we should patch the pointer
129    // to LLVM function in metadata.
130    // As the code generation for module is finished (and DIBuilder is
131    // finalized) we assume that subprogram descriptors won't be changed, and
132    // they are stored in map for short duration anyway.
133    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
134    FunctionDIMap FunctionDIs;
135
136  protected:
137    // DAH uses this to specify a different ID.
138    explicit DAE(char &ID) : ModulePass(ID) {}
139
140  public:
141    static char ID; // Pass identification, replacement for typeid
142    DAE() : ModulePass(ID) {
143      initializeDAEPass(*PassRegistry::getPassRegistry());
144    }
145
146    bool runOnModule(Module &M);
147
148    virtual bool ShouldHackArguments() const { return false; }
149
150  private:
151    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
152    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
153                       unsigned RetValNum = 0);
154    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
155
156    void CollectFunctionDIs(Module &M);
157    void SurveyFunction(const Function &F);
158    void MarkValue(const RetOrArg &RA, Liveness L,
159                   const UseVector &MaybeLiveUses);
160    void MarkLive(const RetOrArg &RA);
161    void MarkLive(const Function &F);
162    void PropagateLiveness(const RetOrArg &RA);
163    bool RemoveDeadStuffFromFunction(Function *F);
164    bool DeleteDeadVarargs(Function &Fn);
165    bool RemoveDeadArgumentsFromCallers(Function &Fn);
166  };
167}
168
169
170char DAE::ID = 0;
171INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
172
173namespace {
174  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
175  /// deletes arguments to functions which are external.  This is only for use
176  /// by bugpoint.
177  struct DAH : public DAE {
178    static char ID;
179    DAH() : DAE(ID) {}
180
181    virtual bool ShouldHackArguments() const { return true; }
182  };
183}
184
185char DAH::ID = 0;
186INITIALIZE_PASS(DAH, "deadarghaX0r",
187                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
188                false, false)
189
190/// createDeadArgEliminationPass - This pass removes arguments from functions
191/// which are not used by the body of the function.
192///
193ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
194ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
195
196/// CollectFunctionDIs - Map each function in the module to its debug info
197/// descriptor.
198void DAE::CollectFunctionDIs(Module &M) {
199  FunctionDIs.clear();
200
201  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
202       E = M.named_metadata_end(); I != E; ++I) {
203    NamedMDNode &NMD = *I;
204    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
205         MDIndex < MDNum; ++MDIndex) {
206      MDNode *Node = NMD.getOperand(MDIndex);
207      if (!DIDescriptor(Node).isCompileUnit())
208        continue;
209      DICompileUnit CU(Node);
210      const DIArray &SPs = CU.getSubprograms();
211      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
212           SPIndex < SPNum; ++SPIndex) {
213        DISubprogram SP(SPs.getElement(SPIndex));
214        assert((!SP || SP.isSubprogram()) &&
215          "A MDNode in subprograms of a CU should be null or a DISubprogram.");
216        if (!SP)
217          continue;
218        if (Function *F = SP.getFunction())
219          FunctionDIs[F] = SP;
220      }
221    }
222  }
223}
224
225/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
226/// llvm.vastart is never called, the varargs list is dead for the function.
227bool DAE::DeleteDeadVarargs(Function &Fn) {
228  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
229  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
230
231  // Ensure that the function is only directly called.
232  if (Fn.hasAddressTaken())
233    return false;
234
235  // Okay, we know we can transform this function if safe.  Scan its body
236  // looking for calls to llvm.vastart.
237  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
238    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
239      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
240        if (II->getIntrinsicID() == Intrinsic::vastart)
241          return false;
242      }
243    }
244  }
245
246  // If we get here, there are no calls to llvm.vastart in the function body,
247  // remove the "..." and adjust all the calls.
248
249  // Start by computing a new prototype for the function, which is the same as
250  // the old function, but doesn't have isVarArg set.
251  FunctionType *FTy = Fn.getFunctionType();
252
253  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
254  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
255                                                Params, false);
256  unsigned NumArgs = Params.size();
257
258  // Create the new function body and insert it into the module...
259  Function *NF = Function::Create(NFTy, Fn.getLinkage());
260  NF->copyAttributesFrom(&Fn);
261  Fn.getParent()->getFunctionList().insert(&Fn, NF);
262  NF->takeName(&Fn);
263
264  // Loop over all of the callers of the function, transforming the call sites
265  // to pass in a smaller number of arguments into the new function.
266  //
267  std::vector<Value*> Args;
268  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) {
269    CallSite CS(*I++);
270    if (!CS)
271      continue;
272    Instruction *Call = CS.getInstruction();
273
274    // Pass all the same arguments.
275    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
276
277    // Drop any attributes that were on the vararg arguments.
278    AttributeSet PAL = CS.getAttributes();
279    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
280      SmallVector<AttributeSet, 8> AttributesVec;
281      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
282        AttributesVec.push_back(PAL.getSlotAttributes(i));
283      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
284        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
285                                                  PAL.getFnAttributes()));
286      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
287    }
288
289    Instruction *New;
290    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
291      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
292                               Args, "", Call);
293      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
294      cast<InvokeInst>(New)->setAttributes(PAL);
295    } else {
296      New = CallInst::Create(NF, Args, "", Call);
297      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
298      cast<CallInst>(New)->setAttributes(PAL);
299      if (cast<CallInst>(Call)->isTailCall())
300        cast<CallInst>(New)->setTailCall();
301    }
302    New->setDebugLoc(Call->getDebugLoc());
303
304    Args.clear();
305
306    if (!Call->use_empty())
307      Call->replaceAllUsesWith(New);
308
309    New->takeName(Call);
310
311    // Finally, remove the old call from the program, reducing the use-count of
312    // F.
313    Call->eraseFromParent();
314  }
315
316  // Since we have now created the new function, splice the body of the old
317  // function right into the new function, leaving the old rotting hulk of the
318  // function empty.
319  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
320
321  // Loop over the argument list, transferring uses of the old arguments over to
322  // the new arguments, also transferring over the names as well.  While we're at
323  // it, remove the dead arguments from the DeadArguments list.
324  //
325  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
326       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
327    // Move the name and users over to the new version.
328    I->replaceAllUsesWith(I2);
329    I2->takeName(I);
330  }
331
332  // Patch the pointer to LLVM function in debug info descriptor.
333  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
334  if (DI != FunctionDIs.end())
335    DI->second.replaceFunction(NF);
336
337  // Fix up any BlockAddresses that refer to the function.
338  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
339  // Delete the bitcast that we just created, so that NF does not
340  // appear to be address-taken.
341  NF->removeDeadConstantUsers();
342  // Finally, nuke the old function.
343  Fn.eraseFromParent();
344  return true;
345}
346
347/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
348/// arguments that are unused, and changes the caller parameters to be undefined
349/// instead.
350bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
351{
352  if (Fn.isDeclaration() || Fn.mayBeOverridden())
353    return false;
354
355  // Functions with local linkage should already have been handled, except the
356  // fragile (variadic) ones which we can improve here.
357  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
358    return false;
359
360  // If a function seen at compile time is not necessarily the one linked to
361  // the binary being built, it is illegal to change the actual arguments
362  // passed to it. These functions can be captured by isWeakForLinker().
363  // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
364  // doesn't include linkage types like AvailableExternallyLinkage and
365  // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
366  // *EQUIVALENT* globals that can be merged at link-time. However, the
367  // semantic of *EQUIVALENT*-functions includes parameters. Changing
368  // parameters breaks this assumption.
369  //
370  if (Fn.isWeakForLinker())
371    return false;
372
373  if (Fn.use_empty())
374    return false;
375
376  SmallVector<unsigned, 8> UnusedArgs;
377  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
378       I != E; ++I) {
379    Argument *Arg = I;
380
381    if (Arg->use_empty() && !Arg->hasByValAttr())
382      UnusedArgs.push_back(Arg->getArgNo());
383  }
384
385  if (UnusedArgs.empty())
386    return false;
387
388  bool Changed = false;
389
390  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
391       I != E; ++I) {
392    CallSite CS(*I);
393    if (!CS || !CS.isCallee(I))
394      continue;
395
396    // Now go through all unused args and replace them with "undef".
397    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
398      unsigned ArgNo = UnusedArgs[I];
399
400      Value *Arg = CS.getArgument(ArgNo);
401      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
402      ++NumArgumentsReplacedWithUndef;
403      Changed = true;
404    }
405  }
406
407  return Changed;
408}
409
410/// Convenience function that returns the number of return values. It returns 0
411/// for void functions and 1 for functions not returning a struct. It returns
412/// the number of struct elements for functions returning a struct.
413static unsigned NumRetVals(const Function *F) {
414  if (F->getReturnType()->isVoidTy())
415    return 0;
416  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
417    return STy->getNumElements();
418  else
419    return 1;
420}
421
422/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
423/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
424/// liveness of Use.
425DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
426  // We're live if our use or its Function is already marked as live.
427  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
428    return Live;
429
430  // We're maybe live otherwise, but remember that we must become live if
431  // Use becomes live.
432  MaybeLiveUses.push_back(Use);
433  return MaybeLive;
434}
435
436
437/// SurveyUse - This looks at a single use of an argument or return value
438/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
439/// if it causes the used value to become MaybeLive.
440///
441/// RetValNum is the return value number to use when this use is used in a
442/// return instruction. This is used in the recursion, you should always leave
443/// it at 0.
444DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
445                             UseVector &MaybeLiveUses, unsigned RetValNum) {
446    const User *V = *U;
447    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
448      // The value is returned from a function. It's only live when the
449      // function's return value is live. We use RetValNum here, for the case
450      // that U is really a use of an insertvalue instruction that uses the
451      // original Use.
452      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
453      // We might be live, depending on the liveness of Use.
454      return MarkIfNotLive(Use, MaybeLiveUses);
455    }
456    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
457      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
458          && IV->hasIndices())
459        // The use we are examining is inserted into an aggregate. Our liveness
460        // depends on all uses of that aggregate, but if it is used as a return
461        // value, only index at which we were inserted counts.
462        RetValNum = *IV->idx_begin();
463
464      // Note that if we are used as the aggregate operand to the insertvalue,
465      // we don't change RetValNum, but do survey all our uses.
466
467      Liveness Result = MaybeLive;
468      for (Value::const_use_iterator I = IV->use_begin(),
469           E = V->use_end(); I != E; ++I) {
470        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
471        if (Result == Live)
472          break;
473      }
474      return Result;
475    }
476
477    if (ImmutableCallSite CS = V) {
478      const Function *F = CS.getCalledFunction();
479      if (F) {
480        // Used in a direct call.
481
482        // Find the argument number. We know for sure that this use is an
483        // argument, since if it was the function argument this would be an
484        // indirect call and the we know can't be looking at a value of the
485        // label type (for the invoke instruction).
486        unsigned ArgNo = CS.getArgumentNo(U);
487
488        if (ArgNo >= F->getFunctionType()->getNumParams())
489          // The value is passed in through a vararg! Must be live.
490          return Live;
491
492        assert(CS.getArgument(ArgNo)
493               == CS->getOperand(U.getOperandNo())
494               && "Argument is not where we expected it");
495
496        // Value passed to a normal call. It's only live when the corresponding
497        // argument to the called function turns out live.
498        RetOrArg Use = CreateArg(F, ArgNo);
499        return MarkIfNotLive(Use, MaybeLiveUses);
500      }
501    }
502    // Used in any other way? Value must be live.
503    return Live;
504}
505
506/// SurveyUses - This looks at all the uses of the given value
507/// Returns the Liveness deduced from the uses of this value.
508///
509/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
510/// the result is Live, MaybeLiveUses might be modified but its content should
511/// be ignored (since it might not be complete).
512DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
513  // Assume it's dead (which will only hold if there are no uses at all..).
514  Liveness Result = MaybeLive;
515  // Check each use.
516  for (Value::const_use_iterator I = V->use_begin(),
517       E = V->use_end(); I != E; ++I) {
518    Result = SurveyUse(I, MaybeLiveUses);
519    if (Result == Live)
520      break;
521  }
522  return Result;
523}
524
525// SurveyFunction - This performs the initial survey of the specified function,
526// checking out whether or not it uses any of its incoming arguments or whether
527// any callers use the return value.  This fills in the LiveValues set and Uses
528// map.
529//
530// We consider arguments of non-internal functions to be intrinsically alive as
531// well as arguments to functions which have their "address taken".
532//
533void DAE::SurveyFunction(const Function &F) {
534  unsigned RetCount = NumRetVals(&F);
535  // Assume all return values are dead
536  typedef SmallVector<Liveness, 5> RetVals;
537  RetVals RetValLiveness(RetCount, MaybeLive);
538
539  typedef SmallVector<UseVector, 5> RetUses;
540  // These vectors map each return value to the uses that make it MaybeLive, so
541  // we can add those to the Uses map if the return value really turns out to be
542  // MaybeLive. Initialized to a list of RetCount empty lists.
543  RetUses MaybeLiveRetUses(RetCount);
544
545  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
546    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
547      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
548          != F.getFunctionType()->getReturnType()) {
549        // We don't support old style multiple return values.
550        MarkLive(F);
551        return;
552      }
553
554  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
555    MarkLive(F);
556    return;
557  }
558
559  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
560  // Keep track of the number of live retvals, so we can skip checks once all
561  // of them turn out to be live.
562  unsigned NumLiveRetVals = 0;
563  Type *STy = dyn_cast<StructType>(F.getReturnType());
564  // Loop all uses of the function.
565  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
566       I != E; ++I) {
567    // If the function is PASSED IN as an argument, its address has been
568    // taken.
569    ImmutableCallSite CS(*I);
570    if (!CS || !CS.isCallee(I)) {
571      MarkLive(F);
572      return;
573    }
574
575    // If this use is anything other than a call site, the function is alive.
576    const Instruction *TheCall = CS.getInstruction();
577    if (!TheCall) {   // Not a direct call site?
578      MarkLive(F);
579      return;
580    }
581
582    // If we end up here, we are looking at a direct call to our function.
583
584    // Now, check how our return value(s) is/are used in this caller. Don't
585    // bother checking return values if all of them are live already.
586    if (NumLiveRetVals != RetCount) {
587      if (STy) {
588        // Check all uses of the return value.
589        for (Value::const_use_iterator I = TheCall->use_begin(),
590             E = TheCall->use_end(); I != E; ++I) {
591          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
592          if (Ext && Ext->hasIndices()) {
593            // This use uses a part of our return value, survey the uses of
594            // that part and store the results for this index only.
595            unsigned Idx = *Ext->idx_begin();
596            if (RetValLiveness[Idx] != Live) {
597              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
598              if (RetValLiveness[Idx] == Live)
599                NumLiveRetVals++;
600            }
601          } else {
602            // Used by something else than extractvalue. Mark all return
603            // values as live.
604            for (unsigned i = 0; i != RetCount; ++i )
605              RetValLiveness[i] = Live;
606            NumLiveRetVals = RetCount;
607            break;
608          }
609        }
610      } else {
611        // Single return value
612        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
613        if (RetValLiveness[0] == Live)
614          NumLiveRetVals = RetCount;
615      }
616    }
617  }
618
619  // Now we've inspected all callers, record the liveness of our return values.
620  for (unsigned i = 0; i != RetCount; ++i)
621    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
622
623  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
624
625  // Now, check all of our arguments.
626  unsigned i = 0;
627  UseVector MaybeLiveArgUses;
628  for (Function::const_arg_iterator AI = F.arg_begin(),
629       E = F.arg_end(); AI != E; ++AI, ++i) {
630    Liveness Result;
631    if (F.getFunctionType()->isVarArg()) {
632      // Variadic functions will already have a va_arg function expanded inside
633      // them, making them potentially very sensitive to ABI changes resulting
634      // from removing arguments entirely, so don't. For example AArch64 handles
635      // register and stack HFAs very differently, and this is reflected in the
636      // IR which has already been generated.
637      Result = Live;
638    } else {
639      // See what the effect of this use is (recording any uses that cause
640      // MaybeLive in MaybeLiveArgUses).
641      Result = SurveyUses(AI, MaybeLiveArgUses);
642    }
643
644    // Mark the result.
645    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
646    // Clear the vector again for the next iteration.
647    MaybeLiveArgUses.clear();
648  }
649}
650
651/// MarkValue - This function marks the liveness of RA depending on L. If L is
652/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
653/// such that RA will be marked live if any use in MaybeLiveUses gets marked
654/// live later on.
655void DAE::MarkValue(const RetOrArg &RA, Liveness L,
656                    const UseVector &MaybeLiveUses) {
657  switch (L) {
658    case Live: MarkLive(RA); break;
659    case MaybeLive:
660    {
661      // Note any uses of this value, so this return value can be
662      // marked live whenever one of the uses becomes live.
663      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
664           UE = MaybeLiveUses.end(); UI != UE; ++UI)
665        Uses.insert(std::make_pair(*UI, RA));
666      break;
667    }
668  }
669}
670
671/// MarkLive - Mark the given Function as alive, meaning that it cannot be
672/// changed in any way. Additionally,
673/// mark any values that are used as this function's parameters or by its return
674/// values (according to Uses) live as well.
675void DAE::MarkLive(const Function &F) {
676  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
677  // Mark the function as live.
678  LiveFunctions.insert(&F);
679  // Mark all arguments as live.
680  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
681    PropagateLiveness(CreateArg(&F, i));
682  // Mark all return values as live.
683  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
684    PropagateLiveness(CreateRet(&F, i));
685}
686
687/// MarkLive - Mark the given return value or argument as live. Additionally,
688/// mark any values that are used by this value (according to Uses) live as
689/// well.
690void DAE::MarkLive(const RetOrArg &RA) {
691  if (LiveFunctions.count(RA.F))
692    return; // Function was already marked Live.
693
694  if (!LiveValues.insert(RA).second)
695    return; // We were already marked Live.
696
697  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
698  PropagateLiveness(RA);
699}
700
701/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
702/// to any other values it uses (according to Uses).
703void DAE::PropagateLiveness(const RetOrArg &RA) {
704  // We don't use upper_bound (or equal_range) here, because our recursive call
705  // to ourselves is likely to cause the upper_bound (which is the first value
706  // not belonging to RA) to become erased and the iterator invalidated.
707  UseMap::iterator Begin = Uses.lower_bound(RA);
708  UseMap::iterator E = Uses.end();
709  UseMap::iterator I;
710  for (I = Begin; I != E && I->first == RA; ++I)
711    MarkLive(I->second);
712
713  // Erase RA from the Uses map (from the lower bound to wherever we ended up
714  // after the loop).
715  Uses.erase(Begin, I);
716}
717
718// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
719// that are not in LiveValues. Transform the function and all of the callees of
720// the function to not have these arguments and return values.
721//
722bool DAE::RemoveDeadStuffFromFunction(Function *F) {
723  // Don't modify fully live functions
724  if (LiveFunctions.count(F))
725    return false;
726
727  // Start by computing a new prototype for the function, which is the same as
728  // the old function, but has fewer arguments and a different return type.
729  FunctionType *FTy = F->getFunctionType();
730  std::vector<Type*> Params;
731
732  // Keep track of if we have a live 'returned' argument
733  bool HasLiveReturnedArg = false;
734
735  // Set up to build a new list of parameter attributes.
736  SmallVector<AttributeSet, 8> AttributesVec;
737  const AttributeSet &PAL = F->getAttributes();
738
739  // Remember which arguments are still alive.
740  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
741  // Construct the new parameter list from non-dead arguments. Also construct
742  // a new set of parameter attributes to correspond. Skip the first parameter
743  // attribute, since that belongs to the return value.
744  unsigned i = 0;
745  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
746       I != E; ++I, ++i) {
747    RetOrArg Arg = CreateArg(F, i);
748    if (LiveValues.erase(Arg)) {
749      Params.push_back(I->getType());
750      ArgAlive[i] = true;
751
752      // Get the original parameter attributes (skipping the first one, that is
753      // for the return value.
754      if (PAL.hasAttributes(i + 1)) {
755        AttrBuilder B(PAL, i + 1);
756        if (B.contains(Attribute::Returned))
757          HasLiveReturnedArg = true;
758        AttributesVec.
759          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
760      }
761    } else {
762      ++NumArgumentsEliminated;
763      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
764            << ") from " << F->getName() << "\n");
765    }
766  }
767
768  // Find out the new return value.
769  Type *RetTy = FTy->getReturnType();
770  Type *NRetTy = NULL;
771  unsigned RetCount = NumRetVals(F);
772
773  // -1 means unused, other numbers are the new index
774  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
775  std::vector<Type*> RetTypes;
776
777  // If there is a function with a live 'returned' argument but a dead return
778  // value, then there are two possible actions:
779  // 1) Eliminate the return value and take off the 'returned' attribute on the
780  //    argument.
781  // 2) Retain the 'returned' attribute and treat the return value (but not the
782  //    entire function) as live so that it is not eliminated.
783  //
784  // It's not clear in the general case which option is more profitable because,
785  // even in the absence of explicit uses of the return value, code generation
786  // is free to use the 'returned' attribute to do things like eliding
787  // save/restores of registers across calls. Whether or not this happens is
788  // target and ABI-specific as well as depending on the amount of register
789  // pressure, so there's no good way for an IR-level pass to figure this out.
790  //
791  // Fortunately, the only places where 'returned' is currently generated by
792  // the FE are places where 'returned' is basically free and almost always a
793  // performance win, so the second option can just be used always for now.
794  //
795  // This should be revisited if 'returned' is ever applied more liberally.
796  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
797    NRetTy = RetTy;
798  } else {
799    StructType *STy = dyn_cast<StructType>(RetTy);
800    if (STy)
801      // Look at each of the original return values individually.
802      for (unsigned i = 0; i != RetCount; ++i) {
803        RetOrArg Ret = CreateRet(F, i);
804        if (LiveValues.erase(Ret)) {
805          RetTypes.push_back(STy->getElementType(i));
806          NewRetIdxs[i] = RetTypes.size() - 1;
807        } else {
808          ++NumRetValsEliminated;
809          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
810                << F->getName() << "\n");
811        }
812      }
813    else
814      // We used to return a single value.
815      if (LiveValues.erase(CreateRet(F, 0))) {
816        RetTypes.push_back(RetTy);
817        NewRetIdxs[0] = 0;
818      } else {
819        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
820              << "\n");
821        ++NumRetValsEliminated;
822      }
823    if (RetTypes.size() > 1)
824      // More than one return type? Return a struct with them. Also, if we used
825      // to return a struct and didn't change the number of return values,
826      // return a struct again. This prevents changing {something} into
827      // something and {} into void.
828      // Make the new struct packed if we used to return a packed struct
829      // already.
830      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
831    else if (RetTypes.size() == 1)
832      // One return type? Just a simple value then, but only if we didn't use to
833      // return a struct with that simple value before.
834      NRetTy = RetTypes.front();
835    else if (RetTypes.size() == 0)
836      // No return types? Make it void, but only if we didn't use to return {}.
837      NRetTy = Type::getVoidTy(F->getContext());
838  }
839
840  assert(NRetTy && "No new return type found?");
841
842  // The existing function return attributes.
843  AttributeSet RAttrs = PAL.getRetAttributes();
844
845  // Remove any incompatible attributes, but only if we removed all return
846  // values. Otherwise, ensure that we don't have any conflicting attributes
847  // here. Currently, this should not be possible, but special handling might be
848  // required when new return value attributes are added.
849  if (NRetTy->isVoidTy())
850    RAttrs =
851      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
852                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
853         removeAttributes(AttributeFuncs::
854                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
855                          AttributeSet::ReturnIndex));
856  else
857    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
858             hasAttributes(AttributeFuncs::
859                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
860                           AttributeSet::ReturnIndex) &&
861           "Return attributes no longer compatible?");
862
863  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
864    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
865
866  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
867    AttributesVec.push_back(AttributeSet::get(F->getContext(),
868                                              PAL.getFnAttributes()));
869
870  // Reconstruct the AttributesList based on the vector we constructed.
871  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
872
873  // Create the new function type based on the recomputed parameters.
874  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
875
876  // No change?
877  if (NFTy == FTy)
878    return false;
879
880  // Create the new function body and insert it into the module...
881  Function *NF = Function::Create(NFTy, F->getLinkage());
882  NF->copyAttributesFrom(F);
883  NF->setAttributes(NewPAL);
884  // Insert the new function before the old function, so we won't be processing
885  // it again.
886  F->getParent()->getFunctionList().insert(F, NF);
887  NF->takeName(F);
888
889  // Loop over all of the callers of the function, transforming the call sites
890  // to pass in a smaller number of arguments into the new function.
891  //
892  std::vector<Value*> Args;
893  while (!F->use_empty()) {
894    CallSite CS(F->use_back());
895    Instruction *Call = CS.getInstruction();
896
897    AttributesVec.clear();
898    const AttributeSet &CallPAL = CS.getAttributes();
899
900    // The call return attributes.
901    AttributeSet RAttrs = CallPAL.getRetAttributes();
902
903    // Adjust in case the function was changed to return void.
904    RAttrs =
905      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
906                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
907        removeAttributes(AttributeFuncs::
908                         typeIncompatible(NF->getReturnType(),
909                                          AttributeSet::ReturnIndex),
910                         AttributeSet::ReturnIndex));
911    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
912      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
913
914    // Declare these outside of the loops, so we can reuse them for the second
915    // loop, which loops the varargs.
916    CallSite::arg_iterator I = CS.arg_begin();
917    unsigned i = 0;
918    // Loop over those operands, corresponding to the normal arguments to the
919    // original function, and add those that are still alive.
920    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
921      if (ArgAlive[i]) {
922        Args.push_back(*I);
923        // Get original parameter attributes, but skip return attributes.
924        if (CallPAL.hasAttributes(i + 1)) {
925          AttrBuilder B(CallPAL, i + 1);
926          // If the return type has changed, then get rid of 'returned' on the
927          // call site. The alternative is to make all 'returned' attributes on
928          // call sites keep the return value alive just like 'returned'
929          // attributes on function declaration but it's less clearly a win
930          // and this is not an expected case anyway
931          if (NRetTy != RetTy && B.contains(Attribute::Returned))
932            B.removeAttribute(Attribute::Returned);
933          AttributesVec.
934            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
935        }
936      }
937
938    // Push any varargs arguments on the list. Don't forget their attributes.
939    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
940      Args.push_back(*I);
941      if (CallPAL.hasAttributes(i + 1)) {
942        AttrBuilder B(CallPAL, i + 1);
943        AttributesVec.
944          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
945      }
946    }
947
948    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
949      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
950                                                CallPAL.getFnAttributes()));
951
952    // Reconstruct the AttributesList based on the vector we constructed.
953    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
954
955    Instruction *New;
956    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
957      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
958                               Args, "", Call);
959      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
960      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
961    } else {
962      New = CallInst::Create(NF, Args, "", Call);
963      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
964      cast<CallInst>(New)->setAttributes(NewCallPAL);
965      if (cast<CallInst>(Call)->isTailCall())
966        cast<CallInst>(New)->setTailCall();
967    }
968    New->setDebugLoc(Call->getDebugLoc());
969
970    Args.clear();
971
972    if (!Call->use_empty()) {
973      if (New->getType() == Call->getType()) {
974        // Return type not changed? Just replace users then.
975        Call->replaceAllUsesWith(New);
976        New->takeName(Call);
977      } else if (New->getType()->isVoidTy()) {
978        // Our return value has uses, but they will get removed later on.
979        // Replace by null for now.
980        if (!Call->getType()->isX86_MMXTy())
981          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
982      } else {
983        assert(RetTy->isStructTy() &&
984               "Return type changed, but not into a void. The old return type"
985               " must have been a struct!");
986        Instruction *InsertPt = Call;
987        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
988          BasicBlock::iterator IP = II->getNormalDest()->begin();
989          while (isa<PHINode>(IP)) ++IP;
990          InsertPt = IP;
991        }
992
993        // We used to return a struct. Instead of doing smart stuff with all the
994        // uses of this struct, we will just rebuild it using
995        // extract/insertvalue chaining and let instcombine clean that up.
996        //
997        // Start out building up our return value from undef
998        Value *RetVal = UndefValue::get(RetTy);
999        for (unsigned i = 0; i != RetCount; ++i)
1000          if (NewRetIdxs[i] != -1) {
1001            Value *V;
1002            if (RetTypes.size() > 1)
1003              // We are still returning a struct, so extract the value from our
1004              // return value
1005              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
1006                                           InsertPt);
1007            else
1008              // We are now returning a single element, so just insert that
1009              V = New;
1010            // Insert the value at the old position
1011            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1012          }
1013        // Now, replace all uses of the old call instruction with the return
1014        // struct we built
1015        Call->replaceAllUsesWith(RetVal);
1016        New->takeName(Call);
1017      }
1018    }
1019
1020    // Finally, remove the old call from the program, reducing the use-count of
1021    // F.
1022    Call->eraseFromParent();
1023  }
1024
1025  // Since we have now created the new function, splice the body of the old
1026  // function right into the new function, leaving the old rotting hulk of the
1027  // function empty.
1028  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1029
1030  // Loop over the argument list, transferring uses of the old arguments over to
1031  // the new arguments, also transferring over the names as well.
1032  i = 0;
1033  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1034       I2 = NF->arg_begin(); I != E; ++I, ++i)
1035    if (ArgAlive[i]) {
1036      // If this is a live argument, move the name and users over to the new
1037      // version.
1038      I->replaceAllUsesWith(I2);
1039      I2->takeName(I);
1040      ++I2;
1041    } else {
1042      // If this argument is dead, replace any uses of it with null constants
1043      // (these are guaranteed to become unused later on).
1044      if (!I->getType()->isX86_MMXTy())
1045        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1046    }
1047
1048  // If we change the return value of the function we must rewrite any return
1049  // instructions.  Check this now.
1050  if (F->getReturnType() != NF->getReturnType())
1051    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1052      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1053        Value *RetVal;
1054
1055        if (NFTy->getReturnType()->isVoidTy()) {
1056          RetVal = 0;
1057        } else {
1058          assert (RetTy->isStructTy());
1059          // The original return value was a struct, insert
1060          // extractvalue/insertvalue chains to extract only the values we need
1061          // to return and insert them into our new result.
1062          // This does generate messy code, but we'll let it to instcombine to
1063          // clean that up.
1064          Value *OldRet = RI->getOperand(0);
1065          // Start out building up our return value from undef
1066          RetVal = UndefValue::get(NRetTy);
1067          for (unsigned i = 0; i != RetCount; ++i)
1068            if (NewRetIdxs[i] != -1) {
1069              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1070                                                              "oldret", RI);
1071              if (RetTypes.size() > 1) {
1072                // We're still returning a struct, so reinsert the value into
1073                // our new return value at the new index
1074
1075                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1076                                                 "newret", RI);
1077              } else {
1078                // We are now only returning a simple value, so just return the
1079                // extracted value.
1080                RetVal = EV;
1081              }
1082            }
1083        }
1084        // Replace the return instruction with one returning the new return
1085        // value (possibly 0 if we became void).
1086        ReturnInst::Create(F->getContext(), RetVal, RI);
1087        BB->getInstList().erase(RI);
1088      }
1089
1090  // Patch the pointer to LLVM function in debug info descriptor.
1091  FunctionDIMap::iterator DI = FunctionDIs.find(F);
1092  if (DI != FunctionDIs.end())
1093    DI->second.replaceFunction(NF);
1094
1095  // Now that the old function is dead, delete it.
1096  F->eraseFromParent();
1097
1098  return true;
1099}
1100
1101bool DAE::runOnModule(Module &M) {
1102  bool Changed = false;
1103
1104  // Collect debug info descriptors for functions.
1105  CollectFunctionDIs(M);
1106
1107  // First pass: Do a simple check to see if any functions can have their "..."
1108  // removed.  We can do this if they never call va_start.  This loop cannot be
1109  // fused with the next loop, because deleting a function invalidates
1110  // information computed while surveying other functions.
1111  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1112  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1113    Function &F = *I++;
1114    if (F.getFunctionType()->isVarArg())
1115      Changed |= DeleteDeadVarargs(F);
1116  }
1117
1118  // Second phase:loop through the module, determining which arguments are live.
1119  // We assume all arguments are dead unless proven otherwise (allowing us to
1120  // determine that dead arguments passed into recursive functions are dead).
1121  //
1122  DEBUG(dbgs() << "DAE - Determining liveness\n");
1123  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1124    SurveyFunction(*I);
1125
1126  // Now, remove all dead arguments and return values from each function in
1127  // turn.
1128  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1129    // Increment now, because the function will probably get removed (ie.
1130    // replaced by a new one).
1131    Function *F = I++;
1132    Changed |= RemoveDeadStuffFromFunction(F);
1133  }
1134
1135  // Finally, look for any unused parameters in functions with non-local
1136  // linkage and replace the passed in parameters with undef.
1137  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1138    Function& F = *I;
1139
1140    Changed |= RemoveDeadArgumentsFromCallers(F);
1141  }
1142
1143  return Changed;
1144}
1145