X86InstrCompiler.td revision 266715
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[In32BitMode]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[In32BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1, Defs = [EFLAGS] in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset),
85                               (implicit EFLAGS)]>;
86
87// The VAARG_64 pseudo-instruction takes the address of the va_list,
88// and places the address of the next argument into a register.
89let Defs = [EFLAGS] in
90def VAARG_64 : I<0, Pseudo,
91                 (outs GR64:$dst),
92                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
93                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
94                 [(set GR64:$dst,
95                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
96                  (implicit EFLAGS)]>;
97
98// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
99// targets.  These calls are needed to probe the stack when allocating more than
100// 4k bytes in one go. Touching the stack at 4K increments is necessary to
101// ensure that the guard pages used by the OS virtual memory manager are
102// allocated in correct sequence.
103// The main point of having separate instruction are extra unmodelled effects
104// (compared to ordinary calls) like stack pointer change.
105
106let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
107  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
108                     "# dynamic stack allocation",
109                     [(X86WinAlloca)]>;
110
111// When using segmented stacks these are lowered into instructions which first
112// check if the current stacklet has enough free memory. If it does, memory is
113// allocated by bumping the stack pointer. Otherwise memory is allocated from 
114// the heap.
115
116let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
117def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
118                      "# variable sized alloca for segmented stacks",
119                      [(set GR32:$dst,
120                         (X86SegAlloca GR32:$size))]>,
121                    Requires<[In32BitMode]>;
122
123let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
124def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
125                      "# variable sized alloca for segmented stacks",
126                      [(set GR64:$dst,
127                         (X86SegAlloca GR64:$size))]>,
128                    Requires<[In64BitMode]>;
129}
130
131// The MSVC runtime contains an _ftol2 routine for converting floating-point
132// to integer values. It has a strange calling convention: the input is
133// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
134// used as a temporary register. No other registers (aside from flags) are
135// touched.
136// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
137// variant is unnecessary.
138
139let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
140  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
141                      "# win32 fptoui",
142                      [(X86WinFTOL RFP32:$src)]>,
143                    Requires<[In32BitMode]>;
144
145  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
146                      "# win32 fptoui",
147                      [(X86WinFTOL RFP64:$src)]>,
148                    Requires<[In32BitMode]>;
149}
150
151//===----------------------------------------------------------------------===//
152// EH Pseudo Instructions
153//
154let SchedRW = [WriteSystem] in {
155let isTerminator = 1, isReturn = 1, isBarrier = 1,
156    hasCtrlDep = 1, isCodeGenOnly = 1 in {
157def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
158                    "ret\t#eh_return, addr: $addr",
159                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
160
161}
162
163let isTerminator = 1, isReturn = 1, isBarrier = 1,
164    hasCtrlDep = 1, isCodeGenOnly = 1 in {
165def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
166                     "ret\t#eh_return, addr: $addr",
167                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
168
169}
170
171let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
172    usesCustomInserter = 1 in {
173  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
174                            "#EH_SJLJ_SETJMP32",
175                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
176                          Requires<[In32BitMode]>;
177  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
178                            "#EH_SJLJ_SETJMP64",
179                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180                          Requires<[In64BitMode]>;
181  let isTerminator = 1 in {
182  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
183                            "#EH_SJLJ_LONGJMP32",
184                            [(X86eh_sjlj_longjmp addr:$buf)]>,
185                          Requires<[In32BitMode]>;
186  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
187                            "#EH_SJLJ_LONGJMP64",
188                            [(X86eh_sjlj_longjmp addr:$buf)]>,
189                          Requires<[In64BitMode]>;
190  }
191}
192} // SchedRW
193
194let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
195  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
196                        "#EH_SjLj_Setup\t$dst", []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Pseudo instructions used by segmented stacks.
201//
202
203// This is lowered into a RET instruction by MCInstLower.  We need
204// this so that we don't have to have a MachineBasicBlock which ends
205// with a RET and also has successors.
206let isPseudo = 1 in {
207def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
208                          "", []>;
209
210// This instruction is lowered to a RET followed by a MOV.  The two
211// instructions are not generated on a higher level since then the
212// verifier sees a MachineBasicBlock ending with a non-terminator.
213def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
214                                  "", []>;
215}
216
217//===----------------------------------------------------------------------===//
218// Alias Instructions
219//===----------------------------------------------------------------------===//
220
221// Alias instruction mapping movr0 to xor.
222// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
223// FIXME: Set encoding to pseudo.
224let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
225    isCodeGenOnly = 1 in
226def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
227                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
228
229// Other widths can also make use of the 32-bit xor, which may have a smaller
230// encoding and avoid partial register updates.
231def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
232def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
233def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
234  let AddedComplexity = 20;
235}
236
237// Materialize i64 constant where top 32-bits are zero. This could theoretically
238// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
239// that would make it more difficult to rematerialize.
240let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
241    isCodeGenOnly = 1, neverHasSideEffects = 1 in
242def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
243                     "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
244
245// This 64-bit pseudo-move can be used for both a 64-bit constant that is
246// actually the zero-extension of a 32-bit constant, and for labels in the
247// x86-64 small code model.
248def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
249
250let AddedComplexity = 1 in
251def : Pat<(i64 mov64imm32:$src),
252          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
253
254// Use sbb to materialize carry bit.
255let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
256// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
257// However, Pat<> can't replicate the destination reg into the inputs of the
258// result.
259def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
260                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
261def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
262                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
263def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
264                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
265def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
266                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
267} // isCodeGenOnly
268
269
270def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
271          (SETB_C16r)>;
272def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
273          (SETB_C32r)>;
274def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
275          (SETB_C64r)>;
276
277def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
278          (SETB_C16r)>;
279def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
280          (SETB_C32r)>;
281def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
282          (SETB_C64r)>;
283
284// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
285// will be eliminated and that the sbb can be extended up to a wider type.  When
286// this happens, it is great.  However, if we are left with an 8-bit sbb and an
287// and, we might as well just match it as a setb.
288def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
289          (SETBr)>;
290
291// (add OP, SETB) -> (adc OP, 0)
292def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
293          (ADC8ri GR8:$op, 0)>;
294def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
295          (ADC32ri8 GR32:$op, 0)>;
296def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
297          (ADC64ri8 GR64:$op, 0)>;
298
299// (sub OP, SETB) -> (sbb OP, 0)
300def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
301          (SBB8ri GR8:$op, 0)>;
302def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
303          (SBB32ri8 GR32:$op, 0)>;
304def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
305          (SBB64ri8 GR64:$op, 0)>;
306
307// (sub OP, SETCC_CARRY) -> (adc OP, 0)
308def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
309          (ADC8ri GR8:$op, 0)>;
310def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
311          (ADC32ri8 GR32:$op, 0)>;
312def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
313          (ADC64ri8 GR64:$op, 0)>;
314
315//===----------------------------------------------------------------------===//
316// String Pseudo Instructions
317//
318let SchedRW = [WriteMicrocoded] in {
319let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
320def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
321                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
322                   Requires<[In32BitMode]>;
323def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
324                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
325                   Requires<[In32BitMode]>;
326def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
327                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
328                   Requires<[In32BitMode]>;
329}
330
331let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
332def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
333                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
334                   Requires<[In64BitMode]>;
335def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
336                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
337                   Requires<[In64BitMode]>;
338def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
339                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
340                   Requires<[In64BitMode]>;
341def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
342                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
343                   Requires<[In64BitMode]>;
344}
345
346// FIXME: Should use "(X86rep_stos AL)" as the pattern.
347let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
348  let Uses = [AL,ECX,EDI] in
349  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
350                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
351                     Requires<[In32BitMode]>;
352  let Uses = [AX,ECX,EDI] in
353  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
354                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
355                     Requires<[In32BitMode]>;
356  let Uses = [EAX,ECX,EDI] in
357  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
358                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
359                     Requires<[In32BitMode]>;
360}
361
362let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
363  let Uses = [AL,RCX,RDI] in
364  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
365                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
366                     Requires<[In64BitMode]>;
367  let Uses = [AX,RCX,RDI] in
368  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
369                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
370                     Requires<[In64BitMode]>;
371  let Uses = [RAX,RCX,RDI] in
372  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
373                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
374                     Requires<[In64BitMode]>;
375 
376  let Uses = [RAX,RCX,RDI] in
377  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
378                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
379                     Requires<[In64BitMode]>;
380}
381} // SchedRW
382
383//===----------------------------------------------------------------------===//
384// Thread Local Storage Instructions
385//
386
387// ELF TLS Support
388// All calls clobber the non-callee saved registers. ESP is marked as
389// a use to prevent stack-pointer assignments that appear immediately
390// before calls from potentially appearing dead.
391let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
392            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
393            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
394            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
395    Uses = [ESP] in {
396def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
397                  "# TLS_addr32",
398                  [(X86tlsaddr tls32addr:$sym)]>,
399                  Requires<[In32BitMode]>;
400def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
401                  "# TLS_base_addr32",
402                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
403                  Requires<[In32BitMode]>;
404}
405
406// All calls clobber the non-callee saved registers. RSP is marked as
407// a use to prevent stack-pointer assignments that appear immediately
408// before calls from potentially appearing dead.
409let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
410            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
411            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
412            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
413            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
414    Uses = [RSP] in {
415def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
416                   "# TLS_addr64",
417                  [(X86tlsaddr tls64addr:$sym)]>,
418                  Requires<[In64BitMode]>;
419def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
420                   "# TLS_base_addr64",
421                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
422                  Requires<[In64BitMode]>;
423}
424
425// Darwin TLS Support
426// For i386, the address of the thunk is passed on the stack, on return the
427// address of the variable is in %eax.  %ecx is trashed during the function
428// call.  All other registers are preserved.
429let Defs = [EAX, ECX, EFLAGS],
430    Uses = [ESP],
431    usesCustomInserter = 1 in
432def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
433                "# TLSCall_32",
434                [(X86TLSCall addr:$sym)]>,
435                Requires<[In32BitMode]>;
436
437// For x86_64, the address of the thunk is passed in %rdi, on return
438// the address of the variable is in %rax.  All other registers are preserved.
439let Defs = [RAX, EFLAGS],
440    Uses = [RSP, RDI],
441    usesCustomInserter = 1 in
442def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443                  "# TLSCall_64",
444                  [(X86TLSCall addr:$sym)]>,
445                  Requires<[In64BitMode]>;
446
447
448//===----------------------------------------------------------------------===//
449// Conditional Move Pseudo Instructions
450
451// X86 doesn't have 8-bit conditional moves. Use a customInserter to
452// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
453// however that requires promoting the operands, and can induce additional
454// i8 register pressure.
455let usesCustomInserter = 1, Uses = [EFLAGS] in {
456def CMOV_GR8 : I<0, Pseudo,
457                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
458                 "#CMOV_GR8 PSEUDO!",
459                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
460                                          imm:$cond, EFLAGS))]>;
461
462let Predicates = [NoCMov] in {
463def CMOV_GR32 : I<0, Pseudo,
464                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
465                    "#CMOV_GR32* PSEUDO!",
466                    [(set GR32:$dst,
467                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
468def CMOV_GR16 : I<0, Pseudo,
469                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
470                    "#CMOV_GR16* PSEUDO!",
471                    [(set GR16:$dst,
472                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
473} // Predicates = [NoCMov]
474
475// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
476// SSE1.
477let Predicates = [FPStackf32] in
478def CMOV_RFP32 : I<0, Pseudo,
479                    (outs RFP32:$dst),
480                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
481                    "#CMOV_RFP32 PSEUDO!",
482                    [(set RFP32:$dst,
483                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
484                                                  EFLAGS))]>;
485// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
486// SSE2.
487let Predicates = [FPStackf64] in
488def CMOV_RFP64 : I<0, Pseudo,
489                    (outs RFP64:$dst),
490                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
491                    "#CMOV_RFP64 PSEUDO!",
492                    [(set RFP64:$dst,
493                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
494                                                  EFLAGS))]>;
495def CMOV_RFP80 : I<0, Pseudo,
496                    (outs RFP80:$dst),
497                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
498                    "#CMOV_RFP80 PSEUDO!",
499                    [(set RFP80:$dst,
500                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
501                                                  EFLAGS))]>;
502} // UsesCustomInserter = 1, Uses = [EFLAGS]
503
504
505//===----------------------------------------------------------------------===//
506// Atomic Instruction Pseudo Instructions
507//===----------------------------------------------------------------------===//
508
509// Pseudo atomic instructions
510
511multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
512  let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
513    let Defs = [EFLAGS, AL] in
514    def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
515                    (ins i8mem:$ptr, GR8:$val),
516                    !strconcat(mnemonic, "8 PSEUDO!"), []>;
517    let Defs = [EFLAGS, AX] in
518    def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
519                    (ins i16mem:$ptr, GR16:$val),
520                    !strconcat(mnemonic, "16 PSEUDO!"), []>;
521    let Defs = [EFLAGS, EAX] in
522    def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
523                    (ins i32mem:$ptr, GR32:$val),
524                    !strconcat(mnemonic, "32 PSEUDO!"), []>;
525    let Defs = [EFLAGS, RAX] in
526    def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
527                    (ins i64mem:$ptr, GR64:$val),
528                    !strconcat(mnemonic, "64 PSEUDO!"), []>;
529  }
530}
531
532multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
533  def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
534            (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
535  def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
536            (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
537  def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
538            (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
539  def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
540            (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
541}
542
543// Atomic exchange, and, or, xor
544defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
545defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
546defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
547defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
548defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
549defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
550defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
551defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
552
553defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
554defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
555defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
556defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
557defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
558defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
559defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
560defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
561
562multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
563  let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
564      mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
565    def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
566                      (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
567                      !strconcat(mnemonic, "6432 PSEUDO!"), []>;
568}
569
570defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
571defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
572defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
573defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
574defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
575defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
576defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
577defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
578defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
579defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
580defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
581
582//===----------------------------------------------------------------------===//
583// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
584//===----------------------------------------------------------------------===//
585
586// FIXME: Use normal instructions and add lock prefix dynamically.
587
588// Memory barriers
589
590// TODO: Get this to fold the constant into the instruction.
591let isCodeGenOnly = 1, Defs = [EFLAGS] in
592def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
593                      "or{l}\t{$zero, $dst|$dst, $zero}",
594                      [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK,
595                    Sched<[WriteALULd, WriteRMW]>;
596
597let hasSideEffects = 1 in
598def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
599                     "#MEMBARRIER",
600                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
601
602// RegOpc corresponds to the mr version of the instruction
603// ImmOpc corresponds to the mi version of the instruction
604// ImmOpc8 corresponds to the mi8 version of the instruction
605// ImmMod corresponds to the instruction format of the mi and mi8 versions
606multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
607                           Format ImmMod, string mnemonic> {
608let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
609    SchedRW = [WriteALULd, WriteRMW] in {
610
611def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
612                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
613                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
614                  !strconcat(mnemonic, "{b}\t",
615                             "{$src2, $dst|$dst, $src2}"),
616                  [], IIC_ALU_NONMEM>, LOCK;
617def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
618                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
619                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
620                   !strconcat(mnemonic, "{w}\t",
621                              "{$src2, $dst|$dst, $src2}"),
622                   [], IIC_ALU_NONMEM>, OpSize, LOCK;
623def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
624                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
625                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
626                   !strconcat(mnemonic, "{l}\t",
627                              "{$src2, $dst|$dst, $src2}"),
628                   [], IIC_ALU_NONMEM>, LOCK;
629def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
630                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
631                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
632                    !strconcat(mnemonic, "{q}\t",
633                               "{$src2, $dst|$dst, $src2}"),
634                    [], IIC_ALU_NONMEM>, LOCK;
635
636def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
637                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
638                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
639                    !strconcat(mnemonic, "{b}\t",
640                               "{$src2, $dst|$dst, $src2}"),
641                    [], IIC_ALU_MEM>, LOCK;
642
643def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
644                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
645                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
646                      !strconcat(mnemonic, "{w}\t",
647                                 "{$src2, $dst|$dst, $src2}"),
648                      [], IIC_ALU_MEM>, OpSize, LOCK;
649
650def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
651                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
652                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
653                      !strconcat(mnemonic, "{l}\t",
654                                 "{$src2, $dst|$dst, $src2}"),
655                      [], IIC_ALU_MEM>, LOCK;
656
657def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
658                         ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
659                         ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
660                         !strconcat(mnemonic, "{q}\t",
661                                    "{$src2, $dst|$dst, $src2}"),
662                         [], IIC_ALU_MEM>, LOCK;
663
664def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
665                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
666                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
667                      !strconcat(mnemonic, "{w}\t",
668                                 "{$src2, $dst|$dst, $src2}"),
669                      [], IIC_ALU_MEM>, OpSize, LOCK;
670def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
671                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
672                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
673                      !strconcat(mnemonic, "{l}\t",
674                                 "{$src2, $dst|$dst, $src2}"),
675                      [], IIC_ALU_MEM>, LOCK;
676def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
677                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
678                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
679                       !strconcat(mnemonic, "{q}\t",
680                                  "{$src2, $dst|$dst, $src2}"),
681                       [], IIC_ALU_MEM>, LOCK;
682
683}
684
685}
686
687defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
688defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
689defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
690defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
691defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
692
693// Optimized codegen when the non-memory output is not used.
694multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
695                          string mnemonic> {
696let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
697    SchedRW = [WriteALULd, WriteRMW] in {
698
699def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
700                 !strconcat(mnemonic, "{b}\t$dst"),
701                 [], IIC_UNARY_MEM>, LOCK;
702def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
703                 !strconcat(mnemonic, "{w}\t$dst"),
704                 [], IIC_UNARY_MEM>, OpSize, LOCK;
705def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
706                 !strconcat(mnemonic, "{l}\t$dst"),
707                 [], IIC_UNARY_MEM>, LOCK;
708def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
709                  !strconcat(mnemonic, "{q}\t$dst"),
710                  [], IIC_UNARY_MEM>, LOCK;
711}
712}
713
714defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
715defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
716
717// Atomic compare and swap.
718multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
719                         SDPatternOperator frag, X86MemOperand x86memop,
720                         InstrItinClass itin> {
721let isCodeGenOnly = 1 in {
722  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
723               !strconcat(mnemonic, "\t$ptr"),
724               [(frag addr:$ptr)], itin>, TB, LOCK;
725}
726}
727
728multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
729                          string mnemonic, SDPatternOperator frag,
730                          InstrItinClass itin8, InstrItinClass itin> {
731let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
732  let Defs = [AL, EFLAGS], Uses = [AL] in
733  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
734                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
735                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
736  let Defs = [AX, EFLAGS], Uses = [AX] in
737  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
738                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
739                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
740  let Defs = [EAX, EFLAGS], Uses = [EAX] in
741  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
742                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
743                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
744  let Defs = [RAX, EFLAGS], Uses = [RAX] in
745  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
746                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
747                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
748}
749}
750
751let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
752    SchedRW = [WriteALULd, WriteRMW] in {
753defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
754                                X86cas8, i64mem,
755                                IIC_CMPX_LOCK_8B>;
756}
757
758let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
759    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
760defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
761                                 X86cas16, i128mem,
762                                 IIC_CMPX_LOCK_16B>, REX_W;
763}
764
765defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
766                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
767
768// Atomic exchange and add
769multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
770                             string frag,
771                             InstrItinClass itin8, InstrItinClass itin> {
772  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
773      SchedRW = [WriteALULd, WriteRMW] in {
774    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
775                    (ins GR8:$val, i8mem:$ptr),
776                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
777                    [(set GR8:$dst,
778                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
779                    itin8>;
780    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
781                    (ins GR16:$val, i16mem:$ptr),
782                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
783                    [(set
784                       GR16:$dst,
785                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
786                    itin>, OpSize;
787    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
788                    (ins GR32:$val, i32mem:$ptr),
789                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
790                    [(set
791                       GR32:$dst,
792                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
793                    itin>;
794    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
795                     (ins GR64:$val, i64mem:$ptr),
796                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
797                     [(set
798                        GR64:$dst,
799                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
800                     itin>;
801  }
802}
803
804defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
805                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
806             TB, LOCK;
807
808def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
809                      "#ACQUIRE_MOV PSEUDO!",
810                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
811def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
812                      "#ACQUIRE_MOV PSEUDO!",
813                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
814def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
815                      "#ACQUIRE_MOV PSEUDO!",
816                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
817def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
818                      "#ACQUIRE_MOV PSEUDO!",
819                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
820
821def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
822                        "#RELEASE_MOV PSEUDO!",
823                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
824def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
825                        "#RELEASE_MOV PSEUDO!",
826                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
827def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
828                        "#RELEASE_MOV PSEUDO!",
829                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
830def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
831                        "#RELEASE_MOV PSEUDO!",
832                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
833
834//===----------------------------------------------------------------------===//
835// Conditional Move Pseudo Instructions.
836//===----------------------------------------------------------------------===//
837
838
839// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
840// instruction selection into a branch sequence.
841let Uses = [EFLAGS], usesCustomInserter = 1 in {
842  def CMOV_FR32 : I<0, Pseudo,
843                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
844                    "#CMOV_FR32 PSEUDO!",
845                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
846                                                  EFLAGS))]>;
847  def CMOV_FR64 : I<0, Pseudo,
848                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
849                    "#CMOV_FR64 PSEUDO!",
850                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
851                                                  EFLAGS))]>;
852  def CMOV_V4F32 : I<0, Pseudo,
853                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
854                    "#CMOV_V4F32 PSEUDO!",
855                    [(set VR128:$dst,
856                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
857                                          EFLAGS)))]>;
858  def CMOV_V2F64 : I<0, Pseudo,
859                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
860                    "#CMOV_V2F64 PSEUDO!",
861                    [(set VR128:$dst,
862                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
863                                          EFLAGS)))]>;
864  def CMOV_V2I64 : I<0, Pseudo,
865                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
866                    "#CMOV_V2I64 PSEUDO!",
867                    [(set VR128:$dst,
868                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
869                                          EFLAGS)))]>;
870  def CMOV_V8F32 : I<0, Pseudo,
871                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
872                    "#CMOV_V8F32 PSEUDO!",
873                    [(set VR256:$dst,
874                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
875                                          EFLAGS)))]>;
876  def CMOV_V4F64 : I<0, Pseudo,
877                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
878                    "#CMOV_V4F64 PSEUDO!",
879                    [(set VR256:$dst,
880                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
881                                          EFLAGS)))]>;
882  def CMOV_V4I64 : I<0, Pseudo,
883                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
884                    "#CMOV_V4I64 PSEUDO!",
885                    [(set VR256:$dst,
886                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
887                                          EFLAGS)))]>;
888  def CMOV_V8I64 : I<0, Pseudo,
889                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
890                    "#CMOV_V8I64 PSEUDO!",
891                    [(set VR512:$dst,
892                      (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
893                                          EFLAGS)))]>;
894  def CMOV_V8F64 : I<0, Pseudo,
895                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
896                    "#CMOV_V8F64 PSEUDO!",
897                    [(set VR512:$dst,
898                      (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
899                                          EFLAGS)))]>;
900  def CMOV_V16F32 : I<0, Pseudo,
901                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
902                    "#CMOV_V16F32 PSEUDO!",
903                    [(set VR512:$dst,
904                      (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
905                                          EFLAGS)))]>;
906}
907
908
909//===----------------------------------------------------------------------===//
910// DAG Pattern Matching Rules
911//===----------------------------------------------------------------------===//
912
913// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
914def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
915def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
916def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
917def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
918def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
919def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
920
921def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
922          (ADD32ri GR32:$src1, tconstpool:$src2)>;
923def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
924          (ADD32ri GR32:$src1, tjumptable:$src2)>;
925def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
926          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
927def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
928          (ADD32ri GR32:$src1, texternalsym:$src2)>;
929def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
930          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
931
932def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
933          (MOV32mi addr:$dst, tglobaladdr:$src)>;
934def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
935          (MOV32mi addr:$dst, texternalsym:$src)>;
936def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
937          (MOV32mi addr:$dst, tblockaddress:$src)>;
938
939// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
940// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
941//  'movabs' predicate should handle this sort of thing.
942def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
943          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
944def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
945          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
946def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
947          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
948def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
949          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
950def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
951          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
952
953// In kernel code model, we can get the address of a label
954// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
955// the MOV64ri32 should accept these.
956def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
957          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
958def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
959          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
960def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
961          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
962def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
963          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
964def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
965          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
966
967// If we have small model and -static mode, it is safe to store global addresses
968// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
969// for MOV64mi32 should handle this sort of thing.
970def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
971          (MOV64mi32 addr:$dst, tconstpool:$src)>,
972          Requires<[NearData, IsStatic]>;
973def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
974          (MOV64mi32 addr:$dst, tjumptable:$src)>,
975          Requires<[NearData, IsStatic]>;
976def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
977          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
978          Requires<[NearData, IsStatic]>;
979def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
980          (MOV64mi32 addr:$dst, texternalsym:$src)>,
981          Requires<[NearData, IsStatic]>;
982def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
983          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
984          Requires<[NearData, IsStatic]>;
985
986// Calls
987
988// tls has some funny stuff here...
989// This corresponds to movabs $foo@tpoff, %rax
990def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
991          (MOV64ri32 tglobaltlsaddr :$dst)>;
992// This corresponds to add $foo@tpoff, %rax
993def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
994          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
995
996
997// Direct PC relative function call for small code model. 32-bit displacement
998// sign extended to 64-bit.
999def : Pat<(X86call (i64 tglobaladdr:$dst)),
1000          (CALL64pcrel32 tglobaladdr:$dst)>;
1001def : Pat<(X86call (i64 texternalsym:$dst)),
1002          (CALL64pcrel32 texternalsym:$dst)>;
1003
1004// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1005// can never use callee-saved registers. That is the purpose of the GR64_TC
1006// register classes.
1007//
1008// The only volatile register that is never used by the calling convention is
1009// %r11. This happens when calling a vararg function with 6 arguments.
1010//
1011// Match an X86tcret that uses less than 7 volatile registers.
1012def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1013                             (X86tcret node:$ptr, node:$off), [{
1014  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1015  unsigned NumRegs = 0;
1016  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1017    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1018      return false;
1019  return true;
1020}]>;
1021
1022def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1023          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1024          Requires<[In32BitMode]>;
1025
1026// FIXME: This is disabled for 32-bit PIC mode because the global base
1027// register which is part of the address mode may be assigned a
1028// callee-saved register.
1029def : Pat<(X86tcret (load addr:$dst), imm:$off),
1030          (TCRETURNmi addr:$dst, imm:$off)>,
1031          Requires<[In32BitMode, IsNotPIC]>;
1032
1033def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1034          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1035          Requires<[In32BitMode]>;
1036
1037def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1038          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1039          Requires<[In32BitMode]>;
1040
1041def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1042          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1043          Requires<[In64BitMode]>;
1044
1045// Don't fold loads into X86tcret requiring more than 6 regs.
1046// There wouldn't be enough scratch registers for base+index.
1047def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1048          (TCRETURNmi64 addr:$dst, imm:$off)>,
1049          Requires<[In64BitMode]>;
1050
1051def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1052          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1053          Requires<[In64BitMode]>;
1054
1055def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1056          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1057          Requires<[In64BitMode]>;
1058
1059// Normal calls, with various flavors of addresses.
1060def : Pat<(X86call (i32 tglobaladdr:$dst)),
1061          (CALLpcrel32 tglobaladdr:$dst)>;
1062def : Pat<(X86call (i32 texternalsym:$dst)),
1063          (CALLpcrel32 texternalsym:$dst)>;
1064def : Pat<(X86call (i32 imm:$dst)),
1065          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1066
1067// Comparisons.
1068
1069// TEST R,R is smaller than CMP R,0
1070def : Pat<(X86cmp GR8:$src1, 0),
1071          (TEST8rr GR8:$src1, GR8:$src1)>;
1072def : Pat<(X86cmp GR16:$src1, 0),
1073          (TEST16rr GR16:$src1, GR16:$src1)>;
1074def : Pat<(X86cmp GR32:$src1, 0),
1075          (TEST32rr GR32:$src1, GR32:$src1)>;
1076def : Pat<(X86cmp GR64:$src1, 0),
1077          (TEST64rr GR64:$src1, GR64:$src1)>;
1078
1079// Conditional moves with folded loads with operands swapped and conditions
1080// inverted.
1081multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1082                  Instruction Inst64> {
1083  let Predicates = [HasCMov] in {
1084    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1085              (Inst16 GR16:$src2, addr:$src1)>;
1086    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1087              (Inst32 GR32:$src2, addr:$src1)>;
1088    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1089              (Inst64 GR64:$src2, addr:$src1)>;
1090  }
1091}
1092
1093defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1094defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1095defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1096defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1097defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1098defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1099defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1100defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1101defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1102defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1103defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1104defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1105defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1106defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1107defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1108defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1109
1110// zextload bool -> zextload byte
1111def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1112def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1113def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1114def : Pat<(zextloadi64i1 addr:$src),
1115          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1116
1117// extload bool -> extload byte
1118// When extloading from 16-bit and smaller memory locations into 64-bit
1119// registers, use zero-extending loads so that the entire 64-bit register is
1120// defined, avoiding partial-register updates.
1121
1122def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1123def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1124def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1125def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1126def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1127def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1128
1129// For other extloads, use subregs, since the high contents of the register are
1130// defined after an extload.
1131def : Pat<(extloadi64i1 addr:$src),
1132          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1133def : Pat<(extloadi64i8 addr:$src),
1134          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1135def : Pat<(extloadi64i16 addr:$src),
1136          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1137def : Pat<(extloadi64i32 addr:$src),
1138          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1139
1140// anyext. Define these to do an explicit zero-extend to
1141// avoid partial-register updates.
1142def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1143                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1144def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1145
1146// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1147def : Pat<(i32 (anyext GR16:$src)),
1148          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1149
1150def : Pat<(i64 (anyext GR8 :$src)),
1151          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1152def : Pat<(i64 (anyext GR16:$src)),
1153          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1154def : Pat<(i64 (anyext GR32:$src)),
1155          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1156
1157
1158// Any instruction that defines a 32-bit result leaves the high half of the
1159// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1160// be copying from a truncate. And x86's cmov doesn't do anything if the
1161// condition is false. But any other 32-bit operation will zero-extend
1162// up to 64 bits.
1163def def32 : PatLeaf<(i32 GR32:$src), [{
1164  return N->getOpcode() != ISD::TRUNCATE &&
1165         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1166         N->getOpcode() != ISD::CopyFromReg &&
1167         N->getOpcode() != X86ISD::CMOV;
1168}]>;
1169
1170// In the case of a 32-bit def that is known to implicitly zero-extend,
1171// we can use a SUBREG_TO_REG.
1172def : Pat<(i64 (zext def32:$src)),
1173          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1174
1175//===----------------------------------------------------------------------===//
1176// Pattern match OR as ADD
1177//===----------------------------------------------------------------------===//
1178
1179// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1180// 3-addressified into an LEA instruction to avoid copies.  However, we also
1181// want to finally emit these instructions as an or at the end of the code
1182// generator to make the generated code easier to read.  To do this, we select
1183// into "disjoint bits" pseudo ops.
1184
1185// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1186def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1187  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1188    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1189
1190  APInt KnownZero0, KnownOne0;
1191  CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1192  APInt KnownZero1, KnownOne1;
1193  CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1194  return (~KnownZero0 & ~KnownZero1) == 0;
1195}]>;
1196
1197
1198// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1199// Try this before the selecting to OR.
1200let AddedComplexity = 5, SchedRW = [WriteALU] in {
1201
1202let isConvertibleToThreeAddress = 1,
1203    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1204let isCommutable = 1 in {
1205def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1206                    "", // orw/addw REG, REG
1207                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1208def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1209                    "", // orl/addl REG, REG
1210                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1211def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1212                    "", // orq/addq REG, REG
1213                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1214} // isCommutable
1215
1216// NOTE: These are order specific, we want the ri8 forms to be listed
1217// first so that they are slightly preferred to the ri forms.
1218
1219def ADD16ri8_DB : I<0, Pseudo,
1220                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1221                    "", // orw/addw REG, imm8
1222                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1223def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1224                    "", // orw/addw REG, imm
1225                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1226
1227def ADD32ri8_DB : I<0, Pseudo,
1228                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1229                    "", // orl/addl REG, imm8
1230                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1231def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1232                    "", // orl/addl REG, imm
1233                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1234
1235
1236def ADD64ri8_DB : I<0, Pseudo,
1237                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1238                    "", // orq/addq REG, imm8
1239                    [(set GR64:$dst, (or_is_add GR64:$src1,
1240                                                i64immSExt8:$src2))]>;
1241def ADD64ri32_DB : I<0, Pseudo,
1242                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1243                      "", // orq/addq REG, imm
1244                      [(set GR64:$dst, (or_is_add GR64:$src1,
1245                                                  i64immSExt32:$src2))]>;
1246}
1247} // AddedComplexity, SchedRW
1248
1249
1250//===----------------------------------------------------------------------===//
1251// Some peepholes
1252//===----------------------------------------------------------------------===//
1253
1254// Odd encoding trick: -128 fits into an 8-bit immediate field while
1255// +128 doesn't, so in this special case use a sub instead of an add.
1256def : Pat<(add GR16:$src1, 128),
1257          (SUB16ri8 GR16:$src1, -128)>;
1258def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1259          (SUB16mi8 addr:$dst, -128)>;
1260
1261def : Pat<(add GR32:$src1, 128),
1262          (SUB32ri8 GR32:$src1, -128)>;
1263def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1264          (SUB32mi8 addr:$dst, -128)>;
1265
1266def : Pat<(add GR64:$src1, 128),
1267          (SUB64ri8 GR64:$src1, -128)>;
1268def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1269          (SUB64mi8 addr:$dst, -128)>;
1270
1271// The same trick applies for 32-bit immediate fields in 64-bit
1272// instructions.
1273def : Pat<(add GR64:$src1, 0x0000000080000000),
1274          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1275def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1276          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1277
1278// To avoid needing to materialize an immediate in a register, use a 32-bit and
1279// with implicit zero-extension instead of a 64-bit and if the immediate has at
1280// least 32 bits of leading zeros. If in addition the last 32 bits can be
1281// represented with a sign extension of a 8 bit constant, use that.
1282
1283def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1284          (SUBREG_TO_REG
1285            (i64 0),
1286            (AND32ri8
1287              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1288              (i32 (GetLo8XForm imm:$imm))),
1289            sub_32bit)>;
1290
1291def : Pat<(and GR64:$src, i64immZExt32:$imm),
1292          (SUBREG_TO_REG
1293            (i64 0),
1294            (AND32ri
1295              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1296              (i32 (GetLo32XForm imm:$imm))),
1297            sub_32bit)>;
1298
1299
1300// r & (2^16-1) ==> movz
1301def : Pat<(and GR32:$src1, 0xffff),
1302          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1303// r & (2^8-1) ==> movz
1304def : Pat<(and GR32:$src1, 0xff),
1305          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1306                                                             GR32_ABCD)),
1307                                      sub_8bit))>,
1308      Requires<[In32BitMode]>;
1309// r & (2^8-1) ==> movz
1310def : Pat<(and GR16:$src1, 0xff),
1311           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1312            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1313             sub_16bit)>,
1314      Requires<[In32BitMode]>;
1315
1316// r & (2^32-1) ==> movz
1317def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1318          (SUBREG_TO_REG (i64 0),
1319                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1320                         sub_32bit)>;
1321// r & (2^16-1) ==> movz
1322def : Pat<(and GR64:$src, 0xffff),
1323          (SUBREG_TO_REG (i64 0),
1324                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1325                      sub_32bit)>;
1326// r & (2^8-1) ==> movz
1327def : Pat<(and GR64:$src, 0xff),
1328          (SUBREG_TO_REG (i64 0),
1329                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1330                         sub_32bit)>;
1331// r & (2^8-1) ==> movz
1332def : Pat<(and GR32:$src1, 0xff),
1333           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1334      Requires<[In64BitMode]>;
1335// r & (2^8-1) ==> movz
1336def : Pat<(and GR16:$src1, 0xff),
1337           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1338            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1339      Requires<[In64BitMode]>;
1340
1341
1342// sext_inreg patterns
1343def : Pat<(sext_inreg GR32:$src, i16),
1344          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1345def : Pat<(sext_inreg GR32:$src, i8),
1346          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1347                                                             GR32_ABCD)),
1348                                      sub_8bit))>,
1349      Requires<[In32BitMode]>;
1350
1351def : Pat<(sext_inreg GR16:$src, i8),
1352           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1353            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1354             sub_16bit)>,
1355      Requires<[In32BitMode]>;
1356
1357def : Pat<(sext_inreg GR64:$src, i32),
1358          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1359def : Pat<(sext_inreg GR64:$src, i16),
1360          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1361def : Pat<(sext_inreg GR64:$src, i8),
1362          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1363def : Pat<(sext_inreg GR32:$src, i8),
1364          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1365      Requires<[In64BitMode]>;
1366def : Pat<(sext_inreg GR16:$src, i8),
1367           (EXTRACT_SUBREG (MOVSX32rr8
1368            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1369      Requires<[In64BitMode]>;
1370
1371// sext, sext_load, zext, zext_load
1372def: Pat<(i16 (sext GR8:$src)),
1373          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1374def: Pat<(sextloadi16i8 addr:$src),
1375          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1376def: Pat<(i16 (zext GR8:$src)),
1377          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1378def: Pat<(zextloadi16i8 addr:$src),
1379          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1380
1381// trunc patterns
1382def : Pat<(i16 (trunc GR32:$src)),
1383          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1384def : Pat<(i8 (trunc GR32:$src)),
1385          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1386                          sub_8bit)>,
1387      Requires<[In32BitMode]>;
1388def : Pat<(i8 (trunc GR16:$src)),
1389          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1390                          sub_8bit)>,
1391      Requires<[In32BitMode]>;
1392def : Pat<(i32 (trunc GR64:$src)),
1393          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1394def : Pat<(i16 (trunc GR64:$src)),
1395          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1396def : Pat<(i8 (trunc GR64:$src)),
1397          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1398def : Pat<(i8 (trunc GR32:$src)),
1399          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1400      Requires<[In64BitMode]>;
1401def : Pat<(i8 (trunc GR16:$src)),
1402          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1403      Requires<[In64BitMode]>;
1404
1405// h-register tricks
1406def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1407          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1408                          sub_8bit_hi)>,
1409      Requires<[In32BitMode]>;
1410def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1411          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1412                          sub_8bit_hi)>,
1413      Requires<[In32BitMode]>;
1414def : Pat<(srl GR16:$src, (i8 8)),
1415          (EXTRACT_SUBREG
1416            (MOVZX32rr8
1417              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1418                              sub_8bit_hi)),
1419            sub_16bit)>,
1420      Requires<[In32BitMode]>;
1421def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1422          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1423                                                             GR16_ABCD)),
1424                                      sub_8bit_hi))>,
1425      Requires<[In32BitMode]>;
1426def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1427          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1428                                                             GR16_ABCD)),
1429                                      sub_8bit_hi))>,
1430      Requires<[In32BitMode]>;
1431def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1432          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1433                                                             GR32_ABCD)),
1434                                      sub_8bit_hi))>,
1435      Requires<[In32BitMode]>;
1436def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1437          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1438                                                             GR32_ABCD)),
1439                                      sub_8bit_hi))>,
1440      Requires<[In32BitMode]>;
1441
1442// h-register tricks.
1443// For now, be conservative on x86-64 and use an h-register extract only if the
1444// value is immediately zero-extended or stored, which are somewhat common
1445// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1446// from being allocated in the same instruction as the h register, as there's
1447// currently no way to describe this requirement to the register allocator.
1448
1449// h-register extract and zero-extend.
1450def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1451          (SUBREG_TO_REG
1452            (i64 0),
1453            (MOVZX32_NOREXrr8
1454              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1455                              sub_8bit_hi)),
1456            sub_32bit)>;
1457def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1458          (MOVZX32_NOREXrr8
1459            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1460                            sub_8bit_hi))>,
1461      Requires<[In64BitMode]>;
1462def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1463          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1464                                                                   GR32_ABCD)),
1465                                             sub_8bit_hi))>,
1466      Requires<[In64BitMode]>;
1467def : Pat<(srl GR16:$src, (i8 8)),
1468          (EXTRACT_SUBREG
1469            (MOVZX32_NOREXrr8
1470              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1471                              sub_8bit_hi)),
1472            sub_16bit)>,
1473      Requires<[In64BitMode]>;
1474def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1475          (MOVZX32_NOREXrr8
1476            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1477                            sub_8bit_hi))>,
1478      Requires<[In64BitMode]>;
1479def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1480          (MOVZX32_NOREXrr8
1481            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1482                            sub_8bit_hi))>,
1483      Requires<[In64BitMode]>;
1484def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1485          (SUBREG_TO_REG
1486            (i64 0),
1487            (MOVZX32_NOREXrr8
1488              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1489                              sub_8bit_hi)),
1490            sub_32bit)>;
1491def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1492          (SUBREG_TO_REG
1493            (i64 0),
1494            (MOVZX32_NOREXrr8
1495              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1496                              sub_8bit_hi)),
1497            sub_32bit)>;
1498
1499// h-register extract and store.
1500def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1501          (MOV8mr_NOREX
1502            addr:$dst,
1503            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1504                            sub_8bit_hi))>;
1505def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1506          (MOV8mr_NOREX
1507            addr:$dst,
1508            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1509                            sub_8bit_hi))>,
1510      Requires<[In64BitMode]>;
1511def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1512          (MOV8mr_NOREX
1513            addr:$dst,
1514            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1515                            sub_8bit_hi))>,
1516      Requires<[In64BitMode]>;
1517
1518
1519// (shl x, 1) ==> (add x, x)
1520// Note that if x is undef (immediate or otherwise), we could theoretically
1521// end up with the two uses of x getting different values, producing a result
1522// where the least significant bit is not 0. However, the probability of this
1523// happening is considered low enough that this is officially not a
1524// "real problem".
1525def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1526def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1527def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1528def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1529
1530// Helper imms that check if a mask doesn't change significant shift bits.
1531def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1532def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1533
1534// (shl x (and y, 31)) ==> (shl x, y)
1535def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1536          (SHL8rCL GR8:$src1)>;
1537def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1538          (SHL16rCL GR16:$src1)>;
1539def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1540          (SHL32rCL GR32:$src1)>;
1541def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1542          (SHL8mCL addr:$dst)>;
1543def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1544          (SHL16mCL addr:$dst)>;
1545def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1546          (SHL32mCL addr:$dst)>;
1547
1548def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1549          (SHR8rCL GR8:$src1)>;
1550def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1551          (SHR16rCL GR16:$src1)>;
1552def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1553          (SHR32rCL GR32:$src1)>;
1554def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1555          (SHR8mCL addr:$dst)>;
1556def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1557          (SHR16mCL addr:$dst)>;
1558def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1559          (SHR32mCL addr:$dst)>;
1560
1561def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1562          (SAR8rCL GR8:$src1)>;
1563def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1564          (SAR16rCL GR16:$src1)>;
1565def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1566          (SAR32rCL GR32:$src1)>;
1567def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1568          (SAR8mCL addr:$dst)>;
1569def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1570          (SAR16mCL addr:$dst)>;
1571def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1572          (SAR32mCL addr:$dst)>;
1573
1574// (shl x (and y, 63)) ==> (shl x, y)
1575def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1576          (SHL64rCL GR64:$src1)>;
1577def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1578          (SHL64mCL addr:$dst)>;
1579
1580def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1581          (SHR64rCL GR64:$src1)>;
1582def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1583          (SHR64mCL addr:$dst)>;
1584
1585def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1586          (SAR64rCL GR64:$src1)>;
1587def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1588          (SAR64mCL addr:$dst)>;
1589
1590
1591// (anyext (setcc_carry)) -> (setcc_carry)
1592def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1593          (SETB_C16r)>;
1594def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1595          (SETB_C32r)>;
1596def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1597          (SETB_C32r)>;
1598
1599
1600
1601
1602//===----------------------------------------------------------------------===//
1603// EFLAGS-defining Patterns
1604//===----------------------------------------------------------------------===//
1605
1606// add reg, reg
1607def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1608def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1609def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1610
1611// add reg, mem
1612def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1613          (ADD8rm GR8:$src1, addr:$src2)>;
1614def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1615          (ADD16rm GR16:$src1, addr:$src2)>;
1616def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1617          (ADD32rm GR32:$src1, addr:$src2)>;
1618
1619// add reg, imm
1620def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1621def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1622def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1623def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1624          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1625def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1626          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1627
1628// sub reg, reg
1629def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1630def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1631def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1632
1633// sub reg, mem
1634def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1635          (SUB8rm GR8:$src1, addr:$src2)>;
1636def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1637          (SUB16rm GR16:$src1, addr:$src2)>;
1638def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1639          (SUB32rm GR32:$src1, addr:$src2)>;
1640
1641// sub reg, imm
1642def : Pat<(sub GR8:$src1, imm:$src2),
1643          (SUB8ri GR8:$src1, imm:$src2)>;
1644def : Pat<(sub GR16:$src1, imm:$src2),
1645          (SUB16ri GR16:$src1, imm:$src2)>;
1646def : Pat<(sub GR32:$src1, imm:$src2),
1647          (SUB32ri GR32:$src1, imm:$src2)>;
1648def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1649          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1650def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1651          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1652
1653// sub 0, reg
1654def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1655def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1656def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1657def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1658
1659// mul reg, reg
1660def : Pat<(mul GR16:$src1, GR16:$src2),
1661          (IMUL16rr GR16:$src1, GR16:$src2)>;
1662def : Pat<(mul GR32:$src1, GR32:$src2),
1663          (IMUL32rr GR32:$src1, GR32:$src2)>;
1664
1665// mul reg, mem
1666def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1667          (IMUL16rm GR16:$src1, addr:$src2)>;
1668def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1669          (IMUL32rm GR32:$src1, addr:$src2)>;
1670
1671// mul reg, imm
1672def : Pat<(mul GR16:$src1, imm:$src2),
1673          (IMUL16rri GR16:$src1, imm:$src2)>;
1674def : Pat<(mul GR32:$src1, imm:$src2),
1675          (IMUL32rri GR32:$src1, imm:$src2)>;
1676def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1677          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1678def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1679          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1680
1681// reg = mul mem, imm
1682def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1683          (IMUL16rmi addr:$src1, imm:$src2)>;
1684def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1685          (IMUL32rmi addr:$src1, imm:$src2)>;
1686def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1687          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1688def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1689          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1690
1691// Patterns for nodes that do not produce flags, for instructions that do.
1692
1693// addition
1694def : Pat<(add GR64:$src1, GR64:$src2),
1695          (ADD64rr GR64:$src1, GR64:$src2)>;
1696def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1697          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1698def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1699          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1700def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1701          (ADD64rm GR64:$src1, addr:$src2)>;
1702
1703// subtraction
1704def : Pat<(sub GR64:$src1, GR64:$src2),
1705          (SUB64rr GR64:$src1, GR64:$src2)>;
1706def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1707          (SUB64rm GR64:$src1, addr:$src2)>;
1708def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1709          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1710def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1711          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1712
1713// Multiply
1714def : Pat<(mul GR64:$src1, GR64:$src2),
1715          (IMUL64rr GR64:$src1, GR64:$src2)>;
1716def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1717          (IMUL64rm GR64:$src1, addr:$src2)>;
1718def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1719          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1720def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1721          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1722def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1723          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1724def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1725          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1726
1727// Increment reg.
1728def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1729def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1730def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1731def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1732def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1733def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1734
1735// Decrement reg.
1736def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1737def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1738def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1739def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1740def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1741def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1742
1743// or reg/reg.
1744def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1745def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1746def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1747def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1748
1749// or reg/mem
1750def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1751          (OR8rm GR8:$src1, addr:$src2)>;
1752def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1753          (OR16rm GR16:$src1, addr:$src2)>;
1754def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1755          (OR32rm GR32:$src1, addr:$src2)>;
1756def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1757          (OR64rm GR64:$src1, addr:$src2)>;
1758
1759// or reg/imm
1760def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1761def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1762def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1763def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1764          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1765def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1766          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1767def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1768          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1769def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1770          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1771
1772// xor reg/reg
1773def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1774def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1775def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1776def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1777
1778// xor reg/mem
1779def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1780          (XOR8rm GR8:$src1, addr:$src2)>;
1781def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1782          (XOR16rm GR16:$src1, addr:$src2)>;
1783def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1784          (XOR32rm GR32:$src1, addr:$src2)>;
1785def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1786          (XOR64rm GR64:$src1, addr:$src2)>;
1787
1788// xor reg/imm
1789def : Pat<(xor GR8:$src1, imm:$src2),
1790          (XOR8ri GR8:$src1, imm:$src2)>;
1791def : Pat<(xor GR16:$src1, imm:$src2),
1792          (XOR16ri GR16:$src1, imm:$src2)>;
1793def : Pat<(xor GR32:$src1, imm:$src2),
1794          (XOR32ri GR32:$src1, imm:$src2)>;
1795def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1796          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1797def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1798          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1799def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1800          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1801def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1802          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1803
1804// and reg/reg
1805def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1806def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1807def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1808def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1809
1810// and reg/mem
1811def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1812          (AND8rm GR8:$src1, addr:$src2)>;
1813def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1814          (AND16rm GR16:$src1, addr:$src2)>;
1815def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1816          (AND32rm GR32:$src1, addr:$src2)>;
1817def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1818          (AND64rm GR64:$src1, addr:$src2)>;
1819
1820// and reg/imm
1821def : Pat<(and GR8:$src1, imm:$src2),
1822          (AND8ri GR8:$src1, imm:$src2)>;
1823def : Pat<(and GR16:$src1, imm:$src2),
1824          (AND16ri GR16:$src1, imm:$src2)>;
1825def : Pat<(and GR32:$src1, imm:$src2),
1826          (AND32ri GR32:$src1, imm:$src2)>;
1827def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1828          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1829def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1830          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1831def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1832          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1833def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1834          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1835
1836// Bit scan instruction patterns to match explicit zero-undef behavior.
1837def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1838def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1839def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1840def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1841def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1842def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1843