X86ISelLowering.cpp revision 263508
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86CallingConv.h"
20#include "X86InstrBuilder.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/VariadicFunction.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalAlias.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/MC/MCAsmInfo.h"
44#include "llvm/MC/MCContext.h"
45#include "llvm/MC/MCExpr.h"
46#include "llvm/MC/MCSymbol.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Target/TargetOptions.h"
52#include <bitset>
53#include <cctype>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
63                                SelectionDAG &DAG, SDLoc dl,
64                                unsigned vectorWidth) {
65  assert((vectorWidth == 128 || vectorWidth == 256) &&
66         "Unsupported vector width");
67  EVT VT = Vec.getValueType();
68  EVT ElVT = VT.getVectorElementType();
69  unsigned Factor = VT.getSizeInBits()/vectorWidth;
70  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
71                                  VT.getVectorNumElements()/Factor);
72
73  // Extract from UNDEF is UNDEF.
74  if (Vec.getOpcode() == ISD::UNDEF)
75    return DAG.getUNDEF(ResultVT);
76
77  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
78  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
79
80  // This is the index of the first element of the vectorWidth-bit chunk
81  // we want.
82  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
83                               * ElemsPerChunk);
84
85  // If the input is a buildvector just emit a smaller one.
86  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
87    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
88                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
89
90  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
91  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
92                               VecIdx);
93
94  return Result;
95
96}
97/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
98/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
99/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
100/// instructions or a simple subregister reference. Idx is an index in the
101/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
102/// lowering EXTRACT_VECTOR_ELT operations easier.
103static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
104                                   SelectionDAG &DAG, SDLoc dl) {
105  assert((Vec.getValueType().is256BitVector() ||
106          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
107  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
108}
109
110/// Generate a DAG to grab 256-bits from a 512-bit vector.
111static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
112                                   SelectionDAG &DAG, SDLoc dl) {
113  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
114  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
115}
116
117static SDValue InsertSubVector(SDValue Result, SDValue Vec,
118                               unsigned IdxVal, SelectionDAG &DAG,
119                               SDLoc dl, unsigned vectorWidth) {
120  assert((vectorWidth == 128 || vectorWidth == 256) &&
121         "Unsupported vector width");
122  // Inserting UNDEF is Result
123  if (Vec.getOpcode() == ISD::UNDEF)
124    return Result;
125  EVT VT = Vec.getValueType();
126  EVT ElVT = VT.getVectorElementType();
127  EVT ResultVT = Result.getValueType();
128
129  // Insert the relevant vectorWidth bits.
130  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
131
132  // This is the index of the first element of the vectorWidth-bit chunk
133  // we want.
134  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
135                               * ElemsPerChunk);
136
137  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
138  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
139                     VecIdx);
140}
141/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
142/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
143/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
144/// simple superregister reference.  Idx is an index in the 128 bits
145/// we want.  It need not be aligned to a 128-bit bounday.  That makes
146/// lowering INSERT_VECTOR_ELT operations easier.
147static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
148                                  unsigned IdxVal, SelectionDAG &DAG,
149                                  SDLoc dl) {
150  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
151  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
152}
153
154static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
155                                  unsigned IdxVal, SelectionDAG &DAG,
156                                  SDLoc dl) {
157  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
158  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
159}
160
161/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
162/// instructions. This is used because creating CONCAT_VECTOR nodes of
163/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
164/// large BUILD_VECTORS.
165static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
166                                   unsigned NumElems, SelectionDAG &DAG,
167                                   SDLoc dl) {
168  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
169  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
170}
171
172static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
173                                   unsigned NumElems, SelectionDAG &DAG,
174                                   SDLoc dl) {
175  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
176  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
177}
178
179static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
180  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
181  bool is64Bit = Subtarget->is64Bit();
182
183  if (Subtarget->isTargetEnvMacho()) {
184    if (is64Bit)
185      return new X86_64MachoTargetObjectFile();
186    return new TargetLoweringObjectFileMachO();
187  }
188
189  if (Subtarget->isTargetLinux())
190    return new X86LinuxTargetObjectFile();
191  if (Subtarget->isTargetELF())
192    return new TargetLoweringObjectFileELF();
193  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
194    return new TargetLoweringObjectFileCOFF();
195  llvm_unreachable("unknown subtarget type");
196}
197
198X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
199  : TargetLowering(TM, createTLOF(TM)) {
200  Subtarget = &TM.getSubtarget<X86Subtarget>();
201  X86ScalarSSEf64 = Subtarget->hasSSE2();
202  X86ScalarSSEf32 = Subtarget->hasSSE1();
203  TD = getDataLayout();
204
205  resetOperationActions();
206}
207
208void X86TargetLowering::resetOperationActions() {
209  const TargetMachine &TM = getTargetMachine();
210  static bool FirstTimeThrough = true;
211
212  // If none of the target options have changed, then we don't need to reset the
213  // operation actions.
214  if (!FirstTimeThrough && TO == TM.Options) return;
215
216  if (!FirstTimeThrough) {
217    // Reinitialize the actions.
218    initActions();
219    FirstTimeThrough = false;
220  }
221
222  TO = TM.Options;
223
224  // Set up the TargetLowering object.
225  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
226
227  // X86 is weird, it always uses i8 for shift amounts and setcc results.
228  setBooleanContents(ZeroOrOneBooleanContent);
229  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
230  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231
232  // For 64-bit since we have so many registers use the ILP scheduler, for
233  // 32-bit code use the register pressure specific scheduling.
234  // For Atom, always use ILP scheduling.
235  if (Subtarget->isAtom())
236    setSchedulingPreference(Sched::ILP);
237  else if (Subtarget->is64Bit())
238    setSchedulingPreference(Sched::ILP);
239  else
240    setSchedulingPreference(Sched::RegPressure);
241  const X86RegisterInfo *RegInfo =
242    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
243  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
244
245  // Bypass expensive divides on Atom when compiling with O2
246  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
247    addBypassSlowDiv(32, 8);
248    if (Subtarget->is64Bit())
249      addBypassSlowDiv(64, 16);
250  }
251
252  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
253    // Setup Windows compiler runtime calls.
254    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
255    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
256    setLibcallName(RTLIB::SREM_I64, "_allrem");
257    setLibcallName(RTLIB::UREM_I64, "_aullrem");
258    setLibcallName(RTLIB::MUL_I64, "_allmul");
259    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
260    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
261    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
262    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
263    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
264
265    // The _ftol2 runtime function has an unusual calling conv, which
266    // is modeled by a special pseudo-instruction.
267    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
268    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
269    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
270    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
271  }
272
273  if (Subtarget->isTargetDarwin()) {
274    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
275    setUseUnderscoreSetJmp(false);
276    setUseUnderscoreLongJmp(false);
277  } else if (Subtarget->isTargetMingw()) {
278    // MS runtime is weird: it exports _setjmp, but longjmp!
279    setUseUnderscoreSetJmp(true);
280    setUseUnderscoreLongJmp(false);
281  } else {
282    setUseUnderscoreSetJmp(true);
283    setUseUnderscoreLongJmp(true);
284  }
285
286  // Set up the register classes.
287  addRegisterClass(MVT::i8, &X86::GR8RegClass);
288  addRegisterClass(MVT::i16, &X86::GR16RegClass);
289  addRegisterClass(MVT::i32, &X86::GR32RegClass);
290  if (Subtarget->is64Bit())
291    addRegisterClass(MVT::i64, &X86::GR64RegClass);
292
293  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
294
295  // We don't accept any truncstore of integer registers.
296  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
297  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
298  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
299  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
300  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
301  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
302
303  // SETOEQ and SETUNE require checking two conditions.
304  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
305  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
306  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
307  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
308  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
309  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
310
311  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
312  // operation.
313  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
314  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
315  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
316
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
319    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
320  } else if (!TM.Options.UseSoftFloat) {
321    // We have an algorithm for SSE2->double, and we turn this into a
322    // 64-bit FILD followed by conditional FADD for other targets.
323    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
324    // We have an algorithm for SSE2, and we turn this into a 64-bit
325    // FILD for other targets.
326    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
327  }
328
329  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
330  // this operation.
331  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
332  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
333
334  if (!TM.Options.UseSoftFloat) {
335    // SSE has no i16 to fp conversion, only i32
336    if (X86ScalarSSEf32) {
337      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
338      // f32 and f64 cases are Legal, f80 case is not
339      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
340    } else {
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
342      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
343    }
344  } else {
345    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
346    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
347  }
348
349  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
350  // are Legal, f80 is custom lowered.
351  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
352  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
353
354  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
355  // this operation.
356  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
357  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
358
359  if (X86ScalarSSEf32) {
360    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
361    // f32 and f64 cases are Legal, f80 case is not
362    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
363  } else {
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
365    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
366  }
367
368  // Handle FP_TO_UINT by promoting the destination to a larger signed
369  // conversion.
370  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
371  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
372  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
373
374  if (Subtarget->is64Bit()) {
375    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
376    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
377  } else if (!TM.Options.UseSoftFloat) {
378    // Since AVX is a superset of SSE3, only check for SSE here.
379    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
380      // Expand FP_TO_UINT into a select.
381      // FIXME: We would like to use a Custom expander here eventually to do
382      // the optimal thing for SSE vs. the default expansion in the legalizer.
383      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
384    else
385      // With SSE3 we can use fisttpll to convert to a signed i64; without
386      // SSE, we're stuck with a fistpll.
387      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
388  }
389
390  if (isTargetFTOL()) {
391    // Use the _ftol2 runtime function, which has a pseudo-instruction
392    // to handle its weird calling convention.
393    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
394  }
395
396  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
397  if (!X86ScalarSSEf64) {
398    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
399    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
400    if (Subtarget->is64Bit()) {
401      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
402      // Without SSE, i64->f64 goes through memory.
403      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
404    }
405  }
406
407  // Scalar integer divide and remainder are lowered to use operations that
408  // produce two results, to match the available instructions. This exposes
409  // the two-result form to trivial CSE, which is able to combine x/y and x%y
410  // into a single instruction.
411  //
412  // Scalar integer multiply-high is also lowered to use two-result
413  // operations, to match the available instructions. However, plain multiply
414  // (low) operations are left as Legal, as there are single-result
415  // instructions for this in x86. Using the two-result multiply instructions
416  // when both high and low results are needed must be arranged by dagcombine.
417  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
418    MVT VT = IntVTs[i];
419    setOperationAction(ISD::MULHS, VT, Expand);
420    setOperationAction(ISD::MULHU, VT, Expand);
421    setOperationAction(ISD::SDIV, VT, Expand);
422    setOperationAction(ISD::UDIV, VT, Expand);
423    setOperationAction(ISD::SREM, VT, Expand);
424    setOperationAction(ISD::UREM, VT, Expand);
425
426    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
427    setOperationAction(ISD::ADDC, VT, Custom);
428    setOperationAction(ISD::ADDE, VT, Custom);
429    setOperationAction(ISD::SUBC, VT, Custom);
430    setOperationAction(ISD::SUBE, VT, Custom);
431  }
432
433  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
434  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
435  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
436  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
437  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
438  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
439  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
441  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
442  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
443  if (Subtarget->is64Bit())
444    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
445  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
446  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
447  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
448  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
449  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
450  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
451  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
452  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
453
454  // Promote the i8 variants and force them on up to i32 which has a shorter
455  // encoding.
456  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
457  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
458  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
459  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
460  if (Subtarget->hasBMI()) {
461    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
462    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
463    if (Subtarget->is64Bit())
464      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
465  } else {
466    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
467    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
468    if (Subtarget->is64Bit())
469      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
470  }
471
472  if (Subtarget->hasLZCNT()) {
473    // When promoting the i8 variants, force them to i32 for a shorter
474    // encoding.
475    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
476    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
477    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
478    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
479    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
480    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
481    if (Subtarget->is64Bit())
482      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
483  } else {
484    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
485    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
486    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
487    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
488    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
489    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
490    if (Subtarget->is64Bit()) {
491      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
492      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
493    }
494  }
495
496  if (Subtarget->hasPOPCNT()) {
497    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
498  } else {
499    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
500    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
501    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
502    if (Subtarget->is64Bit())
503      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
504  }
505
506  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
507  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
508
509  // These should be promoted to a larger select which is supported.
510  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
511  // X86 wants to expand cmov itself.
512  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
513  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
514  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
515  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
516  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
517  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
518  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
519  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
520  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
521  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
522  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
523  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
524  if (Subtarget->is64Bit()) {
525    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
526    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
527  }
528  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
529  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
530  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
531  // support continuation, user-level threading, and etc.. As a result, no
532  // other SjLj exception interfaces are implemented and please don't build
533  // your own exception handling based on them.
534  // LLVM/Clang supports zero-cost DWARF exception handling.
535  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
536  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
537
538  // Darwin ABI issue.
539  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
540  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
541  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
542  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
543  if (Subtarget->is64Bit())
544    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
545  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
546  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
549    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
550    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
551    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
552    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
553  }
554  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
555  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
556  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
557  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
558  if (Subtarget->is64Bit()) {
559    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
560    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
561    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
562  }
563
564  if (Subtarget->hasSSE1())
565    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
566
567  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
568
569  // Expand certain atomics
570  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
571    MVT VT = IntVTs[i];
572    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
573    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
574    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
575  }
576
577  if (!Subtarget->is64Bit()) {
578    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
580    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
581    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
582    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
584    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
589    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
590  }
591
592  if (Subtarget->hasCmpxchg16b()) {
593    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
594  }
595
596  // FIXME - use subtarget debug flags
597  if (!Subtarget->isTargetDarwin() &&
598      !Subtarget->isTargetELF() &&
599      !Subtarget->isTargetCygMing()) {
600    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
601  }
602
603  if (Subtarget->is64Bit()) {
604    setExceptionPointerRegister(X86::RAX);
605    setExceptionSelectorRegister(X86::RDX);
606  } else {
607    setExceptionPointerRegister(X86::EAX);
608    setExceptionSelectorRegister(X86::EDX);
609  }
610  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
611  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
612
613  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
614  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
615
616  setOperationAction(ISD::TRAP, MVT::Other, Legal);
617  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
618
619  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
620  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
621  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
622  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
623    // TargetInfo::X86_64ABIBuiltinVaList
624    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
625    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
626  } else {
627    // TargetInfo::CharPtrBuiltinVaList
628    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
629    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
630  }
631
632  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
633  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
634
635  if (Subtarget->isOSWindows() && !Subtarget->isTargetEnvMacho())
636    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
637                       MVT::i64 : MVT::i32, Custom);
638  else if (TM.Options.EnableSegmentedStacks)
639    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
640                       MVT::i64 : MVT::i32, Custom);
641  else
642    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
643                       MVT::i64 : MVT::i32, Expand);
644
645  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
646    // f32 and f64 use SSE.
647    // Set up the FP register classes.
648    addRegisterClass(MVT::f32, &X86::FR32RegClass);
649    addRegisterClass(MVT::f64, &X86::FR64RegClass);
650
651    // Use ANDPD to simulate FABS.
652    setOperationAction(ISD::FABS , MVT::f64, Custom);
653    setOperationAction(ISD::FABS , MVT::f32, Custom);
654
655    // Use XORP to simulate FNEG.
656    setOperationAction(ISD::FNEG , MVT::f64, Custom);
657    setOperationAction(ISD::FNEG , MVT::f32, Custom);
658
659    // Use ANDPD and ORPD to simulate FCOPYSIGN.
660    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
662
663    // Lower this to FGETSIGNx86 plus an AND.
664    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
665    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
666
667    // We don't support sin/cos/fmod
668    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
669    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
670    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
671    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
672    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
673    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
674
675    // Expand FP immediates into loads from the stack, except for the special
676    // cases we handle.
677    addLegalFPImmediate(APFloat(+0.0)); // xorpd
678    addLegalFPImmediate(APFloat(+0.0f)); // xorps
679  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
680    // Use SSE for f32, x87 for f64.
681    // Set up the FP register classes.
682    addRegisterClass(MVT::f32, &X86::FR32RegClass);
683    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
684
685    // Use ANDPS to simulate FABS.
686    setOperationAction(ISD::FABS , MVT::f32, Custom);
687
688    // Use XORP to simulate FNEG.
689    setOperationAction(ISD::FNEG , MVT::f32, Custom);
690
691    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
692
693    // Use ANDPS and ORPS to simulate FCOPYSIGN.
694    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
695    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
696
697    // We don't support sin/cos/fmod
698    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
699    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
700    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
701
702    // Special cases we handle for FP constants.
703    addLegalFPImmediate(APFloat(+0.0f)); // xorps
704    addLegalFPImmediate(APFloat(+0.0)); // FLD0
705    addLegalFPImmediate(APFloat(+1.0)); // FLD1
706    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
707    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
708
709    if (!TM.Options.UnsafeFPMath) {
710      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
711      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
712      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
713    }
714  } else if (!TM.Options.UseSoftFloat) {
715    // f32 and f64 in x87.
716    // Set up the FP register classes.
717    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
718    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
719
720    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
721    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
723    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
724
725    if (!TM.Options.UnsafeFPMath) {
726      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
727      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
729      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
731      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
732    }
733    addLegalFPImmediate(APFloat(+0.0)); // FLD0
734    addLegalFPImmediate(APFloat(+1.0)); // FLD1
735    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
736    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
737    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
738    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
739    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
740    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
741  }
742
743  // We don't support FMA.
744  setOperationAction(ISD::FMA, MVT::f64, Expand);
745  setOperationAction(ISD::FMA, MVT::f32, Expand);
746
747  // Long double always uses X87.
748  if (!TM.Options.UseSoftFloat) {
749    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
750    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
751    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
752    {
753      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
754      addLegalFPImmediate(TmpFlt);  // FLD0
755      TmpFlt.changeSign();
756      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
757
758      bool ignored;
759      APFloat TmpFlt2(+1.0);
760      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
761                      &ignored);
762      addLegalFPImmediate(TmpFlt2);  // FLD1
763      TmpFlt2.changeSign();
764      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
765    }
766
767    if (!TM.Options.UnsafeFPMath) {
768      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
769      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
770      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
771    }
772
773    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
774    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
775    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
776    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
777    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
778    setOperationAction(ISD::FMA, MVT::f80, Expand);
779  }
780
781  // Always use a library call for pow.
782  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
784  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
785
786  setOperationAction(ISD::FLOG, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
788  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP, MVT::f80, Expand);
790  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
791
792  // First set operation action for all vector types to either promote
793  // (for widening) or expand (for scalarization). Then we will selectively
794  // turn on ones that can be effectively codegen'd.
795  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
796           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
797    MVT VT = (MVT::SimpleValueType)i;
798    setOperationAction(ISD::ADD , VT, Expand);
799    setOperationAction(ISD::SUB , VT, Expand);
800    setOperationAction(ISD::FADD, VT, Expand);
801    setOperationAction(ISD::FNEG, VT, Expand);
802    setOperationAction(ISD::FSUB, VT, Expand);
803    setOperationAction(ISD::MUL , VT, Expand);
804    setOperationAction(ISD::FMUL, VT, Expand);
805    setOperationAction(ISD::SDIV, VT, Expand);
806    setOperationAction(ISD::UDIV, VT, Expand);
807    setOperationAction(ISD::FDIV, VT, Expand);
808    setOperationAction(ISD::SREM, VT, Expand);
809    setOperationAction(ISD::UREM, VT, Expand);
810    setOperationAction(ISD::LOAD, VT, Expand);
811    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
812    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
813    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
814    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
816    setOperationAction(ISD::FABS, VT, Expand);
817    setOperationAction(ISD::FSIN, VT, Expand);
818    setOperationAction(ISD::FSINCOS, VT, Expand);
819    setOperationAction(ISD::FCOS, VT, Expand);
820    setOperationAction(ISD::FSINCOS, VT, Expand);
821    setOperationAction(ISD::FREM, VT, Expand);
822    setOperationAction(ISD::FMA,  VT, Expand);
823    setOperationAction(ISD::FPOWI, VT, Expand);
824    setOperationAction(ISD::FSQRT, VT, Expand);
825    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
826    setOperationAction(ISD::FFLOOR, VT, Expand);
827    setOperationAction(ISD::FCEIL, VT, Expand);
828    setOperationAction(ISD::FTRUNC, VT, Expand);
829    setOperationAction(ISD::FRINT, VT, Expand);
830    setOperationAction(ISD::FNEARBYINT, VT, Expand);
831    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
832    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
833    setOperationAction(ISD::SDIVREM, VT, Expand);
834    setOperationAction(ISD::UDIVREM, VT, Expand);
835    setOperationAction(ISD::FPOW, VT, Expand);
836    setOperationAction(ISD::CTPOP, VT, Expand);
837    setOperationAction(ISD::CTTZ, VT, Expand);
838    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
839    setOperationAction(ISD::CTLZ, VT, Expand);
840    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
841    setOperationAction(ISD::SHL, VT, Expand);
842    setOperationAction(ISD::SRA, VT, Expand);
843    setOperationAction(ISD::SRL, VT, Expand);
844    setOperationAction(ISD::ROTL, VT, Expand);
845    setOperationAction(ISD::ROTR, VT, Expand);
846    setOperationAction(ISD::BSWAP, VT, Expand);
847    setOperationAction(ISD::SETCC, VT, Expand);
848    setOperationAction(ISD::FLOG, VT, Expand);
849    setOperationAction(ISD::FLOG2, VT, Expand);
850    setOperationAction(ISD::FLOG10, VT, Expand);
851    setOperationAction(ISD::FEXP, VT, Expand);
852    setOperationAction(ISD::FEXP2, VT, Expand);
853    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
854    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
855    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
856    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
857    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
858    setOperationAction(ISD::TRUNCATE, VT, Expand);
859    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
860    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
861    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
862    setOperationAction(ISD::VSELECT, VT, Expand);
863    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
864             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
865      setTruncStoreAction(VT,
866                          (MVT::SimpleValueType)InnerVT, Expand);
867    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
868    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
869    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
870  }
871
872  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
873  // with -msoft-float, disable use of MMX as well.
874  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
875    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
876    // No operations on x86mmx supported, everything uses intrinsics.
877  }
878
879  // MMX-sized vectors (other than x86mmx) are expected to be expanded
880  // into smaller operations.
881  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
882  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
883  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
884  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
885  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
886  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
887  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
888  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
889  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
890  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
891  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
892  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
893  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
894  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
895  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
896  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
897  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
900  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
901  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
902  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
903  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
904  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
905  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
906  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
909  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
910
911  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
912    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
913
914    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
915    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
918    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
919    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
920    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
921    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
922    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
923    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
925    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
926  }
927
928  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
929    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
930
931    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
932    // registers cannot be used even for integer operations.
933    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
934    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
935    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
936    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
937
938    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
939    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
940    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
941    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
942    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
943    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
944    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
945    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
946    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
947    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
948    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
949    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
950    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
951    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
952    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
953    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
954    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
955    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
956
957    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
958    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
959    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
960    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
961
962    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
963    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
969    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
970      MVT VT = (MVT::SimpleValueType)i;
971      // Do not attempt to custom lower non-power-of-2 vectors
972      if (!isPowerOf2_32(VT.getVectorNumElements()))
973        continue;
974      // Do not attempt to custom lower non-128-bit vectors
975      if (!VT.is128BitVector())
976        continue;
977      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
978      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
980    }
981
982    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
983    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
984    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
985    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
986    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
987    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
988
989    if (Subtarget->is64Bit()) {
990      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
991      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
992    }
993
994    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
995    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
996      MVT VT = (MVT::SimpleValueType)i;
997
998      // Do not attempt to promote non-128-bit vectors
999      if (!VT.is128BitVector())
1000        continue;
1001
1002      setOperationAction(ISD::AND,    VT, Promote);
1003      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1004      setOperationAction(ISD::OR,     VT, Promote);
1005      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1006      setOperationAction(ISD::XOR,    VT, Promote);
1007      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1008      setOperationAction(ISD::LOAD,   VT, Promote);
1009      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1010      setOperationAction(ISD::SELECT, VT, Promote);
1011      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1012    }
1013
1014    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1015
1016    // Custom lower v2i64 and v2f64 selects.
1017    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1019    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1020    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1021
1022    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1023    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1024
1025    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1026    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1027    // As there is no 64-bit GPR available, we need build a special custom
1028    // sequence to convert from v2i32 to v2f32.
1029    if (!Subtarget->is64Bit())
1030      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1031
1032    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1033    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1034
1035    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1036  }
1037
1038  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1039    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1040    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1041    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1042    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1043    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1044    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1045    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1046    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1047    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1048    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1049
1050    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1051    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1052    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1053    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1054    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1055    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1056    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1057    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1058    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1059    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1060
1061    // FIXME: Do we need to handle scalar-to-vector here?
1062    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1063
1064    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1065    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1066    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1067    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1068    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1069
1070    // i8 and i16 vectors are custom , because the source register and source
1071    // source memory operand types are not the same width.  f32 vectors are
1072    // custom since the immediate controlling the insert encodes additional
1073    // information.
1074    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1075    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1076    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1077    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1078
1079    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1080    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1081    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1082    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1083
1084    // FIXME: these should be Legal but thats only for the case where
1085    // the index is constant.  For now custom expand to deal with that.
1086    if (Subtarget->is64Bit()) {
1087      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1088      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1089    }
1090  }
1091
1092  if (Subtarget->hasSSE2()) {
1093    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1094    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1095
1096    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1097    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1098
1099    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1100    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1101
1102    // In the customized shift lowering, the legal cases in AVX2 will be
1103    // recognized.
1104    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1105    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1106
1107    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1108    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1109
1110    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1111
1112    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1113    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1114  }
1115
1116  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1117    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1118    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1119    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1120    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1121    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1122    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1123
1124    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1125    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1126    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1127
1128    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1129    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1130    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1131    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1132    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1133    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1134    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1135    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1136    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1137    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1138    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1139    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1140
1141    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1142    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1143    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1144    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1145    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1146    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1147    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1148    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1149    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1150    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1151    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1152    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1153
1154    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1155
1156    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1157    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1158    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1159    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1160
1161    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1162    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1163
1164    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1165
1166    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1167    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1168
1169    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1170    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1171
1172    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1173    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1174
1175    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1176
1177    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1178    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1179    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1180    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1181
1182    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1183    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1184    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1185
1186    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1187    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1188    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1189    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1190
1191    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1192    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1193    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1194    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1195    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1196    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1197    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1198    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1199    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1200    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1201    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1202    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1203
1204    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1205      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1206      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1207      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1208      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1209      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1210      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1211    }
1212
1213    if (Subtarget->hasInt256()) {
1214      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1215      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1216      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1217      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1218
1219      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1220      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1221      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1222      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1223
1224      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1225      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1226      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1227      // Don't lower v32i8 because there is no 128-bit byte mul
1228
1229      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1230
1231      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1232    } else {
1233      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1234      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1235      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1236      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1237
1238      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1239      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1240      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1241      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1242
1243      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1244      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1245      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1246      // Don't lower v32i8 because there is no 128-bit byte mul
1247    }
1248
1249    // In the customized shift lowering, the legal cases in AVX2 will be
1250    // recognized.
1251    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1252    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1253
1254    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1255    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1256
1257    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1258
1259    // Custom lower several nodes for 256-bit types.
1260    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1261             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1262      MVT VT = (MVT::SimpleValueType)i;
1263
1264      // Extract subvector is special because the value type
1265      // (result) is 128-bit but the source is 256-bit wide.
1266      if (VT.is128BitVector())
1267        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1268
1269      // Do not attempt to custom lower other non-256-bit vectors
1270      if (!VT.is256BitVector())
1271        continue;
1272
1273      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1274      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1275      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1276      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1277      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1278      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1279      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1280    }
1281
1282    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1283    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1284      MVT VT = (MVT::SimpleValueType)i;
1285
1286      // Do not attempt to promote non-256-bit vectors
1287      if (!VT.is256BitVector())
1288        continue;
1289
1290      setOperationAction(ISD::AND,    VT, Promote);
1291      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1292      setOperationAction(ISD::OR,     VT, Promote);
1293      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1294      setOperationAction(ISD::XOR,    VT, Promote);
1295      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1296      setOperationAction(ISD::LOAD,   VT, Promote);
1297      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1298      setOperationAction(ISD::SELECT, VT, Promote);
1299      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1300    }
1301  }
1302
1303  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1304    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1305    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1306    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1307    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1308
1309    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1310    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1311
1312    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1313    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1314    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1315    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1316    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1317    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1318
1319    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1320    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1321    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1322    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1323    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1324    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1325
1326    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1327    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1328    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1329    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1330    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1331    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1332    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1333    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1334    setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
1335
1336    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1337    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1338    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1339    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1340    if (Subtarget->is64Bit()) {
1341      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1342      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1343      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1344      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1345    }
1346    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1347    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1348    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1349    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1350    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1351    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1352    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1353    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1354
1355    setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
1356    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1357    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1358    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1359    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1360    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1361    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1362    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1363    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1364    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1365    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1366    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1367
1368    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1369    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1370    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1371    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1372    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1373
1374    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1375    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1376
1377    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1378
1379    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1380    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1381    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1382    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1383    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1384
1385    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1386    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1387
1388    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1389    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1390
1391    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1392
1393    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1394    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1395
1396    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1397    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1398
1399    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1400    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1401
1402    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1403    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1404    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1405    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1406    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1407    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1408
1409    // Custom lower several nodes.
1410    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1411             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1412      MVT VT = (MVT::SimpleValueType)i;
1413
1414      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1415      // Extract subvector is special because the value type
1416      // (result) is 256/128-bit but the source is 512-bit wide.
1417      if (VT.is128BitVector() || VT.is256BitVector())
1418        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1419
1420      if (VT.getVectorElementType() == MVT::i1)
1421        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1422
1423      // Do not attempt to custom lower other non-512-bit vectors
1424      if (!VT.is512BitVector())
1425        continue;
1426
1427      if ( EltSize >= 32) {
1428        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1429        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1430        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1431        setOperationAction(ISD::VSELECT,             VT, Legal);
1432        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1433        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1434        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1435      }
1436    }
1437    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1438      MVT VT = (MVT::SimpleValueType)i;
1439
1440      // Do not attempt to promote non-256-bit vectors
1441      if (!VT.is512BitVector())
1442        continue;
1443
1444      setOperationAction(ISD::SELECT, VT, Promote);
1445      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1446    }
1447  }// has  AVX-512
1448
1449  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1450  // of this type with custom code.
1451  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1452           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1453    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1454                       Custom);
1455  }
1456
1457  // We want to custom lower some of our intrinsics.
1458  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1459  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1460  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1461
1462  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1463  // handle type legalization for these operations here.
1464  //
1465  // FIXME: We really should do custom legalization for addition and
1466  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1467  // than generic legalization for 64-bit multiplication-with-overflow, though.
1468  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1469    // Add/Sub/Mul with overflow operations are custom lowered.
1470    MVT VT = IntVTs[i];
1471    setOperationAction(ISD::SADDO, VT, Custom);
1472    setOperationAction(ISD::UADDO, VT, Custom);
1473    setOperationAction(ISD::SSUBO, VT, Custom);
1474    setOperationAction(ISD::USUBO, VT, Custom);
1475    setOperationAction(ISD::SMULO, VT, Custom);
1476    setOperationAction(ISD::UMULO, VT, Custom);
1477  }
1478
1479  // There are no 8-bit 3-address imul/mul instructions
1480  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1481  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1482
1483  if (!Subtarget->is64Bit()) {
1484    // These libcalls are not available in 32-bit.
1485    setLibcallName(RTLIB::SHL_I128, 0);
1486    setLibcallName(RTLIB::SRL_I128, 0);
1487    setLibcallName(RTLIB::SRA_I128, 0);
1488  }
1489
1490  // Combine sin / cos into one node or libcall if possible.
1491  if (Subtarget->hasSinCos()) {
1492    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1493    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1494    if (Subtarget->isTargetDarwin()) {
1495      // For MacOSX, we don't want to the normal expansion of a libcall to
1496      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1497      // traffic.
1498      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1499      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1500    }
1501  }
1502
1503  // We have target-specific dag combine patterns for the following nodes:
1504  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1505  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1506  setTargetDAGCombine(ISD::VSELECT);
1507  setTargetDAGCombine(ISD::SELECT);
1508  setTargetDAGCombine(ISD::SHL);
1509  setTargetDAGCombine(ISD::SRA);
1510  setTargetDAGCombine(ISD::SRL);
1511  setTargetDAGCombine(ISD::OR);
1512  setTargetDAGCombine(ISD::AND);
1513  setTargetDAGCombine(ISD::ADD);
1514  setTargetDAGCombine(ISD::FADD);
1515  setTargetDAGCombine(ISD::FSUB);
1516  setTargetDAGCombine(ISD::FMA);
1517  setTargetDAGCombine(ISD::SUB);
1518  setTargetDAGCombine(ISD::LOAD);
1519  setTargetDAGCombine(ISD::STORE);
1520  setTargetDAGCombine(ISD::ZERO_EXTEND);
1521  setTargetDAGCombine(ISD::ANY_EXTEND);
1522  setTargetDAGCombine(ISD::SIGN_EXTEND);
1523  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1524  setTargetDAGCombine(ISD::TRUNCATE);
1525  setTargetDAGCombine(ISD::SINT_TO_FP);
1526  setTargetDAGCombine(ISD::SETCC);
1527  if (Subtarget->is64Bit())
1528    setTargetDAGCombine(ISD::MUL);
1529  setTargetDAGCombine(ISD::XOR);
1530
1531  computeRegisterProperties();
1532
1533  // On Darwin, -Os means optimize for size without hurting performance,
1534  // do not reduce the limit.
1535  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1536  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1537  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1538  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1539  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1540  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1541  setPrefLoopAlignment(4); // 2^4 bytes.
1542
1543  // Predictable cmov don't hurt on atom because it's in-order.
1544  PredictableSelectIsExpensive = !Subtarget->isAtom();
1545
1546  setPrefFunctionAlignment(4); // 2^4 bytes.
1547}
1548
1549EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1550  if (!VT.isVector())
1551    return MVT::i8;
1552
1553  const TargetMachine &TM = getTargetMachine();
1554  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512())
1555    switch(VT.getVectorNumElements()) {
1556    case  8: return MVT::v8i1;
1557    case 16: return MVT::v16i1;
1558    }
1559
1560  return VT.changeVectorElementTypeToInteger();
1561}
1562
1563/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1564/// the desired ByVal argument alignment.
1565static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1566  if (MaxAlign == 16)
1567    return;
1568  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1569    if (VTy->getBitWidth() == 128)
1570      MaxAlign = 16;
1571  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1572    unsigned EltAlign = 0;
1573    getMaxByValAlign(ATy->getElementType(), EltAlign);
1574    if (EltAlign > MaxAlign)
1575      MaxAlign = EltAlign;
1576  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1577    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1578      unsigned EltAlign = 0;
1579      getMaxByValAlign(STy->getElementType(i), EltAlign);
1580      if (EltAlign > MaxAlign)
1581        MaxAlign = EltAlign;
1582      if (MaxAlign == 16)
1583        break;
1584    }
1585  }
1586}
1587
1588/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1589/// function arguments in the caller parameter area. For X86, aggregates
1590/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1591/// are at 4-byte boundaries.
1592unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1593  if (Subtarget->is64Bit()) {
1594    // Max of 8 and alignment of type.
1595    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1596    if (TyAlign > 8)
1597      return TyAlign;
1598    return 8;
1599  }
1600
1601  unsigned Align = 4;
1602  if (Subtarget->hasSSE1())
1603    getMaxByValAlign(Ty, Align);
1604  return Align;
1605}
1606
1607/// getOptimalMemOpType - Returns the target specific optimal type for load
1608/// and store operations as a result of memset, memcpy, and memmove
1609/// lowering. If DstAlign is zero that means it's safe to destination
1610/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1611/// means there isn't a need to check it against alignment requirement,
1612/// probably because the source does not need to be loaded. If 'IsMemset' is
1613/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1614/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1615/// source is constant so it does not need to be loaded.
1616/// It returns EVT::Other if the type should be determined using generic
1617/// target-independent logic.
1618EVT
1619X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1620                                       unsigned DstAlign, unsigned SrcAlign,
1621                                       bool IsMemset, bool ZeroMemset,
1622                                       bool MemcpyStrSrc,
1623                                       MachineFunction &MF) const {
1624  const Function *F = MF.getFunction();
1625  if ((!IsMemset || ZeroMemset) &&
1626      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1627                                       Attribute::NoImplicitFloat)) {
1628    if (Size >= 16 &&
1629        (Subtarget->isUnalignedMemAccessFast() ||
1630         ((DstAlign == 0 || DstAlign >= 16) &&
1631          (SrcAlign == 0 || SrcAlign >= 16)))) {
1632      if (Size >= 32) {
1633        if (Subtarget->hasInt256())
1634          return MVT::v8i32;
1635        if (Subtarget->hasFp256())
1636          return MVT::v8f32;
1637      }
1638      if (Subtarget->hasSSE2())
1639        return MVT::v4i32;
1640      if (Subtarget->hasSSE1())
1641        return MVT::v4f32;
1642    } else if (!MemcpyStrSrc && Size >= 8 &&
1643               !Subtarget->is64Bit() &&
1644               Subtarget->hasSSE2()) {
1645      // Do not use f64 to lower memcpy if source is string constant. It's
1646      // better to use i32 to avoid the loads.
1647      return MVT::f64;
1648    }
1649  }
1650  if (Subtarget->is64Bit() && Size >= 8)
1651    return MVT::i64;
1652  return MVT::i32;
1653}
1654
1655bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1656  if (VT == MVT::f32)
1657    return X86ScalarSSEf32;
1658  else if (VT == MVT::f64)
1659    return X86ScalarSSEf64;
1660  return true;
1661}
1662
1663bool
1664X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1665  if (Fast)
1666    *Fast = Subtarget->isUnalignedMemAccessFast();
1667  return true;
1668}
1669
1670/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1671/// current function.  The returned value is a member of the
1672/// MachineJumpTableInfo::JTEntryKind enum.
1673unsigned X86TargetLowering::getJumpTableEncoding() const {
1674  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1675  // symbol.
1676  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1677      Subtarget->isPICStyleGOT())
1678    return MachineJumpTableInfo::EK_Custom32;
1679
1680  // Otherwise, use the normal jump table encoding heuristics.
1681  return TargetLowering::getJumpTableEncoding();
1682}
1683
1684const MCExpr *
1685X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1686                                             const MachineBasicBlock *MBB,
1687                                             unsigned uid,MCContext &Ctx) const{
1688  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1689         Subtarget->isPICStyleGOT());
1690  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1691  // entries.
1692  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1693                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1694}
1695
1696/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1697/// jumptable.
1698SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1699                                                    SelectionDAG &DAG) const {
1700  if (!Subtarget->is64Bit())
1701    // This doesn't have SDLoc associated with it, but is not really the
1702    // same as a Register.
1703    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1704  return Table;
1705}
1706
1707/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1708/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1709/// MCExpr.
1710const MCExpr *X86TargetLowering::
1711getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1712                             MCContext &Ctx) const {
1713  // X86-64 uses RIP relative addressing based on the jump table label.
1714  if (Subtarget->isPICStyleRIPRel())
1715    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1716
1717  // Otherwise, the reference is relative to the PIC base.
1718  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1719}
1720
1721// FIXME: Why this routine is here? Move to RegInfo!
1722std::pair<const TargetRegisterClass*, uint8_t>
1723X86TargetLowering::findRepresentativeClass(MVT VT) const{
1724  const TargetRegisterClass *RRC = 0;
1725  uint8_t Cost = 1;
1726  switch (VT.SimpleTy) {
1727  default:
1728    return TargetLowering::findRepresentativeClass(VT);
1729  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1730    RRC = Subtarget->is64Bit() ?
1731      (const TargetRegisterClass*)&X86::GR64RegClass :
1732      (const TargetRegisterClass*)&X86::GR32RegClass;
1733    break;
1734  case MVT::x86mmx:
1735    RRC = &X86::VR64RegClass;
1736    break;
1737  case MVT::f32: case MVT::f64:
1738  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1739  case MVT::v4f32: case MVT::v2f64:
1740  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1741  case MVT::v4f64:
1742    RRC = &X86::VR128RegClass;
1743    break;
1744  }
1745  return std::make_pair(RRC, Cost);
1746}
1747
1748bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1749                                               unsigned &Offset) const {
1750  if (!Subtarget->isTargetLinux())
1751    return false;
1752
1753  if (Subtarget->is64Bit()) {
1754    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1755    Offset = 0x28;
1756    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1757      AddressSpace = 256;
1758    else
1759      AddressSpace = 257;
1760  } else {
1761    // %gs:0x14 on i386
1762    Offset = 0x14;
1763    AddressSpace = 256;
1764  }
1765  return true;
1766}
1767
1768bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1769                                            unsigned DestAS) const {
1770  assert(SrcAS != DestAS && "Expected different address spaces!");
1771
1772  return SrcAS < 256 && DestAS < 256;
1773}
1774
1775//===----------------------------------------------------------------------===//
1776//               Return Value Calling Convention Implementation
1777//===----------------------------------------------------------------------===//
1778
1779#include "X86GenCallingConv.inc"
1780
1781bool
1782X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1783                                  MachineFunction &MF, bool isVarArg,
1784                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1785                        LLVMContext &Context) const {
1786  SmallVector<CCValAssign, 16> RVLocs;
1787  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1788                 RVLocs, Context);
1789  return CCInfo.CheckReturn(Outs, RetCC_X86);
1790}
1791
1792const uint16_t *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1793  static const uint16_t ScratchRegs[] = { X86::R11, 0 };
1794  return ScratchRegs;
1795}
1796
1797SDValue
1798X86TargetLowering::LowerReturn(SDValue Chain,
1799                               CallingConv::ID CallConv, bool isVarArg,
1800                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1801                               const SmallVectorImpl<SDValue> &OutVals,
1802                               SDLoc dl, SelectionDAG &DAG) const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  SmallVector<CCValAssign, 16> RVLocs;
1807  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1808                 RVLocs, *DAG.getContext());
1809  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1810
1811  SDValue Flag;
1812  SmallVector<SDValue, 6> RetOps;
1813  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1814  // Operand #1 = Bytes To Pop
1815  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1816                   MVT::i16));
1817
1818  // Copy the result values into the output registers.
1819  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1820    CCValAssign &VA = RVLocs[i];
1821    assert(VA.isRegLoc() && "Can only return in registers!");
1822    SDValue ValToCopy = OutVals[i];
1823    EVT ValVT = ValToCopy.getValueType();
1824
1825    // Promote values to the appropriate types
1826    if (VA.getLocInfo() == CCValAssign::SExt)
1827      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1828    else if (VA.getLocInfo() == CCValAssign::ZExt)
1829      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1830    else if (VA.getLocInfo() == CCValAssign::AExt)
1831      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1832    else if (VA.getLocInfo() == CCValAssign::BCvt)
1833      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1834
1835    // If this is x86-64, and we disabled SSE, we can't return FP values,
1836    // or SSE or MMX vectors.
1837    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1838         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1839          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1840      report_fatal_error("SSE register return with SSE disabled");
1841    }
1842    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1843    // llvm-gcc has never done it right and no one has noticed, so this
1844    // should be OK for now.
1845    if (ValVT == MVT::f64 &&
1846        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1847      report_fatal_error("SSE2 register return with SSE2 disabled");
1848
1849    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1850    // the RET instruction and handled by the FP Stackifier.
1851    if (VA.getLocReg() == X86::ST0 ||
1852        VA.getLocReg() == X86::ST1) {
1853      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1854      // change the value to the FP stack register class.
1855      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1856        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1857      RetOps.push_back(ValToCopy);
1858      // Don't emit a copytoreg.
1859      continue;
1860    }
1861
1862    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1863    // which is returned in RAX / RDX.
1864    if (Subtarget->is64Bit()) {
1865      if (ValVT == MVT::x86mmx) {
1866        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1867          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1868          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1869                                  ValToCopy);
1870          // If we don't have SSE2 available, convert to v4f32 so the generated
1871          // register is legal.
1872          if (!Subtarget->hasSSE2())
1873            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1874        }
1875      }
1876    }
1877
1878    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1879    Flag = Chain.getValue(1);
1880    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1881  }
1882
1883  // The x86-64 ABIs require that for returning structs by value we copy
1884  // the sret argument into %rax/%eax (depending on ABI) for the return.
1885  // Win32 requires us to put the sret argument to %eax as well.
1886  // We saved the argument into a virtual register in the entry block,
1887  // so now we copy the value out and into %rax/%eax.
1888  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1889      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1890    MachineFunction &MF = DAG.getMachineFunction();
1891    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1892    unsigned Reg = FuncInfo->getSRetReturnReg();
1893    assert(Reg &&
1894           "SRetReturnReg should have been set in LowerFormalArguments().");
1895    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1896
1897    unsigned RetValReg
1898        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1899          X86::RAX : X86::EAX;
1900    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1901    Flag = Chain.getValue(1);
1902
1903    // RAX/EAX now acts like a return value.
1904    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1905  }
1906
1907  RetOps[0] = Chain;  // Update chain.
1908
1909  // Add the flag if we have it.
1910  if (Flag.getNode())
1911    RetOps.push_back(Flag);
1912
1913  return DAG.getNode(X86ISD::RET_FLAG, dl,
1914                     MVT::Other, &RetOps[0], RetOps.size());
1915}
1916
1917bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1918  if (N->getNumValues() != 1)
1919    return false;
1920  if (!N->hasNUsesOfValue(1, 0))
1921    return false;
1922
1923  SDValue TCChain = Chain;
1924  SDNode *Copy = *N->use_begin();
1925  if (Copy->getOpcode() == ISD::CopyToReg) {
1926    // If the copy has a glue operand, we conservatively assume it isn't safe to
1927    // perform a tail call.
1928    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1929      return false;
1930    TCChain = Copy->getOperand(0);
1931  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1932    return false;
1933
1934  bool HasRet = false;
1935  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1936       UI != UE; ++UI) {
1937    if (UI->getOpcode() != X86ISD::RET_FLAG)
1938      return false;
1939    HasRet = true;
1940  }
1941
1942  if (!HasRet)
1943    return false;
1944
1945  Chain = TCChain;
1946  return true;
1947}
1948
1949MVT
1950X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1951                                            ISD::NodeType ExtendKind) const {
1952  MVT ReturnMVT;
1953  // TODO: Is this also valid on 32-bit?
1954  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1955    ReturnMVT = MVT::i8;
1956  else
1957    ReturnMVT = MVT::i32;
1958
1959  MVT MinVT = getRegisterType(ReturnMVT);
1960  return VT.bitsLT(MinVT) ? MinVT : VT;
1961}
1962
1963/// LowerCallResult - Lower the result values of a call into the
1964/// appropriate copies out of appropriate physical registers.
1965///
1966SDValue
1967X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1968                                   CallingConv::ID CallConv, bool isVarArg,
1969                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1970                                   SDLoc dl, SelectionDAG &DAG,
1971                                   SmallVectorImpl<SDValue> &InVals) const {
1972
1973  // Assign locations to each value returned by this call.
1974  SmallVector<CCValAssign, 16> RVLocs;
1975  bool Is64Bit = Subtarget->is64Bit();
1976  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1977                 getTargetMachine(), RVLocs, *DAG.getContext());
1978  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1979
1980  // Copy all of the result registers out of their specified physreg.
1981  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1982    CCValAssign &VA = RVLocs[i];
1983    EVT CopyVT = VA.getValVT();
1984
1985    // If this is x86-64, and we disabled SSE, we can't return FP values
1986    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1987        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1988      report_fatal_error("SSE register return with SSE disabled");
1989    }
1990
1991    SDValue Val;
1992
1993    // If this is a call to a function that returns an fp value on the floating
1994    // point stack, we must guarantee the value is popped from the stack, so
1995    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1996    // if the return value is not used. We use the FpPOP_RETVAL instruction
1997    // instead.
1998    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1999      // If we prefer to use the value in xmm registers, copy it out as f80 and
2000      // use a truncate to move it from fp stack reg to xmm reg.
2001      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
2002      SDValue Ops[] = { Chain, InFlag };
2003      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
2004                                         MVT::Other, MVT::Glue, Ops), 1);
2005      Val = Chain.getValue(0);
2006
2007      // Round the f80 to the right size, which also moves it to the appropriate
2008      // xmm register.
2009      if (CopyVT != VA.getValVT())
2010        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2011                          // This truncation won't change the value.
2012                          DAG.getIntPtrConstant(1));
2013    } else {
2014      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2015                                 CopyVT, InFlag).getValue(1);
2016      Val = Chain.getValue(0);
2017    }
2018    InFlag = Chain.getValue(2);
2019    InVals.push_back(Val);
2020  }
2021
2022  return Chain;
2023}
2024
2025//===----------------------------------------------------------------------===//
2026//                C & StdCall & Fast Calling Convention implementation
2027//===----------------------------------------------------------------------===//
2028//  StdCall calling convention seems to be standard for many Windows' API
2029//  routines and around. It differs from C calling convention just a little:
2030//  callee should clean up the stack, not caller. Symbols should be also
2031//  decorated in some fancy way :) It doesn't support any vector arguments.
2032//  For info on fast calling convention see Fast Calling Convention (tail call)
2033//  implementation LowerX86_32FastCCCallTo.
2034
2035/// CallIsStructReturn - Determines whether a call uses struct return
2036/// semantics.
2037enum StructReturnType {
2038  NotStructReturn,
2039  RegStructReturn,
2040  StackStructReturn
2041};
2042static StructReturnType
2043callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2044  if (Outs.empty())
2045    return NotStructReturn;
2046
2047  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2048  if (!Flags.isSRet())
2049    return NotStructReturn;
2050  if (Flags.isInReg())
2051    return RegStructReturn;
2052  return StackStructReturn;
2053}
2054
2055/// ArgsAreStructReturn - Determines whether a function uses struct
2056/// return semantics.
2057static StructReturnType
2058argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2059  if (Ins.empty())
2060    return NotStructReturn;
2061
2062  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2063  if (!Flags.isSRet())
2064    return NotStructReturn;
2065  if (Flags.isInReg())
2066    return RegStructReturn;
2067  return StackStructReturn;
2068}
2069
2070/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2071/// by "Src" to address "Dst" with size and alignment information specified by
2072/// the specific parameter attribute. The copy will be passed as a byval
2073/// function parameter.
2074static SDValue
2075CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2076                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2077                          SDLoc dl) {
2078  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2079
2080  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2081                       /*isVolatile*/false, /*AlwaysInline=*/true,
2082                       MachinePointerInfo(), MachinePointerInfo());
2083}
2084
2085/// IsTailCallConvention - Return true if the calling convention is one that
2086/// supports tail call optimization.
2087static bool IsTailCallConvention(CallingConv::ID CC) {
2088  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2089          CC == CallingConv::HiPE);
2090}
2091
2092/// \brief Return true if the calling convention is a C calling convention.
2093static bool IsCCallConvention(CallingConv::ID CC) {
2094  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2095          CC == CallingConv::X86_64_SysV);
2096}
2097
2098bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2099  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2100    return false;
2101
2102  CallSite CS(CI);
2103  CallingConv::ID CalleeCC = CS.getCallingConv();
2104  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2105    return false;
2106
2107  return true;
2108}
2109
2110/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2111/// a tailcall target by changing its ABI.
2112static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2113                                   bool GuaranteedTailCallOpt) {
2114  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2115}
2116
2117SDValue
2118X86TargetLowering::LowerMemArgument(SDValue Chain,
2119                                    CallingConv::ID CallConv,
2120                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2121                                    SDLoc dl, SelectionDAG &DAG,
2122                                    const CCValAssign &VA,
2123                                    MachineFrameInfo *MFI,
2124                                    unsigned i) const {
2125  // Create the nodes corresponding to a load from this parameter slot.
2126  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2127  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2128                              getTargetMachine().Options.GuaranteedTailCallOpt);
2129  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2130  EVT ValVT;
2131
2132  // If value is passed by pointer we have address passed instead of the value
2133  // itself.
2134  if (VA.getLocInfo() == CCValAssign::Indirect)
2135    ValVT = VA.getLocVT();
2136  else
2137    ValVT = VA.getValVT();
2138
2139  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2140  // changed with more analysis.
2141  // In case of tail call optimization mark all arguments mutable. Since they
2142  // could be overwritten by lowering of arguments in case of a tail call.
2143  if (Flags.isByVal()) {
2144    unsigned Bytes = Flags.getByValSize();
2145    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2146    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2147    return DAG.getFrameIndex(FI, getPointerTy());
2148  } else {
2149    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2150                                    VA.getLocMemOffset(), isImmutable);
2151    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2152    return DAG.getLoad(ValVT, dl, Chain, FIN,
2153                       MachinePointerInfo::getFixedStack(FI),
2154                       false, false, false, 0);
2155  }
2156}
2157
2158SDValue
2159X86TargetLowering::LowerFormalArguments(SDValue Chain,
2160                                        CallingConv::ID CallConv,
2161                                        bool isVarArg,
2162                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2163                                        SDLoc dl,
2164                                        SelectionDAG &DAG,
2165                                        SmallVectorImpl<SDValue> &InVals)
2166                                          const {
2167  MachineFunction &MF = DAG.getMachineFunction();
2168  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2169
2170  const Function* Fn = MF.getFunction();
2171  if (Fn->hasExternalLinkage() &&
2172      Subtarget->isTargetCygMing() &&
2173      Fn->getName() == "main")
2174    FuncInfo->setForceFramePointer(true);
2175
2176  MachineFrameInfo *MFI = MF.getFrameInfo();
2177  bool Is64Bit = Subtarget->is64Bit();
2178  bool IsWindows = Subtarget->isTargetWindows();
2179  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2180
2181  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2182         "Var args not supported with calling convention fastcc, ghc or hipe");
2183
2184  // Assign locations to all of the incoming arguments.
2185  SmallVector<CCValAssign, 16> ArgLocs;
2186  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2187                 ArgLocs, *DAG.getContext());
2188
2189  // Allocate shadow area for Win64
2190  if (IsWin64)
2191    CCInfo.AllocateStack(32, 8);
2192
2193  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2194
2195  unsigned LastVal = ~0U;
2196  SDValue ArgValue;
2197  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2198    CCValAssign &VA = ArgLocs[i];
2199    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2200    // places.
2201    assert(VA.getValNo() != LastVal &&
2202           "Don't support value assigned to multiple locs yet");
2203    (void)LastVal;
2204    LastVal = VA.getValNo();
2205
2206    if (VA.isRegLoc()) {
2207      EVT RegVT = VA.getLocVT();
2208      const TargetRegisterClass *RC;
2209      if (RegVT == MVT::i32)
2210        RC = &X86::GR32RegClass;
2211      else if (Is64Bit && RegVT == MVT::i64)
2212        RC = &X86::GR64RegClass;
2213      else if (RegVT == MVT::f32)
2214        RC = &X86::FR32RegClass;
2215      else if (RegVT == MVT::f64)
2216        RC = &X86::FR64RegClass;
2217      else if (RegVT.is512BitVector())
2218        RC = &X86::VR512RegClass;
2219      else if (RegVT.is256BitVector())
2220        RC = &X86::VR256RegClass;
2221      else if (RegVT.is128BitVector())
2222        RC = &X86::VR128RegClass;
2223      else if (RegVT == MVT::x86mmx)
2224        RC = &X86::VR64RegClass;
2225      else if (RegVT == MVT::v8i1)
2226        RC = &X86::VK8RegClass;
2227      else if (RegVT == MVT::v16i1)
2228        RC = &X86::VK16RegClass;
2229      else
2230        llvm_unreachable("Unknown argument type!");
2231
2232      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2233      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2234
2235      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2236      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2237      // right size.
2238      if (VA.getLocInfo() == CCValAssign::SExt)
2239        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2240                               DAG.getValueType(VA.getValVT()));
2241      else if (VA.getLocInfo() == CCValAssign::ZExt)
2242        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2243                               DAG.getValueType(VA.getValVT()));
2244      else if (VA.getLocInfo() == CCValAssign::BCvt)
2245        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2246
2247      if (VA.isExtInLoc()) {
2248        // Handle MMX values passed in XMM regs.
2249        if (RegVT.isVector())
2250          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2251        else
2252          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2253      }
2254    } else {
2255      assert(VA.isMemLoc());
2256      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2257    }
2258
2259    // If value is passed via pointer - do a load.
2260    if (VA.getLocInfo() == CCValAssign::Indirect)
2261      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2262                             MachinePointerInfo(), false, false, false, 0);
2263
2264    InVals.push_back(ArgValue);
2265  }
2266
2267  // The x86-64 ABIs require that for returning structs by value we copy
2268  // the sret argument into %rax/%eax (depending on ABI) for the return.
2269  // Win32 requires us to put the sret argument to %eax as well.
2270  // Save the argument into a virtual register so that we can access it
2271  // from the return points.
2272  if (MF.getFunction()->hasStructRetAttr() &&
2273      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2274    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2275    unsigned Reg = FuncInfo->getSRetReturnReg();
2276    if (!Reg) {
2277      MVT PtrTy = getPointerTy();
2278      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2279      FuncInfo->setSRetReturnReg(Reg);
2280    }
2281    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2283  }
2284
2285  unsigned StackSize = CCInfo.getNextStackOffset();
2286  // Align stack specially for tail calls.
2287  if (FuncIsMadeTailCallSafe(CallConv,
2288                             MF.getTarget().Options.GuaranteedTailCallOpt))
2289    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2290
2291  // If the function takes variable number of arguments, make a frame index for
2292  // the start of the first vararg value... for expansion of llvm.va_start.
2293  if (isVarArg) {
2294    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2295                    CallConv != CallingConv::X86_ThisCall)) {
2296      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2297    }
2298    if (Is64Bit) {
2299      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2300
2301      // FIXME: We should really autogenerate these arrays
2302      static const uint16_t GPR64ArgRegsWin64[] = {
2303        X86::RCX, X86::RDX, X86::R8,  X86::R9
2304      };
2305      static const uint16_t GPR64ArgRegs64Bit[] = {
2306        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2307      };
2308      static const uint16_t XMMArgRegs64Bit[] = {
2309        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2310        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2311      };
2312      const uint16_t *GPR64ArgRegs;
2313      unsigned NumXMMRegs = 0;
2314
2315      if (IsWin64) {
2316        // The XMM registers which might contain var arg parameters are shadowed
2317        // in their paired GPR.  So we only need to save the GPR to their home
2318        // slots.
2319        TotalNumIntRegs = 4;
2320        GPR64ArgRegs = GPR64ArgRegsWin64;
2321      } else {
2322        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2323        GPR64ArgRegs = GPR64ArgRegs64Bit;
2324
2325        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2326                                                TotalNumXMMRegs);
2327      }
2328      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2329                                                       TotalNumIntRegs);
2330
2331      bool NoImplicitFloatOps = Fn->getAttributes().
2332        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2333      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2334             "SSE register cannot be used when SSE is disabled!");
2335      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2336               NoImplicitFloatOps) &&
2337             "SSE register cannot be used when SSE is disabled!");
2338      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2339          !Subtarget->hasSSE1())
2340        // Kernel mode asks for SSE to be disabled, so don't push them
2341        // on the stack.
2342        TotalNumXMMRegs = 0;
2343
2344      if (IsWin64) {
2345        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2346        // Get to the caller-allocated home save location.  Add 8 to account
2347        // for the return address.
2348        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2349        FuncInfo->setRegSaveFrameIndex(
2350          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2351        // Fixup to set vararg frame on shadow area (4 x i64).
2352        if (NumIntRegs < 4)
2353          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2354      } else {
2355        // For X86-64, if there are vararg parameters that are passed via
2356        // registers, then we must store them to their spots on the stack so
2357        // they may be loaded by deferencing the result of va_next.
2358        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2359        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2360        FuncInfo->setRegSaveFrameIndex(
2361          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2362                               false));
2363      }
2364
2365      // Store the integer parameter registers.
2366      SmallVector<SDValue, 8> MemOps;
2367      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2368                                        getPointerTy());
2369      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2370      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2371        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2372                                  DAG.getIntPtrConstant(Offset));
2373        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2374                                     &X86::GR64RegClass);
2375        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2376        SDValue Store =
2377          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2378                       MachinePointerInfo::getFixedStack(
2379                         FuncInfo->getRegSaveFrameIndex(), Offset),
2380                       false, false, 0);
2381        MemOps.push_back(Store);
2382        Offset += 8;
2383      }
2384
2385      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2386        // Now store the XMM (fp + vector) parameter registers.
2387        SmallVector<SDValue, 11> SaveXMMOps;
2388        SaveXMMOps.push_back(Chain);
2389
2390        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2391        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2392        SaveXMMOps.push_back(ALVal);
2393
2394        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2395                               FuncInfo->getRegSaveFrameIndex()));
2396        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2397                               FuncInfo->getVarArgsFPOffset()));
2398
2399        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2400          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2401                                       &X86::VR128RegClass);
2402          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2403          SaveXMMOps.push_back(Val);
2404        }
2405        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2406                                     MVT::Other,
2407                                     &SaveXMMOps[0], SaveXMMOps.size()));
2408      }
2409
2410      if (!MemOps.empty())
2411        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2412                            &MemOps[0], MemOps.size());
2413    }
2414  }
2415
2416  // Some CCs need callee pop.
2417  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2418                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2419    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2420  } else {
2421    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2422    // If this is an sret function, the return should pop the hidden pointer.
2423    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2424        argsAreStructReturn(Ins) == StackStructReturn)
2425      FuncInfo->setBytesToPopOnReturn(4);
2426  }
2427
2428  if (!Is64Bit) {
2429    // RegSaveFrameIndex is X86-64 only.
2430    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2431    if (CallConv == CallingConv::X86_FastCall ||
2432        CallConv == CallingConv::X86_ThisCall)
2433      // fastcc functions can't have varargs.
2434      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2435  }
2436
2437  FuncInfo->setArgumentStackSize(StackSize);
2438
2439  return Chain;
2440}
2441
2442SDValue
2443X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2444                                    SDValue StackPtr, SDValue Arg,
2445                                    SDLoc dl, SelectionDAG &DAG,
2446                                    const CCValAssign &VA,
2447                                    ISD::ArgFlagsTy Flags) const {
2448  unsigned LocMemOffset = VA.getLocMemOffset();
2449  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2450  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2451  if (Flags.isByVal())
2452    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2453
2454  return DAG.getStore(Chain, dl, Arg, PtrOff,
2455                      MachinePointerInfo::getStack(LocMemOffset),
2456                      false, false, 0);
2457}
2458
2459/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2460/// optimization is performed and it is required.
2461SDValue
2462X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2463                                           SDValue &OutRetAddr, SDValue Chain,
2464                                           bool IsTailCall, bool Is64Bit,
2465                                           int FPDiff, SDLoc dl) const {
2466  // Adjust the Return address stack slot.
2467  EVT VT = getPointerTy();
2468  OutRetAddr = getReturnAddressFrameIndex(DAG);
2469
2470  // Load the "old" Return address.
2471  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2472                           false, false, false, 0);
2473  return SDValue(OutRetAddr.getNode(), 1);
2474}
2475
2476/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2477/// optimization is performed and it is required (FPDiff!=0).
2478static SDValue
2479EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2480                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2481                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2482  // Store the return address to the appropriate stack slot.
2483  if (!FPDiff) return Chain;
2484  // Calculate the new stack slot for the return address.
2485  int NewReturnAddrFI =
2486    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2487                                         false);
2488  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2489  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2490                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2491                       false, false, 0);
2492  return Chain;
2493}
2494
2495SDValue
2496X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2497                             SmallVectorImpl<SDValue> &InVals) const {
2498  SelectionDAG &DAG                     = CLI.DAG;
2499  SDLoc &dl                             = CLI.DL;
2500  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2501  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2502  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2503  SDValue Chain                         = CLI.Chain;
2504  SDValue Callee                        = CLI.Callee;
2505  CallingConv::ID CallConv              = CLI.CallConv;
2506  bool &isTailCall                      = CLI.IsTailCall;
2507  bool isVarArg                         = CLI.IsVarArg;
2508
2509  MachineFunction &MF = DAG.getMachineFunction();
2510  bool Is64Bit        = Subtarget->is64Bit();
2511  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2512  bool IsWindows      = Subtarget->isTargetWindows();
2513  StructReturnType SR = callIsStructReturn(Outs);
2514  bool IsSibcall      = false;
2515
2516  if (MF.getTarget().Options.DisableTailCalls)
2517    isTailCall = false;
2518
2519  if (isTailCall) {
2520    // Check if it's really possible to do a tail call.
2521    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2522                    isVarArg, SR != NotStructReturn,
2523                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2524                    Outs, OutVals, Ins, DAG);
2525
2526    // Sibcalls are automatically detected tailcalls which do not require
2527    // ABI changes.
2528    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2529      IsSibcall = true;
2530
2531    if (isTailCall)
2532      ++NumTailCalls;
2533  }
2534
2535  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2536         "Var args not supported with calling convention fastcc, ghc or hipe");
2537
2538  // Analyze operands of the call, assigning locations to each operand.
2539  SmallVector<CCValAssign, 16> ArgLocs;
2540  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2541                 ArgLocs, *DAG.getContext());
2542
2543  // Allocate shadow area for Win64
2544  if (IsWin64)
2545    CCInfo.AllocateStack(32, 8);
2546
2547  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2548
2549  // Get a count of how many bytes are to be pushed on the stack.
2550  unsigned NumBytes = CCInfo.getNextStackOffset();
2551  if (IsSibcall)
2552    // This is a sibcall. The memory operands are available in caller's
2553    // own caller's stack.
2554    NumBytes = 0;
2555  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2556           IsTailCallConvention(CallConv))
2557    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2558
2559  int FPDiff = 0;
2560  if (isTailCall && !IsSibcall) {
2561    // Lower arguments at fp - stackoffset + fpdiff.
2562    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2563    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2564
2565    FPDiff = NumBytesCallerPushed - NumBytes;
2566
2567    // Set the delta of movement of the returnaddr stackslot.
2568    // But only set if delta is greater than previous delta.
2569    if (FPDiff < X86Info->getTCReturnAddrDelta())
2570      X86Info->setTCReturnAddrDelta(FPDiff);
2571  }
2572
2573  if (!IsSibcall)
2574    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2575                                 dl);
2576
2577  SDValue RetAddrFrIdx;
2578  // Load return address for tail calls.
2579  if (isTailCall && FPDiff)
2580    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2581                                    Is64Bit, FPDiff, dl);
2582
2583  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2584  SmallVector<SDValue, 8> MemOpChains;
2585  SDValue StackPtr;
2586
2587  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2588  // of tail call optimization arguments are handle later.
2589  const X86RegisterInfo *RegInfo =
2590    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592    CCValAssign &VA = ArgLocs[i];
2593    EVT RegVT = VA.getLocVT();
2594    SDValue Arg = OutVals[i];
2595    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2596    bool isByVal = Flags.isByVal();
2597
2598    // Promote the value if needed.
2599    switch (VA.getLocInfo()) {
2600    default: llvm_unreachable("Unknown loc info!");
2601    case CCValAssign::Full: break;
2602    case CCValAssign::SExt:
2603      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2604      break;
2605    case CCValAssign::ZExt:
2606      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2607      break;
2608    case CCValAssign::AExt:
2609      if (RegVT.is128BitVector()) {
2610        // Special case: passing MMX values in XMM registers.
2611        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2612        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2613        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2614      } else
2615        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2616      break;
2617    case CCValAssign::BCvt:
2618      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2619      break;
2620    case CCValAssign::Indirect: {
2621      // Store the argument.
2622      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2623      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2624      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2625                           MachinePointerInfo::getFixedStack(FI),
2626                           false, false, 0);
2627      Arg = SpillSlot;
2628      break;
2629    }
2630    }
2631
2632    if (VA.isRegLoc()) {
2633      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2634      if (isVarArg && IsWin64) {
2635        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2636        // shadow reg if callee is a varargs function.
2637        unsigned ShadowReg = 0;
2638        switch (VA.getLocReg()) {
2639        case X86::XMM0: ShadowReg = X86::RCX; break;
2640        case X86::XMM1: ShadowReg = X86::RDX; break;
2641        case X86::XMM2: ShadowReg = X86::R8; break;
2642        case X86::XMM3: ShadowReg = X86::R9; break;
2643        }
2644        if (ShadowReg)
2645          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2646      }
2647    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2648      assert(VA.isMemLoc());
2649      if (StackPtr.getNode() == 0)
2650        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2651                                      getPointerTy());
2652      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2653                                             dl, DAG, VA, Flags));
2654    }
2655  }
2656
2657  if (!MemOpChains.empty())
2658    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2659                        &MemOpChains[0], MemOpChains.size());
2660
2661  if (Subtarget->isPICStyleGOT()) {
2662    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2663    // GOT pointer.
2664    if (!isTailCall) {
2665      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2666               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2667    } else {
2668      // If we are tail calling and generating PIC/GOT style code load the
2669      // address of the callee into ECX. The value in ecx is used as target of
2670      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2671      // for tail calls on PIC/GOT architectures. Normally we would just put the
2672      // address of GOT into ebx and then call target@PLT. But for tail calls
2673      // ebx would be restored (since ebx is callee saved) before jumping to the
2674      // target@PLT.
2675
2676      // Note: The actual moving to ECX is done further down.
2677      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2678      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2679          !G->getGlobal()->hasProtectedVisibility())
2680        Callee = LowerGlobalAddress(Callee, DAG);
2681      else if (isa<ExternalSymbolSDNode>(Callee))
2682        Callee = LowerExternalSymbol(Callee, DAG);
2683    }
2684  }
2685
2686  if (Is64Bit && isVarArg && !IsWin64) {
2687    // From AMD64 ABI document:
2688    // For calls that may call functions that use varargs or stdargs
2689    // (prototype-less calls or calls to functions containing ellipsis (...) in
2690    // the declaration) %al is used as hidden argument to specify the number
2691    // of SSE registers used. The contents of %al do not need to match exactly
2692    // the number of registers, but must be an ubound on the number of SSE
2693    // registers used and is in the range 0 - 8 inclusive.
2694
2695    // Count the number of XMM registers allocated.
2696    static const uint16_t XMMArgRegs[] = {
2697      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2698      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2699    };
2700    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2701    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2702           && "SSE registers cannot be used when SSE is disabled");
2703
2704    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2705                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2706  }
2707
2708  // For tail calls lower the arguments to the 'real' stack slot.
2709  if (isTailCall) {
2710    // Force all the incoming stack arguments to be loaded from the stack
2711    // before any new outgoing arguments are stored to the stack, because the
2712    // outgoing stack slots may alias the incoming argument stack slots, and
2713    // the alias isn't otherwise explicit. This is slightly more conservative
2714    // than necessary, because it means that each store effectively depends
2715    // on every argument instead of just those arguments it would clobber.
2716    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2717
2718    SmallVector<SDValue, 8> MemOpChains2;
2719    SDValue FIN;
2720    int FI = 0;
2721    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2722      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2723        CCValAssign &VA = ArgLocs[i];
2724        if (VA.isRegLoc())
2725          continue;
2726        assert(VA.isMemLoc());
2727        SDValue Arg = OutVals[i];
2728        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2729        // Create frame index.
2730        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2731        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2732        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2733        FIN = DAG.getFrameIndex(FI, getPointerTy());
2734
2735        if (Flags.isByVal()) {
2736          // Copy relative to framepointer.
2737          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2738          if (StackPtr.getNode() == 0)
2739            StackPtr = DAG.getCopyFromReg(Chain, dl,
2740                                          RegInfo->getStackRegister(),
2741                                          getPointerTy());
2742          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2743
2744          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2745                                                           ArgChain,
2746                                                           Flags, DAG, dl));
2747        } else {
2748          // Store relative to framepointer.
2749          MemOpChains2.push_back(
2750            DAG.getStore(ArgChain, dl, Arg, FIN,
2751                         MachinePointerInfo::getFixedStack(FI),
2752                         false, false, 0));
2753        }
2754      }
2755    }
2756
2757    if (!MemOpChains2.empty())
2758      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2759                          &MemOpChains2[0], MemOpChains2.size());
2760
2761    // Store the return address to the appropriate stack slot.
2762    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2763                                     getPointerTy(), RegInfo->getSlotSize(),
2764                                     FPDiff, dl);
2765  }
2766
2767  // Build a sequence of copy-to-reg nodes chained together with token chain
2768  // and flag operands which copy the outgoing args into registers.
2769  SDValue InFlag;
2770  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2771    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2772                             RegsToPass[i].second, InFlag);
2773    InFlag = Chain.getValue(1);
2774  }
2775
2776  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2777    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2778    // In the 64-bit large code model, we have to make all calls
2779    // through a register, since the call instruction's 32-bit
2780    // pc-relative offset may not be large enough to hold the whole
2781    // address.
2782  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2783    // If the callee is a GlobalAddress node (quite common, every direct call
2784    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2785    // it.
2786
2787    // We should use extra load for direct calls to dllimported functions in
2788    // non-JIT mode.
2789    const GlobalValue *GV = G->getGlobal();
2790    if (!GV->hasDLLImportLinkage()) {
2791      unsigned char OpFlags = 0;
2792      bool ExtraLoad = false;
2793      unsigned WrapperKind = ISD::DELETED_NODE;
2794
2795      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2796      // external symbols most go through the PLT in PIC mode.  If the symbol
2797      // has hidden or protected visibility, or if it is static or local, then
2798      // we don't need to use the PLT - we can directly call it.
2799      if (Subtarget->isTargetELF() &&
2800          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2801          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2802        OpFlags = X86II::MO_PLT;
2803      } else if (Subtarget->isPICStyleStubAny() &&
2804                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2805                 (!Subtarget->getTargetTriple().isMacOSX() ||
2806                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2807        // PC-relative references to external symbols should go through $stub,
2808        // unless we're building with the leopard linker or later, which
2809        // automatically synthesizes these stubs.
2810        OpFlags = X86II::MO_DARWIN_STUB;
2811      } else if (Subtarget->isPICStyleRIPRel() &&
2812                 isa<Function>(GV) &&
2813                 cast<Function>(GV)->getAttributes().
2814                   hasAttribute(AttributeSet::FunctionIndex,
2815                                Attribute::NonLazyBind)) {
2816        // If the function is marked as non-lazy, generate an indirect call
2817        // which loads from the GOT directly. This avoids runtime overhead
2818        // at the cost of eager binding (and one extra byte of encoding).
2819        OpFlags = X86II::MO_GOTPCREL;
2820        WrapperKind = X86ISD::WrapperRIP;
2821        ExtraLoad = true;
2822      }
2823
2824      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2825                                          G->getOffset(), OpFlags);
2826
2827      // Add a wrapper if needed.
2828      if (WrapperKind != ISD::DELETED_NODE)
2829        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2830      // Add extra indirection if needed.
2831      if (ExtraLoad)
2832        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2833                             MachinePointerInfo::getGOT(),
2834                             false, false, false, 0);
2835    }
2836  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2837    unsigned char OpFlags = 0;
2838
2839    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2840    // external symbols should go through the PLT.
2841    if (Subtarget->isTargetELF() &&
2842        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2843      OpFlags = X86II::MO_PLT;
2844    } else if (Subtarget->isPICStyleStubAny() &&
2845               (!Subtarget->getTargetTriple().isMacOSX() ||
2846                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2847      // PC-relative references to external symbols should go through $stub,
2848      // unless we're building with the leopard linker or later, which
2849      // automatically synthesizes these stubs.
2850      OpFlags = X86II::MO_DARWIN_STUB;
2851    }
2852
2853    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2854                                         OpFlags);
2855  }
2856
2857  // Returns a chain & a flag for retval copy to use.
2858  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2859  SmallVector<SDValue, 8> Ops;
2860
2861  if (!IsSibcall && isTailCall) {
2862    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2863                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2864    InFlag = Chain.getValue(1);
2865  }
2866
2867  Ops.push_back(Chain);
2868  Ops.push_back(Callee);
2869
2870  if (isTailCall)
2871    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2872
2873  // Add argument registers to the end of the list so that they are known live
2874  // into the call.
2875  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2876    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2877                                  RegsToPass[i].second.getValueType()));
2878
2879  // Add a register mask operand representing the call-preserved registers.
2880  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2881  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2882  assert(Mask && "Missing call preserved mask for calling convention");
2883  Ops.push_back(DAG.getRegisterMask(Mask));
2884
2885  if (InFlag.getNode())
2886    Ops.push_back(InFlag);
2887
2888  if (isTailCall) {
2889    // We used to do:
2890    //// If this is the first return lowered for this function, add the regs
2891    //// to the liveout set for the function.
2892    // This isn't right, although it's probably harmless on x86; liveouts
2893    // should be computed from returns not tail calls.  Consider a void
2894    // function making a tail call to a function returning int.
2895    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2896  }
2897
2898  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2899  InFlag = Chain.getValue(1);
2900
2901  // Create the CALLSEQ_END node.
2902  unsigned NumBytesForCalleeToPush;
2903  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2904                       getTargetMachine().Options.GuaranteedTailCallOpt))
2905    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2906  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2907           SR == StackStructReturn)
2908    // If this is a call to a struct-return function, the callee
2909    // pops the hidden struct pointer, so we have to push it back.
2910    // This is common for Darwin/X86, Linux & Mingw32 targets.
2911    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2912    NumBytesForCalleeToPush = 4;
2913  else
2914    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2915
2916  // Returns a flag for retval copy to use.
2917  if (!IsSibcall) {
2918    Chain = DAG.getCALLSEQ_END(Chain,
2919                               DAG.getIntPtrConstant(NumBytes, true),
2920                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2921                                                     true),
2922                               InFlag, dl);
2923    InFlag = Chain.getValue(1);
2924  }
2925
2926  // Handle result values, copying them out of physregs into vregs that we
2927  // return.
2928  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2929                         Ins, dl, DAG, InVals);
2930}
2931
2932//===----------------------------------------------------------------------===//
2933//                Fast Calling Convention (tail call) implementation
2934//===----------------------------------------------------------------------===//
2935
2936//  Like std call, callee cleans arguments, convention except that ECX is
2937//  reserved for storing the tail called function address. Only 2 registers are
2938//  free for argument passing (inreg). Tail call optimization is performed
2939//  provided:
2940//                * tailcallopt is enabled
2941//                * caller/callee are fastcc
2942//  On X86_64 architecture with GOT-style position independent code only local
2943//  (within module) calls are supported at the moment.
2944//  To keep the stack aligned according to platform abi the function
2945//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2946//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2947//  If a tail called function callee has more arguments than the caller the
2948//  caller needs to make sure that there is room to move the RETADDR to. This is
2949//  achieved by reserving an area the size of the argument delta right after the
2950//  original REtADDR, but before the saved framepointer or the spilled registers
2951//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2952//  stack layout:
2953//    arg1
2954//    arg2
2955//    RETADDR
2956//    [ new RETADDR
2957//      move area ]
2958//    (possible EBP)
2959//    ESI
2960//    EDI
2961//    local1 ..
2962
2963/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2964/// for a 16 byte align requirement.
2965unsigned
2966X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2967                                               SelectionDAG& DAG) const {
2968  MachineFunction &MF = DAG.getMachineFunction();
2969  const TargetMachine &TM = MF.getTarget();
2970  const X86RegisterInfo *RegInfo =
2971    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2972  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2973  unsigned StackAlignment = TFI.getStackAlignment();
2974  uint64_t AlignMask = StackAlignment - 1;
2975  int64_t Offset = StackSize;
2976  unsigned SlotSize = RegInfo->getSlotSize();
2977  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2978    // Number smaller than 12 so just add the difference.
2979    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2980  } else {
2981    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2982    Offset = ((~AlignMask) & Offset) + StackAlignment +
2983      (StackAlignment-SlotSize);
2984  }
2985  return Offset;
2986}
2987
2988/// MatchingStackOffset - Return true if the given stack call argument is
2989/// already available in the same position (relatively) of the caller's
2990/// incoming argument stack.
2991static
2992bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2993                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2994                         const X86InstrInfo *TII) {
2995  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2996  int FI = INT_MAX;
2997  if (Arg.getOpcode() == ISD::CopyFromReg) {
2998    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2999    if (!TargetRegisterInfo::isVirtualRegister(VR))
3000      return false;
3001    MachineInstr *Def = MRI->getVRegDef(VR);
3002    if (!Def)
3003      return false;
3004    if (!Flags.isByVal()) {
3005      if (!TII->isLoadFromStackSlot(Def, FI))
3006        return false;
3007    } else {
3008      unsigned Opcode = Def->getOpcode();
3009      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3010          Def->getOperand(1).isFI()) {
3011        FI = Def->getOperand(1).getIndex();
3012        Bytes = Flags.getByValSize();
3013      } else
3014        return false;
3015    }
3016  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3017    if (Flags.isByVal())
3018      // ByVal argument is passed in as a pointer but it's now being
3019      // dereferenced. e.g.
3020      // define @foo(%struct.X* %A) {
3021      //   tail call @bar(%struct.X* byval %A)
3022      // }
3023      return false;
3024    SDValue Ptr = Ld->getBasePtr();
3025    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3026    if (!FINode)
3027      return false;
3028    FI = FINode->getIndex();
3029  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3030    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3031    FI = FINode->getIndex();
3032    Bytes = Flags.getByValSize();
3033  } else
3034    return false;
3035
3036  assert(FI != INT_MAX);
3037  if (!MFI->isFixedObjectIndex(FI))
3038    return false;
3039  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3040}
3041
3042/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3043/// for tail call optimization. Targets which want to do tail call
3044/// optimization should implement this function.
3045bool
3046X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3047                                                     CallingConv::ID CalleeCC,
3048                                                     bool isVarArg,
3049                                                     bool isCalleeStructRet,
3050                                                     bool isCallerStructRet,
3051                                                     Type *RetTy,
3052                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3053                                    const SmallVectorImpl<SDValue> &OutVals,
3054                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3055                                                     SelectionDAG &DAG) const {
3056  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3057    return false;
3058
3059  // If -tailcallopt is specified, make fastcc functions tail-callable.
3060  const MachineFunction &MF = DAG.getMachineFunction();
3061  const Function *CallerF = MF.getFunction();
3062
3063  // If the function return type is x86_fp80 and the callee return type is not,
3064  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3065  // perform a tailcall optimization here.
3066  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3067    return false;
3068
3069  CallingConv::ID CallerCC = CallerF->getCallingConv();
3070  bool CCMatch = CallerCC == CalleeCC;
3071  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3072  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3073
3074  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3075    if (IsTailCallConvention(CalleeCC) && CCMatch)
3076      return true;
3077    return false;
3078  }
3079
3080  // Look for obvious safe cases to perform tail call optimization that do not
3081  // require ABI changes. This is what gcc calls sibcall.
3082
3083  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3084  // emit a special epilogue.
3085  const X86RegisterInfo *RegInfo =
3086    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3087  if (RegInfo->needsStackRealignment(MF))
3088    return false;
3089
3090  // Also avoid sibcall optimization if either caller or callee uses struct
3091  // return semantics.
3092  if (isCalleeStructRet || isCallerStructRet)
3093    return false;
3094
3095  // An stdcall caller is expected to clean up its arguments; the callee
3096  // isn't going to do that.
3097  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
3098    return false;
3099
3100  // Do not sibcall optimize vararg calls unless all arguments are passed via
3101  // registers.
3102  if (isVarArg && !Outs.empty()) {
3103
3104    // Optimizing for varargs on Win64 is unlikely to be safe without
3105    // additional testing.
3106    if (IsCalleeWin64 || IsCallerWin64)
3107      return false;
3108
3109    SmallVector<CCValAssign, 16> ArgLocs;
3110    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3111                   getTargetMachine(), ArgLocs, *DAG.getContext());
3112
3113    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3114    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3115      if (!ArgLocs[i].isRegLoc())
3116        return false;
3117  }
3118
3119  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3120  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3121  // this into a sibcall.
3122  bool Unused = false;
3123  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3124    if (!Ins[i].Used) {
3125      Unused = true;
3126      break;
3127    }
3128  }
3129  if (Unused) {
3130    SmallVector<CCValAssign, 16> RVLocs;
3131    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3132                   getTargetMachine(), RVLocs, *DAG.getContext());
3133    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3134    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3135      CCValAssign &VA = RVLocs[i];
3136      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3137        return false;
3138    }
3139  }
3140
3141  // If the calling conventions do not match, then we'd better make sure the
3142  // results are returned in the same way as what the caller expects.
3143  if (!CCMatch) {
3144    SmallVector<CCValAssign, 16> RVLocs1;
3145    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3146                    getTargetMachine(), RVLocs1, *DAG.getContext());
3147    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3148
3149    SmallVector<CCValAssign, 16> RVLocs2;
3150    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3151                    getTargetMachine(), RVLocs2, *DAG.getContext());
3152    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3153
3154    if (RVLocs1.size() != RVLocs2.size())
3155      return false;
3156    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3157      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3158        return false;
3159      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3160        return false;
3161      if (RVLocs1[i].isRegLoc()) {
3162        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3163          return false;
3164      } else {
3165        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3166          return false;
3167      }
3168    }
3169  }
3170
3171  // If the callee takes no arguments then go on to check the results of the
3172  // call.
3173  if (!Outs.empty()) {
3174    // Check if stack adjustment is needed. For now, do not do this if any
3175    // argument is passed on the stack.
3176    SmallVector<CCValAssign, 16> ArgLocs;
3177    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3178                   getTargetMachine(), ArgLocs, *DAG.getContext());
3179
3180    // Allocate shadow area for Win64
3181    if (IsCalleeWin64)
3182      CCInfo.AllocateStack(32, 8);
3183
3184    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3185    if (CCInfo.getNextStackOffset()) {
3186      MachineFunction &MF = DAG.getMachineFunction();
3187      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3188        return false;
3189
3190      // Check if the arguments are already laid out in the right way as
3191      // the caller's fixed stack objects.
3192      MachineFrameInfo *MFI = MF.getFrameInfo();
3193      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3194      const X86InstrInfo *TII =
3195        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3196      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3197        CCValAssign &VA = ArgLocs[i];
3198        SDValue Arg = OutVals[i];
3199        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3200        if (VA.getLocInfo() == CCValAssign::Indirect)
3201          return false;
3202        if (!VA.isRegLoc()) {
3203          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3204                                   MFI, MRI, TII))
3205            return false;
3206        }
3207      }
3208    }
3209
3210    // If the tailcall address may be in a register, then make sure it's
3211    // possible to register allocate for it. In 32-bit, the call address can
3212    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3213    // callee-saved registers are restored. These happen to be the same
3214    // registers used to pass 'inreg' arguments so watch out for those.
3215    if (!Subtarget->is64Bit() &&
3216        ((!isa<GlobalAddressSDNode>(Callee) &&
3217          !isa<ExternalSymbolSDNode>(Callee)) ||
3218         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3219      unsigned NumInRegs = 0;
3220      // In PIC we need an extra register to formulate the address computation
3221      // for the callee.
3222      unsigned MaxInRegs =
3223          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3224
3225      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3226        CCValAssign &VA = ArgLocs[i];
3227        if (!VA.isRegLoc())
3228          continue;
3229        unsigned Reg = VA.getLocReg();
3230        switch (Reg) {
3231        default: break;
3232        case X86::EAX: case X86::EDX: case X86::ECX:
3233          if (++NumInRegs == MaxInRegs)
3234            return false;
3235          break;
3236        }
3237      }
3238    }
3239  }
3240
3241  return true;
3242}
3243
3244FastISel *
3245X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3246                                  const TargetLibraryInfo *libInfo) const {
3247  return X86::createFastISel(funcInfo, libInfo);
3248}
3249
3250//===----------------------------------------------------------------------===//
3251//                           Other Lowering Hooks
3252//===----------------------------------------------------------------------===//
3253
3254static bool MayFoldLoad(SDValue Op) {
3255  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3256}
3257
3258static bool MayFoldIntoStore(SDValue Op) {
3259  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3260}
3261
3262static bool isTargetShuffle(unsigned Opcode) {
3263  switch(Opcode) {
3264  default: return false;
3265  case X86ISD::PSHUFD:
3266  case X86ISD::PSHUFHW:
3267  case X86ISD::PSHUFLW:
3268  case X86ISD::SHUFP:
3269  case X86ISD::PALIGNR:
3270  case X86ISD::MOVLHPS:
3271  case X86ISD::MOVLHPD:
3272  case X86ISD::MOVHLPS:
3273  case X86ISD::MOVLPS:
3274  case X86ISD::MOVLPD:
3275  case X86ISD::MOVSHDUP:
3276  case X86ISD::MOVSLDUP:
3277  case X86ISD::MOVDDUP:
3278  case X86ISD::MOVSS:
3279  case X86ISD::MOVSD:
3280  case X86ISD::UNPCKL:
3281  case X86ISD::UNPCKH:
3282  case X86ISD::VPERMILP:
3283  case X86ISD::VPERM2X128:
3284  case X86ISD::VPERMI:
3285    return true;
3286  }
3287}
3288
3289static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3290                                    SDValue V1, SelectionDAG &DAG) {
3291  switch(Opc) {
3292  default: llvm_unreachable("Unknown x86 shuffle node");
3293  case X86ISD::MOVSHDUP:
3294  case X86ISD::MOVSLDUP:
3295  case X86ISD::MOVDDUP:
3296    return DAG.getNode(Opc, dl, VT, V1);
3297  }
3298}
3299
3300static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3301                                    SDValue V1, unsigned TargetMask,
3302                                    SelectionDAG &DAG) {
3303  switch(Opc) {
3304  default: llvm_unreachable("Unknown x86 shuffle node");
3305  case X86ISD::PSHUFD:
3306  case X86ISD::PSHUFHW:
3307  case X86ISD::PSHUFLW:
3308  case X86ISD::VPERMILP:
3309  case X86ISD::VPERMI:
3310    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3311  }
3312}
3313
3314static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3315                                    SDValue V1, SDValue V2, unsigned TargetMask,
3316                                    SelectionDAG &DAG) {
3317  switch(Opc) {
3318  default: llvm_unreachable("Unknown x86 shuffle node");
3319  case X86ISD::PALIGNR:
3320  case X86ISD::SHUFP:
3321  case X86ISD::VPERM2X128:
3322    return DAG.getNode(Opc, dl, VT, V1, V2,
3323                       DAG.getConstant(TargetMask, MVT::i8));
3324  }
3325}
3326
3327static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3328                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3329  switch(Opc) {
3330  default: llvm_unreachable("Unknown x86 shuffle node");
3331  case X86ISD::MOVLHPS:
3332  case X86ISD::MOVLHPD:
3333  case X86ISD::MOVHLPS:
3334  case X86ISD::MOVLPS:
3335  case X86ISD::MOVLPD:
3336  case X86ISD::MOVSS:
3337  case X86ISD::MOVSD:
3338  case X86ISD::UNPCKL:
3339  case X86ISD::UNPCKH:
3340    return DAG.getNode(Opc, dl, VT, V1, V2);
3341  }
3342}
3343
3344SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3345  MachineFunction &MF = DAG.getMachineFunction();
3346  const X86RegisterInfo *RegInfo =
3347    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3348  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3349  int ReturnAddrIndex = FuncInfo->getRAIndex();
3350
3351  if (ReturnAddrIndex == 0) {
3352    // Set up a frame object for the return address.
3353    unsigned SlotSize = RegInfo->getSlotSize();
3354    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3355                                                           -(int64_t)SlotSize,
3356                                                           false);
3357    FuncInfo->setRAIndex(ReturnAddrIndex);
3358  }
3359
3360  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3361}
3362
3363bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3364                                       bool hasSymbolicDisplacement) {
3365  // Offset should fit into 32 bit immediate field.
3366  if (!isInt<32>(Offset))
3367    return false;
3368
3369  // If we don't have a symbolic displacement - we don't have any extra
3370  // restrictions.
3371  if (!hasSymbolicDisplacement)
3372    return true;
3373
3374  // FIXME: Some tweaks might be needed for medium code model.
3375  if (M != CodeModel::Small && M != CodeModel::Kernel)
3376    return false;
3377
3378  // For small code model we assume that latest object is 16MB before end of 31
3379  // bits boundary. We may also accept pretty large negative constants knowing
3380  // that all objects are in the positive half of address space.
3381  if (M == CodeModel::Small && Offset < 16*1024*1024)
3382    return true;
3383
3384  // For kernel code model we know that all object resist in the negative half
3385  // of 32bits address space. We may not accept negative offsets, since they may
3386  // be just off and we may accept pretty large positive ones.
3387  if (M == CodeModel::Kernel && Offset > 0)
3388    return true;
3389
3390  return false;
3391}
3392
3393/// isCalleePop - Determines whether the callee is required to pop its
3394/// own arguments. Callee pop is necessary to support tail calls.
3395bool X86::isCalleePop(CallingConv::ID CallingConv,
3396                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3397  if (IsVarArg)
3398    return false;
3399
3400  switch (CallingConv) {
3401  default:
3402    return false;
3403  case CallingConv::X86_StdCall:
3404    return !is64Bit;
3405  case CallingConv::X86_FastCall:
3406    return !is64Bit;
3407  case CallingConv::X86_ThisCall:
3408    return !is64Bit;
3409  case CallingConv::Fast:
3410    return TailCallOpt;
3411  case CallingConv::GHC:
3412    return TailCallOpt;
3413  case CallingConv::HiPE:
3414    return TailCallOpt;
3415  }
3416}
3417
3418/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3419/// specific condition code, returning the condition code and the LHS/RHS of the
3420/// comparison to make.
3421static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3422                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3423  if (!isFP) {
3424    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3425      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3426        // X > -1   -> X == 0, jump !sign.
3427        RHS = DAG.getConstant(0, RHS.getValueType());
3428        return X86::COND_NS;
3429      }
3430      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3431        // X < 0   -> X == 0, jump on sign.
3432        return X86::COND_S;
3433      }
3434      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3435        // X < 1   -> X <= 0
3436        RHS = DAG.getConstant(0, RHS.getValueType());
3437        return X86::COND_LE;
3438      }
3439    }
3440
3441    switch (SetCCOpcode) {
3442    default: llvm_unreachable("Invalid integer condition!");
3443    case ISD::SETEQ:  return X86::COND_E;
3444    case ISD::SETGT:  return X86::COND_G;
3445    case ISD::SETGE:  return X86::COND_GE;
3446    case ISD::SETLT:  return X86::COND_L;
3447    case ISD::SETLE:  return X86::COND_LE;
3448    case ISD::SETNE:  return X86::COND_NE;
3449    case ISD::SETULT: return X86::COND_B;
3450    case ISD::SETUGT: return X86::COND_A;
3451    case ISD::SETULE: return X86::COND_BE;
3452    case ISD::SETUGE: return X86::COND_AE;
3453    }
3454  }
3455
3456  // First determine if it is required or is profitable to flip the operands.
3457
3458  // If LHS is a foldable load, but RHS is not, flip the condition.
3459  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3460      !ISD::isNON_EXTLoad(RHS.getNode())) {
3461    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3462    std::swap(LHS, RHS);
3463  }
3464
3465  switch (SetCCOpcode) {
3466  default: break;
3467  case ISD::SETOLT:
3468  case ISD::SETOLE:
3469  case ISD::SETUGT:
3470  case ISD::SETUGE:
3471    std::swap(LHS, RHS);
3472    break;
3473  }
3474
3475  // On a floating point condition, the flags are set as follows:
3476  // ZF  PF  CF   op
3477  //  0 | 0 | 0 | X > Y
3478  //  0 | 0 | 1 | X < Y
3479  //  1 | 0 | 0 | X == Y
3480  //  1 | 1 | 1 | unordered
3481  switch (SetCCOpcode) {
3482  default: llvm_unreachable("Condcode should be pre-legalized away");
3483  case ISD::SETUEQ:
3484  case ISD::SETEQ:   return X86::COND_E;
3485  case ISD::SETOLT:              // flipped
3486  case ISD::SETOGT:
3487  case ISD::SETGT:   return X86::COND_A;
3488  case ISD::SETOLE:              // flipped
3489  case ISD::SETOGE:
3490  case ISD::SETGE:   return X86::COND_AE;
3491  case ISD::SETUGT:              // flipped
3492  case ISD::SETULT:
3493  case ISD::SETLT:   return X86::COND_B;
3494  case ISD::SETUGE:              // flipped
3495  case ISD::SETULE:
3496  case ISD::SETLE:   return X86::COND_BE;
3497  case ISD::SETONE:
3498  case ISD::SETNE:   return X86::COND_NE;
3499  case ISD::SETUO:   return X86::COND_P;
3500  case ISD::SETO:    return X86::COND_NP;
3501  case ISD::SETOEQ:
3502  case ISD::SETUNE:  return X86::COND_INVALID;
3503  }
3504}
3505
3506/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3507/// code. Current x86 isa includes the following FP cmov instructions:
3508/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3509static bool hasFPCMov(unsigned X86CC) {
3510  switch (X86CC) {
3511  default:
3512    return false;
3513  case X86::COND_B:
3514  case X86::COND_BE:
3515  case X86::COND_E:
3516  case X86::COND_P:
3517  case X86::COND_A:
3518  case X86::COND_AE:
3519  case X86::COND_NE:
3520  case X86::COND_NP:
3521    return true;
3522  }
3523}
3524
3525/// isFPImmLegal - Returns true if the target can instruction select the
3526/// specified FP immediate natively. If false, the legalizer will
3527/// materialize the FP immediate as a load from a constant pool.
3528bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3529  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3530    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3531      return true;
3532  }
3533  return false;
3534}
3535
3536/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3537/// the specified range (L, H].
3538static bool isUndefOrInRange(int Val, int Low, int Hi) {
3539  return (Val < 0) || (Val >= Low && Val < Hi);
3540}
3541
3542/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3543/// specified value.
3544static bool isUndefOrEqual(int Val, int CmpVal) {
3545  return (Val < 0 || Val == CmpVal);
3546}
3547
3548/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3549/// from position Pos and ending in Pos+Size, falls within the specified
3550/// sequential range (L, L+Pos]. or is undef.
3551static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3552                                       unsigned Pos, unsigned Size, int Low) {
3553  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3554    if (!isUndefOrEqual(Mask[i], Low))
3555      return false;
3556  return true;
3557}
3558
3559/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3560/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3561/// the second operand.
3562static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3563  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3564    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3565  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3566    return (Mask[0] < 2 && Mask[1] < 2);
3567  return false;
3568}
3569
3570/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3571/// is suitable for input to PSHUFHW.
3572static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3573  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3574    return false;
3575
3576  // Lower quadword copied in order or undef.
3577  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3578    return false;
3579
3580  // Upper quadword shuffled.
3581  for (unsigned i = 4; i != 8; ++i)
3582    if (!isUndefOrInRange(Mask[i], 4, 8))
3583      return false;
3584
3585  if (VT == MVT::v16i16) {
3586    // Lower quadword copied in order or undef.
3587    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3588      return false;
3589
3590    // Upper quadword shuffled.
3591    for (unsigned i = 12; i != 16; ++i)
3592      if (!isUndefOrInRange(Mask[i], 12, 16))
3593        return false;
3594  }
3595
3596  return true;
3597}
3598
3599/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3600/// is suitable for input to PSHUFLW.
3601static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3602  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3603    return false;
3604
3605  // Upper quadword copied in order.
3606  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3607    return false;
3608
3609  // Lower quadword shuffled.
3610  for (unsigned i = 0; i != 4; ++i)
3611    if (!isUndefOrInRange(Mask[i], 0, 4))
3612      return false;
3613
3614  if (VT == MVT::v16i16) {
3615    // Upper quadword copied in order.
3616    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3617      return false;
3618
3619    // Lower quadword shuffled.
3620    for (unsigned i = 8; i != 12; ++i)
3621      if (!isUndefOrInRange(Mask[i], 8, 12))
3622        return false;
3623  }
3624
3625  return true;
3626}
3627
3628/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3629/// is suitable for input to PALIGNR.
3630static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3631                          const X86Subtarget *Subtarget) {
3632  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3633      (VT.is256BitVector() && !Subtarget->hasInt256()))
3634    return false;
3635
3636  unsigned NumElts = VT.getVectorNumElements();
3637  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3638  unsigned NumLaneElts = NumElts/NumLanes;
3639
3640  // Do not handle 64-bit element shuffles with palignr.
3641  if (NumLaneElts == 2)
3642    return false;
3643
3644  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3645    unsigned i;
3646    for (i = 0; i != NumLaneElts; ++i) {
3647      if (Mask[i+l] >= 0)
3648        break;
3649    }
3650
3651    // Lane is all undef, go to next lane
3652    if (i == NumLaneElts)
3653      continue;
3654
3655    int Start = Mask[i+l];
3656
3657    // Make sure its in this lane in one of the sources
3658    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3659        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3660      return false;
3661
3662    // If not lane 0, then we must match lane 0
3663    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3664      return false;
3665
3666    // Correct second source to be contiguous with first source
3667    if (Start >= (int)NumElts)
3668      Start -= NumElts - NumLaneElts;
3669
3670    // Make sure we're shifting in the right direction.
3671    if (Start <= (int)(i+l))
3672      return false;
3673
3674    Start -= i;
3675
3676    // Check the rest of the elements to see if they are consecutive.
3677    for (++i; i != NumLaneElts; ++i) {
3678      int Idx = Mask[i+l];
3679
3680      // Make sure its in this lane
3681      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3682          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3683        return false;
3684
3685      // If not lane 0, then we must match lane 0
3686      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3687        return false;
3688
3689      if (Idx >= (int)NumElts)
3690        Idx -= NumElts - NumLaneElts;
3691
3692      if (!isUndefOrEqual(Idx, Start+i))
3693        return false;
3694
3695    }
3696  }
3697
3698  return true;
3699}
3700
3701/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3702/// the two vector operands have swapped position.
3703static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3704                                     unsigned NumElems) {
3705  for (unsigned i = 0; i != NumElems; ++i) {
3706    int idx = Mask[i];
3707    if (idx < 0)
3708      continue;
3709    else if (idx < (int)NumElems)
3710      Mask[i] = idx + NumElems;
3711    else
3712      Mask[i] = idx - NumElems;
3713  }
3714}
3715
3716/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3717/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3718/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3719/// reverse of what x86 shuffles want.
3720static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3721
3722  unsigned NumElems = VT.getVectorNumElements();
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned NumLaneElems = NumElems/NumLanes;
3725
3726  if (NumLaneElems != 2 && NumLaneElems != 4)
3727    return false;
3728
3729  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3730  bool symetricMaskRequired =
3731    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3732
3733  // VSHUFPSY divides the resulting vector into 4 chunks.
3734  // The sources are also splitted into 4 chunks, and each destination
3735  // chunk must come from a different source chunk.
3736  //
3737  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3738  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3739  //
3740  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3741  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3742  //
3743  // VSHUFPDY divides the resulting vector into 4 chunks.
3744  // The sources are also splitted into 4 chunks, and each destination
3745  // chunk must come from a different source chunk.
3746  //
3747  //  SRC1 =>      X3       X2       X1       X0
3748  //  SRC2 =>      Y3       Y2       Y1       Y0
3749  //
3750  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3751  //
3752  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3753  unsigned HalfLaneElems = NumLaneElems/2;
3754  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3755    for (unsigned i = 0; i != NumLaneElems; ++i) {
3756      int Idx = Mask[i+l];
3757      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3758      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3759        return false;
3760      // For VSHUFPSY, the mask of the second half must be the same as the
3761      // first but with the appropriate offsets. This works in the same way as
3762      // VPERMILPS works with masks.
3763      if (!symetricMaskRequired || Idx < 0)
3764        continue;
3765      if (MaskVal[i] < 0) {
3766        MaskVal[i] = Idx - l;
3767        continue;
3768      }
3769      if ((signed)(Idx - l) != MaskVal[i])
3770        return false;
3771    }
3772  }
3773
3774  return true;
3775}
3776
3777/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3778/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3779static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3780  if (!VT.is128BitVector())
3781    return false;
3782
3783  unsigned NumElems = VT.getVectorNumElements();
3784
3785  if (NumElems != 4)
3786    return false;
3787
3788  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3789  return isUndefOrEqual(Mask[0], 6) &&
3790         isUndefOrEqual(Mask[1], 7) &&
3791         isUndefOrEqual(Mask[2], 2) &&
3792         isUndefOrEqual(Mask[3], 3);
3793}
3794
3795/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3796/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3797/// <2, 3, 2, 3>
3798static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3799  if (!VT.is128BitVector())
3800    return false;
3801
3802  unsigned NumElems = VT.getVectorNumElements();
3803
3804  if (NumElems != 4)
3805    return false;
3806
3807  return isUndefOrEqual(Mask[0], 2) &&
3808         isUndefOrEqual(Mask[1], 3) &&
3809         isUndefOrEqual(Mask[2], 2) &&
3810         isUndefOrEqual(Mask[3], 3);
3811}
3812
3813/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3814/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3815static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3816  if (!VT.is128BitVector())
3817    return false;
3818
3819  unsigned NumElems = VT.getVectorNumElements();
3820
3821  if (NumElems != 2 && NumElems != 4)
3822    return false;
3823
3824  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3825    if (!isUndefOrEqual(Mask[i], i + NumElems))
3826      return false;
3827
3828  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3829    if (!isUndefOrEqual(Mask[i], i))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3837static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3838  if (!VT.is128BitVector())
3839    return false;
3840
3841  unsigned NumElems = VT.getVectorNumElements();
3842
3843  if (NumElems != 2 && NumElems != 4)
3844    return false;
3845
3846  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3847    if (!isUndefOrEqual(Mask[i], i))
3848      return false;
3849
3850  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3851    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3852      return false;
3853
3854  return true;
3855}
3856
3857//
3858// Some special combinations that can be optimized.
3859//
3860static
3861SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3862                               SelectionDAG &DAG) {
3863  MVT VT = SVOp->getSimpleValueType(0);
3864  SDLoc dl(SVOp);
3865
3866  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3867    return SDValue();
3868
3869  ArrayRef<int> Mask = SVOp->getMask();
3870
3871  // These are the special masks that may be optimized.
3872  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3873  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3874  bool MatchEvenMask = true;
3875  bool MatchOddMask  = true;
3876  for (int i=0; i<8; ++i) {
3877    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3878      MatchEvenMask = false;
3879    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3880      MatchOddMask = false;
3881  }
3882
3883  if (!MatchEvenMask && !MatchOddMask)
3884    return SDValue();
3885
3886  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3887
3888  SDValue Op0 = SVOp->getOperand(0);
3889  SDValue Op1 = SVOp->getOperand(1);
3890
3891  if (MatchEvenMask) {
3892    // Shift the second operand right to 32 bits.
3893    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3894    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3895  } else {
3896    // Shift the first operand left to 32 bits.
3897    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3898    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3899  }
3900  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3901  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3902}
3903
3904/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3905/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3906static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
3907                         bool HasInt256, bool V2IsSplat = false) {
3908
3909  assert(VT.getSizeInBits() >= 128 &&
3910         "Unsupported vector type for unpckl");
3911
3912  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3913  unsigned NumLanes;
3914  unsigned NumOf256BitLanes;
3915  unsigned NumElts = VT.getVectorNumElements();
3916  if (VT.is256BitVector()) {
3917    if (NumElts != 4 && NumElts != 8 &&
3918        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3919    return false;
3920    NumLanes = 2;
3921    NumOf256BitLanes = 1;
3922  } else if (VT.is512BitVector()) {
3923    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3924           "Unsupported vector type for unpckh");
3925    NumLanes = 2;
3926    NumOf256BitLanes = 2;
3927  } else {
3928    NumLanes = 1;
3929    NumOf256BitLanes = 1;
3930  }
3931
3932  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3933  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3934
3935  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3936    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3937      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3938        int BitI  = Mask[l256*NumEltsInStride+l+i];
3939        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3940        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3941          return false;
3942        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3943          return false;
3944        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3945          return false;
3946      }
3947    }
3948  }
3949  return true;
3950}
3951
3952/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3953/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3954static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
3955                         bool HasInt256, bool V2IsSplat = false) {
3956  assert(VT.getSizeInBits() >= 128 &&
3957         "Unsupported vector type for unpckh");
3958
3959  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3960  unsigned NumLanes;
3961  unsigned NumOf256BitLanes;
3962  unsigned NumElts = VT.getVectorNumElements();
3963  if (VT.is256BitVector()) {
3964    if (NumElts != 4 && NumElts != 8 &&
3965        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3966    return false;
3967    NumLanes = 2;
3968    NumOf256BitLanes = 1;
3969  } else if (VT.is512BitVector()) {
3970    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3971           "Unsupported vector type for unpckh");
3972    NumLanes = 2;
3973    NumOf256BitLanes = 2;
3974  } else {
3975    NumLanes = 1;
3976    NumOf256BitLanes = 1;
3977  }
3978
3979  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3980  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3981
3982  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3983    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3984      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
3985        int BitI  = Mask[l256*NumEltsInStride+l+i];
3986        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3987        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3988          return false;
3989        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3990          return false;
3991        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3992          return false;
3993      }
3994    }
3995  }
3996  return true;
3997}
3998
3999/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4000/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4001/// <0, 0, 1, 1>
4002static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4003  unsigned NumElts = VT.getVectorNumElements();
4004  bool Is256BitVec = VT.is256BitVector();
4005
4006  if (VT.is512BitVector())
4007    return false;
4008  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4009         "Unsupported vector type for unpckh");
4010
4011  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4012      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4013    return false;
4014
4015  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4016  // FIXME: Need a better way to get rid of this, there's no latency difference
4017  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4018  // the former later. We should also remove the "_undef" special mask.
4019  if (NumElts == 4 && Is256BitVec)
4020    return false;
4021
4022  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4023  // independently on 128-bit lanes.
4024  unsigned NumLanes = VT.getSizeInBits()/128;
4025  unsigned NumLaneElts = NumElts/NumLanes;
4026
4027  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4028    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4029      int BitI  = Mask[l+i];
4030      int BitI1 = Mask[l+i+1];
4031
4032      if (!isUndefOrEqual(BitI, j))
4033        return false;
4034      if (!isUndefOrEqual(BitI1, j))
4035        return false;
4036    }
4037  }
4038
4039  return true;
4040}
4041
4042/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4043/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4044/// <2, 2, 3, 3>
4045static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4046  unsigned NumElts = VT.getVectorNumElements();
4047
4048  if (VT.is512BitVector())
4049    return false;
4050
4051  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4052         "Unsupported vector type for unpckh");
4053
4054  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4055      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4056    return false;
4057
4058  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4059  // independently on 128-bit lanes.
4060  unsigned NumLanes = VT.getSizeInBits()/128;
4061  unsigned NumLaneElts = NumElts/NumLanes;
4062
4063  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4064    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4065      int BitI  = Mask[l+i];
4066      int BitI1 = Mask[l+i+1];
4067      if (!isUndefOrEqual(BitI, j))
4068        return false;
4069      if (!isUndefOrEqual(BitI1, j))
4070        return false;
4071    }
4072  }
4073  return true;
4074}
4075
4076/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4077/// specifies a shuffle of elements that is suitable for input to MOVSS,
4078/// MOVSD, and MOVD, i.e. setting the lowest element.
4079static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4080  if (VT.getVectorElementType().getSizeInBits() < 32)
4081    return false;
4082  if (!VT.is128BitVector())
4083    return false;
4084
4085  unsigned NumElts = VT.getVectorNumElements();
4086
4087  if (!isUndefOrEqual(Mask[0], NumElts))
4088    return false;
4089
4090  for (unsigned i = 1; i != NumElts; ++i)
4091    if (!isUndefOrEqual(Mask[i], i))
4092      return false;
4093
4094  return true;
4095}
4096
4097/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4098/// as permutations between 128-bit chunks or halves. As an example: this
4099/// shuffle bellow:
4100///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4101/// The first half comes from the second half of V1 and the second half from the
4102/// the second half of V2.
4103static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4104  if (!HasFp256 || !VT.is256BitVector())
4105    return false;
4106
4107  // The shuffle result is divided into half A and half B. In total the two
4108  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4109  // B must come from C, D, E or F.
4110  unsigned HalfSize = VT.getVectorNumElements()/2;
4111  bool MatchA = false, MatchB = false;
4112
4113  // Check if A comes from one of C, D, E, F.
4114  for (unsigned Half = 0; Half != 4; ++Half) {
4115    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4116      MatchA = true;
4117      break;
4118    }
4119  }
4120
4121  // Check if B comes from one of C, D, E, F.
4122  for (unsigned Half = 0; Half != 4; ++Half) {
4123    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4124      MatchB = true;
4125      break;
4126    }
4127  }
4128
4129  return MatchA && MatchB;
4130}
4131
4132/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4133/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4134static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4135  MVT VT = SVOp->getSimpleValueType(0);
4136
4137  unsigned HalfSize = VT.getVectorNumElements()/2;
4138
4139  unsigned FstHalf = 0, SndHalf = 0;
4140  for (unsigned i = 0; i < HalfSize; ++i) {
4141    if (SVOp->getMaskElt(i) > 0) {
4142      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4143      break;
4144    }
4145  }
4146  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4147    if (SVOp->getMaskElt(i) > 0) {
4148      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4149      break;
4150    }
4151  }
4152
4153  return (FstHalf | (SndHalf << 4));
4154}
4155
4156// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4157static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4158  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4159  if (EltSize < 32)
4160    return false;
4161
4162  unsigned NumElts = VT.getVectorNumElements();
4163  Imm8 = 0;
4164  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4165    for (unsigned i = 0; i != NumElts; ++i) {
4166      if (Mask[i] < 0)
4167        continue;
4168      Imm8 |= Mask[i] << (i*2);
4169    }
4170    return true;
4171  }
4172
4173  unsigned LaneSize = 4;
4174  SmallVector<int, 4> MaskVal(LaneSize, -1);
4175
4176  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4177    for (unsigned i = 0; i != LaneSize; ++i) {
4178      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4179        return false;
4180      if (Mask[i+l] < 0)
4181        continue;
4182      if (MaskVal[i] < 0) {
4183        MaskVal[i] = Mask[i+l] - l;
4184        Imm8 |= MaskVal[i] << (i*2);
4185        continue;
4186      }
4187      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4188        return false;
4189    }
4190  }
4191  return true;
4192}
4193
4194/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4195/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4196/// Note that VPERMIL mask matching is different depending whether theunderlying
4197/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4198/// to the same elements of the low, but to the higher half of the source.
4199/// In VPERMILPD the two lanes could be shuffled independently of each other
4200/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4201static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4202  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4203  if (VT.getSizeInBits() < 256 || EltSize < 32)
4204    return false;
4205  bool symetricMaskRequired = (EltSize == 32);
4206  unsigned NumElts = VT.getVectorNumElements();
4207
4208  unsigned NumLanes = VT.getSizeInBits()/128;
4209  unsigned LaneSize = NumElts/NumLanes;
4210  // 2 or 4 elements in one lane
4211
4212  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4213  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4214    for (unsigned i = 0; i != LaneSize; ++i) {
4215      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4216        return false;
4217      if (symetricMaskRequired) {
4218        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4219          ExpectedMaskVal[i] = Mask[i+l] - l;
4220          continue;
4221        }
4222        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4223          return false;
4224      }
4225    }
4226  }
4227  return true;
4228}
4229
4230/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4231/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4232/// element of vector 2 and the other elements to come from vector 1 in order.
4233static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4234                               bool V2IsSplat = false, bool V2IsUndef = false) {
4235  if (!VT.is128BitVector())
4236    return false;
4237
4238  unsigned NumOps = VT.getVectorNumElements();
4239  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4240    return false;
4241
4242  if (!isUndefOrEqual(Mask[0], 0))
4243    return false;
4244
4245  for (unsigned i = 1; i != NumOps; ++i)
4246    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4247          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4248          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4249      return false;
4250
4251  return true;
4252}
4253
4254/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4255/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4256/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4257static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4258                           const X86Subtarget *Subtarget) {
4259  if (!Subtarget->hasSSE3())
4260    return false;
4261
4262  unsigned NumElems = VT.getVectorNumElements();
4263
4264  if ((VT.is128BitVector() && NumElems != 4) ||
4265      (VT.is256BitVector() && NumElems != 8) ||
4266      (VT.is512BitVector() && NumElems != 16))
4267    return false;
4268
4269  // "i+1" is the value the indexed mask element must have
4270  for (unsigned i = 0; i != NumElems; i += 2)
4271    if (!isUndefOrEqual(Mask[i], i+1) ||
4272        !isUndefOrEqual(Mask[i+1], i+1))
4273      return false;
4274
4275  return true;
4276}
4277
4278/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4279/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4280/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4281static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4282                           const X86Subtarget *Subtarget) {
4283  if (!Subtarget->hasSSE3())
4284    return false;
4285
4286  unsigned NumElems = VT.getVectorNumElements();
4287
4288  if ((VT.is128BitVector() && NumElems != 4) ||
4289      (VT.is256BitVector() && NumElems != 8) ||
4290      (VT.is512BitVector() && NumElems != 16))
4291    return false;
4292
4293  // "i" is the value the indexed mask element must have
4294  for (unsigned i = 0; i != NumElems; i += 2)
4295    if (!isUndefOrEqual(Mask[i], i) ||
4296        !isUndefOrEqual(Mask[i+1], i))
4297      return false;
4298
4299  return true;
4300}
4301
4302/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4303/// specifies a shuffle of elements that is suitable for input to 256-bit
4304/// version of MOVDDUP.
4305static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4306  if (!HasFp256 || !VT.is256BitVector())
4307    return false;
4308
4309  unsigned NumElts = VT.getVectorNumElements();
4310  if (NumElts != 4)
4311    return false;
4312
4313  for (unsigned i = 0; i != NumElts/2; ++i)
4314    if (!isUndefOrEqual(Mask[i], 0))
4315      return false;
4316  for (unsigned i = NumElts/2; i != NumElts; ++i)
4317    if (!isUndefOrEqual(Mask[i], NumElts/2))
4318      return false;
4319  return true;
4320}
4321
4322/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4323/// specifies a shuffle of elements that is suitable for input to 128-bit
4324/// version of MOVDDUP.
4325static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4326  if (!VT.is128BitVector())
4327    return false;
4328
4329  unsigned e = VT.getVectorNumElements() / 2;
4330  for (unsigned i = 0; i != e; ++i)
4331    if (!isUndefOrEqual(Mask[i], i))
4332      return false;
4333  for (unsigned i = 0; i != e; ++i)
4334    if (!isUndefOrEqual(Mask[e+i], i))
4335      return false;
4336  return true;
4337}
4338
4339/// isVEXTRACTIndex - Return true if the specified
4340/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4341/// suitable for instruction that extract 128 or 256 bit vectors
4342static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4343  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4344  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4345    return false;
4346
4347  // The index should be aligned on a vecWidth-bit boundary.
4348  uint64_t Index =
4349    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4350
4351  MVT VT = N->getSimpleValueType(0);
4352  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4353  bool Result = (Index * ElSize) % vecWidth == 0;
4354
4355  return Result;
4356}
4357
4358/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4359/// operand specifies a subvector insert that is suitable for input to
4360/// insertion of 128 or 256-bit subvectors
4361static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4362  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4363  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4364    return false;
4365  // The index should be aligned on a vecWidth-bit boundary.
4366  uint64_t Index =
4367    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4368
4369  MVT VT = N->getSimpleValueType(0);
4370  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4371  bool Result = (Index * ElSize) % vecWidth == 0;
4372
4373  return Result;
4374}
4375
4376bool X86::isVINSERT128Index(SDNode *N) {
4377  return isVINSERTIndex(N, 128);
4378}
4379
4380bool X86::isVINSERT256Index(SDNode *N) {
4381  return isVINSERTIndex(N, 256);
4382}
4383
4384bool X86::isVEXTRACT128Index(SDNode *N) {
4385  return isVEXTRACTIndex(N, 128);
4386}
4387
4388bool X86::isVEXTRACT256Index(SDNode *N) {
4389  return isVEXTRACTIndex(N, 256);
4390}
4391
4392/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4393/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4394/// Handles 128-bit and 256-bit.
4395static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4396  MVT VT = N->getSimpleValueType(0);
4397
4398  assert((VT.getSizeInBits() >= 128) &&
4399         "Unsupported vector type for PSHUF/SHUFP");
4400
4401  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4402  // independently on 128-bit lanes.
4403  unsigned NumElts = VT.getVectorNumElements();
4404  unsigned NumLanes = VT.getSizeInBits()/128;
4405  unsigned NumLaneElts = NumElts/NumLanes;
4406
4407  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4408         "Only supports 2, 4 or 8 elements per lane");
4409
4410  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4411  unsigned Mask = 0;
4412  for (unsigned i = 0; i != NumElts; ++i) {
4413    int Elt = N->getMaskElt(i);
4414    if (Elt < 0) continue;
4415    Elt &= NumLaneElts - 1;
4416    unsigned ShAmt = (i << Shift) % 8;
4417    Mask |= Elt << ShAmt;
4418  }
4419
4420  return Mask;
4421}
4422
4423/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4424/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4425static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4426  MVT VT = N->getSimpleValueType(0);
4427
4428  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4429         "Unsupported vector type for PSHUFHW");
4430
4431  unsigned NumElts = VT.getVectorNumElements();
4432
4433  unsigned Mask = 0;
4434  for (unsigned l = 0; l != NumElts; l += 8) {
4435    // 8 nodes per lane, but we only care about the last 4.
4436    for (unsigned i = 0; i < 4; ++i) {
4437      int Elt = N->getMaskElt(l+i+4);
4438      if (Elt < 0) continue;
4439      Elt &= 0x3; // only 2-bits.
4440      Mask |= Elt << (i * 2);
4441    }
4442  }
4443
4444  return Mask;
4445}
4446
4447/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4448/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4449static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4450  MVT VT = N->getSimpleValueType(0);
4451
4452  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4453         "Unsupported vector type for PSHUFHW");
4454
4455  unsigned NumElts = VT.getVectorNumElements();
4456
4457  unsigned Mask = 0;
4458  for (unsigned l = 0; l != NumElts; l += 8) {
4459    // 8 nodes per lane, but we only care about the first 4.
4460    for (unsigned i = 0; i < 4; ++i) {
4461      int Elt = N->getMaskElt(l+i);
4462      if (Elt < 0) continue;
4463      Elt &= 0x3; // only 2-bits
4464      Mask |= Elt << (i * 2);
4465    }
4466  }
4467
4468  return Mask;
4469}
4470
4471/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4472/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4473static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4474  MVT VT = SVOp->getSimpleValueType(0);
4475  unsigned EltSize = VT.is512BitVector() ? 1 :
4476    VT.getVectorElementType().getSizeInBits() >> 3;
4477
4478  unsigned NumElts = VT.getVectorNumElements();
4479  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4480  unsigned NumLaneElts = NumElts/NumLanes;
4481
4482  int Val = 0;
4483  unsigned i;
4484  for (i = 0; i != NumElts; ++i) {
4485    Val = SVOp->getMaskElt(i);
4486    if (Val >= 0)
4487      break;
4488  }
4489  if (Val >= (int)NumElts)
4490    Val -= NumElts - NumLaneElts;
4491
4492  assert(Val - i > 0 && "PALIGNR imm should be positive");
4493  return (Val - i) * EltSize;
4494}
4495
4496static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4497  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4498  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4499    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4500
4501  uint64_t Index =
4502    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4503
4504  MVT VecVT = N->getOperand(0).getSimpleValueType();
4505  MVT ElVT = VecVT.getVectorElementType();
4506
4507  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4508  return Index / NumElemsPerChunk;
4509}
4510
4511static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4512  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4513  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4514    llvm_unreachable("Illegal insert subvector for VINSERT");
4515
4516  uint64_t Index =
4517    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4518
4519  MVT VecVT = N->getSimpleValueType(0);
4520  MVT ElVT = VecVT.getVectorElementType();
4521
4522  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4523  return Index / NumElemsPerChunk;
4524}
4525
4526/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4527/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4528/// and VINSERTI128 instructions.
4529unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4530  return getExtractVEXTRACTImmediate(N, 128);
4531}
4532
4533/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4534/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4535/// and VINSERTI64x4 instructions.
4536unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4537  return getExtractVEXTRACTImmediate(N, 256);
4538}
4539
4540/// getInsertVINSERT128Immediate - Return the appropriate immediate
4541/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4542/// and VINSERTI128 instructions.
4543unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4544  return getInsertVINSERTImmediate(N, 128);
4545}
4546
4547/// getInsertVINSERT256Immediate - Return the appropriate immediate
4548/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4549/// and VINSERTI64x4 instructions.
4550unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4551  return getInsertVINSERTImmediate(N, 256);
4552}
4553
4554/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4555/// constant +0.0.
4556bool X86::isZeroNode(SDValue Elt) {
4557  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4558    return CN->isNullValue();
4559  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4560    return CFP->getValueAPF().isPosZero();
4561  return false;
4562}
4563
4564/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4565/// their permute mask.
4566static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4567                                    SelectionDAG &DAG) {
4568  MVT VT = SVOp->getSimpleValueType(0);
4569  unsigned NumElems = VT.getVectorNumElements();
4570  SmallVector<int, 8> MaskVec;
4571
4572  for (unsigned i = 0; i != NumElems; ++i) {
4573    int Idx = SVOp->getMaskElt(i);
4574    if (Idx >= 0) {
4575      if (Idx < (int)NumElems)
4576        Idx += NumElems;
4577      else
4578        Idx -= NumElems;
4579    }
4580    MaskVec.push_back(Idx);
4581  }
4582  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4583                              SVOp->getOperand(0), &MaskVec[0]);
4584}
4585
4586/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4587/// match movhlps. The lower half elements should come from upper half of
4588/// V1 (and in order), and the upper half elements should come from the upper
4589/// half of V2 (and in order).
4590static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4591  if (!VT.is128BitVector())
4592    return false;
4593  if (VT.getVectorNumElements() != 4)
4594    return false;
4595  for (unsigned i = 0, e = 2; i != e; ++i)
4596    if (!isUndefOrEqual(Mask[i], i+2))
4597      return false;
4598  for (unsigned i = 2; i != 4; ++i)
4599    if (!isUndefOrEqual(Mask[i], i+4))
4600      return false;
4601  return true;
4602}
4603
4604/// isScalarLoadToVector - Returns true if the node is a scalar load that
4605/// is promoted to a vector. It also returns the LoadSDNode by reference if
4606/// required.
4607static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4608  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4609    return false;
4610  N = N->getOperand(0).getNode();
4611  if (!ISD::isNON_EXTLoad(N))
4612    return false;
4613  if (LD)
4614    *LD = cast<LoadSDNode>(N);
4615  return true;
4616}
4617
4618// Test whether the given value is a vector value which will be legalized
4619// into a load.
4620static bool WillBeConstantPoolLoad(SDNode *N) {
4621  if (N->getOpcode() != ISD::BUILD_VECTOR)
4622    return false;
4623
4624  // Check for any non-constant elements.
4625  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4626    switch (N->getOperand(i).getNode()->getOpcode()) {
4627    case ISD::UNDEF:
4628    case ISD::ConstantFP:
4629    case ISD::Constant:
4630      break;
4631    default:
4632      return false;
4633    }
4634
4635  // Vectors of all-zeros and all-ones are materialized with special
4636  // instructions rather than being loaded.
4637  return !ISD::isBuildVectorAllZeros(N) &&
4638         !ISD::isBuildVectorAllOnes(N);
4639}
4640
4641/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4642/// match movlp{s|d}. The lower half elements should come from lower half of
4643/// V1 (and in order), and the upper half elements should come from the upper
4644/// half of V2 (and in order). And since V1 will become the source of the
4645/// MOVLP, it must be either a vector load or a scalar load to vector.
4646static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4647                               ArrayRef<int> Mask, MVT VT) {
4648  if (!VT.is128BitVector())
4649    return false;
4650
4651  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4652    return false;
4653  // Is V2 is a vector load, don't do this transformation. We will try to use
4654  // load folding shufps op.
4655  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4656    return false;
4657
4658  unsigned NumElems = VT.getVectorNumElements();
4659
4660  if (NumElems != 2 && NumElems != 4)
4661    return false;
4662  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4663    if (!isUndefOrEqual(Mask[i], i))
4664      return false;
4665  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4666    if (!isUndefOrEqual(Mask[i], i+NumElems))
4667      return false;
4668  return true;
4669}
4670
4671/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4672/// all the same.
4673static bool isSplatVector(SDNode *N) {
4674  if (N->getOpcode() != ISD::BUILD_VECTOR)
4675    return false;
4676
4677  SDValue SplatValue = N->getOperand(0);
4678  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4679    if (N->getOperand(i) != SplatValue)
4680      return false;
4681  return true;
4682}
4683
4684/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4685/// to an zero vector.
4686/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4687static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4688  SDValue V1 = N->getOperand(0);
4689  SDValue V2 = N->getOperand(1);
4690  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4691  for (unsigned i = 0; i != NumElems; ++i) {
4692    int Idx = N->getMaskElt(i);
4693    if (Idx >= (int)NumElems) {
4694      unsigned Opc = V2.getOpcode();
4695      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4696        continue;
4697      if (Opc != ISD::BUILD_VECTOR ||
4698          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4699        return false;
4700    } else if (Idx >= 0) {
4701      unsigned Opc = V1.getOpcode();
4702      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4703        continue;
4704      if (Opc != ISD::BUILD_VECTOR ||
4705          !X86::isZeroNode(V1.getOperand(Idx)))
4706        return false;
4707    }
4708  }
4709  return true;
4710}
4711
4712/// getZeroVector - Returns a vector of specified type with all zero elements.
4713///
4714static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4715                             SelectionDAG &DAG, SDLoc dl) {
4716  assert(VT.isVector() && "Expected a vector type");
4717
4718  // Always build SSE zero vectors as <4 x i32> bitcasted
4719  // to their dest type. This ensures they get CSE'd.
4720  SDValue Vec;
4721  if (VT.is128BitVector()) {  // SSE
4722    if (Subtarget->hasSSE2()) {  // SSE2
4723      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4724      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4725    } else { // SSE1
4726      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4727      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4728    }
4729  } else if (VT.is256BitVector()) { // AVX
4730    if (Subtarget->hasInt256()) { // AVX2
4731      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4732      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4733      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4734                        array_lengthof(Ops));
4735    } else {
4736      // 256-bit logic and arithmetic instructions in AVX are all
4737      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4738      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4739      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4740      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4741                        array_lengthof(Ops));
4742    }
4743  } else if (VT.is512BitVector()) { // AVX-512
4744      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4745      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4746                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4747      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
4748  } else
4749    llvm_unreachable("Unexpected vector type");
4750
4751  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4752}
4753
4754/// getOnesVector - Returns a vector of specified type with all bits set.
4755/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4756/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4757/// Then bitcast to their original type, ensuring they get CSE'd.
4758static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4759                             SDLoc dl) {
4760  assert(VT.isVector() && "Expected a vector type");
4761
4762  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4763  SDValue Vec;
4764  if (VT.is256BitVector()) {
4765    if (HasInt256) { // AVX2
4766      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4767      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4768                        array_lengthof(Ops));
4769    } else { // AVX
4770      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4771      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4772    }
4773  } else if (VT.is128BitVector()) {
4774    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4775  } else
4776    llvm_unreachable("Unexpected vector type");
4777
4778  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4779}
4780
4781/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4782/// that point to V2 points to its first element.
4783static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4784  for (unsigned i = 0; i != NumElems; ++i) {
4785    if (Mask[i] > (int)NumElems) {
4786      Mask[i] = NumElems;
4787    }
4788  }
4789}
4790
4791/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4792/// operation of specified width.
4793static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4794                       SDValue V2) {
4795  unsigned NumElems = VT.getVectorNumElements();
4796  SmallVector<int, 8> Mask;
4797  Mask.push_back(NumElems);
4798  for (unsigned i = 1; i != NumElems; ++i)
4799    Mask.push_back(i);
4800  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4801}
4802
4803/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4804static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4805                          SDValue V2) {
4806  unsigned NumElems = VT.getVectorNumElements();
4807  SmallVector<int, 8> Mask;
4808  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4809    Mask.push_back(i);
4810    Mask.push_back(i + NumElems);
4811  }
4812  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4813}
4814
4815/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4816static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4817                          SDValue V2) {
4818  unsigned NumElems = VT.getVectorNumElements();
4819  SmallVector<int, 8> Mask;
4820  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4821    Mask.push_back(i + Half);
4822    Mask.push_back(i + NumElems + Half);
4823  }
4824  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4825}
4826
4827// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4828// a generic shuffle instruction because the target has no such instructions.
4829// Generate shuffles which repeat i16 and i8 several times until they can be
4830// represented by v4f32 and then be manipulated by target suported shuffles.
4831static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4832  MVT VT = V.getSimpleValueType();
4833  int NumElems = VT.getVectorNumElements();
4834  SDLoc dl(V);
4835
4836  while (NumElems > 4) {
4837    if (EltNo < NumElems/2) {
4838      V = getUnpackl(DAG, dl, VT, V, V);
4839    } else {
4840      V = getUnpackh(DAG, dl, VT, V, V);
4841      EltNo -= NumElems/2;
4842    }
4843    NumElems >>= 1;
4844  }
4845  return V;
4846}
4847
4848/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4849static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4850  MVT VT = V.getSimpleValueType();
4851  SDLoc dl(V);
4852
4853  if (VT.is128BitVector()) {
4854    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4855    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4856    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4857                             &SplatMask[0]);
4858  } else if (VT.is256BitVector()) {
4859    // To use VPERMILPS to splat scalars, the second half of indicies must
4860    // refer to the higher part, which is a duplication of the lower one,
4861    // because VPERMILPS can only handle in-lane permutations.
4862    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4863                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4864
4865    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4866    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4867                             &SplatMask[0]);
4868  } else
4869    llvm_unreachable("Vector size not supported");
4870
4871  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4872}
4873
4874/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4875static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4876  MVT SrcVT = SV->getSimpleValueType(0);
4877  SDValue V1 = SV->getOperand(0);
4878  SDLoc dl(SV);
4879
4880  int EltNo = SV->getSplatIndex();
4881  int NumElems = SrcVT.getVectorNumElements();
4882  bool Is256BitVec = SrcVT.is256BitVector();
4883
4884  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4885         "Unknown how to promote splat for type");
4886
4887  // Extract the 128-bit part containing the splat element and update
4888  // the splat element index when it refers to the higher register.
4889  if (Is256BitVec) {
4890    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4891    if (EltNo >= NumElems/2)
4892      EltNo -= NumElems/2;
4893  }
4894
4895  // All i16 and i8 vector types can't be used directly by a generic shuffle
4896  // instruction because the target has no such instruction. Generate shuffles
4897  // which repeat i16 and i8 several times until they fit in i32, and then can
4898  // be manipulated by target suported shuffles.
4899  MVT EltVT = SrcVT.getVectorElementType();
4900  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4901    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4902
4903  // Recreate the 256-bit vector and place the same 128-bit vector
4904  // into the low and high part. This is necessary because we want
4905  // to use VPERM* to shuffle the vectors
4906  if (Is256BitVec) {
4907    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4908  }
4909
4910  return getLegalSplat(DAG, V1, EltNo);
4911}
4912
4913/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4914/// vector of zero or undef vector.  This produces a shuffle where the low
4915/// element of V2 is swizzled into the zero/undef vector, landing at element
4916/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4917static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4918                                           bool IsZero,
4919                                           const X86Subtarget *Subtarget,
4920                                           SelectionDAG &DAG) {
4921  MVT VT = V2.getSimpleValueType();
4922  SDValue V1 = IsZero
4923    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4924  unsigned NumElems = VT.getVectorNumElements();
4925  SmallVector<int, 16> MaskVec;
4926  for (unsigned i = 0; i != NumElems; ++i)
4927    // If this is the insertion idx, put the low elt of V2 here.
4928    MaskVec.push_back(i == Idx ? NumElems : i);
4929  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4930}
4931
4932/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4933/// target specific opcode. Returns true if the Mask could be calculated.
4934/// Sets IsUnary to true if only uses one source.
4935static bool getTargetShuffleMask(SDNode *N, MVT VT,
4936                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4937  unsigned NumElems = VT.getVectorNumElements();
4938  SDValue ImmN;
4939
4940  IsUnary = false;
4941  switch(N->getOpcode()) {
4942  case X86ISD::SHUFP:
4943    ImmN = N->getOperand(N->getNumOperands()-1);
4944    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4945    break;
4946  case X86ISD::UNPCKH:
4947    DecodeUNPCKHMask(VT, Mask);
4948    break;
4949  case X86ISD::UNPCKL:
4950    DecodeUNPCKLMask(VT, Mask);
4951    break;
4952  case X86ISD::MOVHLPS:
4953    DecodeMOVHLPSMask(NumElems, Mask);
4954    break;
4955  case X86ISD::MOVLHPS:
4956    DecodeMOVLHPSMask(NumElems, Mask);
4957    break;
4958  case X86ISD::PALIGNR:
4959    ImmN = N->getOperand(N->getNumOperands()-1);
4960    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4961    break;
4962  case X86ISD::PSHUFD:
4963  case X86ISD::VPERMILP:
4964    ImmN = N->getOperand(N->getNumOperands()-1);
4965    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4966    IsUnary = true;
4967    break;
4968  case X86ISD::PSHUFHW:
4969    ImmN = N->getOperand(N->getNumOperands()-1);
4970    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4971    IsUnary = true;
4972    break;
4973  case X86ISD::PSHUFLW:
4974    ImmN = N->getOperand(N->getNumOperands()-1);
4975    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4976    IsUnary = true;
4977    break;
4978  case X86ISD::VPERMI:
4979    ImmN = N->getOperand(N->getNumOperands()-1);
4980    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4981    IsUnary = true;
4982    break;
4983  case X86ISD::MOVSS:
4984  case X86ISD::MOVSD: {
4985    // The index 0 always comes from the first element of the second source,
4986    // this is why MOVSS and MOVSD are used in the first place. The other
4987    // elements come from the other positions of the first source vector
4988    Mask.push_back(NumElems);
4989    for (unsigned i = 1; i != NumElems; ++i) {
4990      Mask.push_back(i);
4991    }
4992    break;
4993  }
4994  case X86ISD::VPERM2X128:
4995    ImmN = N->getOperand(N->getNumOperands()-1);
4996    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4997    if (Mask.empty()) return false;
4998    break;
4999  case X86ISD::MOVDDUP:
5000  case X86ISD::MOVLHPD:
5001  case X86ISD::MOVLPD:
5002  case X86ISD::MOVLPS:
5003  case X86ISD::MOVSHDUP:
5004  case X86ISD::MOVSLDUP:
5005    // Not yet implemented
5006    return false;
5007  default: llvm_unreachable("unknown target shuffle node");
5008  }
5009
5010  return true;
5011}
5012
5013/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5014/// element of the result of the vector shuffle.
5015static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5016                                   unsigned Depth) {
5017  if (Depth == 6)
5018    return SDValue();  // Limit search depth.
5019
5020  SDValue V = SDValue(N, 0);
5021  EVT VT = V.getValueType();
5022  unsigned Opcode = V.getOpcode();
5023
5024  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5025  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5026    int Elt = SV->getMaskElt(Index);
5027
5028    if (Elt < 0)
5029      return DAG.getUNDEF(VT.getVectorElementType());
5030
5031    unsigned NumElems = VT.getVectorNumElements();
5032    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5033                                         : SV->getOperand(1);
5034    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5035  }
5036
5037  // Recurse into target specific vector shuffles to find scalars.
5038  if (isTargetShuffle(Opcode)) {
5039    MVT ShufVT = V.getSimpleValueType();
5040    unsigned NumElems = ShufVT.getVectorNumElements();
5041    SmallVector<int, 16> ShuffleMask;
5042    bool IsUnary;
5043
5044    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5045      return SDValue();
5046
5047    int Elt = ShuffleMask[Index];
5048    if (Elt < 0)
5049      return DAG.getUNDEF(ShufVT.getVectorElementType());
5050
5051    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5052                                         : N->getOperand(1);
5053    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5054                               Depth+1);
5055  }
5056
5057  // Actual nodes that may contain scalar elements
5058  if (Opcode == ISD::BITCAST) {
5059    V = V.getOperand(0);
5060    EVT SrcVT = V.getValueType();
5061    unsigned NumElems = VT.getVectorNumElements();
5062
5063    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5064      return SDValue();
5065  }
5066
5067  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5068    return (Index == 0) ? V.getOperand(0)
5069                        : DAG.getUNDEF(VT.getVectorElementType());
5070
5071  if (V.getOpcode() == ISD::BUILD_VECTOR)
5072    return V.getOperand(Index);
5073
5074  return SDValue();
5075}
5076
5077/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5078/// shuffle operation which come from a consecutively from a zero. The
5079/// search can start in two different directions, from left or right.
5080/// We count undefs as zeros until PreferredNum is reached.
5081static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5082                                         unsigned NumElems, bool ZerosFromLeft,
5083                                         SelectionDAG &DAG,
5084                                         unsigned PreferredNum = -1U) {
5085  unsigned NumZeros = 0;
5086  for (unsigned i = 0; i != NumElems; ++i) {
5087    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5088    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5089    if (!Elt.getNode())
5090      break;
5091
5092    if (X86::isZeroNode(Elt))
5093      ++NumZeros;
5094    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5095      NumZeros = std::min(NumZeros + 1, PreferredNum);
5096    else
5097      break;
5098  }
5099
5100  return NumZeros;
5101}
5102
5103/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5104/// correspond consecutively to elements from one of the vector operands,
5105/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5106static
5107bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5108                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5109                              unsigned NumElems, unsigned &OpNum) {
5110  bool SeenV1 = false;
5111  bool SeenV2 = false;
5112
5113  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5114    int Idx = SVOp->getMaskElt(i);
5115    // Ignore undef indicies
5116    if (Idx < 0)
5117      continue;
5118
5119    if (Idx < (int)NumElems)
5120      SeenV1 = true;
5121    else
5122      SeenV2 = true;
5123
5124    // Only accept consecutive elements from the same vector
5125    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5126      return false;
5127  }
5128
5129  OpNum = SeenV1 ? 0 : 1;
5130  return true;
5131}
5132
5133/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5134/// logical left shift of a vector.
5135static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5136                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5137  unsigned NumElems =
5138    SVOp->getSimpleValueType(0).getVectorNumElements();
5139  unsigned NumZeros = getNumOfConsecutiveZeros(
5140      SVOp, NumElems, false /* check zeros from right */, DAG,
5141      SVOp->getMaskElt(0));
5142  unsigned OpSrc;
5143
5144  if (!NumZeros)
5145    return false;
5146
5147  // Considering the elements in the mask that are not consecutive zeros,
5148  // check if they consecutively come from only one of the source vectors.
5149  //
5150  //               V1 = {X, A, B, C}     0
5151  //                         \  \  \    /
5152  //   vector_shuffle V1, V2 <1, 2, 3, X>
5153  //
5154  if (!isShuffleMaskConsecutive(SVOp,
5155            0,                   // Mask Start Index
5156            NumElems-NumZeros,   // Mask End Index(exclusive)
5157            NumZeros,            // Where to start looking in the src vector
5158            NumElems,            // Number of elements in vector
5159            OpSrc))              // Which source operand ?
5160    return false;
5161
5162  isLeft = false;
5163  ShAmt = NumZeros;
5164  ShVal = SVOp->getOperand(OpSrc);
5165  return true;
5166}
5167
5168/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5169/// logical left shift of a vector.
5170static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5171                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5172  unsigned NumElems =
5173    SVOp->getSimpleValueType(0).getVectorNumElements();
5174  unsigned NumZeros = getNumOfConsecutiveZeros(
5175      SVOp, NumElems, true /* check zeros from left */, DAG,
5176      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5177  unsigned OpSrc;
5178
5179  if (!NumZeros)
5180    return false;
5181
5182  // Considering the elements in the mask that are not consecutive zeros,
5183  // check if they consecutively come from only one of the source vectors.
5184  //
5185  //                           0    { A, B, X, X } = V2
5186  //                          / \    /  /
5187  //   vector_shuffle V1, V2 <X, X, 4, 5>
5188  //
5189  if (!isShuffleMaskConsecutive(SVOp,
5190            NumZeros,     // Mask Start Index
5191            NumElems,     // Mask End Index(exclusive)
5192            0,            // Where to start looking in the src vector
5193            NumElems,     // Number of elements in vector
5194            OpSrc))       // Which source operand ?
5195    return false;
5196
5197  isLeft = true;
5198  ShAmt = NumZeros;
5199  ShVal = SVOp->getOperand(OpSrc);
5200  return true;
5201}
5202
5203/// isVectorShift - Returns true if the shuffle can be implemented as a
5204/// logical left or right shift of a vector.
5205static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5206                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5207  // Although the logic below support any bitwidth size, there are no
5208  // shift instructions which handle more than 128-bit vectors.
5209  if (!SVOp->getSimpleValueType(0).is128BitVector())
5210    return false;
5211
5212  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5213      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5214    return true;
5215
5216  return false;
5217}
5218
5219/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5220///
5221static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5222                                       unsigned NumNonZero, unsigned NumZero,
5223                                       SelectionDAG &DAG,
5224                                       const X86Subtarget* Subtarget,
5225                                       const TargetLowering &TLI) {
5226  if (NumNonZero > 8)
5227    return SDValue();
5228
5229  SDLoc dl(Op);
5230  SDValue V(0, 0);
5231  bool First = true;
5232  for (unsigned i = 0; i < 16; ++i) {
5233    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5234    if (ThisIsNonZero && First) {
5235      if (NumZero)
5236        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5237      else
5238        V = DAG.getUNDEF(MVT::v8i16);
5239      First = false;
5240    }
5241
5242    if ((i & 1) != 0) {
5243      SDValue ThisElt(0, 0), LastElt(0, 0);
5244      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5245      if (LastIsNonZero) {
5246        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5247                              MVT::i16, Op.getOperand(i-1));
5248      }
5249      if (ThisIsNonZero) {
5250        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5251        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5252                              ThisElt, DAG.getConstant(8, MVT::i8));
5253        if (LastIsNonZero)
5254          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5255      } else
5256        ThisElt = LastElt;
5257
5258      if (ThisElt.getNode())
5259        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5260                        DAG.getIntPtrConstant(i/2));
5261    }
5262  }
5263
5264  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5265}
5266
5267/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5268///
5269static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5270                                     unsigned NumNonZero, unsigned NumZero,
5271                                     SelectionDAG &DAG,
5272                                     const X86Subtarget* Subtarget,
5273                                     const TargetLowering &TLI) {
5274  if (NumNonZero > 4)
5275    return SDValue();
5276
5277  SDLoc dl(Op);
5278  SDValue V(0, 0);
5279  bool First = true;
5280  for (unsigned i = 0; i < 8; ++i) {
5281    bool isNonZero = (NonZeros & (1 << i)) != 0;
5282    if (isNonZero) {
5283      if (First) {
5284        if (NumZero)
5285          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5286        else
5287          V = DAG.getUNDEF(MVT::v8i16);
5288        First = false;
5289      }
5290      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5291                      MVT::v8i16, V, Op.getOperand(i),
5292                      DAG.getIntPtrConstant(i));
5293    }
5294  }
5295
5296  return V;
5297}
5298
5299/// getVShift - Return a vector logical shift node.
5300///
5301static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5302                         unsigned NumBits, SelectionDAG &DAG,
5303                         const TargetLowering &TLI, SDLoc dl) {
5304  assert(VT.is128BitVector() && "Unknown type for VShift");
5305  EVT ShVT = MVT::v2i64;
5306  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5307  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5308  return DAG.getNode(ISD::BITCAST, dl, VT,
5309                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5310                             DAG.getConstant(NumBits,
5311                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5312}
5313
5314static SDValue
5315LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5316
5317  // Check if the scalar load can be widened into a vector load. And if
5318  // the address is "base + cst" see if the cst can be "absorbed" into
5319  // the shuffle mask.
5320  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5321    SDValue Ptr = LD->getBasePtr();
5322    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5323      return SDValue();
5324    EVT PVT = LD->getValueType(0);
5325    if (PVT != MVT::i32 && PVT != MVT::f32)
5326      return SDValue();
5327
5328    int FI = -1;
5329    int64_t Offset = 0;
5330    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5331      FI = FINode->getIndex();
5332      Offset = 0;
5333    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5334               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5335      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5336      Offset = Ptr.getConstantOperandVal(1);
5337      Ptr = Ptr.getOperand(0);
5338    } else {
5339      return SDValue();
5340    }
5341
5342    // FIXME: 256-bit vector instructions don't require a strict alignment,
5343    // improve this code to support it better.
5344    unsigned RequiredAlign = VT.getSizeInBits()/8;
5345    SDValue Chain = LD->getChain();
5346    // Make sure the stack object alignment is at least 16 or 32.
5347    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5348    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5349      if (MFI->isFixedObjectIndex(FI)) {
5350        // Can't change the alignment. FIXME: It's possible to compute
5351        // the exact stack offset and reference FI + adjust offset instead.
5352        // If someone *really* cares about this. That's the way to implement it.
5353        return SDValue();
5354      } else {
5355        MFI->setObjectAlignment(FI, RequiredAlign);
5356      }
5357    }
5358
5359    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5360    // Ptr + (Offset & ~15).
5361    if (Offset < 0)
5362      return SDValue();
5363    if ((Offset % RequiredAlign) & 3)
5364      return SDValue();
5365    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5366    if (StartOffset)
5367      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5368                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5369
5370    int EltNo = (Offset - StartOffset) >> 2;
5371    unsigned NumElems = VT.getVectorNumElements();
5372
5373    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5374    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5375                             LD->getPointerInfo().getWithOffset(StartOffset),
5376                             false, false, false, 0);
5377
5378    SmallVector<int, 8> Mask;
5379    for (unsigned i = 0; i != NumElems; ++i)
5380      Mask.push_back(EltNo);
5381
5382    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5383  }
5384
5385  return SDValue();
5386}
5387
5388/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5389/// vector of type 'VT', see if the elements can be replaced by a single large
5390/// load which has the same value as a build_vector whose operands are 'elts'.
5391///
5392/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5393///
5394/// FIXME: we'd also like to handle the case where the last elements are zero
5395/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5396/// There's even a handy isZeroNode for that purpose.
5397static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5398                                        SDLoc &DL, SelectionDAG &DAG,
5399                                        bool isAfterLegalize) {
5400  EVT EltVT = VT.getVectorElementType();
5401  unsigned NumElems = Elts.size();
5402
5403  LoadSDNode *LDBase = NULL;
5404  unsigned LastLoadedElt = -1U;
5405
5406  // For each element in the initializer, see if we've found a load or an undef.
5407  // If we don't find an initial load element, or later load elements are
5408  // non-consecutive, bail out.
5409  for (unsigned i = 0; i < NumElems; ++i) {
5410    SDValue Elt = Elts[i];
5411
5412    if (!Elt.getNode() ||
5413        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5414      return SDValue();
5415    if (!LDBase) {
5416      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5417        return SDValue();
5418      LDBase = cast<LoadSDNode>(Elt.getNode());
5419      LastLoadedElt = i;
5420      continue;
5421    }
5422    if (Elt.getOpcode() == ISD::UNDEF)
5423      continue;
5424
5425    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5426    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5427      return SDValue();
5428    LastLoadedElt = i;
5429  }
5430
5431  // If we have found an entire vector of loads and undefs, then return a large
5432  // load of the entire vector width starting at the base pointer.  If we found
5433  // consecutive loads for the low half, generate a vzext_load node.
5434  if (LastLoadedElt == NumElems - 1) {
5435
5436    if (isAfterLegalize &&
5437        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
5438      return SDValue();
5439
5440    SDValue NewLd = SDValue();
5441
5442    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5443      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5444                          LDBase->getPointerInfo(),
5445                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5446                          LDBase->isInvariant(), 0);
5447    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5448                        LDBase->getPointerInfo(),
5449                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5450                        LDBase->isInvariant(), LDBase->getAlignment());
5451
5452    if (LDBase->hasAnyUseOfValue(1)) {
5453      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5454                                     SDValue(LDBase, 1),
5455                                     SDValue(NewLd.getNode(), 1));
5456      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5457      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5458                             SDValue(NewLd.getNode(), 1));
5459    }
5460
5461    return NewLd;
5462  }
5463  if (NumElems == 4 && LastLoadedElt == 1 &&
5464      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5465    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5466    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5467    SDValue ResNode =
5468        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5469                                array_lengthof(Ops), MVT::i64,
5470                                LDBase->getPointerInfo(),
5471                                LDBase->getAlignment(),
5472                                false/*isVolatile*/, true/*ReadMem*/,
5473                                false/*WriteMem*/);
5474
5475    // Make sure the newly-created LOAD is in the same position as LDBase in
5476    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5477    // update uses of LDBase's output chain to use the TokenFactor.
5478    if (LDBase->hasAnyUseOfValue(1)) {
5479      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5480                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5481      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5482      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5483                             SDValue(ResNode.getNode(), 1));
5484    }
5485
5486    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5487  }
5488  return SDValue();
5489}
5490
5491/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5492/// to generate a splat value for the following cases:
5493/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5494/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5495/// a scalar load, or a constant.
5496/// The VBROADCAST node is returned when a pattern is found,
5497/// or SDValue() otherwise.
5498static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5499                                    SelectionDAG &DAG) {
5500  if (!Subtarget->hasFp256())
5501    return SDValue();
5502
5503  MVT VT = Op.getSimpleValueType();
5504  SDLoc dl(Op);
5505
5506  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5507         "Unsupported vector type for broadcast.");
5508
5509  SDValue Ld;
5510  bool ConstSplatVal;
5511
5512  switch (Op.getOpcode()) {
5513    default:
5514      // Unknown pattern found.
5515      return SDValue();
5516
5517    case ISD::BUILD_VECTOR: {
5518      // The BUILD_VECTOR node must be a splat.
5519      if (!isSplatVector(Op.getNode()))
5520        return SDValue();
5521
5522      Ld = Op.getOperand(0);
5523      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5524                     Ld.getOpcode() == ISD::ConstantFP);
5525
5526      // The suspected load node has several users. Make sure that all
5527      // of its users are from the BUILD_VECTOR node.
5528      // Constants may have multiple users.
5529      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5530        return SDValue();
5531      break;
5532    }
5533
5534    case ISD::VECTOR_SHUFFLE: {
5535      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5536
5537      // Shuffles must have a splat mask where the first element is
5538      // broadcasted.
5539      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5540        return SDValue();
5541
5542      SDValue Sc = Op.getOperand(0);
5543      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5544          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5545
5546        if (!Subtarget->hasInt256())
5547          return SDValue();
5548
5549        // Use the register form of the broadcast instruction available on AVX2.
5550        if (VT.getSizeInBits() >= 256)
5551          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5552        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5553      }
5554
5555      Ld = Sc.getOperand(0);
5556      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5557                       Ld.getOpcode() == ISD::ConstantFP);
5558
5559      // The scalar_to_vector node and the suspected
5560      // load node must have exactly one user.
5561      // Constants may have multiple users.
5562
5563      // AVX-512 has register version of the broadcast
5564      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5565        Ld.getValueType().getSizeInBits() >= 32;
5566      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5567          !hasRegVer))
5568        return SDValue();
5569      break;
5570    }
5571  }
5572
5573  bool IsGE256 = (VT.getSizeInBits() >= 256);
5574
5575  // Handle the broadcasting a single constant scalar from the constant pool
5576  // into a vector. On Sandybridge it is still better to load a constant vector
5577  // from the constant pool and not to broadcast it from a scalar.
5578  if (ConstSplatVal && Subtarget->hasInt256()) {
5579    EVT CVT = Ld.getValueType();
5580    assert(!CVT.isVector() && "Must not broadcast a vector type");
5581    unsigned ScalarSize = CVT.getSizeInBits();
5582
5583    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5584      const Constant *C = 0;
5585      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5586        C = CI->getConstantIntValue();
5587      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5588        C = CF->getConstantFPValue();
5589
5590      assert(C && "Invalid constant type");
5591
5592      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5593      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5594      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5595      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5596                       MachinePointerInfo::getConstantPool(),
5597                       false, false, false, Alignment);
5598
5599      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5600    }
5601  }
5602
5603  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5604  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5605
5606  // Handle AVX2 in-register broadcasts.
5607  if (!IsLoad && Subtarget->hasInt256() &&
5608      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5609    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5610
5611  // The scalar source must be a normal load.
5612  if (!IsLoad)
5613    return SDValue();
5614
5615  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5616    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5617
5618  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5619  // double since there is no vbroadcastsd xmm
5620  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5621    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5622      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5623  }
5624
5625  // Unsupported broadcast.
5626  return SDValue();
5627}
5628
5629static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5630  MVT VT = Op.getSimpleValueType();
5631
5632  // Skip if insert_vec_elt is not supported.
5633  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5634  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5635    return SDValue();
5636
5637  SDLoc DL(Op);
5638  unsigned NumElems = Op.getNumOperands();
5639
5640  SDValue VecIn1;
5641  SDValue VecIn2;
5642  SmallVector<unsigned, 4> InsertIndices;
5643  SmallVector<int, 8> Mask(NumElems, -1);
5644
5645  for (unsigned i = 0; i != NumElems; ++i) {
5646    unsigned Opc = Op.getOperand(i).getOpcode();
5647
5648    if (Opc == ISD::UNDEF)
5649      continue;
5650
5651    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5652      // Quit if more than 1 elements need inserting.
5653      if (InsertIndices.size() > 1)
5654        return SDValue();
5655
5656      InsertIndices.push_back(i);
5657      continue;
5658    }
5659
5660    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5661    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5662
5663    // Quit if extracted from vector of different type.
5664    if (ExtractedFromVec.getValueType() != VT)
5665      return SDValue();
5666
5667    // Quit if non-constant index.
5668    if (!isa<ConstantSDNode>(ExtIdx))
5669      return SDValue();
5670
5671    if (VecIn1.getNode() == 0)
5672      VecIn1 = ExtractedFromVec;
5673    else if (VecIn1 != ExtractedFromVec) {
5674      if (VecIn2.getNode() == 0)
5675        VecIn2 = ExtractedFromVec;
5676      else if (VecIn2 != ExtractedFromVec)
5677        // Quit if more than 2 vectors to shuffle
5678        return SDValue();
5679    }
5680
5681    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5682
5683    if (ExtractedFromVec == VecIn1)
5684      Mask[i] = Idx;
5685    else if (ExtractedFromVec == VecIn2)
5686      Mask[i] = Idx + NumElems;
5687  }
5688
5689  if (VecIn1.getNode() == 0)
5690    return SDValue();
5691
5692  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5693  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5694  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5695    unsigned Idx = InsertIndices[i];
5696    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5697                     DAG.getIntPtrConstant(Idx));
5698  }
5699
5700  return NV;
5701}
5702
5703// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5704SDValue
5705X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5706
5707  MVT VT = Op.getSimpleValueType();
5708  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5709         "Unexpected type in LowerBUILD_VECTORvXi1!");
5710
5711  SDLoc dl(Op);
5712  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5713    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5714    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5715                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5716    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5717                       Ops, VT.getVectorNumElements());
5718  }
5719
5720  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5721    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5722    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5723                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5724    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5725                       Ops, VT.getVectorNumElements());
5726  }
5727
5728  bool AllContants = true;
5729  uint64_t Immediate = 0;
5730  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5731    SDValue In = Op.getOperand(idx);
5732    if (In.getOpcode() == ISD::UNDEF)
5733      continue;
5734    if (!isa<ConstantSDNode>(In)) {
5735      AllContants = false;
5736      break;
5737    }
5738    if (cast<ConstantSDNode>(In)->getZExtValue())
5739      Immediate |= (1ULL << idx);
5740  }
5741
5742  if (AllContants) {
5743    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5744      DAG.getConstant(Immediate, MVT::i16));
5745    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5746                       DAG.getIntPtrConstant(0));
5747  }
5748
5749  // Splat vector (with undefs)
5750  SDValue In = Op.getOperand(0);
5751  for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
5752    if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
5753      llvm_unreachable("Unsupported predicate operation");
5754  }
5755
5756  SDValue EFLAGS, X86CC;
5757  if (In.getOpcode() == ISD::SETCC) {
5758    SDValue Op0 = In.getOperand(0);
5759    SDValue Op1 = In.getOperand(1);
5760    ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
5761    bool isFP = Op1.getValueType().isFloatingPoint();
5762    unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5763
5764    assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
5765
5766    X86CC = DAG.getConstant(X86CCVal, MVT::i8);
5767    EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
5768    EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
5769  } else if (In.getOpcode() == X86ISD::SETCC) {
5770    X86CC = In.getOperand(0);
5771    EFLAGS = In.getOperand(1);
5772  } else {
5773    // The algorithm:
5774    //   Bit1 = In & 0x1
5775    //   if (Bit1 != 0)
5776    //     ZF = 0
5777    //   else
5778    //     ZF = 1
5779    //   if (ZF == 0)
5780    //     res = allOnes ### CMOVNE -1, %res
5781    //   else
5782    //     res = allZero
5783    MVT InVT = In.getSimpleValueType();
5784    SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
5785    EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
5786    X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5787  }
5788
5789  if (VT == MVT::v16i1) {
5790    SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
5791    SDValue Cst0 = DAG.getConstant(0, MVT::i16);
5792    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
5793          Cst0, Cst1, X86CC, EFLAGS);
5794    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5795  }
5796
5797  if (VT == MVT::v8i1) {
5798    SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
5799    SDValue Cst0 = DAG.getConstant(0, MVT::i32);
5800    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
5801          Cst0, Cst1, X86CC, EFLAGS);
5802    CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
5803    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5804  }
5805  llvm_unreachable("Unsupported predicate operation");
5806}
5807
5808SDValue
5809X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5810  SDLoc dl(Op);
5811
5812  MVT VT = Op.getSimpleValueType();
5813  MVT ExtVT = VT.getVectorElementType();
5814  unsigned NumElems = Op.getNumOperands();
5815
5816  // Generate vectors for predicate vectors.
5817  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5818    return LowerBUILD_VECTORvXi1(Op, DAG);
5819
5820  // Vectors containing all zeros can be matched by pxor and xorps later
5821  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5822    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5823    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5824    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5825      return Op;
5826
5827    return getZeroVector(VT, Subtarget, DAG, dl);
5828  }
5829
5830  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5831  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5832  // vpcmpeqd on 256-bit vectors.
5833  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5834    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5835      return Op;
5836
5837    if (!VT.is512BitVector())
5838      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5839  }
5840
5841  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
5842  if (Broadcast.getNode())
5843    return Broadcast;
5844
5845  unsigned EVTBits = ExtVT.getSizeInBits();
5846
5847  unsigned NumZero  = 0;
5848  unsigned NumNonZero = 0;
5849  unsigned NonZeros = 0;
5850  bool IsAllConstants = true;
5851  SmallSet<SDValue, 8> Values;
5852  for (unsigned i = 0; i < NumElems; ++i) {
5853    SDValue Elt = Op.getOperand(i);
5854    if (Elt.getOpcode() == ISD::UNDEF)
5855      continue;
5856    Values.insert(Elt);
5857    if (Elt.getOpcode() != ISD::Constant &&
5858        Elt.getOpcode() != ISD::ConstantFP)
5859      IsAllConstants = false;
5860    if (X86::isZeroNode(Elt))
5861      NumZero++;
5862    else {
5863      NonZeros |= (1 << i);
5864      NumNonZero++;
5865    }
5866  }
5867
5868  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5869  if (NumNonZero == 0)
5870    return DAG.getUNDEF(VT);
5871
5872  // Special case for single non-zero, non-undef, element.
5873  if (NumNonZero == 1) {
5874    unsigned Idx = countTrailingZeros(NonZeros);
5875    SDValue Item = Op.getOperand(Idx);
5876
5877    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5878    // the value are obviously zero, truncate the value to i32 and do the
5879    // insertion that way.  Only do this if the value is non-constant or if the
5880    // value is a constant being inserted into element 0.  It is cheaper to do
5881    // a constant pool load than it is to do a movd + shuffle.
5882    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5883        (!IsAllConstants || Idx == 0)) {
5884      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5885        // Handle SSE only.
5886        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5887        EVT VecVT = MVT::v4i32;
5888        unsigned VecElts = 4;
5889
5890        // Truncate the value (which may itself be a constant) to i32, and
5891        // convert it to a vector with movd (S2V+shuffle to zero extend).
5892        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5893        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5894        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5895
5896        // Now we have our 32-bit value zero extended in the low element of
5897        // a vector.  If Idx != 0, swizzle it into place.
5898        if (Idx != 0) {
5899          SmallVector<int, 4> Mask;
5900          Mask.push_back(Idx);
5901          for (unsigned i = 1; i != VecElts; ++i)
5902            Mask.push_back(i);
5903          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5904                                      &Mask[0]);
5905        }
5906        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5907      }
5908    }
5909
5910    // If we have a constant or non-constant insertion into the low element of
5911    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5912    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5913    // depending on what the source datatype is.
5914    if (Idx == 0) {
5915      if (NumZero == 0)
5916        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5917
5918      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5919          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5920        if (VT.is256BitVector() || VT.is512BitVector()) {
5921          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5922          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5923                             Item, DAG.getIntPtrConstant(0));
5924        }
5925        assert(VT.is128BitVector() && "Expected an SSE value type!");
5926        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5927        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5928        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5929      }
5930
5931      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5932        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5933        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5934        if (VT.is256BitVector()) {
5935          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5936          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5937        } else {
5938          assert(VT.is128BitVector() && "Expected an SSE value type!");
5939          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5940        }
5941        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5942      }
5943    }
5944
5945    // Is it a vector logical left shift?
5946    if (NumElems == 2 && Idx == 1 &&
5947        X86::isZeroNode(Op.getOperand(0)) &&
5948        !X86::isZeroNode(Op.getOperand(1))) {
5949      unsigned NumBits = VT.getSizeInBits();
5950      return getVShift(true, VT,
5951                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5952                                   VT, Op.getOperand(1)),
5953                       NumBits/2, DAG, *this, dl);
5954    }
5955
5956    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5957      return SDValue();
5958
5959    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5960    // is a non-constant being inserted into an element other than the low one,
5961    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5962    // movd/movss) to move this into the low element, then shuffle it into
5963    // place.
5964    if (EVTBits == 32) {
5965      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5966
5967      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5968      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5969      SmallVector<int, 8> MaskVec;
5970      for (unsigned i = 0; i != NumElems; ++i)
5971        MaskVec.push_back(i == Idx ? 0 : 1);
5972      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5973    }
5974  }
5975
5976  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5977  if (Values.size() == 1) {
5978    if (EVTBits == 32) {
5979      // Instead of a shuffle like this:
5980      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5981      // Check if it's possible to issue this instead.
5982      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5983      unsigned Idx = countTrailingZeros(NonZeros);
5984      SDValue Item = Op.getOperand(Idx);
5985      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5986        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5987    }
5988    return SDValue();
5989  }
5990
5991  // A vector full of immediates; various special cases are already
5992  // handled, so this is best done with a single constant-pool load.
5993  if (IsAllConstants)
5994    return SDValue();
5995
5996  // For AVX-length vectors, build the individual 128-bit pieces and use
5997  // shuffles to put them in place.
5998  if (VT.is256BitVector()) {
5999    SmallVector<SDValue, 32> V;
6000    for (unsigned i = 0; i != NumElems; ++i)
6001      V.push_back(Op.getOperand(i));
6002
6003    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
6004
6005    // Build both the lower and upper subvector.
6006    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
6007    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
6008                                NumElems/2);
6009
6010    // Recreate the wider vector with the lower and upper part.
6011    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6012  }
6013
6014  // Let legalizer expand 2-wide build_vectors.
6015  if (EVTBits == 64) {
6016    if (NumNonZero == 1) {
6017      // One half is zero or undef.
6018      unsigned Idx = countTrailingZeros(NonZeros);
6019      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6020                                 Op.getOperand(Idx));
6021      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6022    }
6023    return SDValue();
6024  }
6025
6026  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6027  if (EVTBits == 8 && NumElems == 16) {
6028    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6029                                        Subtarget, *this);
6030    if (V.getNode()) return V;
6031  }
6032
6033  if (EVTBits == 16 && NumElems == 8) {
6034    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6035                                      Subtarget, *this);
6036    if (V.getNode()) return V;
6037  }
6038
6039  // If element VT is == 32 bits, turn it into a number of shuffles.
6040  SmallVector<SDValue, 8> V(NumElems);
6041  if (NumElems == 4 && NumZero > 0) {
6042    for (unsigned i = 0; i < 4; ++i) {
6043      bool isZero = !(NonZeros & (1 << i));
6044      if (isZero)
6045        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6046      else
6047        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6048    }
6049
6050    for (unsigned i = 0; i < 2; ++i) {
6051      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6052        default: break;
6053        case 0:
6054          V[i] = V[i*2];  // Must be a zero vector.
6055          break;
6056        case 1:
6057          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6058          break;
6059        case 2:
6060          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6061          break;
6062        case 3:
6063          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6064          break;
6065      }
6066    }
6067
6068    bool Reverse1 = (NonZeros & 0x3) == 2;
6069    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6070    int MaskVec[] = {
6071      Reverse1 ? 1 : 0,
6072      Reverse1 ? 0 : 1,
6073      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6074      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6075    };
6076    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6077  }
6078
6079  if (Values.size() > 1 && VT.is128BitVector()) {
6080    // Check for a build vector of consecutive loads.
6081    for (unsigned i = 0; i < NumElems; ++i)
6082      V[i] = Op.getOperand(i);
6083
6084    // Check for elements which are consecutive loads.
6085    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
6086    if (LD.getNode())
6087      return LD;
6088
6089    // Check for a build vector from mostly shuffle plus few inserting.
6090    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6091    if (Sh.getNode())
6092      return Sh;
6093
6094    // For SSE 4.1, use insertps to put the high elements into the low element.
6095    if (getSubtarget()->hasSSE41()) {
6096      SDValue Result;
6097      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6098        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6099      else
6100        Result = DAG.getUNDEF(VT);
6101
6102      for (unsigned i = 1; i < NumElems; ++i) {
6103        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6104        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6105                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6106      }
6107      return Result;
6108    }
6109
6110    // Otherwise, expand into a number of unpckl*, start by extending each of
6111    // our (non-undef) elements to the full vector width with the element in the
6112    // bottom slot of the vector (which generates no code for SSE).
6113    for (unsigned i = 0; i < NumElems; ++i) {
6114      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6115        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6116      else
6117        V[i] = DAG.getUNDEF(VT);
6118    }
6119
6120    // Next, we iteratively mix elements, e.g. for v4f32:
6121    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6122    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6123    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6124    unsigned EltStride = NumElems >> 1;
6125    while (EltStride != 0) {
6126      for (unsigned i = 0; i < EltStride; ++i) {
6127        // If V[i+EltStride] is undef and this is the first round of mixing,
6128        // then it is safe to just drop this shuffle: V[i] is already in the
6129        // right place, the one element (since it's the first round) being
6130        // inserted as undef can be dropped.  This isn't safe for successive
6131        // rounds because they will permute elements within both vectors.
6132        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6133            EltStride == NumElems/2)
6134          continue;
6135
6136        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6137      }
6138      EltStride >>= 1;
6139    }
6140    return V[0];
6141  }
6142  return SDValue();
6143}
6144
6145// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6146// to create 256-bit vectors from two other 128-bit ones.
6147static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6148  SDLoc dl(Op);
6149  MVT ResVT = Op.getSimpleValueType();
6150
6151  assert((ResVT.is256BitVector() ||
6152          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6153
6154  SDValue V1 = Op.getOperand(0);
6155  SDValue V2 = Op.getOperand(1);
6156  unsigned NumElems = ResVT.getVectorNumElements();
6157  if(ResVT.is256BitVector())
6158    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6159
6160  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6161}
6162
6163static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6164  assert(Op.getNumOperands() == 2);
6165
6166  // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
6167  // from two other 128-bit ones.
6168  return LowerAVXCONCAT_VECTORS(Op, DAG);
6169}
6170
6171// Try to lower a shuffle node into a simple blend instruction.
6172static SDValue
6173LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6174                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6175  SDValue V1 = SVOp->getOperand(0);
6176  SDValue V2 = SVOp->getOperand(1);
6177  SDLoc dl(SVOp);
6178  MVT VT = SVOp->getSimpleValueType(0);
6179  MVT EltVT = VT.getVectorElementType();
6180  unsigned NumElems = VT.getVectorNumElements();
6181
6182  // There is no blend with immediate in AVX-512.
6183  if (VT.is512BitVector())
6184    return SDValue();
6185
6186  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6187    return SDValue();
6188  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6189    return SDValue();
6190
6191  // Check the mask for BLEND and build the value.
6192  unsigned MaskValue = 0;
6193  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6194  unsigned NumLanes = (NumElems-1)/8 + 1;
6195  unsigned NumElemsInLane = NumElems / NumLanes;
6196
6197  // Blend for v16i16 should be symetric for the both lanes.
6198  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6199
6200    int SndLaneEltIdx = (NumLanes == 2) ?
6201      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6202    int EltIdx = SVOp->getMaskElt(i);
6203
6204    if ((EltIdx < 0 || EltIdx == (int)i) &&
6205        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6206      continue;
6207
6208    if (((unsigned)EltIdx == (i + NumElems)) &&
6209        (SndLaneEltIdx < 0 ||
6210         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6211      MaskValue |= (1<<i);
6212    else
6213      return SDValue();
6214  }
6215
6216  // Convert i32 vectors to floating point if it is not AVX2.
6217  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6218  MVT BlendVT = VT;
6219  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6220    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6221                               NumElems);
6222    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6223    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6224  }
6225
6226  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6227                            DAG.getConstant(MaskValue, MVT::i32));
6228  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6229}
6230
6231// v8i16 shuffles - Prefer shuffles in the following order:
6232// 1. [all]   pshuflw, pshufhw, optional move
6233// 2. [ssse3] 1 x pshufb
6234// 3. [ssse3] 2 x pshufb + 1 x por
6235// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6236static SDValue
6237LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6238                         SelectionDAG &DAG) {
6239  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6240  SDValue V1 = SVOp->getOperand(0);
6241  SDValue V2 = SVOp->getOperand(1);
6242  SDLoc dl(SVOp);
6243  SmallVector<int, 8> MaskVals;
6244
6245  // Determine if more than 1 of the words in each of the low and high quadwords
6246  // of the result come from the same quadword of one of the two inputs.  Undef
6247  // mask values count as coming from any quadword, for better codegen.
6248  unsigned LoQuad[] = { 0, 0, 0, 0 };
6249  unsigned HiQuad[] = { 0, 0, 0, 0 };
6250  std::bitset<4> InputQuads;
6251  for (unsigned i = 0; i < 8; ++i) {
6252    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6253    int EltIdx = SVOp->getMaskElt(i);
6254    MaskVals.push_back(EltIdx);
6255    if (EltIdx < 0) {
6256      ++Quad[0];
6257      ++Quad[1];
6258      ++Quad[2];
6259      ++Quad[3];
6260      continue;
6261    }
6262    ++Quad[EltIdx / 4];
6263    InputQuads.set(EltIdx / 4);
6264  }
6265
6266  int BestLoQuad = -1;
6267  unsigned MaxQuad = 1;
6268  for (unsigned i = 0; i < 4; ++i) {
6269    if (LoQuad[i] > MaxQuad) {
6270      BestLoQuad = i;
6271      MaxQuad = LoQuad[i];
6272    }
6273  }
6274
6275  int BestHiQuad = -1;
6276  MaxQuad = 1;
6277  for (unsigned i = 0; i < 4; ++i) {
6278    if (HiQuad[i] > MaxQuad) {
6279      BestHiQuad = i;
6280      MaxQuad = HiQuad[i];
6281    }
6282  }
6283
6284  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6285  // of the two input vectors, shuffle them into one input vector so only a
6286  // single pshufb instruction is necessary. If There are more than 2 input
6287  // quads, disable the next transformation since it does not help SSSE3.
6288  bool V1Used = InputQuads[0] || InputQuads[1];
6289  bool V2Used = InputQuads[2] || InputQuads[3];
6290  if (Subtarget->hasSSSE3()) {
6291    if (InputQuads.count() == 2 && V1Used && V2Used) {
6292      BestLoQuad = InputQuads[0] ? 0 : 1;
6293      BestHiQuad = InputQuads[2] ? 2 : 3;
6294    }
6295    if (InputQuads.count() > 2) {
6296      BestLoQuad = -1;
6297      BestHiQuad = -1;
6298    }
6299  }
6300
6301  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6302  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6303  // words from all 4 input quadwords.
6304  SDValue NewV;
6305  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6306    int MaskV[] = {
6307      BestLoQuad < 0 ? 0 : BestLoQuad,
6308      BestHiQuad < 0 ? 1 : BestHiQuad
6309    };
6310    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6311                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6312                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6313    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6314
6315    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6316    // source words for the shuffle, to aid later transformations.
6317    bool AllWordsInNewV = true;
6318    bool InOrder[2] = { true, true };
6319    for (unsigned i = 0; i != 8; ++i) {
6320      int idx = MaskVals[i];
6321      if (idx != (int)i)
6322        InOrder[i/4] = false;
6323      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6324        continue;
6325      AllWordsInNewV = false;
6326      break;
6327    }
6328
6329    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6330    if (AllWordsInNewV) {
6331      for (int i = 0; i != 8; ++i) {
6332        int idx = MaskVals[i];
6333        if (idx < 0)
6334          continue;
6335        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6336        if ((idx != i) && idx < 4)
6337          pshufhw = false;
6338        if ((idx != i) && idx > 3)
6339          pshuflw = false;
6340      }
6341      V1 = NewV;
6342      V2Used = false;
6343      BestLoQuad = 0;
6344      BestHiQuad = 1;
6345    }
6346
6347    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6348    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6349    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6350      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6351      unsigned TargetMask = 0;
6352      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6353                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6354      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6355      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6356                             getShufflePSHUFLWImmediate(SVOp);
6357      V1 = NewV.getOperand(0);
6358      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6359    }
6360  }
6361
6362  // Promote splats to a larger type which usually leads to more efficient code.
6363  // FIXME: Is this true if pshufb is available?
6364  if (SVOp->isSplat())
6365    return PromoteSplat(SVOp, DAG);
6366
6367  // If we have SSSE3, and all words of the result are from 1 input vector,
6368  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6369  // is present, fall back to case 4.
6370  if (Subtarget->hasSSSE3()) {
6371    SmallVector<SDValue,16> pshufbMask;
6372
6373    // If we have elements from both input vectors, set the high bit of the
6374    // shuffle mask element to zero out elements that come from V2 in the V1
6375    // mask, and elements that come from V1 in the V2 mask, so that the two
6376    // results can be OR'd together.
6377    bool TwoInputs = V1Used && V2Used;
6378    for (unsigned i = 0; i != 8; ++i) {
6379      int EltIdx = MaskVals[i] * 2;
6380      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
6381      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
6382      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6383      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6384    }
6385    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
6386    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6387                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6388                                 MVT::v16i8, &pshufbMask[0], 16));
6389    if (!TwoInputs)
6390      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6391
6392    // Calculate the shuffle mask for the second input, shuffle it, and
6393    // OR it with the first shuffled input.
6394    pshufbMask.clear();
6395    for (unsigned i = 0; i != 8; ++i) {
6396      int EltIdx = MaskVals[i] * 2;
6397      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6398      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
6399      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6400      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6401    }
6402    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
6403    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6404                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6405                                 MVT::v16i8, &pshufbMask[0], 16));
6406    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6407    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6408  }
6409
6410  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6411  // and update MaskVals with new element order.
6412  std::bitset<8> InOrder;
6413  if (BestLoQuad >= 0) {
6414    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6415    for (int i = 0; i != 4; ++i) {
6416      int idx = MaskVals[i];
6417      if (idx < 0) {
6418        InOrder.set(i);
6419      } else if ((idx / 4) == BestLoQuad) {
6420        MaskV[i] = idx & 3;
6421        InOrder.set(i);
6422      }
6423    }
6424    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6425                                &MaskV[0]);
6426
6427    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6428      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6429      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6430                                  NewV.getOperand(0),
6431                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6432    }
6433  }
6434
6435  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6436  // and update MaskVals with the new element order.
6437  if (BestHiQuad >= 0) {
6438    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6439    for (unsigned i = 4; i != 8; ++i) {
6440      int idx = MaskVals[i];
6441      if (idx < 0) {
6442        InOrder.set(i);
6443      } else if ((idx / 4) == BestHiQuad) {
6444        MaskV[i] = (idx & 3) + 4;
6445        InOrder.set(i);
6446      }
6447    }
6448    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6449                                &MaskV[0]);
6450
6451    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6452      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6453      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6454                                  NewV.getOperand(0),
6455                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6456    }
6457  }
6458
6459  // In case BestHi & BestLo were both -1, which means each quadword has a word
6460  // from each of the four input quadwords, calculate the InOrder bitvector now
6461  // before falling through to the insert/extract cleanup.
6462  if (BestLoQuad == -1 && BestHiQuad == -1) {
6463    NewV = V1;
6464    for (int i = 0; i != 8; ++i)
6465      if (MaskVals[i] < 0 || MaskVals[i] == i)
6466        InOrder.set(i);
6467  }
6468
6469  // The other elements are put in the right place using pextrw and pinsrw.
6470  for (unsigned i = 0; i != 8; ++i) {
6471    if (InOrder[i])
6472      continue;
6473    int EltIdx = MaskVals[i];
6474    if (EltIdx < 0)
6475      continue;
6476    SDValue ExtOp = (EltIdx < 8) ?
6477      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6478                  DAG.getIntPtrConstant(EltIdx)) :
6479      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6480                  DAG.getIntPtrConstant(EltIdx - 8));
6481    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6482                       DAG.getIntPtrConstant(i));
6483  }
6484  return NewV;
6485}
6486
6487// v16i8 shuffles - Prefer shuffles in the following order:
6488// 1. [ssse3] 1 x pshufb
6489// 2. [ssse3] 2 x pshufb + 1 x por
6490// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6491static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6492                                        const X86Subtarget* Subtarget,
6493                                        SelectionDAG &DAG) {
6494  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6495  SDValue V1 = SVOp->getOperand(0);
6496  SDValue V2 = SVOp->getOperand(1);
6497  SDLoc dl(SVOp);
6498  ArrayRef<int> MaskVals = SVOp->getMask();
6499
6500  // Promote splats to a larger type which usually leads to more efficient code.
6501  // FIXME: Is this true if pshufb is available?
6502  if (SVOp->isSplat())
6503    return PromoteSplat(SVOp, DAG);
6504
6505  // If we have SSSE3, case 1 is generated when all result bytes come from
6506  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6507  // present, fall back to case 3.
6508
6509  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6510  if (Subtarget->hasSSSE3()) {
6511    SmallVector<SDValue,16> pshufbMask;
6512
6513    // If all result elements are from one input vector, then only translate
6514    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6515    //
6516    // Otherwise, we have elements from both input vectors, and must zero out
6517    // elements that come from V2 in the first mask, and V1 in the second mask
6518    // so that we can OR them together.
6519    for (unsigned i = 0; i != 16; ++i) {
6520      int EltIdx = MaskVals[i];
6521      if (EltIdx < 0 || EltIdx >= 16)
6522        EltIdx = 0x80;
6523      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6524    }
6525    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6526                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6527                                 MVT::v16i8, &pshufbMask[0], 16));
6528
6529    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6530    // the 2nd operand if it's undefined or zero.
6531    if (V2.getOpcode() == ISD::UNDEF ||
6532        ISD::isBuildVectorAllZeros(V2.getNode()))
6533      return V1;
6534
6535    // Calculate the shuffle mask for the second input, shuffle it, and
6536    // OR it with the first shuffled input.
6537    pshufbMask.clear();
6538    for (unsigned i = 0; i != 16; ++i) {
6539      int EltIdx = MaskVals[i];
6540      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6541      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6542    }
6543    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6544                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6545                                 MVT::v16i8, &pshufbMask[0], 16));
6546    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6547  }
6548
6549  // No SSSE3 - Calculate in place words and then fix all out of place words
6550  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6551  // the 16 different words that comprise the two doublequadword input vectors.
6552  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6553  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6554  SDValue NewV = V1;
6555  for (int i = 0; i != 8; ++i) {
6556    int Elt0 = MaskVals[i*2];
6557    int Elt1 = MaskVals[i*2+1];
6558
6559    // This word of the result is all undef, skip it.
6560    if (Elt0 < 0 && Elt1 < 0)
6561      continue;
6562
6563    // This word of the result is already in the correct place, skip it.
6564    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6565      continue;
6566
6567    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6568    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6569    SDValue InsElt;
6570
6571    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6572    // using a single extract together, load it and store it.
6573    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6574      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6575                           DAG.getIntPtrConstant(Elt1 / 2));
6576      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6577                        DAG.getIntPtrConstant(i));
6578      continue;
6579    }
6580
6581    // If Elt1 is defined, extract it from the appropriate source.  If the
6582    // source byte is not also odd, shift the extracted word left 8 bits
6583    // otherwise clear the bottom 8 bits if we need to do an or.
6584    if (Elt1 >= 0) {
6585      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6586                           DAG.getIntPtrConstant(Elt1 / 2));
6587      if ((Elt1 & 1) == 0)
6588        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6589                             DAG.getConstant(8,
6590                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6591      else if (Elt0 >= 0)
6592        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6593                             DAG.getConstant(0xFF00, MVT::i16));
6594    }
6595    // If Elt0 is defined, extract it from the appropriate source.  If the
6596    // source byte is not also even, shift the extracted word right 8 bits. If
6597    // Elt1 was also defined, OR the extracted values together before
6598    // inserting them in the result.
6599    if (Elt0 >= 0) {
6600      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6601                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6602      if ((Elt0 & 1) != 0)
6603        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6604                              DAG.getConstant(8,
6605                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6606      else if (Elt1 >= 0)
6607        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6608                             DAG.getConstant(0x00FF, MVT::i16));
6609      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6610                         : InsElt0;
6611    }
6612    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6613                       DAG.getIntPtrConstant(i));
6614  }
6615  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6616}
6617
6618// v32i8 shuffles - Translate to VPSHUFB if possible.
6619static
6620SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6621                                 const X86Subtarget *Subtarget,
6622                                 SelectionDAG &DAG) {
6623  MVT VT = SVOp->getSimpleValueType(0);
6624  SDValue V1 = SVOp->getOperand(0);
6625  SDValue V2 = SVOp->getOperand(1);
6626  SDLoc dl(SVOp);
6627  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6628
6629  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6630  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6631  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6632
6633  // VPSHUFB may be generated if
6634  // (1) one of input vector is undefined or zeroinitializer.
6635  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6636  // And (2) the mask indexes don't cross the 128-bit lane.
6637  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6638      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6639    return SDValue();
6640
6641  if (V1IsAllZero && !V2IsAllZero) {
6642    CommuteVectorShuffleMask(MaskVals, 32);
6643    V1 = V2;
6644  }
6645  SmallVector<SDValue, 32> pshufbMask;
6646  for (unsigned i = 0; i != 32; i++) {
6647    int EltIdx = MaskVals[i];
6648    if (EltIdx < 0 || EltIdx >= 32)
6649      EltIdx = 0x80;
6650    else {
6651      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6652        // Cross lane is not allowed.
6653        return SDValue();
6654      EltIdx &= 0xf;
6655    }
6656    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6657  }
6658  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6659                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6660                                  MVT::v32i8, &pshufbMask[0], 32));
6661}
6662
6663/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6664/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6665/// done when every pair / quad of shuffle mask elements point to elements in
6666/// the right sequence. e.g.
6667/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6668static
6669SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6670                                 SelectionDAG &DAG) {
6671  MVT VT = SVOp->getSimpleValueType(0);
6672  SDLoc dl(SVOp);
6673  unsigned NumElems = VT.getVectorNumElements();
6674  MVT NewVT;
6675  unsigned Scale;
6676  switch (VT.SimpleTy) {
6677  default: llvm_unreachable("Unexpected!");
6678  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6679  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6680  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6681  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6682  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6683  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6684  }
6685
6686  SmallVector<int, 8> MaskVec;
6687  for (unsigned i = 0; i != NumElems; i += Scale) {
6688    int StartIdx = -1;
6689    for (unsigned j = 0; j != Scale; ++j) {
6690      int EltIdx = SVOp->getMaskElt(i+j);
6691      if (EltIdx < 0)
6692        continue;
6693      if (StartIdx < 0)
6694        StartIdx = (EltIdx / Scale);
6695      if (EltIdx != (int)(StartIdx*Scale + j))
6696        return SDValue();
6697    }
6698    MaskVec.push_back(StartIdx);
6699  }
6700
6701  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6702  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6703  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6704}
6705
6706/// getVZextMovL - Return a zero-extending vector move low node.
6707///
6708static SDValue getVZextMovL(MVT VT, MVT OpVT,
6709                            SDValue SrcOp, SelectionDAG &DAG,
6710                            const X86Subtarget *Subtarget, SDLoc dl) {
6711  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6712    LoadSDNode *LD = NULL;
6713    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6714      LD = dyn_cast<LoadSDNode>(SrcOp);
6715    if (!LD) {
6716      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6717      // instead.
6718      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6719      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6720          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6721          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6722          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6723        // PR2108
6724        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6725        return DAG.getNode(ISD::BITCAST, dl, VT,
6726                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6727                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6728                                                   OpVT,
6729                                                   SrcOp.getOperand(0)
6730                                                          .getOperand(0))));
6731      }
6732    }
6733  }
6734
6735  return DAG.getNode(ISD::BITCAST, dl, VT,
6736                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6737                                 DAG.getNode(ISD::BITCAST, dl,
6738                                             OpVT, SrcOp)));
6739}
6740
6741/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6742/// which could not be matched by any known target speficic shuffle
6743static SDValue
6744LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6745
6746  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6747  if (NewOp.getNode())
6748    return NewOp;
6749
6750  MVT VT = SVOp->getSimpleValueType(0);
6751
6752  unsigned NumElems = VT.getVectorNumElements();
6753  unsigned NumLaneElems = NumElems / 2;
6754
6755  SDLoc dl(SVOp);
6756  MVT EltVT = VT.getVectorElementType();
6757  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6758  SDValue Output[2];
6759
6760  SmallVector<int, 16> Mask;
6761  for (unsigned l = 0; l < 2; ++l) {
6762    // Build a shuffle mask for the output, discovering on the fly which
6763    // input vectors to use as shuffle operands (recorded in InputUsed).
6764    // If building a suitable shuffle vector proves too hard, then bail
6765    // out with UseBuildVector set.
6766    bool UseBuildVector = false;
6767    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6768    unsigned LaneStart = l * NumLaneElems;
6769    for (unsigned i = 0; i != NumLaneElems; ++i) {
6770      // The mask element.  This indexes into the input.
6771      int Idx = SVOp->getMaskElt(i+LaneStart);
6772      if (Idx < 0) {
6773        // the mask element does not index into any input vector.
6774        Mask.push_back(-1);
6775        continue;
6776      }
6777
6778      // The input vector this mask element indexes into.
6779      int Input = Idx / NumLaneElems;
6780
6781      // Turn the index into an offset from the start of the input vector.
6782      Idx -= Input * NumLaneElems;
6783
6784      // Find or create a shuffle vector operand to hold this input.
6785      unsigned OpNo;
6786      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6787        if (InputUsed[OpNo] == Input)
6788          // This input vector is already an operand.
6789          break;
6790        if (InputUsed[OpNo] < 0) {
6791          // Create a new operand for this input vector.
6792          InputUsed[OpNo] = Input;
6793          break;
6794        }
6795      }
6796
6797      if (OpNo >= array_lengthof(InputUsed)) {
6798        // More than two input vectors used!  Give up on trying to create a
6799        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6800        UseBuildVector = true;
6801        break;
6802      }
6803
6804      // Add the mask index for the new shuffle vector.
6805      Mask.push_back(Idx + OpNo * NumLaneElems);
6806    }
6807
6808    if (UseBuildVector) {
6809      SmallVector<SDValue, 16> SVOps;
6810      for (unsigned i = 0; i != NumLaneElems; ++i) {
6811        // The mask element.  This indexes into the input.
6812        int Idx = SVOp->getMaskElt(i+LaneStart);
6813        if (Idx < 0) {
6814          SVOps.push_back(DAG.getUNDEF(EltVT));
6815          continue;
6816        }
6817
6818        // The input vector this mask element indexes into.
6819        int Input = Idx / NumElems;
6820
6821        // Turn the index into an offset from the start of the input vector.
6822        Idx -= Input * NumElems;
6823
6824        // Extract the vector element by hand.
6825        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6826                                    SVOp->getOperand(Input),
6827                                    DAG.getIntPtrConstant(Idx)));
6828      }
6829
6830      // Construct the output using a BUILD_VECTOR.
6831      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6832                              SVOps.size());
6833    } else if (InputUsed[0] < 0) {
6834      // No input vectors were used! The result is undefined.
6835      Output[l] = DAG.getUNDEF(NVT);
6836    } else {
6837      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6838                                        (InputUsed[0] % 2) * NumLaneElems,
6839                                        DAG, dl);
6840      // If only one input was used, use an undefined vector for the other.
6841      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6842        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6843                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6844      // At least one input vector was used. Create a new shuffle vector.
6845      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6846    }
6847
6848    Mask.clear();
6849  }
6850
6851  // Concatenate the result back
6852  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6853}
6854
6855/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6856/// 4 elements, and match them with several different shuffle types.
6857static SDValue
6858LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6859  SDValue V1 = SVOp->getOperand(0);
6860  SDValue V2 = SVOp->getOperand(1);
6861  SDLoc dl(SVOp);
6862  MVT VT = SVOp->getSimpleValueType(0);
6863
6864  assert(VT.is128BitVector() && "Unsupported vector size");
6865
6866  std::pair<int, int> Locs[4];
6867  int Mask1[] = { -1, -1, -1, -1 };
6868  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6869
6870  unsigned NumHi = 0;
6871  unsigned NumLo = 0;
6872  for (unsigned i = 0; i != 4; ++i) {
6873    int Idx = PermMask[i];
6874    if (Idx < 0) {
6875      Locs[i] = std::make_pair(-1, -1);
6876    } else {
6877      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6878      if (Idx < 4) {
6879        Locs[i] = std::make_pair(0, NumLo);
6880        Mask1[NumLo] = Idx;
6881        NumLo++;
6882      } else {
6883        Locs[i] = std::make_pair(1, NumHi);
6884        if (2+NumHi < 4)
6885          Mask1[2+NumHi] = Idx;
6886        NumHi++;
6887      }
6888    }
6889  }
6890
6891  if (NumLo <= 2 && NumHi <= 2) {
6892    // If no more than two elements come from either vector. This can be
6893    // implemented with two shuffles. First shuffle gather the elements.
6894    // The second shuffle, which takes the first shuffle as both of its
6895    // vector operands, put the elements into the right order.
6896    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6897
6898    int Mask2[] = { -1, -1, -1, -1 };
6899
6900    for (unsigned i = 0; i != 4; ++i)
6901      if (Locs[i].first != -1) {
6902        unsigned Idx = (i < 2) ? 0 : 4;
6903        Idx += Locs[i].first * 2 + Locs[i].second;
6904        Mask2[i] = Idx;
6905      }
6906
6907    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6908  }
6909
6910  if (NumLo == 3 || NumHi == 3) {
6911    // Otherwise, we must have three elements from one vector, call it X, and
6912    // one element from the other, call it Y.  First, use a shufps to build an
6913    // intermediate vector with the one element from Y and the element from X
6914    // that will be in the same half in the final destination (the indexes don't
6915    // matter). Then, use a shufps to build the final vector, taking the half
6916    // containing the element from Y from the intermediate, and the other half
6917    // from X.
6918    if (NumHi == 3) {
6919      // Normalize it so the 3 elements come from V1.
6920      CommuteVectorShuffleMask(PermMask, 4);
6921      std::swap(V1, V2);
6922    }
6923
6924    // Find the element from V2.
6925    unsigned HiIndex;
6926    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6927      int Val = PermMask[HiIndex];
6928      if (Val < 0)
6929        continue;
6930      if (Val >= 4)
6931        break;
6932    }
6933
6934    Mask1[0] = PermMask[HiIndex];
6935    Mask1[1] = -1;
6936    Mask1[2] = PermMask[HiIndex^1];
6937    Mask1[3] = -1;
6938    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6939
6940    if (HiIndex >= 2) {
6941      Mask1[0] = PermMask[0];
6942      Mask1[1] = PermMask[1];
6943      Mask1[2] = HiIndex & 1 ? 6 : 4;
6944      Mask1[3] = HiIndex & 1 ? 4 : 6;
6945      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6946    }
6947
6948    Mask1[0] = HiIndex & 1 ? 2 : 0;
6949    Mask1[1] = HiIndex & 1 ? 0 : 2;
6950    Mask1[2] = PermMask[2];
6951    Mask1[3] = PermMask[3];
6952    if (Mask1[2] >= 0)
6953      Mask1[2] += 4;
6954    if (Mask1[3] >= 0)
6955      Mask1[3] += 4;
6956    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6957  }
6958
6959  // Break it into (shuffle shuffle_hi, shuffle_lo).
6960  int LoMask[] = { -1, -1, -1, -1 };
6961  int HiMask[] = { -1, -1, -1, -1 };
6962
6963  int *MaskPtr = LoMask;
6964  unsigned MaskIdx = 0;
6965  unsigned LoIdx = 0;
6966  unsigned HiIdx = 2;
6967  for (unsigned i = 0; i != 4; ++i) {
6968    if (i == 2) {
6969      MaskPtr = HiMask;
6970      MaskIdx = 1;
6971      LoIdx = 0;
6972      HiIdx = 2;
6973    }
6974    int Idx = PermMask[i];
6975    if (Idx < 0) {
6976      Locs[i] = std::make_pair(-1, -1);
6977    } else if (Idx < 4) {
6978      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6979      MaskPtr[LoIdx] = Idx;
6980      LoIdx++;
6981    } else {
6982      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6983      MaskPtr[HiIdx] = Idx;
6984      HiIdx++;
6985    }
6986  }
6987
6988  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6989  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6990  int MaskOps[] = { -1, -1, -1, -1 };
6991  for (unsigned i = 0; i != 4; ++i)
6992    if (Locs[i].first != -1)
6993      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6994  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6995}
6996
6997static bool MayFoldVectorLoad(SDValue V) {
6998  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6999    V = V.getOperand(0);
7000
7001  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
7002    V = V.getOperand(0);
7003  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
7004      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
7005    // BUILD_VECTOR (load), undef
7006    V = V.getOperand(0);
7007
7008  return MayFoldLoad(V);
7009}
7010
7011static
7012SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
7013  MVT VT = Op.getSimpleValueType();
7014
7015  // Canonizalize to v2f64.
7016  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7017  return DAG.getNode(ISD::BITCAST, dl, VT,
7018                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
7019                                          V1, DAG));
7020}
7021
7022static
7023SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
7024                        bool HasSSE2) {
7025  SDValue V1 = Op.getOperand(0);
7026  SDValue V2 = Op.getOperand(1);
7027  MVT VT = Op.getSimpleValueType();
7028
7029  assert(VT != MVT::v2i64 && "unsupported shuffle type");
7030
7031  if (HasSSE2 && VT == MVT::v2f64)
7032    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
7033
7034  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
7035  return DAG.getNode(ISD::BITCAST, dl, VT,
7036                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
7037                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
7038                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
7039}
7040
7041static
7042SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
7043  SDValue V1 = Op.getOperand(0);
7044  SDValue V2 = Op.getOperand(1);
7045  MVT VT = Op.getSimpleValueType();
7046
7047  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7048         "unsupported shuffle type");
7049
7050  if (V2.getOpcode() == ISD::UNDEF)
7051    V2 = V1;
7052
7053  // v4i32 or v4f32
7054  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7055}
7056
7057static
7058SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7059  SDValue V1 = Op.getOperand(0);
7060  SDValue V2 = Op.getOperand(1);
7061  MVT VT = Op.getSimpleValueType();
7062  unsigned NumElems = VT.getVectorNumElements();
7063
7064  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7065  // operand of these instructions is only memory, so check if there's a
7066  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7067  // same masks.
7068  bool CanFoldLoad = false;
7069
7070  // Trivial case, when V2 comes from a load.
7071  if (MayFoldVectorLoad(V2))
7072    CanFoldLoad = true;
7073
7074  // When V1 is a load, it can be folded later into a store in isel, example:
7075  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7076  //    turns into:
7077  //  (MOVLPSmr addr:$src1, VR128:$src2)
7078  // So, recognize this potential and also use MOVLPS or MOVLPD
7079  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7080    CanFoldLoad = true;
7081
7082  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7083  if (CanFoldLoad) {
7084    if (HasSSE2 && NumElems == 2)
7085      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7086
7087    if (NumElems == 4)
7088      // If we don't care about the second element, proceed to use movss.
7089      if (SVOp->getMaskElt(1) != -1)
7090        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7091  }
7092
7093  // movl and movlp will both match v2i64, but v2i64 is never matched by
7094  // movl earlier because we make it strict to avoid messing with the movlp load
7095  // folding logic (see the code above getMOVLP call). Match it here then,
7096  // this is horrible, but will stay like this until we move all shuffle
7097  // matching to x86 specific nodes. Note that for the 1st condition all
7098  // types are matched with movsd.
7099  if (HasSSE2) {
7100    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7101    // as to remove this logic from here, as much as possible
7102    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7103      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7104    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7105  }
7106
7107  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7108
7109  // Invert the operand order and use SHUFPS to match it.
7110  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7111                              getShuffleSHUFImmediate(SVOp), DAG);
7112}
7113
7114// Reduce a vector shuffle to zext.
7115static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7116                                    SelectionDAG &DAG) {
7117  // PMOVZX is only available from SSE41.
7118  if (!Subtarget->hasSSE41())
7119    return SDValue();
7120
7121  MVT VT = Op.getSimpleValueType();
7122
7123  // Only AVX2 support 256-bit vector integer extending.
7124  if (!Subtarget->hasInt256() && VT.is256BitVector())
7125    return SDValue();
7126
7127  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7128  SDLoc DL(Op);
7129  SDValue V1 = Op.getOperand(0);
7130  SDValue V2 = Op.getOperand(1);
7131  unsigned NumElems = VT.getVectorNumElements();
7132
7133  // Extending is an unary operation and the element type of the source vector
7134  // won't be equal to or larger than i64.
7135  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7136      VT.getVectorElementType() == MVT::i64)
7137    return SDValue();
7138
7139  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7140  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7141  while ((1U << Shift) < NumElems) {
7142    if (SVOp->getMaskElt(1U << Shift) == 1)
7143      break;
7144    Shift += 1;
7145    // The maximal ratio is 8, i.e. from i8 to i64.
7146    if (Shift > 3)
7147      return SDValue();
7148  }
7149
7150  // Check the shuffle mask.
7151  unsigned Mask = (1U << Shift) - 1;
7152  for (unsigned i = 0; i != NumElems; ++i) {
7153    int EltIdx = SVOp->getMaskElt(i);
7154    if ((i & Mask) != 0 && EltIdx != -1)
7155      return SDValue();
7156    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7157      return SDValue();
7158  }
7159
7160  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7161  MVT NeVT = MVT::getIntegerVT(NBits);
7162  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7163
7164  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7165    return SDValue();
7166
7167  // Simplify the operand as it's prepared to be fed into shuffle.
7168  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7169  if (V1.getOpcode() == ISD::BITCAST &&
7170      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7171      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7172      V1.getOperand(0).getOperand(0)
7173        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7174    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7175    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7176    ConstantSDNode *CIdx =
7177      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7178    // If it's foldable, i.e. normal load with single use, we will let code
7179    // selection to fold it. Otherwise, we will short the conversion sequence.
7180    if (CIdx && CIdx->getZExtValue() == 0 &&
7181        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7182      MVT FullVT = V.getSimpleValueType();
7183      MVT V1VT = V1.getSimpleValueType();
7184      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7185        // The "ext_vec_elt" node is wider than the result node.
7186        // In this case we should extract subvector from V.
7187        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7188        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7189        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7190                                        FullVT.getVectorNumElements()/Ratio);
7191        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7192                        DAG.getIntPtrConstant(0));
7193      }
7194      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7195    }
7196  }
7197
7198  return DAG.getNode(ISD::BITCAST, DL, VT,
7199                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7200}
7201
7202static SDValue
7203NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7204                       SelectionDAG &DAG) {
7205  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7206  MVT VT = Op.getSimpleValueType();
7207  SDLoc dl(Op);
7208  SDValue V1 = Op.getOperand(0);
7209  SDValue V2 = Op.getOperand(1);
7210
7211  if (isZeroShuffle(SVOp))
7212    return getZeroVector(VT, Subtarget, DAG, dl);
7213
7214  // Handle splat operations
7215  if (SVOp->isSplat()) {
7216    // Use vbroadcast whenever the splat comes from a foldable load
7217    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7218    if (Broadcast.getNode())
7219      return Broadcast;
7220  }
7221
7222  // Check integer expanding shuffles.
7223  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7224  if (NewOp.getNode())
7225    return NewOp;
7226
7227  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7228  // do it!
7229  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
7230      VT == MVT::v16i16 || VT == MVT::v32i8) {
7231    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7232    if (NewOp.getNode())
7233      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7234  } else if ((VT == MVT::v4i32 ||
7235             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
7236    // FIXME: Figure out a cleaner way to do this.
7237    // Try to make use of movq to zero out the top part.
7238    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7239      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7240      if (NewOp.getNode()) {
7241        MVT NewVT = NewOp.getSimpleValueType();
7242        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7243                               NewVT, true, false))
7244          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
7245                              DAG, Subtarget, dl);
7246      }
7247    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7248      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7249      if (NewOp.getNode()) {
7250        MVT NewVT = NewOp.getSimpleValueType();
7251        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7252          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
7253                              DAG, Subtarget, dl);
7254      }
7255    }
7256  }
7257  return SDValue();
7258}
7259
7260SDValue
7261X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7262  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7263  SDValue V1 = Op.getOperand(0);
7264  SDValue V2 = Op.getOperand(1);
7265  MVT VT = Op.getSimpleValueType();
7266  SDLoc dl(Op);
7267  unsigned NumElems = VT.getVectorNumElements();
7268  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7269  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7270  bool V1IsSplat = false;
7271  bool V2IsSplat = false;
7272  bool HasSSE2 = Subtarget->hasSSE2();
7273  bool HasFp256    = Subtarget->hasFp256();
7274  bool HasInt256   = Subtarget->hasInt256();
7275  MachineFunction &MF = DAG.getMachineFunction();
7276  bool OptForSize = MF.getFunction()->getAttributes().
7277    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7278
7279  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7280
7281  if (V1IsUndef && V2IsUndef)
7282    return DAG.getUNDEF(VT);
7283
7284  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
7285
7286  // Vector shuffle lowering takes 3 steps:
7287  //
7288  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7289  //    narrowing and commutation of operands should be handled.
7290  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7291  //    shuffle nodes.
7292  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7293  //    so the shuffle can be broken into other shuffles and the legalizer can
7294  //    try the lowering again.
7295  //
7296  // The general idea is that no vector_shuffle operation should be left to
7297  // be matched during isel, all of them must be converted to a target specific
7298  // node here.
7299
7300  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7301  // narrowing and commutation of operands should be handled. The actual code
7302  // doesn't include all of those, work in progress...
7303  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7304  if (NewOp.getNode())
7305    return NewOp;
7306
7307  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7308
7309  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7310  // unpckh_undef). Only use pshufd if speed is more important than size.
7311  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7312    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7313  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7314    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7315
7316  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7317      V2IsUndef && MayFoldVectorLoad(V1))
7318    return getMOVDDup(Op, dl, V1, DAG);
7319
7320  if (isMOVHLPS_v_undef_Mask(M, VT))
7321    return getMOVHighToLow(Op, dl, DAG);
7322
7323  // Use to match splats
7324  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7325      (VT == MVT::v2f64 || VT == MVT::v2i64))
7326    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7327
7328  if (isPSHUFDMask(M, VT)) {
7329    // The actual implementation will match the mask in the if above and then
7330    // during isel it can match several different instructions, not only pshufd
7331    // as its name says, sad but true, emulate the behavior for now...
7332    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7333      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7334
7335    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7336
7337    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7338      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7339
7340    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7341      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7342                                  DAG);
7343
7344    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7345                                TargetMask, DAG);
7346  }
7347
7348  if (isPALIGNRMask(M, VT, Subtarget))
7349    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7350                                getShufflePALIGNRImmediate(SVOp),
7351                                DAG);
7352
7353  // Check if this can be converted into a logical shift.
7354  bool isLeft = false;
7355  unsigned ShAmt = 0;
7356  SDValue ShVal;
7357  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7358  if (isShift && ShVal.hasOneUse()) {
7359    // If the shifted value has multiple uses, it may be cheaper to use
7360    // v_set0 + movlhps or movhlps, etc.
7361    MVT EltVT = VT.getVectorElementType();
7362    ShAmt *= EltVT.getSizeInBits();
7363    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7364  }
7365
7366  if (isMOVLMask(M, VT)) {
7367    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7368      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7369    if (!isMOVLPMask(M, VT)) {
7370      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7371        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7372
7373      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7374        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7375    }
7376  }
7377
7378  // FIXME: fold these into legal mask.
7379  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7380    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7381
7382  if (isMOVHLPSMask(M, VT))
7383    return getMOVHighToLow(Op, dl, DAG);
7384
7385  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7386    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7387
7388  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7389    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7390
7391  if (isMOVLPMask(M, VT))
7392    return getMOVLP(Op, dl, DAG, HasSSE2);
7393
7394  if (ShouldXformToMOVHLPS(M, VT) ||
7395      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7396    return CommuteVectorShuffle(SVOp, DAG);
7397
7398  if (isShift) {
7399    // No better options. Use a vshldq / vsrldq.
7400    MVT EltVT = VT.getVectorElementType();
7401    ShAmt *= EltVT.getSizeInBits();
7402    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7403  }
7404
7405  bool Commuted = false;
7406  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7407  // 1,1,1,1 -> v8i16 though.
7408  V1IsSplat = isSplatVector(V1.getNode());
7409  V2IsSplat = isSplatVector(V2.getNode());
7410
7411  // Canonicalize the splat or undef, if present, to be on the RHS.
7412  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7413    CommuteVectorShuffleMask(M, NumElems);
7414    std::swap(V1, V2);
7415    std::swap(V1IsSplat, V2IsSplat);
7416    Commuted = true;
7417  }
7418
7419  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7420    // Shuffling low element of v1 into undef, just return v1.
7421    if (V2IsUndef)
7422      return V1;
7423    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7424    // the instruction selector will not match, so get a canonical MOVL with
7425    // swapped operands to undo the commute.
7426    return getMOVL(DAG, dl, VT, V2, V1);
7427  }
7428
7429  if (isUNPCKLMask(M, VT, HasInt256))
7430    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7431
7432  if (isUNPCKHMask(M, VT, HasInt256))
7433    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7434
7435  if (V2IsSplat) {
7436    // Normalize mask so all entries that point to V2 points to its first
7437    // element then try to match unpck{h|l} again. If match, return a
7438    // new vector_shuffle with the corrected mask.p
7439    SmallVector<int, 8> NewMask(M.begin(), M.end());
7440    NormalizeMask(NewMask, NumElems);
7441    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7442      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7443    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7444      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7445  }
7446
7447  if (Commuted) {
7448    // Commute is back and try unpck* again.
7449    // FIXME: this seems wrong.
7450    CommuteVectorShuffleMask(M, NumElems);
7451    std::swap(V1, V2);
7452    std::swap(V1IsSplat, V2IsSplat);
7453    Commuted = false;
7454
7455    if (isUNPCKLMask(M, VT, HasInt256))
7456      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7457
7458    if (isUNPCKHMask(M, VT, HasInt256))
7459      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7460  }
7461
7462  // Normalize the node to match x86 shuffle ops if needed
7463  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7464    return CommuteVectorShuffle(SVOp, DAG);
7465
7466  // The checks below are all present in isShuffleMaskLegal, but they are
7467  // inlined here right now to enable us to directly emit target specific
7468  // nodes, and remove one by one until they don't return Op anymore.
7469
7470  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7471      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7472    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7473      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7474  }
7475
7476  if (isPSHUFHWMask(M, VT, HasInt256))
7477    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7478                                getShufflePSHUFHWImmediate(SVOp),
7479                                DAG);
7480
7481  if (isPSHUFLWMask(M, VT, HasInt256))
7482    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7483                                getShufflePSHUFLWImmediate(SVOp),
7484                                DAG);
7485
7486  if (isSHUFPMask(M, VT))
7487    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7488                                getShuffleSHUFImmediate(SVOp), DAG);
7489
7490  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7491    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7492  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7493    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7494
7495  //===--------------------------------------------------------------------===//
7496  // Generate target specific nodes for 128 or 256-bit shuffles only
7497  // supported in the AVX instruction set.
7498  //
7499
7500  // Handle VMOVDDUPY permutations
7501  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7502    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7503
7504  // Handle VPERMILPS/D* permutations
7505  if (isVPERMILPMask(M, VT)) {
7506    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7507      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7508                                  getShuffleSHUFImmediate(SVOp), DAG);
7509    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7510                                getShuffleSHUFImmediate(SVOp), DAG);
7511  }
7512
7513  // Handle VPERM2F128/VPERM2I128 permutations
7514  if (isVPERM2X128Mask(M, VT, HasFp256))
7515    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7516                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7517
7518  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7519  if (BlendOp.getNode())
7520    return BlendOp;
7521
7522  unsigned Imm8;
7523  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7524    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7525
7526  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7527      VT.is512BitVector()) {
7528    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7529    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7530    SmallVector<SDValue, 16> permclMask;
7531    for (unsigned i = 0; i != NumElems; ++i) {
7532      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7533    }
7534
7535    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
7536                                &permclMask[0], NumElems);
7537    if (V2IsUndef)
7538      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7539      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7540                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7541    return DAG.getNode(X86ISD::VPERMV3, dl, VT,
7542                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
7543  }
7544
7545  //===--------------------------------------------------------------------===//
7546  // Since no target specific shuffle was selected for this generic one,
7547  // lower it into other known shuffles. FIXME: this isn't true yet, but
7548  // this is the plan.
7549  //
7550
7551  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7552  if (VT == MVT::v8i16) {
7553    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7554    if (NewOp.getNode())
7555      return NewOp;
7556  }
7557
7558  if (VT == MVT::v16i8) {
7559    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7560    if (NewOp.getNode())
7561      return NewOp;
7562  }
7563
7564  if (VT == MVT::v32i8) {
7565    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7566    if (NewOp.getNode())
7567      return NewOp;
7568  }
7569
7570  // Handle all 128-bit wide vectors with 4 elements, and match them with
7571  // several different shuffle types.
7572  if (NumElems == 4 && VT.is128BitVector())
7573    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7574
7575  // Handle general 256-bit shuffles
7576  if (VT.is256BitVector())
7577    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7578
7579  return SDValue();
7580}
7581
7582static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7583  MVT VT = Op.getSimpleValueType();
7584  SDLoc dl(Op);
7585
7586  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
7587    return SDValue();
7588
7589  if (VT.getSizeInBits() == 8) {
7590    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7591                                  Op.getOperand(0), Op.getOperand(1));
7592    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7593                                  DAG.getValueType(VT));
7594    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7595  }
7596
7597  if (VT.getSizeInBits() == 16) {
7598    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7599    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7600    if (Idx == 0)
7601      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7602                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7603                                     DAG.getNode(ISD::BITCAST, dl,
7604                                                 MVT::v4i32,
7605                                                 Op.getOperand(0)),
7606                                     Op.getOperand(1)));
7607    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7608                                  Op.getOperand(0), Op.getOperand(1));
7609    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7610                                  DAG.getValueType(VT));
7611    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7612  }
7613
7614  if (VT == MVT::f32) {
7615    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7616    // the result back to FR32 register. It's only worth matching if the
7617    // result has a single use which is a store or a bitcast to i32.  And in
7618    // the case of a store, it's not worth it if the index is a constant 0,
7619    // because a MOVSSmr can be used instead, which is smaller and faster.
7620    if (!Op.hasOneUse())
7621      return SDValue();
7622    SDNode *User = *Op.getNode()->use_begin();
7623    if ((User->getOpcode() != ISD::STORE ||
7624         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7625          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7626        (User->getOpcode() != ISD::BITCAST ||
7627         User->getValueType(0) != MVT::i32))
7628      return SDValue();
7629    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7630                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7631                                              Op.getOperand(0)),
7632                                              Op.getOperand(1));
7633    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7634  }
7635
7636  if (VT == MVT::i32 || VT == MVT::i64) {
7637    // ExtractPS/pextrq works with constant index.
7638    if (isa<ConstantSDNode>(Op.getOperand(1)))
7639      return Op;
7640  }
7641  return SDValue();
7642}
7643
7644SDValue
7645X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7646                                           SelectionDAG &DAG) const {
7647  SDLoc dl(Op);
7648  SDValue Vec = Op.getOperand(0);
7649  MVT VecVT = Vec.getSimpleValueType();
7650  SDValue Idx = Op.getOperand(1);
7651  if (!isa<ConstantSDNode>(Idx)) {
7652    if (VecVT.is512BitVector() ||
7653        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
7654         VecVT.getVectorElementType().getSizeInBits() == 32)) {
7655
7656      MVT MaskEltVT =
7657        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
7658      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
7659                                    MaskEltVT.getSizeInBits());
7660
7661      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
7662      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
7663                                getZeroVector(MaskVT, Subtarget, DAG, dl),
7664                                Idx, DAG.getConstant(0, getPointerTy()));
7665      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
7666      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
7667                        Perm, DAG.getConstant(0, getPointerTy()));
7668    }
7669    return SDValue();
7670  }
7671
7672  // If this is a 256-bit vector result, first extract the 128-bit vector and
7673  // then extract the element from the 128-bit vector.
7674  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
7675
7676    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7677    // Get the 128-bit vector.
7678    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7679    MVT EltVT = VecVT.getVectorElementType();
7680
7681    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
7682
7683    //if (IdxVal >= NumElems/2)
7684    //  IdxVal -= NumElems/2;
7685    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
7686    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7687                       DAG.getConstant(IdxVal, MVT::i32));
7688  }
7689
7690  assert(VecVT.is128BitVector() && "Unexpected vector length");
7691
7692  if (Subtarget->hasSSE41()) {
7693    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7694    if (Res.getNode())
7695      return Res;
7696  }
7697
7698  MVT VT = Op.getSimpleValueType();
7699  // TODO: handle v16i8.
7700  if (VT.getSizeInBits() == 16) {
7701    SDValue Vec = Op.getOperand(0);
7702    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7703    if (Idx == 0)
7704      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7705                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7706                                     DAG.getNode(ISD::BITCAST, dl,
7707                                                 MVT::v4i32, Vec),
7708                                     Op.getOperand(1)));
7709    // Transform it so it match pextrw which produces a 32-bit result.
7710    MVT EltVT = MVT::i32;
7711    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7712                                  Op.getOperand(0), Op.getOperand(1));
7713    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7714                                  DAG.getValueType(VT));
7715    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7716  }
7717
7718  if (VT.getSizeInBits() == 32) {
7719    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7720    if (Idx == 0)
7721      return Op;
7722
7723    // SHUFPS the element to the lowest double word, then movss.
7724    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7725    MVT VVT = Op.getOperand(0).getSimpleValueType();
7726    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7727                                       DAG.getUNDEF(VVT), Mask);
7728    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7729                       DAG.getIntPtrConstant(0));
7730  }
7731
7732  if (VT.getSizeInBits() == 64) {
7733    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7734    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7735    //        to match extract_elt for f64.
7736    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7737    if (Idx == 0)
7738      return Op;
7739
7740    // UNPCKHPD the element to the lowest double word, then movsd.
7741    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7742    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7743    int Mask[2] = { 1, -1 };
7744    MVT VVT = Op.getOperand(0).getSimpleValueType();
7745    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7746                                       DAG.getUNDEF(VVT), Mask);
7747    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7748                       DAG.getIntPtrConstant(0));
7749  }
7750
7751  return SDValue();
7752}
7753
7754static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7755  MVT VT = Op.getSimpleValueType();
7756  MVT EltVT = VT.getVectorElementType();
7757  SDLoc dl(Op);
7758
7759  SDValue N0 = Op.getOperand(0);
7760  SDValue N1 = Op.getOperand(1);
7761  SDValue N2 = Op.getOperand(2);
7762
7763  if (!VT.is128BitVector())
7764    return SDValue();
7765
7766  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7767      isa<ConstantSDNode>(N2)) {
7768    unsigned Opc;
7769    if (VT == MVT::v8i16)
7770      Opc = X86ISD::PINSRW;
7771    else if (VT == MVT::v16i8)
7772      Opc = X86ISD::PINSRB;
7773    else
7774      Opc = X86ISD::PINSRB;
7775
7776    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7777    // argument.
7778    if (N1.getValueType() != MVT::i32)
7779      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7780    if (N2.getValueType() != MVT::i32)
7781      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7782    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7783  }
7784
7785  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7786    // Bits [7:6] of the constant are the source select.  This will always be
7787    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7788    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7789    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7790    // Bits [5:4] of the constant are the destination select.  This is the
7791    //  value of the incoming immediate.
7792    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7793    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7794    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7795    // Create this as a scalar to vector..
7796    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7797    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7798  }
7799
7800  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7801    // PINSR* works with constant index.
7802    return Op;
7803  }
7804  return SDValue();
7805}
7806
7807SDValue
7808X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7809  MVT VT = Op.getSimpleValueType();
7810  MVT EltVT = VT.getVectorElementType();
7811
7812  SDLoc dl(Op);
7813  SDValue N0 = Op.getOperand(0);
7814  SDValue N1 = Op.getOperand(1);
7815  SDValue N2 = Op.getOperand(2);
7816
7817  // If this is a 256-bit vector result, first extract the 128-bit vector,
7818  // insert the element into the extracted half and then place it back.
7819  if (VT.is256BitVector() || VT.is512BitVector()) {
7820    if (!isa<ConstantSDNode>(N2))
7821      return SDValue();
7822
7823    // Get the desired 128-bit vector half.
7824    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7825    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7826
7827    // Insert the element into the desired half.
7828    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
7829    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
7830
7831    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7832                    DAG.getConstant(IdxIn128, MVT::i32));
7833
7834    // Insert the changed part back to the 256-bit vector
7835    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7836  }
7837
7838  if (Subtarget->hasSSE41())
7839    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7840
7841  if (EltVT == MVT::i8)
7842    return SDValue();
7843
7844  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7845    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7846    // as its second argument.
7847    if (N1.getValueType() != MVT::i32)
7848      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7849    if (N2.getValueType() != MVT::i32)
7850      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7851    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7852  }
7853  return SDValue();
7854}
7855
7856static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7857  SDLoc dl(Op);
7858  MVT OpVT = Op.getSimpleValueType();
7859
7860  // If this is a 256-bit vector result, first insert into a 128-bit
7861  // vector and then insert into the 256-bit vector.
7862  if (!OpVT.is128BitVector()) {
7863    // Insert into a 128-bit vector.
7864    unsigned SizeFactor = OpVT.getSizeInBits()/128;
7865    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
7866                                 OpVT.getVectorNumElements() / SizeFactor);
7867
7868    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7869
7870    // Insert the 128-bit vector.
7871    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7872  }
7873
7874  if (OpVT == MVT::v1i64 &&
7875      Op.getOperand(0).getValueType() == MVT::i64)
7876    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7877
7878  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7879  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7880  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7881                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7882}
7883
7884// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7885// a simple subregister reference or explicit instructions to grab
7886// upper bits of a vector.
7887static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7888                                      SelectionDAG &DAG) {
7889  SDLoc dl(Op);
7890  SDValue In =  Op.getOperand(0);
7891  SDValue Idx = Op.getOperand(1);
7892  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7893  MVT ResVT   = Op.getSimpleValueType();
7894  MVT InVT    = In.getSimpleValueType();
7895
7896  if (Subtarget->hasFp256()) {
7897    if (ResVT.is128BitVector() &&
7898        (InVT.is256BitVector() || InVT.is512BitVector()) &&
7899        isa<ConstantSDNode>(Idx)) {
7900      return Extract128BitVector(In, IdxVal, DAG, dl);
7901    }
7902    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
7903        isa<ConstantSDNode>(Idx)) {
7904      return Extract256BitVector(In, IdxVal, DAG, dl);
7905    }
7906  }
7907  return SDValue();
7908}
7909
7910// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7911// simple superregister reference or explicit instructions to insert
7912// the upper bits of a vector.
7913static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7914                                     SelectionDAG &DAG) {
7915  if (Subtarget->hasFp256()) {
7916    SDLoc dl(Op.getNode());
7917    SDValue Vec = Op.getNode()->getOperand(0);
7918    SDValue SubVec = Op.getNode()->getOperand(1);
7919    SDValue Idx = Op.getNode()->getOperand(2);
7920
7921    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
7922         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
7923        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
7924        isa<ConstantSDNode>(Idx)) {
7925      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7926      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7927    }
7928
7929    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
7930        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
7931        isa<ConstantSDNode>(Idx)) {
7932      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7933      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
7934    }
7935  }
7936  return SDValue();
7937}
7938
7939// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7940// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7941// one of the above mentioned nodes. It has to be wrapped because otherwise
7942// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7943// be used to form addressing mode. These wrapped nodes will be selected
7944// into MOV32ri.
7945SDValue
7946X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7947  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7948
7949  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7950  // global base reg.
7951  unsigned char OpFlag = 0;
7952  unsigned WrapperKind = X86ISD::Wrapper;
7953  CodeModel::Model M = getTargetMachine().getCodeModel();
7954
7955  if (Subtarget->isPICStyleRIPRel() &&
7956      (M == CodeModel::Small || M == CodeModel::Kernel))
7957    WrapperKind = X86ISD::WrapperRIP;
7958  else if (Subtarget->isPICStyleGOT())
7959    OpFlag = X86II::MO_GOTOFF;
7960  else if (Subtarget->isPICStyleStubPIC())
7961    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7962
7963  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7964                                             CP->getAlignment(),
7965                                             CP->getOffset(), OpFlag);
7966  SDLoc DL(CP);
7967  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7968  // With PIC, the address is actually $g + Offset.
7969  if (OpFlag) {
7970    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7971                         DAG.getNode(X86ISD::GlobalBaseReg,
7972                                     SDLoc(), getPointerTy()),
7973                         Result);
7974  }
7975
7976  return Result;
7977}
7978
7979SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7980  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7981
7982  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7983  // global base reg.
7984  unsigned char OpFlag = 0;
7985  unsigned WrapperKind = X86ISD::Wrapper;
7986  CodeModel::Model M = getTargetMachine().getCodeModel();
7987
7988  if (Subtarget->isPICStyleRIPRel() &&
7989      (M == CodeModel::Small || M == CodeModel::Kernel))
7990    WrapperKind = X86ISD::WrapperRIP;
7991  else if (Subtarget->isPICStyleGOT())
7992    OpFlag = X86II::MO_GOTOFF;
7993  else if (Subtarget->isPICStyleStubPIC())
7994    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7995
7996  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7997                                          OpFlag);
7998  SDLoc DL(JT);
7999  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8000
8001  // With PIC, the address is actually $g + Offset.
8002  if (OpFlag)
8003    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8004                         DAG.getNode(X86ISD::GlobalBaseReg,
8005                                     SDLoc(), getPointerTy()),
8006                         Result);
8007
8008  return Result;
8009}
8010
8011SDValue
8012X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
8013  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8014
8015  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8016  // global base reg.
8017  unsigned char OpFlag = 0;
8018  unsigned WrapperKind = X86ISD::Wrapper;
8019  CodeModel::Model M = getTargetMachine().getCodeModel();
8020
8021  if (Subtarget->isPICStyleRIPRel() &&
8022      (M == CodeModel::Small || M == CodeModel::Kernel)) {
8023    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
8024      OpFlag = X86II::MO_GOTPCREL;
8025    WrapperKind = X86ISD::WrapperRIP;
8026  } else if (Subtarget->isPICStyleGOT()) {
8027    OpFlag = X86II::MO_GOT;
8028  } else if (Subtarget->isPICStyleStubPIC()) {
8029    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
8030  } else if (Subtarget->isPICStyleStubNoDynamic()) {
8031    OpFlag = X86II::MO_DARWIN_NONLAZY;
8032  }
8033
8034  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
8035
8036  SDLoc DL(Op);
8037  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8038
8039  // With PIC, the address is actually $g + Offset.
8040  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
8041      !Subtarget->is64Bit()) {
8042    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8043                         DAG.getNode(X86ISD::GlobalBaseReg,
8044                                     SDLoc(), getPointerTy()),
8045                         Result);
8046  }
8047
8048  // For symbols that require a load from a stub to get the address, emit the
8049  // load.
8050  if (isGlobalStubReference(OpFlag))
8051    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
8052                         MachinePointerInfo::getGOT(), false, false, false, 0);
8053
8054  return Result;
8055}
8056
8057SDValue
8058X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
8059  // Create the TargetBlockAddressAddress node.
8060  unsigned char OpFlags =
8061    Subtarget->ClassifyBlockAddressReference();
8062  CodeModel::Model M = getTargetMachine().getCodeModel();
8063  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8064  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8065  SDLoc dl(Op);
8066  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8067                                             OpFlags);
8068
8069  if (Subtarget->isPICStyleRIPRel() &&
8070      (M == CodeModel::Small || M == CodeModel::Kernel))
8071    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8072  else
8073    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8074
8075  // With PIC, the address is actually $g + Offset.
8076  if (isGlobalRelativeToPICBase(OpFlags)) {
8077    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8078                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8079                         Result);
8080  }
8081
8082  return Result;
8083}
8084
8085SDValue
8086X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8087                                      int64_t Offset, SelectionDAG &DAG) const {
8088  // Create the TargetGlobalAddress node, folding in the constant
8089  // offset if it is legal.
8090  unsigned char OpFlags =
8091    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8092  CodeModel::Model M = getTargetMachine().getCodeModel();
8093  SDValue Result;
8094  if (OpFlags == X86II::MO_NO_FLAG &&
8095      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8096    // A direct static reference to a global.
8097    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8098    Offset = 0;
8099  } else {
8100    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8101  }
8102
8103  if (Subtarget->isPICStyleRIPRel() &&
8104      (M == CodeModel::Small || M == CodeModel::Kernel))
8105    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8106  else
8107    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8108
8109  // With PIC, the address is actually $g + Offset.
8110  if (isGlobalRelativeToPICBase(OpFlags)) {
8111    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8112                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8113                         Result);
8114  }
8115
8116  // For globals that require a load from a stub to get the address, emit the
8117  // load.
8118  if (isGlobalStubReference(OpFlags))
8119    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8120                         MachinePointerInfo::getGOT(), false, false, false, 0);
8121
8122  // If there was a non-zero offset that we didn't fold, create an explicit
8123  // addition for it.
8124  if (Offset != 0)
8125    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8126                         DAG.getConstant(Offset, getPointerTy()));
8127
8128  return Result;
8129}
8130
8131SDValue
8132X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8133  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8134  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8135  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8136}
8137
8138static SDValue
8139GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8140           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8141           unsigned char OperandFlags, bool LocalDynamic = false) {
8142  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8143  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8144  SDLoc dl(GA);
8145  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8146                                           GA->getValueType(0),
8147                                           GA->getOffset(),
8148                                           OperandFlags);
8149
8150  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8151                                           : X86ISD::TLSADDR;
8152
8153  if (InFlag) {
8154    SDValue Ops[] = { Chain,  TGA, *InFlag };
8155    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8156  } else {
8157    SDValue Ops[]  = { Chain, TGA };
8158    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8159  }
8160
8161  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8162  MFI->setAdjustsStack(true);
8163
8164  SDValue Flag = Chain.getValue(1);
8165  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8166}
8167
8168// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8169static SDValue
8170LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8171                                const EVT PtrVT) {
8172  SDValue InFlag;
8173  SDLoc dl(GA);  // ? function entry point might be better
8174  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8175                                   DAG.getNode(X86ISD::GlobalBaseReg,
8176                                               SDLoc(), PtrVT), InFlag);
8177  InFlag = Chain.getValue(1);
8178
8179  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8180}
8181
8182// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8183static SDValue
8184LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8185                                const EVT PtrVT) {
8186  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
8187                    X86::RAX, X86II::MO_TLSGD);
8188}
8189
8190static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8191                                           SelectionDAG &DAG,
8192                                           const EVT PtrVT,
8193                                           bool is64Bit) {
8194  SDLoc dl(GA);
8195
8196  // Get the start address of the TLS block for this module.
8197  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8198      .getInfo<X86MachineFunctionInfo>();
8199  MFI->incNumLocalDynamicTLSAccesses();
8200
8201  SDValue Base;
8202  if (is64Bit) {
8203    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
8204                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8205  } else {
8206    SDValue InFlag;
8207    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8208        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8209    InFlag = Chain.getValue(1);
8210    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8211                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8212  }
8213
8214  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8215  // of Base.
8216
8217  // Build x@dtpoff.
8218  unsigned char OperandFlags = X86II::MO_DTPOFF;
8219  unsigned WrapperKind = X86ISD::Wrapper;
8220  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8221                                           GA->getValueType(0),
8222                                           GA->getOffset(), OperandFlags);
8223  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8224
8225  // Add x@dtpoff with the base.
8226  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8227}
8228
8229// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8230static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8231                                   const EVT PtrVT, TLSModel::Model model,
8232                                   bool is64Bit, bool isPIC) {
8233  SDLoc dl(GA);
8234
8235  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8236  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8237                                                         is64Bit ? 257 : 256));
8238
8239  SDValue ThreadPointer =
8240      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
8241                  MachinePointerInfo(Ptr), false, false, false, 0);
8242
8243  unsigned char OperandFlags = 0;
8244  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8245  // initialexec.
8246  unsigned WrapperKind = X86ISD::Wrapper;
8247  if (model == TLSModel::LocalExec) {
8248    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8249  } else if (model == TLSModel::InitialExec) {
8250    if (is64Bit) {
8251      OperandFlags = X86II::MO_GOTTPOFF;
8252      WrapperKind = X86ISD::WrapperRIP;
8253    } else {
8254      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8255    }
8256  } else {
8257    llvm_unreachable("Unexpected model");
8258  }
8259
8260  // emit "addl x@ntpoff,%eax" (local exec)
8261  // or "addl x@indntpoff,%eax" (initial exec)
8262  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8263  SDValue TGA =
8264      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
8265                                 GA->getOffset(), OperandFlags);
8266  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8267
8268  if (model == TLSModel::InitialExec) {
8269    if (isPIC && !is64Bit) {
8270      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8271                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8272                           Offset);
8273    }
8274
8275    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8276                         MachinePointerInfo::getGOT(), false, false, false, 0);
8277  }
8278
8279  // The address of the thread local variable is the add of the thread
8280  // pointer with the offset of the variable.
8281  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8282}
8283
8284SDValue
8285X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8286
8287  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8288  const GlobalValue *GV = GA->getGlobal();
8289
8290  if (Subtarget->isTargetELF()) {
8291    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8292
8293    switch (model) {
8294      case TLSModel::GeneralDynamic:
8295        if (Subtarget->is64Bit())
8296          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8297        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8298      case TLSModel::LocalDynamic:
8299        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8300                                           Subtarget->is64Bit());
8301      case TLSModel::InitialExec:
8302      case TLSModel::LocalExec:
8303        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8304                                   Subtarget->is64Bit(),
8305                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8306    }
8307    llvm_unreachable("Unknown TLS model.");
8308  }
8309
8310  if (Subtarget->isTargetDarwin()) {
8311    // Darwin only has one model of TLS.  Lower to that.
8312    unsigned char OpFlag = 0;
8313    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8314                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8315
8316    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8317    // global base reg.
8318    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8319                  !Subtarget->is64Bit();
8320    if (PIC32)
8321      OpFlag = X86II::MO_TLVP_PIC_BASE;
8322    else
8323      OpFlag = X86II::MO_TLVP;
8324    SDLoc DL(Op);
8325    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8326                                                GA->getValueType(0),
8327                                                GA->getOffset(), OpFlag);
8328    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8329
8330    // With PIC32, the address is actually $g + Offset.
8331    if (PIC32)
8332      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8333                           DAG.getNode(X86ISD::GlobalBaseReg,
8334                                       SDLoc(), getPointerTy()),
8335                           Offset);
8336
8337    // Lowering the machine isd will make sure everything is in the right
8338    // location.
8339    SDValue Chain = DAG.getEntryNode();
8340    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8341    SDValue Args[] = { Chain, Offset };
8342    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
8343
8344    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8345    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8346    MFI->setAdjustsStack(true);
8347
8348    // And our return value (tls address) is in the standard call return value
8349    // location.
8350    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8351    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8352                              Chain.getValue(1));
8353  }
8354
8355  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
8356    // Just use the implicit TLS architecture
8357    // Need to generate someting similar to:
8358    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8359    //                                  ; from TEB
8360    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8361    //   mov     rcx, qword [rdx+rcx*8]
8362    //   mov     eax, .tls$:tlsvar
8363    //   [rax+rcx] contains the address
8364    // Windows 64bit: gs:0x58
8365    // Windows 32bit: fs:__tls_array
8366
8367    // If GV is an alias then use the aliasee for determining
8368    // thread-localness.
8369    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
8370      GV = GA->resolveAliasedGlobal(false);
8371    SDLoc dl(GA);
8372    SDValue Chain = DAG.getEntryNode();
8373
8374    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8375    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8376    // use its literal value of 0x2C.
8377    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8378                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8379                                                             256)
8380                                        : Type::getInt32PtrTy(*DAG.getContext(),
8381                                                              257));
8382
8383    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
8384      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
8385        DAG.getExternalSymbol("_tls_array", getPointerTy()));
8386
8387    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8388                                        MachinePointerInfo(Ptr),
8389                                        false, false, false, 0);
8390
8391    // Load the _tls_index variable
8392    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8393    if (Subtarget->is64Bit())
8394      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8395                           IDX, MachinePointerInfo(), MVT::i32,
8396                           false, false, 0);
8397    else
8398      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8399                        false, false, false, 0);
8400
8401    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8402                                    getPointerTy());
8403    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8404
8405    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8406    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8407                      false, false, false, 0);
8408
8409    // Get the offset of start of .tls section
8410    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8411                                             GA->getValueType(0),
8412                                             GA->getOffset(), X86II::MO_SECREL);
8413    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8414
8415    // The address of the thread local variable is the add of the thread
8416    // pointer with the offset of the variable.
8417    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8418  }
8419
8420  llvm_unreachable("TLS not implemented for this target.");
8421}
8422
8423/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
8424/// and take a 2 x i32 value to shift plus a shift amount.
8425SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
8426  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
8427  EVT VT = Op.getValueType();
8428  unsigned VTBits = VT.getSizeInBits();
8429  SDLoc dl(Op);
8430  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
8431  SDValue ShOpLo = Op.getOperand(0);
8432  SDValue ShOpHi = Op.getOperand(1);
8433  SDValue ShAmt  = Op.getOperand(2);
8434  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
8435  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
8436  // during isel.
8437  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8438                                  DAG.getConstant(VTBits - 1, MVT::i8));
8439  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8440                                     DAG.getConstant(VTBits - 1, MVT::i8))
8441                       : DAG.getConstant(0, VT);
8442
8443  SDValue Tmp2, Tmp3;
8444  if (Op.getOpcode() == ISD::SHL_PARTS) {
8445    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
8446    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8447  } else {
8448    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
8449    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8450  }
8451
8452  // If the shift amount is larger or equal than the width of a part we can't
8453  // rely on the results of shld/shrd. Insert a test and select the appropriate
8454  // values for large shift amounts.
8455  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8456                                DAG.getConstant(VTBits, MVT::i8));
8457  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8458                             AndNode, DAG.getConstant(0, MVT::i8));
8459
8460  SDValue Hi, Lo;
8461  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8462  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
8463  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
8464
8465  if (Op.getOpcode() == ISD::SHL_PARTS) {
8466    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8467    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8468  } else {
8469    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8470    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8471  }
8472
8473  SDValue Ops[2] = { Lo, Hi };
8474  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
8475}
8476
8477SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
8478                                           SelectionDAG &DAG) const {
8479  EVT SrcVT = Op.getOperand(0).getValueType();
8480
8481  if (SrcVT.isVector())
8482    return SDValue();
8483
8484  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
8485         "Unknown SINT_TO_FP to lower!");
8486
8487  // These are really Legal; return the operand so the caller accepts it as
8488  // Legal.
8489  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8490    return Op;
8491  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8492      Subtarget->is64Bit()) {
8493    return Op;
8494  }
8495
8496  SDLoc dl(Op);
8497  unsigned Size = SrcVT.getSizeInBits()/8;
8498  MachineFunction &MF = DAG.getMachineFunction();
8499  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8500  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8501  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8502                               StackSlot,
8503                               MachinePointerInfo::getFixedStack(SSFI),
8504                               false, false, 0);
8505  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8506}
8507
8508SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8509                                     SDValue StackSlot,
8510                                     SelectionDAG &DAG) const {
8511  // Build the FILD
8512  SDLoc DL(Op);
8513  SDVTList Tys;
8514  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8515  if (useSSE)
8516    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8517  else
8518    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8519
8520  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8521
8522  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8523  MachineMemOperand *MMO;
8524  if (FI) {
8525    int SSFI = FI->getIndex();
8526    MMO =
8527      DAG.getMachineFunction()
8528      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8529                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8530  } else {
8531    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8532    StackSlot = StackSlot.getOperand(1);
8533  }
8534  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8535  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8536                                           X86ISD::FILD, DL,
8537                                           Tys, Ops, array_lengthof(Ops),
8538                                           SrcVT, MMO);
8539
8540  if (useSSE) {
8541    Chain = Result.getValue(1);
8542    SDValue InFlag = Result.getValue(2);
8543
8544    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8545    // shouldn't be necessary except that RFP cannot be live across
8546    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8547    MachineFunction &MF = DAG.getMachineFunction();
8548    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8549    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8550    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8551    Tys = DAG.getVTList(MVT::Other);
8552    SDValue Ops[] = {
8553      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8554    };
8555    MachineMemOperand *MMO =
8556      DAG.getMachineFunction()
8557      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8558                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8559
8560    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8561                                    Ops, array_lengthof(Ops),
8562                                    Op.getValueType(), MMO);
8563    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8564                         MachinePointerInfo::getFixedStack(SSFI),
8565                         false, false, false, 0);
8566  }
8567
8568  return Result;
8569}
8570
8571// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8572SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8573                                               SelectionDAG &DAG) const {
8574  // This algorithm is not obvious. Here it is what we're trying to output:
8575  /*
8576     movq       %rax,  %xmm0
8577     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8578     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8579     #ifdef __SSE3__
8580       haddpd   %xmm0, %xmm0
8581     #else
8582       pshufd   $0x4e, %xmm0, %xmm1
8583       addpd    %xmm1, %xmm0
8584     #endif
8585  */
8586
8587  SDLoc dl(Op);
8588  LLVMContext *Context = DAG.getContext();
8589
8590  // Build some magic constants.
8591  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8592  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8593  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8594
8595  SmallVector<Constant*,2> CV1;
8596  CV1.push_back(
8597    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8598                                      APInt(64, 0x4330000000000000ULL))));
8599  CV1.push_back(
8600    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8601                                      APInt(64, 0x4530000000000000ULL))));
8602  Constant *C1 = ConstantVector::get(CV1);
8603  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8604
8605  // Load the 64-bit value into an XMM register.
8606  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8607                            Op.getOperand(0));
8608  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8609                              MachinePointerInfo::getConstantPool(),
8610                              false, false, false, 16);
8611  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8612                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8613                              CLod0);
8614
8615  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8616                              MachinePointerInfo::getConstantPool(),
8617                              false, false, false, 16);
8618  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8619  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8620  SDValue Result;
8621
8622  if (Subtarget->hasSSE3()) {
8623    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8624    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8625  } else {
8626    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8627    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8628                                           S2F, 0x4E, DAG);
8629    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8630                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8631                         Sub);
8632  }
8633
8634  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8635                     DAG.getIntPtrConstant(0));
8636}
8637
8638// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8639SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8640                                               SelectionDAG &DAG) const {
8641  SDLoc dl(Op);
8642  // FP constant to bias correct the final result.
8643  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8644                                   MVT::f64);
8645
8646  // Load the 32-bit value into an XMM register.
8647  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8648                             Op.getOperand(0));
8649
8650  // Zero out the upper parts of the register.
8651  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8652
8653  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8654                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8655                     DAG.getIntPtrConstant(0));
8656
8657  // Or the load with the bias.
8658  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8659                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8660                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8661                                                   MVT::v2f64, Load)),
8662                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8663                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8664                                                   MVT::v2f64, Bias)));
8665  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8666                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8667                   DAG.getIntPtrConstant(0));
8668
8669  // Subtract the bias.
8670  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8671
8672  // Handle final rounding.
8673  EVT DestVT = Op.getValueType();
8674
8675  if (DestVT.bitsLT(MVT::f64))
8676    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8677                       DAG.getIntPtrConstant(0));
8678  if (DestVT.bitsGT(MVT::f64))
8679    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8680
8681  // Handle final rounding.
8682  return Sub;
8683}
8684
8685SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8686                                               SelectionDAG &DAG) const {
8687  SDValue N0 = Op.getOperand(0);
8688  EVT SVT = N0.getValueType();
8689  SDLoc dl(Op);
8690
8691  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8692          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8693         "Custom UINT_TO_FP is not supported!");
8694
8695  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8696                             SVT.getVectorNumElements());
8697  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8698                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8699}
8700
8701SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8702                                           SelectionDAG &DAG) const {
8703  SDValue N0 = Op.getOperand(0);
8704  SDLoc dl(Op);
8705
8706  if (Op.getValueType().isVector())
8707    return lowerUINT_TO_FP_vec(Op, DAG);
8708
8709  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8710  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8711  // the optimization here.
8712  if (DAG.SignBitIsZero(N0))
8713    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8714
8715  EVT SrcVT = N0.getValueType();
8716  EVT DstVT = Op.getValueType();
8717  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8718    return LowerUINT_TO_FP_i64(Op, DAG);
8719  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8720    return LowerUINT_TO_FP_i32(Op, DAG);
8721  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8722    return SDValue();
8723
8724  // Make a 64-bit buffer, and use it to build an FILD.
8725  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8726  if (SrcVT == MVT::i32) {
8727    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8728    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8729                                     getPointerTy(), StackSlot, WordOff);
8730    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8731                                  StackSlot, MachinePointerInfo(),
8732                                  false, false, 0);
8733    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8734                                  OffsetSlot, MachinePointerInfo(),
8735                                  false, false, 0);
8736    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8737    return Fild;
8738  }
8739
8740  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8741  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8742                               StackSlot, MachinePointerInfo(),
8743                               false, false, 0);
8744  // For i64 source, we need to add the appropriate power of 2 if the input
8745  // was negative.  This is the same as the optimization in
8746  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8747  // we must be careful to do the computation in x87 extended precision, not
8748  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8749  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8750  MachineMemOperand *MMO =
8751    DAG.getMachineFunction()
8752    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8753                          MachineMemOperand::MOLoad, 8, 8);
8754
8755  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8756  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8757  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8758                                         array_lengthof(Ops), MVT::i64, MMO);
8759
8760  APInt FF(32, 0x5F800000ULL);
8761
8762  // Check whether the sign bit is set.
8763  SDValue SignSet = DAG.getSetCC(dl,
8764                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8765                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8766                                 ISD::SETLT);
8767
8768  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8769  SDValue FudgePtr = DAG.getConstantPool(
8770                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8771                                         getPointerTy());
8772
8773  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8774  SDValue Zero = DAG.getIntPtrConstant(0);
8775  SDValue Four = DAG.getIntPtrConstant(4);
8776  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8777                               Zero, Four);
8778  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8779
8780  // Load the value out, extending it from f32 to f80.
8781  // FIXME: Avoid the extend by constructing the right constant pool?
8782  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8783                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8784                                 MVT::f32, false, false, 4);
8785  // Extend everything to 80 bits to force it to be done on x87.
8786  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8787  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8788}
8789
8790std::pair<SDValue,SDValue>
8791X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8792                                    bool IsSigned, bool IsReplace) const {
8793  SDLoc DL(Op);
8794
8795  EVT DstTy = Op.getValueType();
8796
8797  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8798    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8799    DstTy = MVT::i64;
8800  }
8801
8802  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8803         DstTy.getSimpleVT() >= MVT::i16 &&
8804         "Unknown FP_TO_INT to lower!");
8805
8806  // These are really Legal.
8807  if (DstTy == MVT::i32 &&
8808      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8809    return std::make_pair(SDValue(), SDValue());
8810  if (Subtarget->is64Bit() &&
8811      DstTy == MVT::i64 &&
8812      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8813    return std::make_pair(SDValue(), SDValue());
8814
8815  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8816  // stack slot, or into the FTOL runtime function.
8817  MachineFunction &MF = DAG.getMachineFunction();
8818  unsigned MemSize = DstTy.getSizeInBits()/8;
8819  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8820  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8821
8822  unsigned Opc;
8823  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8824    Opc = X86ISD::WIN_FTOL;
8825  else
8826    switch (DstTy.getSimpleVT().SimpleTy) {
8827    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8828    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8829    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8830    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8831    }
8832
8833  SDValue Chain = DAG.getEntryNode();
8834  SDValue Value = Op.getOperand(0);
8835  EVT TheVT = Op.getOperand(0).getValueType();
8836  // FIXME This causes a redundant load/store if the SSE-class value is already
8837  // in memory, such as if it is on the callstack.
8838  if (isScalarFPTypeInSSEReg(TheVT)) {
8839    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8840    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8841                         MachinePointerInfo::getFixedStack(SSFI),
8842                         false, false, 0);
8843    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8844    SDValue Ops[] = {
8845      Chain, StackSlot, DAG.getValueType(TheVT)
8846    };
8847
8848    MachineMemOperand *MMO =
8849      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8850                              MachineMemOperand::MOLoad, MemSize, MemSize);
8851    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8852                                    array_lengthof(Ops), DstTy, MMO);
8853    Chain = Value.getValue(1);
8854    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8855    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8856  }
8857
8858  MachineMemOperand *MMO =
8859    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8860                            MachineMemOperand::MOStore, MemSize, MemSize);
8861
8862  if (Opc != X86ISD::WIN_FTOL) {
8863    // Build the FP_TO_INT*_IN_MEM
8864    SDValue Ops[] = { Chain, Value, StackSlot };
8865    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8866                                           Ops, array_lengthof(Ops), DstTy,
8867                                           MMO);
8868    return std::make_pair(FIST, StackSlot);
8869  } else {
8870    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8871      DAG.getVTList(MVT::Other, MVT::Glue),
8872      Chain, Value);
8873    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8874      MVT::i32, ftol.getValue(1));
8875    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8876      MVT::i32, eax.getValue(2));
8877    SDValue Ops[] = { eax, edx };
8878    SDValue pair = IsReplace
8879      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8880      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8881    return std::make_pair(pair, SDValue());
8882  }
8883}
8884
8885static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8886                              const X86Subtarget *Subtarget) {
8887  MVT VT = Op->getSimpleValueType(0);
8888  SDValue In = Op->getOperand(0);
8889  MVT InVT = In.getSimpleValueType();
8890  SDLoc dl(Op);
8891
8892  // Optimize vectors in AVX mode:
8893  //
8894  //   v8i16 -> v8i32
8895  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8896  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8897  //   Concat upper and lower parts.
8898  //
8899  //   v4i32 -> v4i64
8900  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8901  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8902  //   Concat upper and lower parts.
8903  //
8904
8905  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
8906      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8907      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8908    return SDValue();
8909
8910  if (Subtarget->hasInt256())
8911    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8912
8913  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8914  SDValue Undef = DAG.getUNDEF(InVT);
8915  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8916  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8917  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8918
8919  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8920                             VT.getVectorNumElements()/2);
8921
8922  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8923  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8924
8925  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8926}
8927
8928static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
8929                                        SelectionDAG &DAG) {
8930  MVT VT = Op->getValueType(0).getSimpleVT();
8931  SDValue In = Op->getOperand(0);
8932  MVT InVT = In.getValueType().getSimpleVT();
8933  SDLoc DL(Op);
8934  unsigned int NumElts = VT.getVectorNumElements();
8935  if (NumElts != 8 && NumElts != 16)
8936    return SDValue();
8937
8938  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
8939    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8940
8941  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
8942  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8943  // Now we have only mask extension
8944  assert(InVT.getVectorElementType() == MVT::i1);
8945  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
8946  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8947  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
8948  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8949  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8950                           MachinePointerInfo::getConstantPool(),
8951                           false, false, false, Alignment);
8952
8953  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
8954  if (VT.is512BitVector())
8955    return Brcst;
8956  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
8957}
8958
8959static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8960                               SelectionDAG &DAG) {
8961  if (Subtarget->hasFp256()) {
8962    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8963    if (Res.getNode())
8964      return Res;
8965  }
8966
8967  return SDValue();
8968}
8969
8970static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8971                                SelectionDAG &DAG) {
8972  SDLoc DL(Op);
8973  MVT VT = Op.getSimpleValueType();
8974  SDValue In = Op.getOperand(0);
8975  MVT SVT = In.getSimpleValueType();
8976
8977  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
8978    return LowerZERO_EXTEND_AVX512(Op, DAG);
8979
8980  if (Subtarget->hasFp256()) {
8981    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8982    if (Res.getNode())
8983      return Res;
8984  }
8985
8986  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
8987         VT.getVectorNumElements() != SVT.getVectorNumElements());
8988  return SDValue();
8989}
8990
8991SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8992  SDLoc DL(Op);
8993  MVT VT = Op.getSimpleValueType();
8994  SDValue In = Op.getOperand(0);
8995  MVT InVT = In.getSimpleValueType();
8996  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
8997         "Invalid TRUNCATE operation");
8998
8999  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
9000    if (VT.getVectorElementType().getSizeInBits() >=8)
9001      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
9002
9003    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
9004    unsigned NumElts = InVT.getVectorNumElements();
9005    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
9006    if (InVT.getSizeInBits() < 512) {
9007      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
9008      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
9009      InVT = ExtVT;
9010    }
9011    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
9012    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
9013    SDValue CP = DAG.getConstantPool(C, getPointerTy());
9014    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
9015    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
9016                           MachinePointerInfo::getConstantPool(),
9017                           false, false, false, Alignment);
9018    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
9019    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
9020    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
9021  }
9022
9023  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
9024    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
9025    if (Subtarget->hasInt256()) {
9026      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
9027      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
9028      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
9029                                ShufMask);
9030      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
9031                         DAG.getIntPtrConstant(0));
9032    }
9033
9034    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
9035    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9036                               DAG.getIntPtrConstant(0));
9037    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9038                               DAG.getIntPtrConstant(2));
9039
9040    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9041    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9042
9043    // The PSHUFD mask:
9044    static const int ShufMask1[] = {0, 2, 0, 0};
9045    SDValue Undef = DAG.getUNDEF(VT);
9046    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
9047    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
9048
9049    // The MOVLHPS mask:
9050    static const int ShufMask2[] = {0, 1, 4, 5};
9051    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
9052  }
9053
9054  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9055    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9056    if (Subtarget->hasInt256()) {
9057      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9058
9059      SmallVector<SDValue,32> pshufbMask;
9060      for (unsigned i = 0; i < 2; ++i) {
9061        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9062        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9063        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9064        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9065        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9066        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9067        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9068        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9069        for (unsigned j = 0; j < 8; ++j)
9070          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9071      }
9072      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
9073                               &pshufbMask[0], 32);
9074      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9075      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9076
9077      static const int ShufMask[] = {0,  2,  -1,  -1};
9078      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9079                                &ShufMask[0]);
9080      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9081                       DAG.getIntPtrConstant(0));
9082      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9083    }
9084
9085    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9086                               DAG.getIntPtrConstant(0));
9087
9088    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9089                               DAG.getIntPtrConstant(4));
9090
9091    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9092    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9093
9094    // The PSHUFB mask:
9095    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9096                                   -1, -1, -1, -1, -1, -1, -1, -1};
9097
9098    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9099    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9100    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9101
9102    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9103    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9104
9105    // The MOVLHPS Mask:
9106    static const int ShufMask2[] = {0, 1, 4, 5};
9107    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9108    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9109  }
9110
9111  // Handle truncation of V256 to V128 using shuffles.
9112  if (!VT.is128BitVector() || !InVT.is256BitVector())
9113    return SDValue();
9114
9115  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9116
9117  unsigned NumElems = VT.getVectorNumElements();
9118  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9119                             NumElems * 2);
9120
9121  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9122  // Prepare truncation shuffle mask
9123  for (unsigned i = 0; i != NumElems; ++i)
9124    MaskVec[i] = i * 2;
9125  SDValue V = DAG.getVectorShuffle(NVT, DL,
9126                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9127                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9128  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9129                     DAG.getIntPtrConstant(0));
9130}
9131
9132SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9133                                           SelectionDAG &DAG) const {
9134  MVT VT = Op.getSimpleValueType();
9135  if (VT.isVector()) {
9136    if (VT == MVT::v8i16)
9137      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
9138                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
9139                                     MVT::v8i32, Op.getOperand(0)));
9140    return SDValue();
9141  }
9142
9143  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9144    /*IsSigned=*/ true, /*IsReplace=*/ false);
9145  SDValue FIST = Vals.first, StackSlot = Vals.second;
9146  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9147  if (FIST.getNode() == 0) return Op;
9148
9149  if (StackSlot.getNode())
9150    // Load the result.
9151    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9152                       FIST, StackSlot, MachinePointerInfo(),
9153                       false, false, false, 0);
9154
9155  // The node is the result.
9156  return FIST;
9157}
9158
9159SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9160                                           SelectionDAG &DAG) const {
9161  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9162    /*IsSigned=*/ false, /*IsReplace=*/ false);
9163  SDValue FIST = Vals.first, StackSlot = Vals.second;
9164  assert(FIST.getNode() && "Unexpected failure");
9165
9166  if (StackSlot.getNode())
9167    // Load the result.
9168    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9169                       FIST, StackSlot, MachinePointerInfo(),
9170                       false, false, false, 0);
9171
9172  // The node is the result.
9173  return FIST;
9174}
9175
9176static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9177  SDLoc DL(Op);
9178  MVT VT = Op.getSimpleValueType();
9179  SDValue In = Op.getOperand(0);
9180  MVT SVT = In.getSimpleValueType();
9181
9182  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9183
9184  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9185                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9186                                 In, DAG.getUNDEF(SVT)));
9187}
9188
9189SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
9190  LLVMContext *Context = DAG.getContext();
9191  SDLoc dl(Op);
9192  MVT VT = Op.getSimpleValueType();
9193  MVT EltVT = VT;
9194  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9195  if (VT.isVector()) {
9196    EltVT = VT.getVectorElementType();
9197    NumElts = VT.getVectorNumElements();
9198  }
9199  Constant *C;
9200  if (EltVT == MVT::f64)
9201    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9202                                          APInt(64, ~(1ULL << 63))));
9203  else
9204    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9205                                          APInt(32, ~(1U << 31))));
9206  C = ConstantVector::getSplat(NumElts, C);
9207  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9208  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9209  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9210                             MachinePointerInfo::getConstantPool(),
9211                             false, false, false, Alignment);
9212  if (VT.isVector()) {
9213    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9214    return DAG.getNode(ISD::BITCAST, dl, VT,
9215                       DAG.getNode(ISD::AND, dl, ANDVT,
9216                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9217                                               Op.getOperand(0)),
9218                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9219  }
9220  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9221}
9222
9223SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
9224  LLVMContext *Context = DAG.getContext();
9225  SDLoc dl(Op);
9226  MVT VT = Op.getSimpleValueType();
9227  MVT EltVT = VT;
9228  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9229  if (VT.isVector()) {
9230    EltVT = VT.getVectorElementType();
9231    NumElts = VT.getVectorNumElements();
9232  }
9233  Constant *C;
9234  if (EltVT == MVT::f64)
9235    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9236                                          APInt(64, 1ULL << 63)));
9237  else
9238    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9239                                          APInt(32, 1U << 31)));
9240  C = ConstantVector::getSplat(NumElts, C);
9241  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9242  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9243  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9244                             MachinePointerInfo::getConstantPool(),
9245                             false, false, false, Alignment);
9246  if (VT.isVector()) {
9247    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9248    return DAG.getNode(ISD::BITCAST, dl, VT,
9249                       DAG.getNode(ISD::XOR, dl, XORVT,
9250                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9251                                               Op.getOperand(0)),
9252                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9253  }
9254
9255  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9256}
9257
9258SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
9259  LLVMContext *Context = DAG.getContext();
9260  SDValue Op0 = Op.getOperand(0);
9261  SDValue Op1 = Op.getOperand(1);
9262  SDLoc dl(Op);
9263  MVT VT = Op.getSimpleValueType();
9264  MVT SrcVT = Op1.getSimpleValueType();
9265
9266  // If second operand is smaller, extend it first.
9267  if (SrcVT.bitsLT(VT)) {
9268    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9269    SrcVT = VT;
9270  }
9271  // And if it is bigger, shrink it first.
9272  if (SrcVT.bitsGT(VT)) {
9273    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9274    SrcVT = VT;
9275  }
9276
9277  // At this point the operands and the result should have the same
9278  // type, and that won't be f80 since that is not custom lowered.
9279
9280  // First get the sign bit of second operand.
9281  SmallVector<Constant*,4> CV;
9282  if (SrcVT == MVT::f64) {
9283    const fltSemantics &Sem = APFloat::IEEEdouble;
9284    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9285    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9286  } else {
9287    const fltSemantics &Sem = APFloat::IEEEsingle;
9288    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9289    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9290    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9291    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9292  }
9293  Constant *C = ConstantVector::get(CV);
9294  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9295  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9296                              MachinePointerInfo::getConstantPool(),
9297                              false, false, false, 16);
9298  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9299
9300  // Shift sign bit right or left if the two operands have different types.
9301  if (SrcVT.bitsGT(VT)) {
9302    // Op0 is MVT::f32, Op1 is MVT::f64.
9303    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9304    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9305                          DAG.getConstant(32, MVT::i32));
9306    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9307    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9308                          DAG.getIntPtrConstant(0));
9309  }
9310
9311  // Clear first operand sign bit.
9312  CV.clear();
9313  if (VT == MVT::f64) {
9314    const fltSemantics &Sem = APFloat::IEEEdouble;
9315    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9316                                                   APInt(64, ~(1ULL << 63)))));
9317    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9318  } else {
9319    const fltSemantics &Sem = APFloat::IEEEsingle;
9320    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9321                                                   APInt(32, ~(1U << 31)))));
9322    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9323    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9324    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9325  }
9326  C = ConstantVector::get(CV);
9327  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9328  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9329                              MachinePointerInfo::getConstantPool(),
9330                              false, false, false, 16);
9331  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9332
9333  // Or the value with the sign bit.
9334  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9335}
9336
9337static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9338  SDValue N0 = Op.getOperand(0);
9339  SDLoc dl(Op);
9340  MVT VT = Op.getSimpleValueType();
9341
9342  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9343  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9344                                  DAG.getConstant(1, VT));
9345  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9346}
9347
9348// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9349//
9350static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9351                                      SelectionDAG &DAG) {
9352  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9353
9354  if (!Subtarget->hasSSE41())
9355    return SDValue();
9356
9357  if (!Op->hasOneUse())
9358    return SDValue();
9359
9360  SDNode *N = Op.getNode();
9361  SDLoc DL(N);
9362
9363  SmallVector<SDValue, 8> Opnds;
9364  DenseMap<SDValue, unsigned> VecInMap;
9365  EVT VT = MVT::Other;
9366
9367  // Recognize a special case where a vector is casted into wide integer to
9368  // test all 0s.
9369  Opnds.push_back(N->getOperand(0));
9370  Opnds.push_back(N->getOperand(1));
9371
9372  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9373    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9374    // BFS traverse all OR'd operands.
9375    if (I->getOpcode() == ISD::OR) {
9376      Opnds.push_back(I->getOperand(0));
9377      Opnds.push_back(I->getOperand(1));
9378      // Re-evaluate the number of nodes to be traversed.
9379      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9380      continue;
9381    }
9382
9383    // Quit if a non-EXTRACT_VECTOR_ELT
9384    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9385      return SDValue();
9386
9387    // Quit if without a constant index.
9388    SDValue Idx = I->getOperand(1);
9389    if (!isa<ConstantSDNode>(Idx))
9390      return SDValue();
9391
9392    SDValue ExtractedFromVec = I->getOperand(0);
9393    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9394    if (M == VecInMap.end()) {
9395      VT = ExtractedFromVec.getValueType();
9396      // Quit if not 128/256-bit vector.
9397      if (!VT.is128BitVector() && !VT.is256BitVector())
9398        return SDValue();
9399      // Quit if not the same type.
9400      if (VecInMap.begin() != VecInMap.end() &&
9401          VT != VecInMap.begin()->first.getValueType())
9402        return SDValue();
9403      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9404    }
9405    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9406  }
9407
9408  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9409         "Not extracted from 128-/256-bit vector.");
9410
9411  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9412  SmallVector<SDValue, 8> VecIns;
9413
9414  for (DenseMap<SDValue, unsigned>::const_iterator
9415        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9416    // Quit if not all elements are used.
9417    if (I->second != FullMask)
9418      return SDValue();
9419    VecIns.push_back(I->first);
9420  }
9421
9422  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9423
9424  // Cast all vectors into TestVT for PTEST.
9425  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9426    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9427
9428  // If more than one full vectors are evaluated, OR them first before PTEST.
9429  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
9430    // Each iteration will OR 2 nodes and append the result until there is only
9431    // 1 node left, i.e. the final OR'd value of all vectors.
9432    SDValue LHS = VecIns[Slot];
9433    SDValue RHS = VecIns[Slot + 1];
9434    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
9435  }
9436
9437  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
9438                     VecIns.back(), VecIns.back());
9439}
9440
9441/// Emit nodes that will be selected as "test Op0,Op0", or something
9442/// equivalent.
9443SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
9444                                    SelectionDAG &DAG) const {
9445  SDLoc dl(Op);
9446
9447  // CF and OF aren't always set the way we want. Determine which
9448  // of these we need.
9449  bool NeedCF = false;
9450  bool NeedOF = false;
9451  switch (X86CC) {
9452  default: break;
9453  case X86::COND_A: case X86::COND_AE:
9454  case X86::COND_B: case X86::COND_BE:
9455    NeedCF = true;
9456    break;
9457  case X86::COND_G: case X86::COND_GE:
9458  case X86::COND_L: case X86::COND_LE:
9459  case X86::COND_O: case X86::COND_NO:
9460    NeedOF = true;
9461    break;
9462  }
9463
9464  // See if we can use the EFLAGS value from the operand instead of
9465  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
9466  // we prove that the arithmetic won't overflow, we can't use OF or CF.
9467  if (Op.getResNo() != 0 || NeedOF || NeedCF)
9468    // Emit a CMP with 0, which is the TEST pattern.
9469    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9470                       DAG.getConstant(0, Op.getValueType()));
9471
9472  unsigned Opcode = 0;
9473  unsigned NumOperands = 0;
9474
9475  // Truncate operations may prevent the merge of the SETCC instruction
9476  // and the arithmetic instruction before it. Attempt to truncate the operands
9477  // of the arithmetic instruction and use a reduced bit-width instruction.
9478  bool NeedTruncation = false;
9479  SDValue ArithOp = Op;
9480  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
9481    SDValue Arith = Op->getOperand(0);
9482    // Both the trunc and the arithmetic op need to have one user each.
9483    if (Arith->hasOneUse())
9484      switch (Arith.getOpcode()) {
9485        default: break;
9486        case ISD::ADD:
9487        case ISD::SUB:
9488        case ISD::AND:
9489        case ISD::OR:
9490        case ISD::XOR: {
9491          NeedTruncation = true;
9492          ArithOp = Arith;
9493        }
9494      }
9495  }
9496
9497  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
9498  // which may be the result of a CAST.  We use the variable 'Op', which is the
9499  // non-casted variable when we check for possible users.
9500  switch (ArithOp.getOpcode()) {
9501  case ISD::ADD:
9502    // Due to an isel shortcoming, be conservative if this add is likely to be
9503    // selected as part of a load-modify-store instruction. When the root node
9504    // in a match is a store, isel doesn't know how to remap non-chain non-flag
9505    // uses of other nodes in the match, such as the ADD in this case. This
9506    // leads to the ADD being left around and reselected, with the result being
9507    // two adds in the output.  Alas, even if none our users are stores, that
9508    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
9509    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
9510    // climbing the DAG back to the root, and it doesn't seem to be worth the
9511    // effort.
9512    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9513         UE = Op.getNode()->use_end(); UI != UE; ++UI)
9514      if (UI->getOpcode() != ISD::CopyToReg &&
9515          UI->getOpcode() != ISD::SETCC &&
9516          UI->getOpcode() != ISD::STORE)
9517        goto default_case;
9518
9519    if (ConstantSDNode *C =
9520        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
9521      // An add of one will be selected as an INC.
9522      if (C->getAPIntValue() == 1) {
9523        Opcode = X86ISD::INC;
9524        NumOperands = 1;
9525        break;
9526      }
9527
9528      // An add of negative one (subtract of one) will be selected as a DEC.
9529      if (C->getAPIntValue().isAllOnesValue()) {
9530        Opcode = X86ISD::DEC;
9531        NumOperands = 1;
9532        break;
9533      }
9534    }
9535
9536    // Otherwise use a regular EFLAGS-setting add.
9537    Opcode = X86ISD::ADD;
9538    NumOperands = 2;
9539    break;
9540  case ISD::AND: {
9541    // If the primary and result isn't used, don't bother using X86ISD::AND,
9542    // because a TEST instruction will be better.
9543    bool NonFlagUse = false;
9544    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9545           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9546      SDNode *User = *UI;
9547      unsigned UOpNo = UI.getOperandNo();
9548      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9549        // Look pass truncate.
9550        UOpNo = User->use_begin().getOperandNo();
9551        User = *User->use_begin();
9552      }
9553
9554      if (User->getOpcode() != ISD::BRCOND &&
9555          User->getOpcode() != ISD::SETCC &&
9556          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9557        NonFlagUse = true;
9558        break;
9559      }
9560    }
9561
9562    if (!NonFlagUse)
9563      break;
9564  }
9565    // FALL THROUGH
9566  case ISD::SUB:
9567  case ISD::OR:
9568  case ISD::XOR:
9569    // Due to the ISEL shortcoming noted above, be conservative if this op is
9570    // likely to be selected as part of a load-modify-store instruction.
9571    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9572           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9573      if (UI->getOpcode() == ISD::STORE)
9574        goto default_case;
9575
9576    // Otherwise use a regular EFLAGS-setting instruction.
9577    switch (ArithOp.getOpcode()) {
9578    default: llvm_unreachable("unexpected operator!");
9579    case ISD::SUB: Opcode = X86ISD::SUB; break;
9580    case ISD::XOR: Opcode = X86ISD::XOR; break;
9581    case ISD::AND: Opcode = X86ISD::AND; break;
9582    case ISD::OR: {
9583      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9584        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
9585        if (EFLAGS.getNode())
9586          return EFLAGS;
9587      }
9588      Opcode = X86ISD::OR;
9589      break;
9590    }
9591    }
9592
9593    NumOperands = 2;
9594    break;
9595  case X86ISD::ADD:
9596  case X86ISD::SUB:
9597  case X86ISD::INC:
9598  case X86ISD::DEC:
9599  case X86ISD::OR:
9600  case X86ISD::XOR:
9601  case X86ISD::AND:
9602    return SDValue(Op.getNode(), 1);
9603  default:
9604  default_case:
9605    break;
9606  }
9607
9608  // If we found that truncation is beneficial, perform the truncation and
9609  // update 'Op'.
9610  if (NeedTruncation) {
9611    EVT VT = Op.getValueType();
9612    SDValue WideVal = Op->getOperand(0);
9613    EVT WideVT = WideVal.getValueType();
9614    unsigned ConvertedOp = 0;
9615    // Use a target machine opcode to prevent further DAGCombine
9616    // optimizations that may separate the arithmetic operations
9617    // from the setcc node.
9618    switch (WideVal.getOpcode()) {
9619      default: break;
9620      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9621      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9622      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9623      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9624      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9625    }
9626
9627    if (ConvertedOp) {
9628      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9629      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9630        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9631        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9632        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9633      }
9634    }
9635  }
9636
9637  if (Opcode == 0)
9638    // Emit a CMP with 0, which is the TEST pattern.
9639    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9640                       DAG.getConstant(0, Op.getValueType()));
9641
9642  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9643  SmallVector<SDValue, 4> Ops;
9644  for (unsigned i = 0; i != NumOperands; ++i)
9645    Ops.push_back(Op.getOperand(i));
9646
9647  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9648  DAG.ReplaceAllUsesWith(Op, New);
9649  return SDValue(New.getNode(), 1);
9650}
9651
9652/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9653/// equivalent.
9654SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9655                                   SelectionDAG &DAG) const {
9656  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9657    if (C->getAPIntValue() == 0)
9658      return EmitTest(Op0, X86CC, DAG);
9659
9660  SDLoc dl(Op0);
9661  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9662       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9663    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9664    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9665    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9666                              Op0, Op1);
9667    return SDValue(Sub.getNode(), 1);
9668  }
9669  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9670}
9671
9672/// Convert a comparison if required by the subtarget.
9673SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9674                                                 SelectionDAG &DAG) const {
9675  // If the subtarget does not support the FUCOMI instruction, floating-point
9676  // comparisons have to be converted.
9677  if (Subtarget->hasCMov() ||
9678      Cmp.getOpcode() != X86ISD::CMP ||
9679      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9680      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9681    return Cmp;
9682
9683  // The instruction selector will select an FUCOM instruction instead of
9684  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9685  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9686  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9687  SDLoc dl(Cmp);
9688  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9689  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9690  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9691                            DAG.getConstant(8, MVT::i8));
9692  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9693  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9694}
9695
9696static bool isAllOnes(SDValue V) {
9697  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9698  return C && C->isAllOnesValue();
9699}
9700
9701/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9702/// if it's possible.
9703SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9704                                     SDLoc dl, SelectionDAG &DAG) const {
9705  SDValue Op0 = And.getOperand(0);
9706  SDValue Op1 = And.getOperand(1);
9707  if (Op0.getOpcode() == ISD::TRUNCATE)
9708    Op0 = Op0.getOperand(0);
9709  if (Op1.getOpcode() == ISD::TRUNCATE)
9710    Op1 = Op1.getOperand(0);
9711
9712  SDValue LHS, RHS;
9713  if (Op1.getOpcode() == ISD::SHL)
9714    std::swap(Op0, Op1);
9715  if (Op0.getOpcode() == ISD::SHL) {
9716    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9717      if (And00C->getZExtValue() == 1) {
9718        // If we looked past a truncate, check that it's only truncating away
9719        // known zeros.
9720        unsigned BitWidth = Op0.getValueSizeInBits();
9721        unsigned AndBitWidth = And.getValueSizeInBits();
9722        if (BitWidth > AndBitWidth) {
9723          APInt Zeros, Ones;
9724          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9725          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9726            return SDValue();
9727        }
9728        LHS = Op1;
9729        RHS = Op0.getOperand(1);
9730      }
9731  } else if (Op1.getOpcode() == ISD::Constant) {
9732    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9733    uint64_t AndRHSVal = AndRHS->getZExtValue();
9734    SDValue AndLHS = Op0;
9735
9736    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9737      LHS = AndLHS.getOperand(0);
9738      RHS = AndLHS.getOperand(1);
9739    }
9740
9741    // Use BT if the immediate can't be encoded in a TEST instruction.
9742    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9743      LHS = AndLHS;
9744      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9745    }
9746  }
9747
9748  if (LHS.getNode()) {
9749    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9750    // instruction.  Since the shift amount is in-range-or-undefined, we know
9751    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9752    // the encoding for the i16 version is larger than the i32 version.
9753    // Also promote i16 to i32 for performance / code size reason.
9754    if (LHS.getValueType() == MVT::i8 ||
9755        LHS.getValueType() == MVT::i16)
9756      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9757
9758    // If the operand types disagree, extend the shift amount to match.  Since
9759    // BT ignores high bits (like shifts) we can use anyextend.
9760    if (LHS.getValueType() != RHS.getValueType())
9761      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9762
9763    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9764    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9765    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9766                       DAG.getConstant(Cond, MVT::i8), BT);
9767  }
9768
9769  return SDValue();
9770}
9771
9772/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
9773/// mask CMPs.
9774static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
9775                              SDValue &Op1) {
9776  unsigned SSECC;
9777  bool Swap = false;
9778
9779  // SSE Condition code mapping:
9780  //  0 - EQ
9781  //  1 - LT
9782  //  2 - LE
9783  //  3 - UNORD
9784  //  4 - NEQ
9785  //  5 - NLT
9786  //  6 - NLE
9787  //  7 - ORD
9788  switch (SetCCOpcode) {
9789  default: llvm_unreachable("Unexpected SETCC condition");
9790  case ISD::SETOEQ:
9791  case ISD::SETEQ:  SSECC = 0; break;
9792  case ISD::SETOGT:
9793  case ISD::SETGT:  Swap = true; // Fallthrough
9794  case ISD::SETLT:
9795  case ISD::SETOLT: SSECC = 1; break;
9796  case ISD::SETOGE:
9797  case ISD::SETGE:  Swap = true; // Fallthrough
9798  case ISD::SETLE:
9799  case ISD::SETOLE: SSECC = 2; break;
9800  case ISD::SETUO:  SSECC = 3; break;
9801  case ISD::SETUNE:
9802  case ISD::SETNE:  SSECC = 4; break;
9803  case ISD::SETULE: Swap = true; // Fallthrough
9804  case ISD::SETUGE: SSECC = 5; break;
9805  case ISD::SETULT: Swap = true; // Fallthrough
9806  case ISD::SETUGT: SSECC = 6; break;
9807  case ISD::SETO:   SSECC = 7; break;
9808  case ISD::SETUEQ:
9809  case ISD::SETONE: SSECC = 8; break;
9810  }
9811  if (Swap)
9812    std::swap(Op0, Op1);
9813
9814  return SSECC;
9815}
9816
9817// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9818// ones, and then concatenate the result back.
9819static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9820  MVT VT = Op.getSimpleValueType();
9821
9822  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9823         "Unsupported value type for operation");
9824
9825  unsigned NumElems = VT.getVectorNumElements();
9826  SDLoc dl(Op);
9827  SDValue CC = Op.getOperand(2);
9828
9829  // Extract the LHS vectors
9830  SDValue LHS = Op.getOperand(0);
9831  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9832  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9833
9834  // Extract the RHS vectors
9835  SDValue RHS = Op.getOperand(1);
9836  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9837  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9838
9839  // Issue the operation on the smaller types and concatenate the result back
9840  MVT EltVT = VT.getVectorElementType();
9841  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9842  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9843                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9844                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9845}
9846
9847static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
9848  SDValue Op0 = Op.getOperand(0);
9849  SDValue Op1 = Op.getOperand(1);
9850  SDValue CC = Op.getOperand(2);
9851  MVT VT = Op.getSimpleValueType();
9852
9853  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
9854         Op.getValueType().getScalarType() == MVT::i1 &&
9855         "Cannot set masked compare for this operation");
9856
9857  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9858  SDLoc dl(Op);
9859
9860  bool Unsigned = false;
9861  unsigned SSECC;
9862  switch (SetCCOpcode) {
9863  default: llvm_unreachable("Unexpected SETCC condition");
9864  case ISD::SETNE:  SSECC = 4; break;
9865  case ISD::SETEQ:  SSECC = 0; break;
9866  case ISD::SETUGT: Unsigned = true;
9867  case ISD::SETGT:  SSECC = 6; break; // NLE
9868  case ISD::SETULT: Unsigned = true;
9869  case ISD::SETLT:  SSECC = 1; break;
9870  case ISD::SETUGE: Unsigned = true;
9871  case ISD::SETGE:  SSECC = 5; break; // NLT
9872  case ISD::SETULE: Unsigned = true;
9873  case ISD::SETLE:  SSECC = 2; break;
9874  }
9875  unsigned  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
9876  return DAG.getNode(Opc, dl, VT, Op0, Op1,
9877                     DAG.getConstant(SSECC, MVT::i8));
9878
9879}
9880
9881static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9882                           SelectionDAG &DAG) {
9883  SDValue Op0 = Op.getOperand(0);
9884  SDValue Op1 = Op.getOperand(1);
9885  SDValue CC = Op.getOperand(2);
9886  MVT VT = Op.getSimpleValueType();
9887  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9888  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
9889  SDLoc dl(Op);
9890
9891  if (isFP) {
9892#ifndef NDEBUG
9893    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
9894    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9895#endif
9896
9897    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
9898    unsigned Opc = X86ISD::CMPP;
9899    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
9900      assert(VT.getVectorNumElements() <= 16);
9901      Opc = X86ISD::CMPM;
9902    }
9903    // In the two special cases we can't handle, emit two comparisons.
9904    if (SSECC == 8) {
9905      unsigned CC0, CC1;
9906      unsigned CombineOpc;
9907      if (SetCCOpcode == ISD::SETUEQ) {
9908        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9909      } else {
9910        assert(SetCCOpcode == ISD::SETONE);
9911        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9912      }
9913
9914      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9915                                 DAG.getConstant(CC0, MVT::i8));
9916      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9917                                 DAG.getConstant(CC1, MVT::i8));
9918      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9919    }
9920    // Handle all other FP comparisons here.
9921    return DAG.getNode(Opc, dl, VT, Op0, Op1,
9922                       DAG.getConstant(SSECC, MVT::i8));
9923  }
9924
9925  // Break 256-bit integer vector compare into smaller ones.
9926  if (VT.is256BitVector() && !Subtarget->hasInt256())
9927    return Lower256IntVSETCC(Op, DAG);
9928
9929  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
9930  EVT OpVT = Op1.getValueType();
9931  if (Subtarget->hasAVX512()) {
9932    if (Op1.getValueType().is512BitVector() ||
9933        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
9934      return LowerIntVSETCC_AVX512(Op, DAG);
9935
9936    // In AVX-512 architecture setcc returns mask with i1 elements,
9937    // But there is no compare instruction for i8 and i16 elements.
9938    // We are not talking about 512-bit operands in this case, these
9939    // types are illegal.
9940    if (MaskResult &&
9941        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
9942         OpVT.getVectorElementType().getSizeInBits() >= 8))
9943      return DAG.getNode(ISD::TRUNCATE, dl, VT,
9944                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
9945  }
9946
9947  // We are handling one of the integer comparisons here.  Since SSE only has
9948  // GT and EQ comparisons for integer, swapping operands and multiple
9949  // operations may be required for some comparisons.
9950  unsigned Opc;
9951  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9952
9953  switch (SetCCOpcode) {
9954  default: llvm_unreachable("Unexpected SETCC condition");
9955  case ISD::SETNE:  Invert = true;
9956  case ISD::SETEQ:  Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
9957  case ISD::SETLT:  Swap = true;
9958  case ISD::SETGT:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
9959  case ISD::SETGE:  Swap = true;
9960  case ISD::SETLE:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9961                    Invert = true; break;
9962  case ISD::SETULT: Swap = true;
9963  case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9964                    FlipSigns = true; break;
9965  case ISD::SETUGE: Swap = true;
9966  case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9967                    FlipSigns = true; Invert = true; break;
9968  }
9969
9970  // Special case: Use min/max operations for SETULE/SETUGE
9971  MVT VET = VT.getVectorElementType();
9972  bool hasMinMax =
9973       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9974    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9975
9976  if (hasMinMax) {
9977    switch (SetCCOpcode) {
9978    default: break;
9979    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9980    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9981    }
9982
9983    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9984  }
9985
9986  if (Swap)
9987    std::swap(Op0, Op1);
9988
9989  // Check that the operation in question is available (most are plain SSE2,
9990  // but PCMPGTQ and PCMPEQQ have different requirements).
9991  if (VT == MVT::v2i64) {
9992    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9993      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9994
9995      // First cast everything to the right type.
9996      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9997      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9998
9999      // Since SSE has no unsigned integer comparisons, we need to flip the sign
10000      // bits of the inputs before performing those operations. The lower
10001      // compare is always unsigned.
10002      SDValue SB;
10003      if (FlipSigns) {
10004        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
10005      } else {
10006        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
10007        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
10008        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
10009                         Sign, Zero, Sign, Zero);
10010      }
10011      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
10012      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
10013
10014      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
10015      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
10016      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
10017
10018      // Create masks for only the low parts/high parts of the 64 bit integers.
10019      static const int MaskHi[] = { 1, 1, 3, 3 };
10020      static const int MaskLo[] = { 0, 0, 2, 2 };
10021      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
10022      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
10023      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
10024
10025      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
10026      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
10027
10028      if (Invert)
10029        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10030
10031      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10032    }
10033
10034    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
10035      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
10036      // pcmpeqd + pshufd + pand.
10037      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
10038
10039      // First cast everything to the right type.
10040      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10041      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10042
10043      // Do the compare.
10044      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
10045
10046      // Make sure the lower and upper halves are both all-ones.
10047      static const int Mask[] = { 1, 0, 3, 2 };
10048      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
10049      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
10050
10051      if (Invert)
10052        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10053
10054      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10055    }
10056  }
10057
10058  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10059  // bits of the inputs before performing those operations.
10060  if (FlipSigns) {
10061    EVT EltVT = VT.getVectorElementType();
10062    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10063    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10064    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10065  }
10066
10067  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10068
10069  // If the logical-not of the result is required, perform that now.
10070  if (Invert)
10071    Result = DAG.getNOT(dl, Result, VT);
10072
10073  if (MinMax)
10074    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10075
10076  return Result;
10077}
10078
10079SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10080
10081  MVT VT = Op.getSimpleValueType();
10082
10083  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10084
10085  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
10086  SDValue Op0 = Op.getOperand(0);
10087  SDValue Op1 = Op.getOperand(1);
10088  SDLoc dl(Op);
10089  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10090
10091  // Optimize to BT if possible.
10092  // Lower (X & (1 << N)) == 0 to BT(X, N).
10093  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10094  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10095  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10096      Op1.getOpcode() == ISD::Constant &&
10097      cast<ConstantSDNode>(Op1)->isNullValue() &&
10098      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10099    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10100    if (NewSetCC.getNode())
10101      return NewSetCC;
10102  }
10103
10104  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10105  // these.
10106  if (Op1.getOpcode() == ISD::Constant &&
10107      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10108       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10109      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10110
10111    // If the input is a setcc, then reuse the input setcc or use a new one with
10112    // the inverted condition.
10113    if (Op0.getOpcode() == X86ISD::SETCC) {
10114      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10115      bool Invert = (CC == ISD::SETNE) ^
10116        cast<ConstantSDNode>(Op1)->isNullValue();
10117      if (!Invert) return Op0;
10118
10119      CCode = X86::GetOppositeBranchCondition(CCode);
10120      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10121                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
10122    }
10123  }
10124
10125  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10126  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10127  if (X86CC == X86::COND_INVALID)
10128    return SDValue();
10129
10130  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
10131  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10132  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10133                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10134}
10135
10136// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10137static bool isX86LogicalCmp(SDValue Op) {
10138  unsigned Opc = Op.getNode()->getOpcode();
10139  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10140      Opc == X86ISD::SAHF)
10141    return true;
10142  if (Op.getResNo() == 1 &&
10143      (Opc == X86ISD::ADD ||
10144       Opc == X86ISD::SUB ||
10145       Opc == X86ISD::ADC ||
10146       Opc == X86ISD::SBB ||
10147       Opc == X86ISD::SMUL ||
10148       Opc == X86ISD::UMUL ||
10149       Opc == X86ISD::INC ||
10150       Opc == X86ISD::DEC ||
10151       Opc == X86ISD::OR ||
10152       Opc == X86ISD::XOR ||
10153       Opc == X86ISD::AND))
10154    return true;
10155
10156  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10157    return true;
10158
10159  return false;
10160}
10161
10162static bool isZero(SDValue V) {
10163  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10164  return C && C->isNullValue();
10165}
10166
10167static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10168  if (V.getOpcode() != ISD::TRUNCATE)
10169    return false;
10170
10171  SDValue VOp0 = V.getOperand(0);
10172  unsigned InBits = VOp0.getValueSizeInBits();
10173  unsigned Bits = V.getValueSizeInBits();
10174  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10175}
10176
10177SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10178  bool addTest = true;
10179  SDValue Cond  = Op.getOperand(0);
10180  SDValue Op1 = Op.getOperand(1);
10181  SDValue Op2 = Op.getOperand(2);
10182  SDLoc DL(Op);
10183  EVT VT = Op1.getValueType();
10184  SDValue CC;
10185
10186  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10187  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10188  // sequence later on.
10189  if (Cond.getOpcode() == ISD::SETCC &&
10190      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10191       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10192      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10193    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10194    int SSECC = translateX86FSETCC(
10195        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10196
10197    if (SSECC != 8) {
10198      unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
10199      SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
10200                                DAG.getConstant(SSECC, MVT::i8));
10201      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10202      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10203      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10204    }
10205  }
10206
10207  if (Cond.getOpcode() == ISD::SETCC) {
10208    SDValue NewCond = LowerSETCC(Cond, DAG);
10209    if (NewCond.getNode())
10210      Cond = NewCond;
10211  }
10212
10213  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10214  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10215  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10216  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10217  if (Cond.getOpcode() == X86ISD::SETCC &&
10218      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10219      isZero(Cond.getOperand(1).getOperand(1))) {
10220    SDValue Cmp = Cond.getOperand(1);
10221
10222    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10223
10224    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10225        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10226      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10227
10228      SDValue CmpOp0 = Cmp.getOperand(0);
10229      // Apply further optimizations for special cases
10230      // (select (x != 0), -1, 0) -> neg & sbb
10231      // (select (x == 0), 0, -1) -> neg & sbb
10232      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10233        if (YC->isNullValue() &&
10234            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10235          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10236          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10237                                    DAG.getConstant(0, CmpOp0.getValueType()),
10238                                    CmpOp0);
10239          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10240                                    DAG.getConstant(X86::COND_B, MVT::i8),
10241                                    SDValue(Neg.getNode(), 1));
10242          return Res;
10243        }
10244
10245      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10246                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10247      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10248
10249      SDValue Res =   // Res = 0 or -1.
10250        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10251                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10252
10253      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10254        Res = DAG.getNOT(DL, Res, Res.getValueType());
10255
10256      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10257      if (N2C == 0 || !N2C->isNullValue())
10258        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10259      return Res;
10260    }
10261  }
10262
10263  // Look past (and (setcc_carry (cmp ...)), 1).
10264  if (Cond.getOpcode() == ISD::AND &&
10265      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10266    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10267    if (C && C->getAPIntValue() == 1)
10268      Cond = Cond.getOperand(0);
10269  }
10270
10271  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10272  // setting operand in place of the X86ISD::SETCC.
10273  unsigned CondOpcode = Cond.getOpcode();
10274  if (CondOpcode == X86ISD::SETCC ||
10275      CondOpcode == X86ISD::SETCC_CARRY) {
10276    CC = Cond.getOperand(0);
10277
10278    SDValue Cmp = Cond.getOperand(1);
10279    unsigned Opc = Cmp.getOpcode();
10280    MVT VT = Op.getSimpleValueType();
10281
10282    bool IllegalFPCMov = false;
10283    if (VT.isFloatingPoint() && !VT.isVector() &&
10284        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10285      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10286
10287    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10288        Opc == X86ISD::BT) { // FIXME
10289      Cond = Cmp;
10290      addTest = false;
10291    }
10292  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10293             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10294             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10295              Cond.getOperand(0).getValueType() != MVT::i8)) {
10296    SDValue LHS = Cond.getOperand(0);
10297    SDValue RHS = Cond.getOperand(1);
10298    unsigned X86Opcode;
10299    unsigned X86Cond;
10300    SDVTList VTs;
10301    switch (CondOpcode) {
10302    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10303    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10304    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10305    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10306    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10307    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10308    default: llvm_unreachable("unexpected overflowing operator");
10309    }
10310    if (CondOpcode == ISD::UMULO)
10311      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10312                          MVT::i32);
10313    else
10314      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10315
10316    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
10317
10318    if (CondOpcode == ISD::UMULO)
10319      Cond = X86Op.getValue(2);
10320    else
10321      Cond = X86Op.getValue(1);
10322
10323    CC = DAG.getConstant(X86Cond, MVT::i8);
10324    addTest = false;
10325  }
10326
10327  if (addTest) {
10328    // Look pass the truncate if the high bits are known zero.
10329    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10330        Cond = Cond.getOperand(0);
10331
10332    // We know the result of AND is compared against zero. Try to match
10333    // it to BT.
10334    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10335      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
10336      if (NewSetCC.getNode()) {
10337        CC = NewSetCC.getOperand(0);
10338        Cond = NewSetCC.getOperand(1);
10339        addTest = false;
10340      }
10341    }
10342  }
10343
10344  if (addTest) {
10345    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10346    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10347  }
10348
10349  // a <  b ? -1 :  0 -> RES = ~setcc_carry
10350  // a <  b ?  0 : -1 -> RES = setcc_carry
10351  // a >= b ? -1 :  0 -> RES = setcc_carry
10352  // a >= b ?  0 : -1 -> RES = ~setcc_carry
10353  if (Cond.getOpcode() == X86ISD::SUB) {
10354    Cond = ConvertCmpIfNecessary(Cond, DAG);
10355    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
10356
10357    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
10358        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
10359      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10360                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
10361      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
10362        return DAG.getNOT(DL, Res, Res.getValueType());
10363      return Res;
10364    }
10365  }
10366
10367  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
10368  // widen the cmov and push the truncate through. This avoids introducing a new
10369  // branch during isel and doesn't add any extensions.
10370  if (Op.getValueType() == MVT::i8 &&
10371      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
10372    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
10373    if (T1.getValueType() == T2.getValueType() &&
10374        // Blacklist CopyFromReg to avoid partial register stalls.
10375        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
10376      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
10377      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
10378      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
10379    }
10380  }
10381
10382  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
10383  // condition is true.
10384  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
10385  SDValue Ops[] = { Op2, Op1, CC, Cond };
10386  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
10387}
10388
10389static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
10390  MVT VT = Op->getSimpleValueType(0);
10391  SDValue In = Op->getOperand(0);
10392  MVT InVT = In.getSimpleValueType();
10393  SDLoc dl(Op);
10394
10395  unsigned int NumElts = VT.getVectorNumElements();
10396  if (NumElts != 8 && NumElts != 16)
10397    return SDValue();
10398
10399  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
10400    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
10401
10402  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10403  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
10404
10405  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
10406  Constant *C = ConstantInt::get(*DAG.getContext(),
10407    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
10408
10409  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
10410  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
10411  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
10412                          MachinePointerInfo::getConstantPool(),
10413                          false, false, false, Alignment);
10414  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
10415  if (VT.is512BitVector())
10416    return Brcst;
10417  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
10418}
10419
10420static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
10421                                SelectionDAG &DAG) {
10422  MVT VT = Op->getSimpleValueType(0);
10423  SDValue In = Op->getOperand(0);
10424  MVT InVT = In.getSimpleValueType();
10425  SDLoc dl(Op);
10426
10427  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
10428    return LowerSIGN_EXTEND_AVX512(Op, DAG);
10429
10430  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
10431      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
10432      (VT != MVT::v16i16 || InVT != MVT::v16i8))
10433    return SDValue();
10434
10435  if (Subtarget->hasInt256())
10436    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
10437
10438  // Optimize vectors in AVX mode
10439  // Sign extend  v8i16 to v8i32 and
10440  //              v4i32 to v4i64
10441  //
10442  // Divide input vector into two parts
10443  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
10444  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
10445  // concat the vectors to original VT
10446
10447  unsigned NumElems = InVT.getVectorNumElements();
10448  SDValue Undef = DAG.getUNDEF(InVT);
10449
10450  SmallVector<int,8> ShufMask1(NumElems, -1);
10451  for (unsigned i = 0; i != NumElems/2; ++i)
10452    ShufMask1[i] = i;
10453
10454  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
10455
10456  SmallVector<int,8> ShufMask2(NumElems, -1);
10457  for (unsigned i = 0; i != NumElems/2; ++i)
10458    ShufMask2[i] = i + NumElems/2;
10459
10460  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
10461
10462  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
10463                                VT.getVectorNumElements()/2);
10464
10465  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
10466  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
10467
10468  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
10469}
10470
10471// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
10472// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
10473// from the AND / OR.
10474static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
10475  Opc = Op.getOpcode();
10476  if (Opc != ISD::OR && Opc != ISD::AND)
10477    return false;
10478  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10479          Op.getOperand(0).hasOneUse() &&
10480          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
10481          Op.getOperand(1).hasOneUse());
10482}
10483
10484// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
10485// 1 and that the SETCC node has a single use.
10486static bool isXor1OfSetCC(SDValue Op) {
10487  if (Op.getOpcode() != ISD::XOR)
10488    return false;
10489  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10490  if (N1C && N1C->getAPIntValue() == 1) {
10491    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10492      Op.getOperand(0).hasOneUse();
10493  }
10494  return false;
10495}
10496
10497SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
10498  bool addTest = true;
10499  SDValue Chain = Op.getOperand(0);
10500  SDValue Cond  = Op.getOperand(1);
10501  SDValue Dest  = Op.getOperand(2);
10502  SDLoc dl(Op);
10503  SDValue CC;
10504  bool Inverted = false;
10505
10506  if (Cond.getOpcode() == ISD::SETCC) {
10507    // Check for setcc([su]{add,sub,mul}o == 0).
10508    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
10509        isa<ConstantSDNode>(Cond.getOperand(1)) &&
10510        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
10511        Cond.getOperand(0).getResNo() == 1 &&
10512        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
10513         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
10514         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
10515         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
10516         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
10517         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
10518      Inverted = true;
10519      Cond = Cond.getOperand(0);
10520    } else {
10521      SDValue NewCond = LowerSETCC(Cond, DAG);
10522      if (NewCond.getNode())
10523        Cond = NewCond;
10524    }
10525  }
10526#if 0
10527  // FIXME: LowerXALUO doesn't handle these!!
10528  else if (Cond.getOpcode() == X86ISD::ADD  ||
10529           Cond.getOpcode() == X86ISD::SUB  ||
10530           Cond.getOpcode() == X86ISD::SMUL ||
10531           Cond.getOpcode() == X86ISD::UMUL)
10532    Cond = LowerXALUO(Cond, DAG);
10533#endif
10534
10535  // Look pass (and (setcc_carry (cmp ...)), 1).
10536  if (Cond.getOpcode() == ISD::AND &&
10537      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10538    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10539    if (C && C->getAPIntValue() == 1)
10540      Cond = Cond.getOperand(0);
10541  }
10542
10543  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10544  // setting operand in place of the X86ISD::SETCC.
10545  unsigned CondOpcode = Cond.getOpcode();
10546  if (CondOpcode == X86ISD::SETCC ||
10547      CondOpcode == X86ISD::SETCC_CARRY) {
10548    CC = Cond.getOperand(0);
10549
10550    SDValue Cmp = Cond.getOperand(1);
10551    unsigned Opc = Cmp.getOpcode();
10552    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
10553    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
10554      Cond = Cmp;
10555      addTest = false;
10556    } else {
10557      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
10558      default: break;
10559      case X86::COND_O:
10560      case X86::COND_B:
10561        // These can only come from an arithmetic instruction with overflow,
10562        // e.g. SADDO, UADDO.
10563        Cond = Cond.getNode()->getOperand(1);
10564        addTest = false;
10565        break;
10566      }
10567    }
10568  }
10569  CondOpcode = Cond.getOpcode();
10570  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10571      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10572      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10573       Cond.getOperand(0).getValueType() != MVT::i8)) {
10574    SDValue LHS = Cond.getOperand(0);
10575    SDValue RHS = Cond.getOperand(1);
10576    unsigned X86Opcode;
10577    unsigned X86Cond;
10578    SDVTList VTs;
10579    switch (CondOpcode) {
10580    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10581    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10582    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10583    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10584    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10585    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10586    default: llvm_unreachable("unexpected overflowing operator");
10587    }
10588    if (Inverted)
10589      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
10590    if (CondOpcode == ISD::UMULO)
10591      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10592                          MVT::i32);
10593    else
10594      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10595
10596    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
10597
10598    if (CondOpcode == ISD::UMULO)
10599      Cond = X86Op.getValue(2);
10600    else
10601      Cond = X86Op.getValue(1);
10602
10603    CC = DAG.getConstant(X86Cond, MVT::i8);
10604    addTest = false;
10605  } else {
10606    unsigned CondOpc;
10607    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
10608      SDValue Cmp = Cond.getOperand(0).getOperand(1);
10609      if (CondOpc == ISD::OR) {
10610        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
10611        // two branches instead of an explicit OR instruction with a
10612        // separate test.
10613        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10614            isX86LogicalCmp(Cmp)) {
10615          CC = Cond.getOperand(0).getOperand(0);
10616          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10617                              Chain, Dest, CC, Cmp);
10618          CC = Cond.getOperand(1).getOperand(0);
10619          Cond = Cmp;
10620          addTest = false;
10621        }
10622      } else { // ISD::AND
10623        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
10624        // two branches instead of an explicit AND instruction with a
10625        // separate test. However, we only do this if this block doesn't
10626        // have a fall-through edge, because this requires an explicit
10627        // jmp when the condition is false.
10628        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10629            isX86LogicalCmp(Cmp) &&
10630            Op.getNode()->hasOneUse()) {
10631          X86::CondCode CCode =
10632            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10633          CCode = X86::GetOppositeBranchCondition(CCode);
10634          CC = DAG.getConstant(CCode, MVT::i8);
10635          SDNode *User = *Op.getNode()->use_begin();
10636          // Look for an unconditional branch following this conditional branch.
10637          // We need this because we need to reverse the successors in order
10638          // to implement FCMP_OEQ.
10639          if (User->getOpcode() == ISD::BR) {
10640            SDValue FalseBB = User->getOperand(1);
10641            SDNode *NewBR =
10642              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10643            assert(NewBR == User);
10644            (void)NewBR;
10645            Dest = FalseBB;
10646
10647            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10648                                Chain, Dest, CC, Cmp);
10649            X86::CondCode CCode =
10650              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
10651            CCode = X86::GetOppositeBranchCondition(CCode);
10652            CC = DAG.getConstant(CCode, MVT::i8);
10653            Cond = Cmp;
10654            addTest = false;
10655          }
10656        }
10657      }
10658    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10659      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10660      // It should be transformed during dag combiner except when the condition
10661      // is set by a arithmetics with overflow node.
10662      X86::CondCode CCode =
10663        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10664      CCode = X86::GetOppositeBranchCondition(CCode);
10665      CC = DAG.getConstant(CCode, MVT::i8);
10666      Cond = Cond.getOperand(0).getOperand(1);
10667      addTest = false;
10668    } else if (Cond.getOpcode() == ISD::SETCC &&
10669               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10670      // For FCMP_OEQ, we can emit
10671      // two branches instead of an explicit AND instruction with a
10672      // separate test. However, we only do this if this block doesn't
10673      // have a fall-through edge, because this requires an explicit
10674      // jmp when the condition is false.
10675      if (Op.getNode()->hasOneUse()) {
10676        SDNode *User = *Op.getNode()->use_begin();
10677        // Look for an unconditional branch following this conditional branch.
10678        // We need this because we need to reverse the successors in order
10679        // to implement FCMP_OEQ.
10680        if (User->getOpcode() == ISD::BR) {
10681          SDValue FalseBB = User->getOperand(1);
10682          SDNode *NewBR =
10683            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10684          assert(NewBR == User);
10685          (void)NewBR;
10686          Dest = FalseBB;
10687
10688          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10689                                    Cond.getOperand(0), Cond.getOperand(1));
10690          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10691          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10692          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10693                              Chain, Dest, CC, Cmp);
10694          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10695          Cond = Cmp;
10696          addTest = false;
10697        }
10698      }
10699    } else if (Cond.getOpcode() == ISD::SETCC &&
10700               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10701      // For FCMP_UNE, we can emit
10702      // two branches instead of an explicit AND instruction with a
10703      // separate test. However, we only do this if this block doesn't
10704      // have a fall-through edge, because this requires an explicit
10705      // jmp when the condition is false.
10706      if (Op.getNode()->hasOneUse()) {
10707        SDNode *User = *Op.getNode()->use_begin();
10708        // Look for an unconditional branch following this conditional branch.
10709        // We need this because we need to reverse the successors in order
10710        // to implement FCMP_UNE.
10711        if (User->getOpcode() == ISD::BR) {
10712          SDValue FalseBB = User->getOperand(1);
10713          SDNode *NewBR =
10714            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10715          assert(NewBR == User);
10716          (void)NewBR;
10717
10718          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10719                                    Cond.getOperand(0), Cond.getOperand(1));
10720          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10721          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10722          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10723                              Chain, Dest, CC, Cmp);
10724          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10725          Cond = Cmp;
10726          addTest = false;
10727          Dest = FalseBB;
10728        }
10729      }
10730    }
10731  }
10732
10733  if (addTest) {
10734    // Look pass the truncate if the high bits are known zero.
10735    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10736        Cond = Cond.getOperand(0);
10737
10738    // We know the result of AND is compared against zero. Try to match
10739    // it to BT.
10740    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10741      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10742      if (NewSetCC.getNode()) {
10743        CC = NewSetCC.getOperand(0);
10744        Cond = NewSetCC.getOperand(1);
10745        addTest = false;
10746      }
10747    }
10748  }
10749
10750  if (addTest) {
10751    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10752    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10753  }
10754  Cond = ConvertCmpIfNecessary(Cond, DAG);
10755  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10756                     Chain, Dest, CC, Cond);
10757}
10758
10759// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10760// Calls to _alloca is needed to probe the stack when allocating more than 4k
10761// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10762// that the guard pages used by the OS virtual memory manager are allocated in
10763// correct sequence.
10764SDValue
10765X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10766                                           SelectionDAG &DAG) const {
10767  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10768          getTargetMachine().Options.EnableSegmentedStacks) &&
10769         "This should be used only on Windows targets or when segmented stacks "
10770         "are being used");
10771  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10772  SDLoc dl(Op);
10773
10774  // Get the inputs.
10775  SDValue Chain = Op.getOperand(0);
10776  SDValue Size  = Op.getOperand(1);
10777  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10778  EVT VT = Op.getNode()->getValueType(0);
10779
10780  bool Is64Bit = Subtarget->is64Bit();
10781  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10782
10783  if (getTargetMachine().Options.EnableSegmentedStacks) {
10784    MachineFunction &MF = DAG.getMachineFunction();
10785    MachineRegisterInfo &MRI = MF.getRegInfo();
10786
10787    if (Is64Bit) {
10788      // The 64 bit implementation of segmented stacks needs to clobber both r10
10789      // r11. This makes it impossible to use it along with nested parameters.
10790      const Function *F = MF.getFunction();
10791
10792      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10793           I != E; ++I)
10794        if (I->hasNestAttr())
10795          report_fatal_error("Cannot use segmented stacks with functions that "
10796                             "have nested arguments.");
10797    }
10798
10799    const TargetRegisterClass *AddrRegClass =
10800      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10801    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10802    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10803    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10804                                DAG.getRegister(Vreg, SPTy));
10805    SDValue Ops1[2] = { Value, Chain };
10806    return DAG.getMergeValues(Ops1, 2, dl);
10807  } else {
10808    SDValue Flag;
10809    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10810
10811    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10812    Flag = Chain.getValue(1);
10813    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10814
10815    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10816
10817    const X86RegisterInfo *RegInfo =
10818      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10819    unsigned SPReg = RegInfo->getStackRegister();
10820    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
10821    Chain = SP.getValue(1);
10822
10823    if (Align) {
10824      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
10825                       DAG.getConstant(-(uint64_t)Align, VT));
10826      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
10827    }
10828
10829    SDValue Ops1[2] = { SP, Chain };
10830    return DAG.getMergeValues(Ops1, 2, dl);
10831  }
10832}
10833
10834SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10835  MachineFunction &MF = DAG.getMachineFunction();
10836  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10837
10838  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10839  SDLoc DL(Op);
10840
10841  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10842    // vastart just stores the address of the VarArgsFrameIndex slot into the
10843    // memory location argument.
10844    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10845                                   getPointerTy());
10846    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10847                        MachinePointerInfo(SV), false, false, 0);
10848  }
10849
10850  // __va_list_tag:
10851  //   gp_offset         (0 - 6 * 8)
10852  //   fp_offset         (48 - 48 + 8 * 16)
10853  //   overflow_arg_area (point to parameters coming in memory).
10854  //   reg_save_area
10855  SmallVector<SDValue, 8> MemOps;
10856  SDValue FIN = Op.getOperand(1);
10857  // Store gp_offset
10858  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10859                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10860                                               MVT::i32),
10861                               FIN, MachinePointerInfo(SV), false, false, 0);
10862  MemOps.push_back(Store);
10863
10864  // Store fp_offset
10865  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10866                    FIN, DAG.getIntPtrConstant(4));
10867  Store = DAG.getStore(Op.getOperand(0), DL,
10868                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10869                                       MVT::i32),
10870                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10871  MemOps.push_back(Store);
10872
10873  // Store ptr to overflow_arg_area
10874  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10875                    FIN, DAG.getIntPtrConstant(4));
10876  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10877                                    getPointerTy());
10878  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10879                       MachinePointerInfo(SV, 8),
10880                       false, false, 0);
10881  MemOps.push_back(Store);
10882
10883  // Store ptr to reg_save_area.
10884  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10885                    FIN, DAG.getIntPtrConstant(8));
10886  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10887                                    getPointerTy());
10888  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10889                       MachinePointerInfo(SV, 16), false, false, 0);
10890  MemOps.push_back(Store);
10891  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10892                     &MemOps[0], MemOps.size());
10893}
10894
10895SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10896  assert(Subtarget->is64Bit() &&
10897         "LowerVAARG only handles 64-bit va_arg!");
10898  assert((Subtarget->isTargetLinux() ||
10899          Subtarget->isTargetDarwin()) &&
10900          "Unhandled target in LowerVAARG");
10901  assert(Op.getNode()->getNumOperands() == 4);
10902  SDValue Chain = Op.getOperand(0);
10903  SDValue SrcPtr = Op.getOperand(1);
10904  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10905  unsigned Align = Op.getConstantOperandVal(3);
10906  SDLoc dl(Op);
10907
10908  EVT ArgVT = Op.getNode()->getValueType(0);
10909  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10910  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10911  uint8_t ArgMode;
10912
10913  // Decide which area this value should be read from.
10914  // TODO: Implement the AMD64 ABI in its entirety. This simple
10915  // selection mechanism works only for the basic types.
10916  if (ArgVT == MVT::f80) {
10917    llvm_unreachable("va_arg for f80 not yet implemented");
10918  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10919    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10920  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10921    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10922  } else {
10923    llvm_unreachable("Unhandled argument type in LowerVAARG");
10924  }
10925
10926  if (ArgMode == 2) {
10927    // Sanity Check: Make sure using fp_offset makes sense.
10928    assert(!getTargetMachine().Options.UseSoftFloat &&
10929           !(DAG.getMachineFunction()
10930                .getFunction()->getAttributes()
10931                .hasAttribute(AttributeSet::FunctionIndex,
10932                              Attribute::NoImplicitFloat)) &&
10933           Subtarget->hasSSE1());
10934  }
10935
10936  // Insert VAARG_64 node into the DAG
10937  // VAARG_64 returns two values: Variable Argument Address, Chain
10938  SmallVector<SDValue, 11> InstOps;
10939  InstOps.push_back(Chain);
10940  InstOps.push_back(SrcPtr);
10941  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10942  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10943  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10944  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10945  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10946                                          VTs, &InstOps[0], InstOps.size(),
10947                                          MVT::i64,
10948                                          MachinePointerInfo(SV),
10949                                          /*Align=*/0,
10950                                          /*Volatile=*/false,
10951                                          /*ReadMem=*/true,
10952                                          /*WriteMem=*/true);
10953  Chain = VAARG.getValue(1);
10954
10955  // Load the next argument and return it
10956  return DAG.getLoad(ArgVT, dl,
10957                     Chain,
10958                     VAARG,
10959                     MachinePointerInfo(),
10960                     false, false, false, 0);
10961}
10962
10963static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10964                           SelectionDAG &DAG) {
10965  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10966  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10967  SDValue Chain = Op.getOperand(0);
10968  SDValue DstPtr = Op.getOperand(1);
10969  SDValue SrcPtr = Op.getOperand(2);
10970  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10971  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10972  SDLoc DL(Op);
10973
10974  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10975                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10976                       false,
10977                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10978}
10979
10980// getTargetVShiftByConstNode - Handle vector element shifts where the shift
10981// amount is a constant. Takes immediate version of shift as input.
10982static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
10983                                          SDValue SrcOp, uint64_t ShiftAmt,
10984                                          SelectionDAG &DAG) {
10985
10986  // Check for ShiftAmt >= element width
10987  if (ShiftAmt >= VT.getVectorElementType().getSizeInBits()) {
10988    if (Opc == X86ISD::VSRAI)
10989      ShiftAmt = VT.getVectorElementType().getSizeInBits() - 1;
10990    else
10991      return DAG.getConstant(0, VT);
10992  }
10993
10994  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
10995         && "Unknown target vector shift-by-constant node");
10996
10997  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
10998}
10999
11000// getTargetVShiftNode - Handle vector element shifts where the shift amount
11001// may or may not be a constant. Takes immediate version of shift as input.
11002static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
11003                                   SDValue SrcOp, SDValue ShAmt,
11004                                   SelectionDAG &DAG) {
11005  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
11006
11007  // Catch shift-by-constant.
11008  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
11009    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
11010                                      CShAmt->getZExtValue(), DAG);
11011
11012  // Change opcode to non-immediate version
11013  switch (Opc) {
11014    default: llvm_unreachable("Unknown target vector shift node");
11015    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
11016    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
11017    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
11018  }
11019
11020  // Need to build a vector containing shift amount
11021  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
11022  SDValue ShOps[4];
11023  ShOps[0] = ShAmt;
11024  ShOps[1] = DAG.getConstant(0, MVT::i32);
11025  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
11026  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
11027
11028  // The return type has to be a 128-bit type with the same element
11029  // type as the input type.
11030  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11031  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
11032
11033  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
11034  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
11035}
11036
11037static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
11038  SDLoc dl(Op);
11039  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11040  switch (IntNo) {
11041  default: return SDValue();    // Don't custom lower most intrinsics.
11042  // Comparison intrinsics.
11043  case Intrinsic::x86_sse_comieq_ss:
11044  case Intrinsic::x86_sse_comilt_ss:
11045  case Intrinsic::x86_sse_comile_ss:
11046  case Intrinsic::x86_sse_comigt_ss:
11047  case Intrinsic::x86_sse_comige_ss:
11048  case Intrinsic::x86_sse_comineq_ss:
11049  case Intrinsic::x86_sse_ucomieq_ss:
11050  case Intrinsic::x86_sse_ucomilt_ss:
11051  case Intrinsic::x86_sse_ucomile_ss:
11052  case Intrinsic::x86_sse_ucomigt_ss:
11053  case Intrinsic::x86_sse_ucomige_ss:
11054  case Intrinsic::x86_sse_ucomineq_ss:
11055  case Intrinsic::x86_sse2_comieq_sd:
11056  case Intrinsic::x86_sse2_comilt_sd:
11057  case Intrinsic::x86_sse2_comile_sd:
11058  case Intrinsic::x86_sse2_comigt_sd:
11059  case Intrinsic::x86_sse2_comige_sd:
11060  case Intrinsic::x86_sse2_comineq_sd:
11061  case Intrinsic::x86_sse2_ucomieq_sd:
11062  case Intrinsic::x86_sse2_ucomilt_sd:
11063  case Intrinsic::x86_sse2_ucomile_sd:
11064  case Intrinsic::x86_sse2_ucomigt_sd:
11065  case Intrinsic::x86_sse2_ucomige_sd:
11066  case Intrinsic::x86_sse2_ucomineq_sd: {
11067    unsigned Opc;
11068    ISD::CondCode CC;
11069    switch (IntNo) {
11070    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11071    case Intrinsic::x86_sse_comieq_ss:
11072    case Intrinsic::x86_sse2_comieq_sd:
11073      Opc = X86ISD::COMI;
11074      CC = ISD::SETEQ;
11075      break;
11076    case Intrinsic::x86_sse_comilt_ss:
11077    case Intrinsic::x86_sse2_comilt_sd:
11078      Opc = X86ISD::COMI;
11079      CC = ISD::SETLT;
11080      break;
11081    case Intrinsic::x86_sse_comile_ss:
11082    case Intrinsic::x86_sse2_comile_sd:
11083      Opc = X86ISD::COMI;
11084      CC = ISD::SETLE;
11085      break;
11086    case Intrinsic::x86_sse_comigt_ss:
11087    case Intrinsic::x86_sse2_comigt_sd:
11088      Opc = X86ISD::COMI;
11089      CC = ISD::SETGT;
11090      break;
11091    case Intrinsic::x86_sse_comige_ss:
11092    case Intrinsic::x86_sse2_comige_sd:
11093      Opc = X86ISD::COMI;
11094      CC = ISD::SETGE;
11095      break;
11096    case Intrinsic::x86_sse_comineq_ss:
11097    case Intrinsic::x86_sse2_comineq_sd:
11098      Opc = X86ISD::COMI;
11099      CC = ISD::SETNE;
11100      break;
11101    case Intrinsic::x86_sse_ucomieq_ss:
11102    case Intrinsic::x86_sse2_ucomieq_sd:
11103      Opc = X86ISD::UCOMI;
11104      CC = ISD::SETEQ;
11105      break;
11106    case Intrinsic::x86_sse_ucomilt_ss:
11107    case Intrinsic::x86_sse2_ucomilt_sd:
11108      Opc = X86ISD::UCOMI;
11109      CC = ISD::SETLT;
11110      break;
11111    case Intrinsic::x86_sse_ucomile_ss:
11112    case Intrinsic::x86_sse2_ucomile_sd:
11113      Opc = X86ISD::UCOMI;
11114      CC = ISD::SETLE;
11115      break;
11116    case Intrinsic::x86_sse_ucomigt_ss:
11117    case Intrinsic::x86_sse2_ucomigt_sd:
11118      Opc = X86ISD::UCOMI;
11119      CC = ISD::SETGT;
11120      break;
11121    case Intrinsic::x86_sse_ucomige_ss:
11122    case Intrinsic::x86_sse2_ucomige_sd:
11123      Opc = X86ISD::UCOMI;
11124      CC = ISD::SETGE;
11125      break;
11126    case Intrinsic::x86_sse_ucomineq_ss:
11127    case Intrinsic::x86_sse2_ucomineq_sd:
11128      Opc = X86ISD::UCOMI;
11129      CC = ISD::SETNE;
11130      break;
11131    }
11132
11133    SDValue LHS = Op.getOperand(1);
11134    SDValue RHS = Op.getOperand(2);
11135    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11136    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11137    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11138    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11139                                DAG.getConstant(X86CC, MVT::i8), Cond);
11140    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11141  }
11142
11143  // Arithmetic intrinsics.
11144  case Intrinsic::x86_sse2_pmulu_dq:
11145  case Intrinsic::x86_avx2_pmulu_dq:
11146    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11147                       Op.getOperand(1), Op.getOperand(2));
11148
11149  // SSE2/AVX2 sub with unsigned saturation intrinsics
11150  case Intrinsic::x86_sse2_psubus_b:
11151  case Intrinsic::x86_sse2_psubus_w:
11152  case Intrinsic::x86_avx2_psubus_b:
11153  case Intrinsic::x86_avx2_psubus_w:
11154    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11155                       Op.getOperand(1), Op.getOperand(2));
11156
11157  // SSE3/AVX horizontal add/sub intrinsics
11158  case Intrinsic::x86_sse3_hadd_ps:
11159  case Intrinsic::x86_sse3_hadd_pd:
11160  case Intrinsic::x86_avx_hadd_ps_256:
11161  case Intrinsic::x86_avx_hadd_pd_256:
11162  case Intrinsic::x86_sse3_hsub_ps:
11163  case Intrinsic::x86_sse3_hsub_pd:
11164  case Intrinsic::x86_avx_hsub_ps_256:
11165  case Intrinsic::x86_avx_hsub_pd_256:
11166  case Intrinsic::x86_ssse3_phadd_w_128:
11167  case Intrinsic::x86_ssse3_phadd_d_128:
11168  case Intrinsic::x86_avx2_phadd_w:
11169  case Intrinsic::x86_avx2_phadd_d:
11170  case Intrinsic::x86_ssse3_phsub_w_128:
11171  case Intrinsic::x86_ssse3_phsub_d_128:
11172  case Intrinsic::x86_avx2_phsub_w:
11173  case Intrinsic::x86_avx2_phsub_d: {
11174    unsigned Opcode;
11175    switch (IntNo) {
11176    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11177    case Intrinsic::x86_sse3_hadd_ps:
11178    case Intrinsic::x86_sse3_hadd_pd:
11179    case Intrinsic::x86_avx_hadd_ps_256:
11180    case Intrinsic::x86_avx_hadd_pd_256:
11181      Opcode = X86ISD::FHADD;
11182      break;
11183    case Intrinsic::x86_sse3_hsub_ps:
11184    case Intrinsic::x86_sse3_hsub_pd:
11185    case Intrinsic::x86_avx_hsub_ps_256:
11186    case Intrinsic::x86_avx_hsub_pd_256:
11187      Opcode = X86ISD::FHSUB;
11188      break;
11189    case Intrinsic::x86_ssse3_phadd_w_128:
11190    case Intrinsic::x86_ssse3_phadd_d_128:
11191    case Intrinsic::x86_avx2_phadd_w:
11192    case Intrinsic::x86_avx2_phadd_d:
11193      Opcode = X86ISD::HADD;
11194      break;
11195    case Intrinsic::x86_ssse3_phsub_w_128:
11196    case Intrinsic::x86_ssse3_phsub_d_128:
11197    case Intrinsic::x86_avx2_phsub_w:
11198    case Intrinsic::x86_avx2_phsub_d:
11199      Opcode = X86ISD::HSUB;
11200      break;
11201    }
11202    return DAG.getNode(Opcode, dl, Op.getValueType(),
11203                       Op.getOperand(1), Op.getOperand(2));
11204  }
11205
11206  // SSE2/SSE41/AVX2 integer max/min intrinsics.
11207  case Intrinsic::x86_sse2_pmaxu_b:
11208  case Intrinsic::x86_sse41_pmaxuw:
11209  case Intrinsic::x86_sse41_pmaxud:
11210  case Intrinsic::x86_avx2_pmaxu_b:
11211  case Intrinsic::x86_avx2_pmaxu_w:
11212  case Intrinsic::x86_avx2_pmaxu_d:
11213  case Intrinsic::x86_avx512_pmaxu_d:
11214  case Intrinsic::x86_avx512_pmaxu_q:
11215  case Intrinsic::x86_sse2_pminu_b:
11216  case Intrinsic::x86_sse41_pminuw:
11217  case Intrinsic::x86_sse41_pminud:
11218  case Intrinsic::x86_avx2_pminu_b:
11219  case Intrinsic::x86_avx2_pminu_w:
11220  case Intrinsic::x86_avx2_pminu_d:
11221  case Intrinsic::x86_avx512_pminu_d:
11222  case Intrinsic::x86_avx512_pminu_q:
11223  case Intrinsic::x86_sse41_pmaxsb:
11224  case Intrinsic::x86_sse2_pmaxs_w:
11225  case Intrinsic::x86_sse41_pmaxsd:
11226  case Intrinsic::x86_avx2_pmaxs_b:
11227  case Intrinsic::x86_avx2_pmaxs_w:
11228  case Intrinsic::x86_avx2_pmaxs_d:
11229  case Intrinsic::x86_avx512_pmaxs_d:
11230  case Intrinsic::x86_avx512_pmaxs_q:
11231  case Intrinsic::x86_sse41_pminsb:
11232  case Intrinsic::x86_sse2_pmins_w:
11233  case Intrinsic::x86_sse41_pminsd:
11234  case Intrinsic::x86_avx2_pmins_b:
11235  case Intrinsic::x86_avx2_pmins_w:
11236  case Intrinsic::x86_avx2_pmins_d:
11237  case Intrinsic::x86_avx512_pmins_d:
11238  case Intrinsic::x86_avx512_pmins_q: {
11239    unsigned Opcode;
11240    switch (IntNo) {
11241    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11242    case Intrinsic::x86_sse2_pmaxu_b:
11243    case Intrinsic::x86_sse41_pmaxuw:
11244    case Intrinsic::x86_sse41_pmaxud:
11245    case Intrinsic::x86_avx2_pmaxu_b:
11246    case Intrinsic::x86_avx2_pmaxu_w:
11247    case Intrinsic::x86_avx2_pmaxu_d:
11248    case Intrinsic::x86_avx512_pmaxu_d:
11249    case Intrinsic::x86_avx512_pmaxu_q:
11250      Opcode = X86ISD::UMAX;
11251      break;
11252    case Intrinsic::x86_sse2_pminu_b:
11253    case Intrinsic::x86_sse41_pminuw:
11254    case Intrinsic::x86_sse41_pminud:
11255    case Intrinsic::x86_avx2_pminu_b:
11256    case Intrinsic::x86_avx2_pminu_w:
11257    case Intrinsic::x86_avx2_pminu_d:
11258    case Intrinsic::x86_avx512_pminu_d:
11259    case Intrinsic::x86_avx512_pminu_q:
11260      Opcode = X86ISD::UMIN;
11261      break;
11262    case Intrinsic::x86_sse41_pmaxsb:
11263    case Intrinsic::x86_sse2_pmaxs_w:
11264    case Intrinsic::x86_sse41_pmaxsd:
11265    case Intrinsic::x86_avx2_pmaxs_b:
11266    case Intrinsic::x86_avx2_pmaxs_w:
11267    case Intrinsic::x86_avx2_pmaxs_d:
11268    case Intrinsic::x86_avx512_pmaxs_d:
11269    case Intrinsic::x86_avx512_pmaxs_q:
11270      Opcode = X86ISD::SMAX;
11271      break;
11272    case Intrinsic::x86_sse41_pminsb:
11273    case Intrinsic::x86_sse2_pmins_w:
11274    case Intrinsic::x86_sse41_pminsd:
11275    case Intrinsic::x86_avx2_pmins_b:
11276    case Intrinsic::x86_avx2_pmins_w:
11277    case Intrinsic::x86_avx2_pmins_d:
11278    case Intrinsic::x86_avx512_pmins_d:
11279    case Intrinsic::x86_avx512_pmins_q:
11280      Opcode = X86ISD::SMIN;
11281      break;
11282    }
11283    return DAG.getNode(Opcode, dl, Op.getValueType(),
11284                       Op.getOperand(1), Op.getOperand(2));
11285  }
11286
11287  // SSE/SSE2/AVX floating point max/min intrinsics.
11288  case Intrinsic::x86_sse_max_ps:
11289  case Intrinsic::x86_sse2_max_pd:
11290  case Intrinsic::x86_avx_max_ps_256:
11291  case Intrinsic::x86_avx_max_pd_256:
11292  case Intrinsic::x86_avx512_max_ps_512:
11293  case Intrinsic::x86_avx512_max_pd_512:
11294  case Intrinsic::x86_sse_min_ps:
11295  case Intrinsic::x86_sse2_min_pd:
11296  case Intrinsic::x86_avx_min_ps_256:
11297  case Intrinsic::x86_avx_min_pd_256:
11298  case Intrinsic::x86_avx512_min_ps_512:
11299  case Intrinsic::x86_avx512_min_pd_512:  {
11300    unsigned Opcode;
11301    switch (IntNo) {
11302    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11303    case Intrinsic::x86_sse_max_ps:
11304    case Intrinsic::x86_sse2_max_pd:
11305    case Intrinsic::x86_avx_max_ps_256:
11306    case Intrinsic::x86_avx_max_pd_256:
11307    case Intrinsic::x86_avx512_max_ps_512:
11308    case Intrinsic::x86_avx512_max_pd_512:
11309      Opcode = X86ISD::FMAX;
11310      break;
11311    case Intrinsic::x86_sse_min_ps:
11312    case Intrinsic::x86_sse2_min_pd:
11313    case Intrinsic::x86_avx_min_ps_256:
11314    case Intrinsic::x86_avx_min_pd_256:
11315    case Intrinsic::x86_avx512_min_ps_512:
11316    case Intrinsic::x86_avx512_min_pd_512:
11317      Opcode = X86ISD::FMIN;
11318      break;
11319    }
11320    return DAG.getNode(Opcode, dl, Op.getValueType(),
11321                       Op.getOperand(1), Op.getOperand(2));
11322  }
11323
11324  // AVX2 variable shift intrinsics
11325  case Intrinsic::x86_avx2_psllv_d:
11326  case Intrinsic::x86_avx2_psllv_q:
11327  case Intrinsic::x86_avx2_psllv_d_256:
11328  case Intrinsic::x86_avx2_psllv_q_256:
11329  case Intrinsic::x86_avx2_psrlv_d:
11330  case Intrinsic::x86_avx2_psrlv_q:
11331  case Intrinsic::x86_avx2_psrlv_d_256:
11332  case Intrinsic::x86_avx2_psrlv_q_256:
11333  case Intrinsic::x86_avx2_psrav_d:
11334  case Intrinsic::x86_avx2_psrav_d_256: {
11335    unsigned Opcode;
11336    switch (IntNo) {
11337    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11338    case Intrinsic::x86_avx2_psllv_d:
11339    case Intrinsic::x86_avx2_psllv_q:
11340    case Intrinsic::x86_avx2_psllv_d_256:
11341    case Intrinsic::x86_avx2_psllv_q_256:
11342      Opcode = ISD::SHL;
11343      break;
11344    case Intrinsic::x86_avx2_psrlv_d:
11345    case Intrinsic::x86_avx2_psrlv_q:
11346    case Intrinsic::x86_avx2_psrlv_d_256:
11347    case Intrinsic::x86_avx2_psrlv_q_256:
11348      Opcode = ISD::SRL;
11349      break;
11350    case Intrinsic::x86_avx2_psrav_d:
11351    case Intrinsic::x86_avx2_psrav_d_256:
11352      Opcode = ISD::SRA;
11353      break;
11354    }
11355    return DAG.getNode(Opcode, dl, Op.getValueType(),
11356                       Op.getOperand(1), Op.getOperand(2));
11357  }
11358
11359  case Intrinsic::x86_ssse3_pshuf_b_128:
11360  case Intrinsic::x86_avx2_pshuf_b:
11361    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
11362                       Op.getOperand(1), Op.getOperand(2));
11363
11364  case Intrinsic::x86_ssse3_psign_b_128:
11365  case Intrinsic::x86_ssse3_psign_w_128:
11366  case Intrinsic::x86_ssse3_psign_d_128:
11367  case Intrinsic::x86_avx2_psign_b:
11368  case Intrinsic::x86_avx2_psign_w:
11369  case Intrinsic::x86_avx2_psign_d:
11370    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
11371                       Op.getOperand(1), Op.getOperand(2));
11372
11373  case Intrinsic::x86_sse41_insertps:
11374    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
11375                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11376
11377  case Intrinsic::x86_avx_vperm2f128_ps_256:
11378  case Intrinsic::x86_avx_vperm2f128_pd_256:
11379  case Intrinsic::x86_avx_vperm2f128_si_256:
11380  case Intrinsic::x86_avx2_vperm2i128:
11381    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
11382                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11383
11384  case Intrinsic::x86_avx2_permd:
11385  case Intrinsic::x86_avx2_permps:
11386    // Operands intentionally swapped. Mask is last operand to intrinsic,
11387    // but second operand for node/instruction.
11388    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
11389                       Op.getOperand(2), Op.getOperand(1));
11390
11391  case Intrinsic::x86_sse_sqrt_ps:
11392  case Intrinsic::x86_sse2_sqrt_pd:
11393  case Intrinsic::x86_avx_sqrt_ps_256:
11394  case Intrinsic::x86_avx_sqrt_pd_256:
11395    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
11396
11397  // ptest and testp intrinsics. The intrinsic these come from are designed to
11398  // return an integer value, not just an instruction so lower it to the ptest
11399  // or testp pattern and a setcc for the result.
11400  case Intrinsic::x86_sse41_ptestz:
11401  case Intrinsic::x86_sse41_ptestc:
11402  case Intrinsic::x86_sse41_ptestnzc:
11403  case Intrinsic::x86_avx_ptestz_256:
11404  case Intrinsic::x86_avx_ptestc_256:
11405  case Intrinsic::x86_avx_ptestnzc_256:
11406  case Intrinsic::x86_avx_vtestz_ps:
11407  case Intrinsic::x86_avx_vtestc_ps:
11408  case Intrinsic::x86_avx_vtestnzc_ps:
11409  case Intrinsic::x86_avx_vtestz_pd:
11410  case Intrinsic::x86_avx_vtestc_pd:
11411  case Intrinsic::x86_avx_vtestnzc_pd:
11412  case Intrinsic::x86_avx_vtestz_ps_256:
11413  case Intrinsic::x86_avx_vtestc_ps_256:
11414  case Intrinsic::x86_avx_vtestnzc_ps_256:
11415  case Intrinsic::x86_avx_vtestz_pd_256:
11416  case Intrinsic::x86_avx_vtestc_pd_256:
11417  case Intrinsic::x86_avx_vtestnzc_pd_256: {
11418    bool IsTestPacked = false;
11419    unsigned X86CC;
11420    switch (IntNo) {
11421    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
11422    case Intrinsic::x86_avx_vtestz_ps:
11423    case Intrinsic::x86_avx_vtestz_pd:
11424    case Intrinsic::x86_avx_vtestz_ps_256:
11425    case Intrinsic::x86_avx_vtestz_pd_256:
11426      IsTestPacked = true; // Fallthrough
11427    case Intrinsic::x86_sse41_ptestz:
11428    case Intrinsic::x86_avx_ptestz_256:
11429      // ZF = 1
11430      X86CC = X86::COND_E;
11431      break;
11432    case Intrinsic::x86_avx_vtestc_ps:
11433    case Intrinsic::x86_avx_vtestc_pd:
11434    case Intrinsic::x86_avx_vtestc_ps_256:
11435    case Intrinsic::x86_avx_vtestc_pd_256:
11436      IsTestPacked = true; // Fallthrough
11437    case Intrinsic::x86_sse41_ptestc:
11438    case Intrinsic::x86_avx_ptestc_256:
11439      // CF = 1
11440      X86CC = X86::COND_B;
11441      break;
11442    case Intrinsic::x86_avx_vtestnzc_ps:
11443    case Intrinsic::x86_avx_vtestnzc_pd:
11444    case Intrinsic::x86_avx_vtestnzc_ps_256:
11445    case Intrinsic::x86_avx_vtestnzc_pd_256:
11446      IsTestPacked = true; // Fallthrough
11447    case Intrinsic::x86_sse41_ptestnzc:
11448    case Intrinsic::x86_avx_ptestnzc_256:
11449      // ZF and CF = 0
11450      X86CC = X86::COND_A;
11451      break;
11452    }
11453
11454    SDValue LHS = Op.getOperand(1);
11455    SDValue RHS = Op.getOperand(2);
11456    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
11457    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
11458    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11459    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11460    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11461  }
11462  case Intrinsic::x86_avx512_kortestz:
11463  case Intrinsic::x86_avx512_kortestc: {
11464    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
11465    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
11466    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
11467    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11468    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
11469    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11470    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11471  }
11472
11473  // SSE/AVX shift intrinsics
11474  case Intrinsic::x86_sse2_psll_w:
11475  case Intrinsic::x86_sse2_psll_d:
11476  case Intrinsic::x86_sse2_psll_q:
11477  case Intrinsic::x86_avx2_psll_w:
11478  case Intrinsic::x86_avx2_psll_d:
11479  case Intrinsic::x86_avx2_psll_q:
11480  case Intrinsic::x86_sse2_psrl_w:
11481  case Intrinsic::x86_sse2_psrl_d:
11482  case Intrinsic::x86_sse2_psrl_q:
11483  case Intrinsic::x86_avx2_psrl_w:
11484  case Intrinsic::x86_avx2_psrl_d:
11485  case Intrinsic::x86_avx2_psrl_q:
11486  case Intrinsic::x86_sse2_psra_w:
11487  case Intrinsic::x86_sse2_psra_d:
11488  case Intrinsic::x86_avx2_psra_w:
11489  case Intrinsic::x86_avx2_psra_d: {
11490    unsigned Opcode;
11491    switch (IntNo) {
11492    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11493    case Intrinsic::x86_sse2_psll_w:
11494    case Intrinsic::x86_sse2_psll_d:
11495    case Intrinsic::x86_sse2_psll_q:
11496    case Intrinsic::x86_avx2_psll_w:
11497    case Intrinsic::x86_avx2_psll_d:
11498    case Intrinsic::x86_avx2_psll_q:
11499      Opcode = X86ISD::VSHL;
11500      break;
11501    case Intrinsic::x86_sse2_psrl_w:
11502    case Intrinsic::x86_sse2_psrl_d:
11503    case Intrinsic::x86_sse2_psrl_q:
11504    case Intrinsic::x86_avx2_psrl_w:
11505    case Intrinsic::x86_avx2_psrl_d:
11506    case Intrinsic::x86_avx2_psrl_q:
11507      Opcode = X86ISD::VSRL;
11508      break;
11509    case Intrinsic::x86_sse2_psra_w:
11510    case Intrinsic::x86_sse2_psra_d:
11511    case Intrinsic::x86_avx2_psra_w:
11512    case Intrinsic::x86_avx2_psra_d:
11513      Opcode = X86ISD::VSRA;
11514      break;
11515    }
11516    return DAG.getNode(Opcode, dl, Op.getValueType(),
11517                       Op.getOperand(1), Op.getOperand(2));
11518  }
11519
11520  // SSE/AVX immediate shift intrinsics
11521  case Intrinsic::x86_sse2_pslli_w:
11522  case Intrinsic::x86_sse2_pslli_d:
11523  case Intrinsic::x86_sse2_pslli_q:
11524  case Intrinsic::x86_avx2_pslli_w:
11525  case Intrinsic::x86_avx2_pslli_d:
11526  case Intrinsic::x86_avx2_pslli_q:
11527  case Intrinsic::x86_sse2_psrli_w:
11528  case Intrinsic::x86_sse2_psrli_d:
11529  case Intrinsic::x86_sse2_psrli_q:
11530  case Intrinsic::x86_avx2_psrli_w:
11531  case Intrinsic::x86_avx2_psrli_d:
11532  case Intrinsic::x86_avx2_psrli_q:
11533  case Intrinsic::x86_sse2_psrai_w:
11534  case Intrinsic::x86_sse2_psrai_d:
11535  case Intrinsic::x86_avx2_psrai_w:
11536  case Intrinsic::x86_avx2_psrai_d: {
11537    unsigned Opcode;
11538    switch (IntNo) {
11539    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11540    case Intrinsic::x86_sse2_pslli_w:
11541    case Intrinsic::x86_sse2_pslli_d:
11542    case Intrinsic::x86_sse2_pslli_q:
11543    case Intrinsic::x86_avx2_pslli_w:
11544    case Intrinsic::x86_avx2_pslli_d:
11545    case Intrinsic::x86_avx2_pslli_q:
11546      Opcode = X86ISD::VSHLI;
11547      break;
11548    case Intrinsic::x86_sse2_psrli_w:
11549    case Intrinsic::x86_sse2_psrli_d:
11550    case Intrinsic::x86_sse2_psrli_q:
11551    case Intrinsic::x86_avx2_psrli_w:
11552    case Intrinsic::x86_avx2_psrli_d:
11553    case Intrinsic::x86_avx2_psrli_q:
11554      Opcode = X86ISD::VSRLI;
11555      break;
11556    case Intrinsic::x86_sse2_psrai_w:
11557    case Intrinsic::x86_sse2_psrai_d:
11558    case Intrinsic::x86_avx2_psrai_w:
11559    case Intrinsic::x86_avx2_psrai_d:
11560      Opcode = X86ISD::VSRAI;
11561      break;
11562    }
11563    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
11564                               Op.getOperand(1), Op.getOperand(2), DAG);
11565  }
11566
11567  case Intrinsic::x86_sse42_pcmpistria128:
11568  case Intrinsic::x86_sse42_pcmpestria128:
11569  case Intrinsic::x86_sse42_pcmpistric128:
11570  case Intrinsic::x86_sse42_pcmpestric128:
11571  case Intrinsic::x86_sse42_pcmpistrio128:
11572  case Intrinsic::x86_sse42_pcmpestrio128:
11573  case Intrinsic::x86_sse42_pcmpistris128:
11574  case Intrinsic::x86_sse42_pcmpestris128:
11575  case Intrinsic::x86_sse42_pcmpistriz128:
11576  case Intrinsic::x86_sse42_pcmpestriz128: {
11577    unsigned Opcode;
11578    unsigned X86CC;
11579    switch (IntNo) {
11580    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11581    case Intrinsic::x86_sse42_pcmpistria128:
11582      Opcode = X86ISD::PCMPISTRI;
11583      X86CC = X86::COND_A;
11584      break;
11585    case Intrinsic::x86_sse42_pcmpestria128:
11586      Opcode = X86ISD::PCMPESTRI;
11587      X86CC = X86::COND_A;
11588      break;
11589    case Intrinsic::x86_sse42_pcmpistric128:
11590      Opcode = X86ISD::PCMPISTRI;
11591      X86CC = X86::COND_B;
11592      break;
11593    case Intrinsic::x86_sse42_pcmpestric128:
11594      Opcode = X86ISD::PCMPESTRI;
11595      X86CC = X86::COND_B;
11596      break;
11597    case Intrinsic::x86_sse42_pcmpistrio128:
11598      Opcode = X86ISD::PCMPISTRI;
11599      X86CC = X86::COND_O;
11600      break;
11601    case Intrinsic::x86_sse42_pcmpestrio128:
11602      Opcode = X86ISD::PCMPESTRI;
11603      X86CC = X86::COND_O;
11604      break;
11605    case Intrinsic::x86_sse42_pcmpistris128:
11606      Opcode = X86ISD::PCMPISTRI;
11607      X86CC = X86::COND_S;
11608      break;
11609    case Intrinsic::x86_sse42_pcmpestris128:
11610      Opcode = X86ISD::PCMPESTRI;
11611      X86CC = X86::COND_S;
11612      break;
11613    case Intrinsic::x86_sse42_pcmpistriz128:
11614      Opcode = X86ISD::PCMPISTRI;
11615      X86CC = X86::COND_E;
11616      break;
11617    case Intrinsic::x86_sse42_pcmpestriz128:
11618      Opcode = X86ISD::PCMPESTRI;
11619      X86CC = X86::COND_E;
11620      break;
11621    }
11622    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11623    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11624    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11625    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11626                                DAG.getConstant(X86CC, MVT::i8),
11627                                SDValue(PCMP.getNode(), 1));
11628    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11629  }
11630
11631  case Intrinsic::x86_sse42_pcmpistri128:
11632  case Intrinsic::x86_sse42_pcmpestri128: {
11633    unsigned Opcode;
11634    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
11635      Opcode = X86ISD::PCMPISTRI;
11636    else
11637      Opcode = X86ISD::PCMPESTRI;
11638
11639    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11640    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11641    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11642  }
11643  case Intrinsic::x86_fma_vfmadd_ps:
11644  case Intrinsic::x86_fma_vfmadd_pd:
11645  case Intrinsic::x86_fma_vfmsub_ps:
11646  case Intrinsic::x86_fma_vfmsub_pd:
11647  case Intrinsic::x86_fma_vfnmadd_ps:
11648  case Intrinsic::x86_fma_vfnmadd_pd:
11649  case Intrinsic::x86_fma_vfnmsub_ps:
11650  case Intrinsic::x86_fma_vfnmsub_pd:
11651  case Intrinsic::x86_fma_vfmaddsub_ps:
11652  case Intrinsic::x86_fma_vfmaddsub_pd:
11653  case Intrinsic::x86_fma_vfmsubadd_ps:
11654  case Intrinsic::x86_fma_vfmsubadd_pd:
11655  case Intrinsic::x86_fma_vfmadd_ps_256:
11656  case Intrinsic::x86_fma_vfmadd_pd_256:
11657  case Intrinsic::x86_fma_vfmsub_ps_256:
11658  case Intrinsic::x86_fma_vfmsub_pd_256:
11659  case Intrinsic::x86_fma_vfnmadd_ps_256:
11660  case Intrinsic::x86_fma_vfnmadd_pd_256:
11661  case Intrinsic::x86_fma_vfnmsub_ps_256:
11662  case Intrinsic::x86_fma_vfnmsub_pd_256:
11663  case Intrinsic::x86_fma_vfmaddsub_ps_256:
11664  case Intrinsic::x86_fma_vfmaddsub_pd_256:
11665  case Intrinsic::x86_fma_vfmsubadd_ps_256:
11666  case Intrinsic::x86_fma_vfmsubadd_pd_256:
11667  case Intrinsic::x86_fma_vfmadd_ps_512:
11668  case Intrinsic::x86_fma_vfmadd_pd_512:
11669  case Intrinsic::x86_fma_vfmsub_ps_512:
11670  case Intrinsic::x86_fma_vfmsub_pd_512:
11671  case Intrinsic::x86_fma_vfnmadd_ps_512:
11672  case Intrinsic::x86_fma_vfnmadd_pd_512:
11673  case Intrinsic::x86_fma_vfnmsub_ps_512:
11674  case Intrinsic::x86_fma_vfnmsub_pd_512:
11675  case Intrinsic::x86_fma_vfmaddsub_ps_512:
11676  case Intrinsic::x86_fma_vfmaddsub_pd_512:
11677  case Intrinsic::x86_fma_vfmsubadd_ps_512:
11678  case Intrinsic::x86_fma_vfmsubadd_pd_512: {
11679    unsigned Opc;
11680    switch (IntNo) {
11681    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11682    case Intrinsic::x86_fma_vfmadd_ps:
11683    case Intrinsic::x86_fma_vfmadd_pd:
11684    case Intrinsic::x86_fma_vfmadd_ps_256:
11685    case Intrinsic::x86_fma_vfmadd_pd_256:
11686    case Intrinsic::x86_fma_vfmadd_ps_512:
11687    case Intrinsic::x86_fma_vfmadd_pd_512:
11688      Opc = X86ISD::FMADD;
11689      break;
11690    case Intrinsic::x86_fma_vfmsub_ps:
11691    case Intrinsic::x86_fma_vfmsub_pd:
11692    case Intrinsic::x86_fma_vfmsub_ps_256:
11693    case Intrinsic::x86_fma_vfmsub_pd_256:
11694    case Intrinsic::x86_fma_vfmsub_ps_512:
11695    case Intrinsic::x86_fma_vfmsub_pd_512:
11696      Opc = X86ISD::FMSUB;
11697      break;
11698    case Intrinsic::x86_fma_vfnmadd_ps:
11699    case Intrinsic::x86_fma_vfnmadd_pd:
11700    case Intrinsic::x86_fma_vfnmadd_ps_256:
11701    case Intrinsic::x86_fma_vfnmadd_pd_256:
11702    case Intrinsic::x86_fma_vfnmadd_ps_512:
11703    case Intrinsic::x86_fma_vfnmadd_pd_512:
11704      Opc = X86ISD::FNMADD;
11705      break;
11706    case Intrinsic::x86_fma_vfnmsub_ps:
11707    case Intrinsic::x86_fma_vfnmsub_pd:
11708    case Intrinsic::x86_fma_vfnmsub_ps_256:
11709    case Intrinsic::x86_fma_vfnmsub_pd_256:
11710    case Intrinsic::x86_fma_vfnmsub_ps_512:
11711    case Intrinsic::x86_fma_vfnmsub_pd_512:
11712      Opc = X86ISD::FNMSUB;
11713      break;
11714    case Intrinsic::x86_fma_vfmaddsub_ps:
11715    case Intrinsic::x86_fma_vfmaddsub_pd:
11716    case Intrinsic::x86_fma_vfmaddsub_ps_256:
11717    case Intrinsic::x86_fma_vfmaddsub_pd_256:
11718    case Intrinsic::x86_fma_vfmaddsub_ps_512:
11719    case Intrinsic::x86_fma_vfmaddsub_pd_512:
11720      Opc = X86ISD::FMADDSUB;
11721      break;
11722    case Intrinsic::x86_fma_vfmsubadd_ps:
11723    case Intrinsic::x86_fma_vfmsubadd_pd:
11724    case Intrinsic::x86_fma_vfmsubadd_ps_256:
11725    case Intrinsic::x86_fma_vfmsubadd_pd_256:
11726    case Intrinsic::x86_fma_vfmsubadd_ps_512:
11727    case Intrinsic::x86_fma_vfmsubadd_pd_512:
11728      Opc = X86ISD::FMSUBADD;
11729      break;
11730    }
11731
11732    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11733                       Op.getOperand(2), Op.getOperand(3));
11734  }
11735  }
11736}
11737
11738static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11739                             SDValue Base, SDValue Index,
11740                             SDValue ScaleOp, SDValue Chain,
11741                             const X86Subtarget * Subtarget) {
11742  SDLoc dl(Op);
11743  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11744  assert(C && "Invalid scale type");
11745  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11746  SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11747  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11748                                Index.getValueType().getVectorNumElements());
11749  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11750  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11751  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11752  SDValue Segment = DAG.getRegister(0, MVT::i32);
11753  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11754  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11755  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11756  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11757}
11758
11759static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11760                              SDValue Src, SDValue Mask, SDValue Base,
11761                              SDValue Index, SDValue ScaleOp, SDValue Chain,
11762                              const X86Subtarget * Subtarget) {
11763  SDLoc dl(Op);
11764  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11765  assert(C && "Invalid scale type");
11766  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11767  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11768                                Index.getValueType().getVectorNumElements());
11769  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11770  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11771  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11772  SDValue Segment = DAG.getRegister(0, MVT::i32);
11773  if (Src.getOpcode() == ISD::UNDEF)
11774    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11775  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11776  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11777  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11778  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11779}
11780
11781static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11782                              SDValue Src, SDValue Base, SDValue Index,
11783                              SDValue ScaleOp, SDValue Chain) {
11784  SDLoc dl(Op);
11785  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11786  assert(C && "Invalid scale type");
11787  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11788  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11789  SDValue Segment = DAG.getRegister(0, MVT::i32);
11790  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11791                                Index.getValueType().getVectorNumElements());
11792  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11793  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11794  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11795  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11796  return SDValue(Res, 1);
11797}
11798
11799static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11800                               SDValue Src, SDValue Mask, SDValue Base,
11801                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
11802  SDLoc dl(Op);
11803  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11804  assert(C && "Invalid scale type");
11805  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11806  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11807  SDValue Segment = DAG.getRegister(0, MVT::i32);
11808  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11809                                Index.getValueType().getVectorNumElements());
11810  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11811  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11812  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11813  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11814  return SDValue(Res, 1);
11815}
11816
11817static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
11818                                      SelectionDAG &DAG) {
11819  SDLoc dl(Op);
11820  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11821  switch (IntNo) {
11822  default: return SDValue();    // Don't custom lower most intrinsics.
11823
11824  // RDRAND/RDSEED intrinsics.
11825  case Intrinsic::x86_rdrand_16:
11826  case Intrinsic::x86_rdrand_32:
11827  case Intrinsic::x86_rdrand_64:
11828  case Intrinsic::x86_rdseed_16:
11829  case Intrinsic::x86_rdseed_32:
11830  case Intrinsic::x86_rdseed_64: {
11831    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11832                       IntNo == Intrinsic::x86_rdseed_32 ||
11833                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11834                                                            X86ISD::RDRAND;
11835    // Emit the node with the right value type.
11836    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11837    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11838
11839    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11840    // Otherwise return the value from Rand, which is always 0, casted to i32.
11841    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11842                      DAG.getConstant(1, Op->getValueType(1)),
11843                      DAG.getConstant(X86::COND_B, MVT::i32),
11844                      SDValue(Result.getNode(), 1) };
11845    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11846                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11847                                  Ops, array_lengthof(Ops));
11848
11849    // Return { result, isValid, chain }.
11850    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11851                       SDValue(Result.getNode(), 2));
11852  }
11853  //int_gather(index, base, scale);
11854  case Intrinsic::x86_avx512_gather_qpd_512:
11855  case Intrinsic::x86_avx512_gather_qps_512:
11856  case Intrinsic::x86_avx512_gather_dpd_512:
11857  case Intrinsic::x86_avx512_gather_qpi_512:
11858  case Intrinsic::x86_avx512_gather_qpq_512:
11859  case Intrinsic::x86_avx512_gather_dpq_512:
11860  case Intrinsic::x86_avx512_gather_dps_512:
11861  case Intrinsic::x86_avx512_gather_dpi_512: {
11862    unsigned Opc;
11863    switch (IntNo) {
11864      default: llvm_unreachable("Unexpected intrinsic!");
11865      case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break;
11866      case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break;
11867      case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break;
11868      case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break;
11869      case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break;
11870      case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break;
11871      case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break;
11872      case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break;
11873    }
11874    SDValue Chain = Op.getOperand(0);
11875    SDValue Index = Op.getOperand(2);
11876    SDValue Base  = Op.getOperand(3);
11877    SDValue Scale = Op.getOperand(4);
11878    return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget);
11879  }
11880  //int_gather_mask(v1, mask, index, base, scale);
11881  case Intrinsic::x86_avx512_gather_qps_mask_512:
11882  case Intrinsic::x86_avx512_gather_qpd_mask_512:
11883  case Intrinsic::x86_avx512_gather_dpd_mask_512:
11884  case Intrinsic::x86_avx512_gather_dps_mask_512:
11885  case Intrinsic::x86_avx512_gather_qpi_mask_512:
11886  case Intrinsic::x86_avx512_gather_qpq_mask_512:
11887  case Intrinsic::x86_avx512_gather_dpi_mask_512:
11888  case Intrinsic::x86_avx512_gather_dpq_mask_512: {
11889    unsigned Opc;
11890    switch (IntNo) {
11891      default: llvm_unreachable("Unexpected intrinsic!");
11892      case Intrinsic::x86_avx512_gather_qps_mask_512:
11893        Opc = X86::VGATHERQPSZrm; break;
11894      case Intrinsic::x86_avx512_gather_qpd_mask_512:
11895        Opc = X86::VGATHERQPDZrm; break;
11896      case Intrinsic::x86_avx512_gather_dpd_mask_512:
11897        Opc = X86::VGATHERDPDZrm; break;
11898      case Intrinsic::x86_avx512_gather_dps_mask_512:
11899        Opc = X86::VGATHERDPSZrm; break;
11900      case Intrinsic::x86_avx512_gather_qpi_mask_512:
11901        Opc = X86::VPGATHERQDZrm; break;
11902      case Intrinsic::x86_avx512_gather_qpq_mask_512:
11903        Opc = X86::VPGATHERQQZrm; break;
11904      case Intrinsic::x86_avx512_gather_dpi_mask_512:
11905        Opc = X86::VPGATHERDDZrm; break;
11906      case Intrinsic::x86_avx512_gather_dpq_mask_512:
11907        Opc = X86::VPGATHERDQZrm; break;
11908    }
11909    SDValue Chain = Op.getOperand(0);
11910    SDValue Src   = Op.getOperand(2);
11911    SDValue Mask  = Op.getOperand(3);
11912    SDValue Index = Op.getOperand(4);
11913    SDValue Base  = Op.getOperand(5);
11914    SDValue Scale = Op.getOperand(6);
11915    return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
11916                          Subtarget);
11917  }
11918  //int_scatter(base, index, v1, scale);
11919  case Intrinsic::x86_avx512_scatter_qpd_512:
11920  case Intrinsic::x86_avx512_scatter_qps_512:
11921  case Intrinsic::x86_avx512_scatter_dpd_512:
11922  case Intrinsic::x86_avx512_scatter_qpi_512:
11923  case Intrinsic::x86_avx512_scatter_qpq_512:
11924  case Intrinsic::x86_avx512_scatter_dpq_512:
11925  case Intrinsic::x86_avx512_scatter_dps_512:
11926  case Intrinsic::x86_avx512_scatter_dpi_512: {
11927    unsigned Opc;
11928    switch (IntNo) {
11929      default: llvm_unreachable("Unexpected intrinsic!");
11930      case Intrinsic::x86_avx512_scatter_qpd_512:
11931        Opc = X86::VSCATTERQPDZmr; break;
11932      case Intrinsic::x86_avx512_scatter_qps_512:
11933        Opc = X86::VSCATTERQPSZmr; break;
11934      case Intrinsic::x86_avx512_scatter_dpd_512:
11935        Opc = X86::VSCATTERDPDZmr; break;
11936      case Intrinsic::x86_avx512_scatter_dps_512:
11937        Opc = X86::VSCATTERDPSZmr; break;
11938      case Intrinsic::x86_avx512_scatter_qpi_512:
11939        Opc = X86::VPSCATTERQDZmr; break;
11940      case Intrinsic::x86_avx512_scatter_qpq_512:
11941        Opc = X86::VPSCATTERQQZmr; break;
11942      case Intrinsic::x86_avx512_scatter_dpq_512:
11943        Opc = X86::VPSCATTERDQZmr; break;
11944      case Intrinsic::x86_avx512_scatter_dpi_512:
11945        Opc = X86::VPSCATTERDDZmr; break;
11946    }
11947    SDValue Chain = Op.getOperand(0);
11948    SDValue Base  = Op.getOperand(2);
11949    SDValue Index = Op.getOperand(3);
11950    SDValue Src   = Op.getOperand(4);
11951    SDValue Scale = Op.getOperand(5);
11952    return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain);
11953  }
11954  //int_scatter_mask(base, mask, index, v1, scale);
11955  case Intrinsic::x86_avx512_scatter_qps_mask_512:
11956  case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11957  case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11958  case Intrinsic::x86_avx512_scatter_dps_mask_512:
11959  case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11960  case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11961  case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11962  case Intrinsic::x86_avx512_scatter_dpq_mask_512: {
11963    unsigned Opc;
11964    switch (IntNo) {
11965      default: llvm_unreachable("Unexpected intrinsic!");
11966      case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11967        Opc = X86::VSCATTERQPDZmr; break;
11968      case Intrinsic::x86_avx512_scatter_qps_mask_512:
11969        Opc = X86::VSCATTERQPSZmr; break;
11970      case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11971        Opc = X86::VSCATTERDPDZmr; break;
11972      case Intrinsic::x86_avx512_scatter_dps_mask_512:
11973        Opc = X86::VSCATTERDPSZmr; break;
11974      case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11975        Opc = X86::VPSCATTERQDZmr; break;
11976      case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11977        Opc = X86::VPSCATTERQQZmr; break;
11978      case Intrinsic::x86_avx512_scatter_dpq_mask_512:
11979        Opc = X86::VPSCATTERDQZmr; break;
11980      case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11981        Opc = X86::VPSCATTERDDZmr; break;
11982    }
11983    SDValue Chain = Op.getOperand(0);
11984    SDValue Base  = Op.getOperand(2);
11985    SDValue Mask  = Op.getOperand(3);
11986    SDValue Index = Op.getOperand(4);
11987    SDValue Src   = Op.getOperand(5);
11988    SDValue Scale = Op.getOperand(6);
11989    return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
11990  }
11991  // XTEST intrinsics.
11992  case Intrinsic::x86_xtest: {
11993    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11994    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11995    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11996                                DAG.getConstant(X86::COND_NE, MVT::i8),
11997                                InTrans);
11998    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11999    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
12000                       Ret, SDValue(InTrans.getNode(), 1));
12001  }
12002  }
12003}
12004
12005SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
12006                                           SelectionDAG &DAG) const {
12007  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12008  MFI->setReturnAddressIsTaken(true);
12009
12010  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12011  SDLoc dl(Op);
12012  EVT PtrVT = getPointerTy();
12013
12014  if (Depth > 0) {
12015    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12016    const X86RegisterInfo *RegInfo =
12017      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12018    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
12019    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12020                       DAG.getNode(ISD::ADD, dl, PtrVT,
12021                                   FrameAddr, Offset),
12022                       MachinePointerInfo(), false, false, false, 0);
12023  }
12024
12025  // Just load the return address.
12026  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
12027  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12028                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
12029}
12030
12031SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
12032  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12033  MFI->setFrameAddressIsTaken(true);
12034
12035  EVT VT = Op.getValueType();
12036  SDLoc dl(Op);  // FIXME probably not meaningful
12037  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12038  const X86RegisterInfo *RegInfo =
12039    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12040  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12041  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
12042          (FrameReg == X86::EBP && VT == MVT::i32)) &&
12043         "Invalid Frame Register!");
12044  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
12045  while (Depth--)
12046    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
12047                            MachinePointerInfo(),
12048                            false, false, false, 0);
12049  return FrameAddr;
12050}
12051
12052SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
12053                                                     SelectionDAG &DAG) const {
12054  const X86RegisterInfo *RegInfo =
12055    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12056  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
12057}
12058
12059SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
12060  SDValue Chain     = Op.getOperand(0);
12061  SDValue Offset    = Op.getOperand(1);
12062  SDValue Handler   = Op.getOperand(2);
12063  SDLoc dl      (Op);
12064
12065  EVT PtrVT = getPointerTy();
12066  const X86RegisterInfo *RegInfo =
12067    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12068  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12069  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
12070          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
12071         "Invalid Frame Register!");
12072  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
12073  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
12074
12075  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
12076                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
12077  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
12078  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
12079                       false, false, 0);
12080  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
12081
12082  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
12083                     DAG.getRegister(StoreAddrReg, PtrVT));
12084}
12085
12086SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
12087                                               SelectionDAG &DAG) const {
12088  SDLoc DL(Op);
12089  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
12090                     DAG.getVTList(MVT::i32, MVT::Other),
12091                     Op.getOperand(0), Op.getOperand(1));
12092}
12093
12094SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
12095                                                SelectionDAG &DAG) const {
12096  SDLoc DL(Op);
12097  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
12098                     Op.getOperand(0), Op.getOperand(1));
12099}
12100
12101static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
12102  return Op.getOperand(0);
12103}
12104
12105SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
12106                                                SelectionDAG &DAG) const {
12107  SDValue Root = Op.getOperand(0);
12108  SDValue Trmp = Op.getOperand(1); // trampoline
12109  SDValue FPtr = Op.getOperand(2); // nested function
12110  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
12111  SDLoc dl (Op);
12112
12113  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
12114  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12115
12116  if (Subtarget->is64Bit()) {
12117    SDValue OutChains[6];
12118
12119    // Large code-model.
12120    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
12121    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
12122
12123    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
12124    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
12125
12126    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
12127
12128    // Load the pointer to the nested function into R11.
12129    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
12130    SDValue Addr = Trmp;
12131    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12132                                Addr, MachinePointerInfo(TrmpAddr),
12133                                false, false, 0);
12134
12135    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12136                       DAG.getConstant(2, MVT::i64));
12137    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
12138                                MachinePointerInfo(TrmpAddr, 2),
12139                                false, false, 2);
12140
12141    // Load the 'nest' parameter value into R10.
12142    // R10 is specified in X86CallingConv.td
12143    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
12144    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12145                       DAG.getConstant(10, MVT::i64));
12146    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12147                                Addr, MachinePointerInfo(TrmpAddr, 10),
12148                                false, false, 0);
12149
12150    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12151                       DAG.getConstant(12, MVT::i64));
12152    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
12153                                MachinePointerInfo(TrmpAddr, 12),
12154                                false, false, 2);
12155
12156    // Jump to the nested function.
12157    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
12158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12159                       DAG.getConstant(20, MVT::i64));
12160    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12161                                Addr, MachinePointerInfo(TrmpAddr, 20),
12162                                false, false, 0);
12163
12164    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
12165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12166                       DAG.getConstant(22, MVT::i64));
12167    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
12168                                MachinePointerInfo(TrmpAddr, 22),
12169                                false, false, 0);
12170
12171    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
12172  } else {
12173    const Function *Func =
12174      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
12175    CallingConv::ID CC = Func->getCallingConv();
12176    unsigned NestReg;
12177
12178    switch (CC) {
12179    default:
12180      llvm_unreachable("Unsupported calling convention");
12181    case CallingConv::C:
12182    case CallingConv::X86_StdCall: {
12183      // Pass 'nest' parameter in ECX.
12184      // Must be kept in sync with X86CallingConv.td
12185      NestReg = X86::ECX;
12186
12187      // Check that ECX wasn't needed by an 'inreg' parameter.
12188      FunctionType *FTy = Func->getFunctionType();
12189      const AttributeSet &Attrs = Func->getAttributes();
12190
12191      if (!Attrs.isEmpty() && !Func->isVarArg()) {
12192        unsigned InRegCount = 0;
12193        unsigned Idx = 1;
12194
12195        for (FunctionType::param_iterator I = FTy->param_begin(),
12196             E = FTy->param_end(); I != E; ++I, ++Idx)
12197          if (Attrs.hasAttribute(Idx, Attribute::InReg))
12198            // FIXME: should only count parameters that are lowered to integers.
12199            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
12200
12201        if (InRegCount > 2) {
12202          report_fatal_error("Nest register in use - reduce number of inreg"
12203                             " parameters!");
12204        }
12205      }
12206      break;
12207    }
12208    case CallingConv::X86_FastCall:
12209    case CallingConv::X86_ThisCall:
12210    case CallingConv::Fast:
12211      // Pass 'nest' parameter in EAX.
12212      // Must be kept in sync with X86CallingConv.td
12213      NestReg = X86::EAX;
12214      break;
12215    }
12216
12217    SDValue OutChains[4];
12218    SDValue Addr, Disp;
12219
12220    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12221                       DAG.getConstant(10, MVT::i32));
12222    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
12223
12224    // This is storing the opcode for MOV32ri.
12225    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
12226    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
12227    OutChains[0] = DAG.getStore(Root, dl,
12228                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
12229                                Trmp, MachinePointerInfo(TrmpAddr),
12230                                false, false, 0);
12231
12232    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12233                       DAG.getConstant(1, MVT::i32));
12234    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
12235                                MachinePointerInfo(TrmpAddr, 1),
12236                                false, false, 1);
12237
12238    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
12239    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12240                       DAG.getConstant(5, MVT::i32));
12241    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
12242                                MachinePointerInfo(TrmpAddr, 5),
12243                                false, false, 1);
12244
12245    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12246                       DAG.getConstant(6, MVT::i32));
12247    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
12248                                MachinePointerInfo(TrmpAddr, 6),
12249                                false, false, 1);
12250
12251    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
12252  }
12253}
12254
12255SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
12256                                            SelectionDAG &DAG) const {
12257  /*
12258   The rounding mode is in bits 11:10 of FPSR, and has the following
12259   settings:
12260     00 Round to nearest
12261     01 Round to -inf
12262     10 Round to +inf
12263     11 Round to 0
12264
12265  FLT_ROUNDS, on the other hand, expects the following:
12266    -1 Undefined
12267     0 Round to 0
12268     1 Round to nearest
12269     2 Round to +inf
12270     3 Round to -inf
12271
12272  To perform the conversion, we do:
12273    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
12274  */
12275
12276  MachineFunction &MF = DAG.getMachineFunction();
12277  const TargetMachine &TM = MF.getTarget();
12278  const TargetFrameLowering &TFI = *TM.getFrameLowering();
12279  unsigned StackAlignment = TFI.getStackAlignment();
12280  EVT VT = Op.getValueType();
12281  SDLoc DL(Op);
12282
12283  // Save FP Control Word to stack slot
12284  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
12285  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12286
12287  MachineMemOperand *MMO =
12288   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12289                           MachineMemOperand::MOStore, 2, 2);
12290
12291  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
12292  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
12293                                          DAG.getVTList(MVT::Other),
12294                                          Ops, array_lengthof(Ops), MVT::i16,
12295                                          MMO);
12296
12297  // Load FP Control Word from stack slot
12298  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
12299                            MachinePointerInfo(), false, false, false, 0);
12300
12301  // Transform as necessary
12302  SDValue CWD1 =
12303    DAG.getNode(ISD::SRL, DL, MVT::i16,
12304                DAG.getNode(ISD::AND, DL, MVT::i16,
12305                            CWD, DAG.getConstant(0x800, MVT::i16)),
12306                DAG.getConstant(11, MVT::i8));
12307  SDValue CWD2 =
12308    DAG.getNode(ISD::SRL, DL, MVT::i16,
12309                DAG.getNode(ISD::AND, DL, MVT::i16,
12310                            CWD, DAG.getConstant(0x400, MVT::i16)),
12311                DAG.getConstant(9, MVT::i8));
12312
12313  SDValue RetVal =
12314    DAG.getNode(ISD::AND, DL, MVT::i16,
12315                DAG.getNode(ISD::ADD, DL, MVT::i16,
12316                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
12317                            DAG.getConstant(1, MVT::i16)),
12318                DAG.getConstant(3, MVT::i16));
12319
12320  return DAG.getNode((VT.getSizeInBits() < 16 ?
12321                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
12322}
12323
12324static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
12325  EVT VT = Op.getValueType();
12326  EVT OpVT = VT;
12327  unsigned NumBits = VT.getSizeInBits();
12328  SDLoc dl(Op);
12329
12330  Op = Op.getOperand(0);
12331  if (VT == MVT::i8) {
12332    // Zero extend to i32 since there is not an i8 bsr.
12333    OpVT = MVT::i32;
12334    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12335  }
12336
12337  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
12338  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12339  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12340
12341  // If src is zero (i.e. bsr sets ZF), returns NumBits.
12342  SDValue Ops[] = {
12343    Op,
12344    DAG.getConstant(NumBits+NumBits-1, OpVT),
12345    DAG.getConstant(X86::COND_E, MVT::i8),
12346    Op.getValue(1)
12347  };
12348  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
12349
12350  // Finally xor with NumBits-1.
12351  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12352
12353  if (VT == MVT::i8)
12354    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12355  return Op;
12356}
12357
12358static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
12359  EVT VT = Op.getValueType();
12360  EVT OpVT = VT;
12361  unsigned NumBits = VT.getSizeInBits();
12362  SDLoc dl(Op);
12363
12364  Op = Op.getOperand(0);
12365  if (VT == MVT::i8) {
12366    // Zero extend to i32 since there is not an i8 bsr.
12367    OpVT = MVT::i32;
12368    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12369  }
12370
12371  // Issue a bsr (scan bits in reverse).
12372  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12373  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12374
12375  // And xor with NumBits-1.
12376  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12377
12378  if (VT == MVT::i8)
12379    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12380  return Op;
12381}
12382
12383static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
12384  EVT VT = Op.getValueType();
12385  unsigned NumBits = VT.getSizeInBits();
12386  SDLoc dl(Op);
12387  Op = Op.getOperand(0);
12388
12389  // Issue a bsf (scan bits forward) which also sets EFLAGS.
12390  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12391  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
12392
12393  // If src is zero (i.e. bsf sets ZF), returns NumBits.
12394  SDValue Ops[] = {
12395    Op,
12396    DAG.getConstant(NumBits, VT),
12397    DAG.getConstant(X86::COND_E, MVT::i8),
12398    Op.getValue(1)
12399  };
12400  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
12401}
12402
12403// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
12404// ones, and then concatenate the result back.
12405static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
12406  EVT VT = Op.getValueType();
12407
12408  assert(VT.is256BitVector() && VT.isInteger() &&
12409         "Unsupported value type for operation");
12410
12411  unsigned NumElems = VT.getVectorNumElements();
12412  SDLoc dl(Op);
12413
12414  // Extract the LHS vectors
12415  SDValue LHS = Op.getOperand(0);
12416  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12417  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12418
12419  // Extract the RHS vectors
12420  SDValue RHS = Op.getOperand(1);
12421  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12422  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12423
12424  MVT EltVT = VT.getVectorElementType().getSimpleVT();
12425  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12426
12427  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12428                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
12429                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
12430}
12431
12432static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
12433  assert(Op.getValueType().is256BitVector() &&
12434         Op.getValueType().isInteger() &&
12435         "Only handle AVX 256-bit vector integer operation");
12436  return Lower256IntArith(Op, DAG);
12437}
12438
12439static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
12440  assert(Op.getValueType().is256BitVector() &&
12441         Op.getValueType().isInteger() &&
12442         "Only handle AVX 256-bit vector integer operation");
12443  return Lower256IntArith(Op, DAG);
12444}
12445
12446static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
12447                        SelectionDAG &DAG) {
12448  SDLoc dl(Op);
12449  EVT VT = Op.getValueType();
12450
12451  // Decompose 256-bit ops into smaller 128-bit ops.
12452  if (VT.is256BitVector() && !Subtarget->hasInt256())
12453    return Lower256IntArith(Op, DAG);
12454
12455  SDValue A = Op.getOperand(0);
12456  SDValue B = Op.getOperand(1);
12457
12458  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
12459  if (VT == MVT::v4i32) {
12460    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
12461           "Should not custom lower when pmuldq is available!");
12462
12463    // Extract the odd parts.
12464    static const int UnpackMask[] = { 1, -1, 3, -1 };
12465    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
12466    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
12467
12468    // Multiply the even parts.
12469    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
12470    // Now multiply odd parts.
12471    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
12472
12473    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
12474    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
12475
12476    // Merge the two vectors back together with a shuffle. This expands into 2
12477    // shuffles.
12478    static const int ShufMask[] = { 0, 4, 2, 6 };
12479    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
12480  }
12481
12482  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
12483         "Only know how to lower V2I64/V4I64/V8I64 multiply");
12484
12485  //  Ahi = psrlqi(a, 32);
12486  //  Bhi = psrlqi(b, 32);
12487  //
12488  //  AloBlo = pmuludq(a, b);
12489  //  AloBhi = pmuludq(a, Bhi);
12490  //  AhiBlo = pmuludq(Ahi, b);
12491
12492  //  AloBhi = psllqi(AloBhi, 32);
12493  //  AhiBlo = psllqi(AhiBlo, 32);
12494  //  return AloBlo + AloBhi + AhiBlo;
12495
12496  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
12497  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
12498
12499  // Bit cast to 32-bit vectors for MULUDQ
12500  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
12501                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
12502  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
12503  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
12504  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
12505  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
12506
12507  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
12508  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
12509  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
12510
12511  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
12512  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
12513
12514  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
12515  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
12516}
12517
12518static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
12519  EVT VT = Op.getValueType();
12520  EVT EltTy = VT.getVectorElementType();
12521  unsigned NumElts = VT.getVectorNumElements();
12522  SDValue N0 = Op.getOperand(0);
12523  SDLoc dl(Op);
12524
12525  // Lower sdiv X, pow2-const.
12526  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
12527  if (!C)
12528    return SDValue();
12529
12530  APInt SplatValue, SplatUndef;
12531  unsigned SplatBitSize;
12532  bool HasAnyUndefs;
12533  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
12534                          HasAnyUndefs) ||
12535      EltTy.getSizeInBits() < SplatBitSize)
12536    return SDValue();
12537
12538  if ((SplatValue != 0) &&
12539      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
12540    unsigned Lg2 = SplatValue.countTrailingZeros();
12541    // Splat the sign bit.
12542    SmallVector<SDValue, 16> Sz(NumElts,
12543                                DAG.getConstant(EltTy.getSizeInBits() - 1,
12544                                                EltTy));
12545    SDValue SGN = DAG.getNode(ISD::SRA, dl, VT, N0,
12546                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Sz[0],
12547                                          NumElts));
12548    // Add (N0 < 0) ? abs2 - 1 : 0;
12549    SmallVector<SDValue, 16> Amt(NumElts,
12550                                 DAG.getConstant(EltTy.getSizeInBits() - Lg2,
12551                                                 EltTy));
12552    SDValue SRL = DAG.getNode(ISD::SRL, dl, VT, SGN,
12553                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Amt[0],
12554                                          NumElts));
12555    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
12556    SmallVector<SDValue, 16> Lg2Amt(NumElts, DAG.getConstant(Lg2, EltTy));
12557    SDValue SRA = DAG.getNode(ISD::SRA, dl, VT, ADD,
12558                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Lg2Amt[0],
12559                                          NumElts));
12560
12561    // If we're dividing by a positive value, we're done.  Otherwise, we must
12562    // negate the result.
12563    if (SplatValue.isNonNegative())
12564      return SRA;
12565
12566    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
12567    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
12568    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
12569  }
12570  return SDValue();
12571}
12572
12573static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
12574                                         const X86Subtarget *Subtarget) {
12575  EVT VT = Op.getValueType();
12576  SDLoc dl(Op);
12577  SDValue R = Op.getOperand(0);
12578  SDValue Amt = Op.getOperand(1);
12579
12580  // Optimize shl/srl/sra with constant shift amount.
12581  if (isSplatVector(Amt.getNode())) {
12582    SDValue SclrAmt = Amt->getOperand(0);
12583    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
12584      uint64_t ShiftAmt = C->getZExtValue();
12585
12586      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
12587          (Subtarget->hasInt256() &&
12588           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12589          (Subtarget->hasAVX512() &&
12590           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12591        if (Op.getOpcode() == ISD::SHL)
12592          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12593                                            DAG);
12594        if (Op.getOpcode() == ISD::SRL)
12595          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12596                                            DAG);
12597        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
12598          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12599                                            DAG);
12600      }
12601
12602      if (VT == MVT::v16i8) {
12603        if (Op.getOpcode() == ISD::SHL) {
12604          // Make a large shift.
12605          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12606                                                   MVT::v8i16, R, ShiftAmt,
12607                                                   DAG);
12608          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12609          // Zero out the rightmost bits.
12610          SmallVector<SDValue, 16> V(16,
12611                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12612                                                     MVT::i8));
12613          return DAG.getNode(ISD::AND, dl, VT, SHL,
12614                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12615        }
12616        if (Op.getOpcode() == ISD::SRL) {
12617          // Make a large shift.
12618          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12619                                                   MVT::v8i16, R, ShiftAmt,
12620                                                   DAG);
12621          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12622          // Zero out the leftmost bits.
12623          SmallVector<SDValue, 16> V(16,
12624                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12625                                                     MVT::i8));
12626          return DAG.getNode(ISD::AND, dl, VT, SRL,
12627                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12628        }
12629        if (Op.getOpcode() == ISD::SRA) {
12630          if (ShiftAmt == 7) {
12631            // R s>> 7  ===  R s< 0
12632            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12633            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12634          }
12635
12636          // R s>> a === ((R u>> a) ^ m) - m
12637          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12638          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
12639                                                         MVT::i8));
12640          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
12641          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12642          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12643          return Res;
12644        }
12645        llvm_unreachable("Unknown shift opcode.");
12646      }
12647
12648      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
12649        if (Op.getOpcode() == ISD::SHL) {
12650          // Make a large shift.
12651          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12652                                                   MVT::v16i16, R, ShiftAmt,
12653                                                   DAG);
12654          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12655          // Zero out the rightmost bits.
12656          SmallVector<SDValue, 32> V(32,
12657                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12658                                                     MVT::i8));
12659          return DAG.getNode(ISD::AND, dl, VT, SHL,
12660                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12661        }
12662        if (Op.getOpcode() == ISD::SRL) {
12663          // Make a large shift.
12664          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12665                                                   MVT::v16i16, R, ShiftAmt,
12666                                                   DAG);
12667          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12668          // Zero out the leftmost bits.
12669          SmallVector<SDValue, 32> V(32,
12670                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12671                                                     MVT::i8));
12672          return DAG.getNode(ISD::AND, dl, VT, SRL,
12673                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12674        }
12675        if (Op.getOpcode() == ISD::SRA) {
12676          if (ShiftAmt == 7) {
12677            // R s>> 7  ===  R s< 0
12678            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12679            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12680          }
12681
12682          // R s>> a === ((R u>> a) ^ m) - m
12683          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12684          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
12685                                                         MVT::i8));
12686          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
12687          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12688          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12689          return Res;
12690        }
12691        llvm_unreachable("Unknown shift opcode.");
12692      }
12693    }
12694  }
12695
12696  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12697  if (!Subtarget->is64Bit() &&
12698      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
12699      Amt.getOpcode() == ISD::BITCAST &&
12700      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12701    Amt = Amt.getOperand(0);
12702    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12703                     VT.getVectorNumElements();
12704    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
12705    uint64_t ShiftAmt = 0;
12706    for (unsigned i = 0; i != Ratio; ++i) {
12707      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
12708      if (C == 0)
12709        return SDValue();
12710      // 6 == Log2(64)
12711      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
12712    }
12713    // Check remaining shift amounts.
12714    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12715      uint64_t ShAmt = 0;
12716      for (unsigned j = 0; j != Ratio; ++j) {
12717        ConstantSDNode *C =
12718          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
12719        if (C == 0)
12720          return SDValue();
12721        // 6 == Log2(64)
12722        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
12723      }
12724      if (ShAmt != ShiftAmt)
12725        return SDValue();
12726    }
12727    switch (Op.getOpcode()) {
12728    default:
12729      llvm_unreachable("Unknown shift opcode!");
12730    case ISD::SHL:
12731      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12732                                        DAG);
12733    case ISD::SRL:
12734      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12735                                        DAG);
12736    case ISD::SRA:
12737      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12738                                        DAG);
12739    }
12740  }
12741
12742  return SDValue();
12743}
12744
12745static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
12746                                        const X86Subtarget* Subtarget) {
12747  EVT VT = Op.getValueType();
12748  SDLoc dl(Op);
12749  SDValue R = Op.getOperand(0);
12750  SDValue Amt = Op.getOperand(1);
12751
12752  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
12753      VT == MVT::v4i32 || VT == MVT::v8i16 ||
12754      (Subtarget->hasInt256() &&
12755       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
12756        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12757       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12758    SDValue BaseShAmt;
12759    EVT EltVT = VT.getVectorElementType();
12760
12761    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12762      unsigned NumElts = VT.getVectorNumElements();
12763      unsigned i, j;
12764      for (i = 0; i != NumElts; ++i) {
12765        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
12766          continue;
12767        break;
12768      }
12769      for (j = i; j != NumElts; ++j) {
12770        SDValue Arg = Amt.getOperand(j);
12771        if (Arg.getOpcode() == ISD::UNDEF) continue;
12772        if (Arg != Amt.getOperand(i))
12773          break;
12774      }
12775      if (i != NumElts && j == NumElts)
12776        BaseShAmt = Amt.getOperand(i);
12777    } else {
12778      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12779        Amt = Amt.getOperand(0);
12780      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
12781               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
12782        SDValue InVec = Amt.getOperand(0);
12783        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12784          unsigned NumElts = InVec.getValueType().getVectorNumElements();
12785          unsigned i = 0;
12786          for (; i != NumElts; ++i) {
12787            SDValue Arg = InVec.getOperand(i);
12788            if (Arg.getOpcode() == ISD::UNDEF) continue;
12789            BaseShAmt = Arg;
12790            break;
12791          }
12792        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12793           if (ConstantSDNode *C =
12794               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12795             unsigned SplatIdx =
12796               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
12797             if (C->getZExtValue() == SplatIdx)
12798               BaseShAmt = InVec.getOperand(1);
12799           }
12800        }
12801        if (BaseShAmt.getNode() == 0)
12802          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
12803                                  DAG.getIntPtrConstant(0));
12804      }
12805    }
12806
12807    if (BaseShAmt.getNode()) {
12808      if (EltVT.bitsGT(MVT::i32))
12809        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
12810      else if (EltVT.bitsLT(MVT::i32))
12811        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
12812
12813      switch (Op.getOpcode()) {
12814      default:
12815        llvm_unreachable("Unknown shift opcode!");
12816      case ISD::SHL:
12817        switch (VT.getSimpleVT().SimpleTy) {
12818        default: return SDValue();
12819        case MVT::v2i64:
12820        case MVT::v4i32:
12821        case MVT::v8i16:
12822        case MVT::v4i64:
12823        case MVT::v8i32:
12824        case MVT::v16i16:
12825        case MVT::v16i32:
12826        case MVT::v8i64:
12827          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
12828        }
12829      case ISD::SRA:
12830        switch (VT.getSimpleVT().SimpleTy) {
12831        default: return SDValue();
12832        case MVT::v4i32:
12833        case MVT::v8i16:
12834        case MVT::v8i32:
12835        case MVT::v16i16:
12836        case MVT::v16i32:
12837        case MVT::v8i64:
12838          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
12839        }
12840      case ISD::SRL:
12841        switch (VT.getSimpleVT().SimpleTy) {
12842        default: return SDValue();
12843        case MVT::v2i64:
12844        case MVT::v4i32:
12845        case MVT::v8i16:
12846        case MVT::v4i64:
12847        case MVT::v8i32:
12848        case MVT::v16i16:
12849        case MVT::v16i32:
12850        case MVT::v8i64:
12851          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
12852        }
12853      }
12854    }
12855  }
12856
12857  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12858  if (!Subtarget->is64Bit() &&
12859      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
12860      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
12861      Amt.getOpcode() == ISD::BITCAST &&
12862      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12863    Amt = Amt.getOperand(0);
12864    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12865                     VT.getVectorNumElements();
12866    std::vector<SDValue> Vals(Ratio);
12867    for (unsigned i = 0; i != Ratio; ++i)
12868      Vals[i] = Amt.getOperand(i);
12869    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12870      for (unsigned j = 0; j != Ratio; ++j)
12871        if (Vals[j] != Amt.getOperand(i + j))
12872          return SDValue();
12873    }
12874    switch (Op.getOpcode()) {
12875    default:
12876      llvm_unreachable("Unknown shift opcode!");
12877    case ISD::SHL:
12878      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
12879    case ISD::SRL:
12880      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
12881    case ISD::SRA:
12882      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
12883    }
12884  }
12885
12886  return SDValue();
12887}
12888
12889static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
12890                          SelectionDAG &DAG) {
12891
12892  EVT VT = Op.getValueType();
12893  SDLoc dl(Op);
12894  SDValue R = Op.getOperand(0);
12895  SDValue Amt = Op.getOperand(1);
12896  SDValue V;
12897
12898  if (!Subtarget->hasSSE2())
12899    return SDValue();
12900
12901  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
12902  if (V.getNode())
12903    return V;
12904
12905  V = LowerScalarVariableShift(Op, DAG, Subtarget);
12906  if (V.getNode())
12907      return V;
12908
12909  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
12910    return Op;
12911  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
12912  if (Subtarget->hasInt256()) {
12913    if (Op.getOpcode() == ISD::SRL &&
12914        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12915         VT == MVT::v4i64 || VT == MVT::v8i32))
12916      return Op;
12917    if (Op.getOpcode() == ISD::SHL &&
12918        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12919         VT == MVT::v4i64 || VT == MVT::v8i32))
12920      return Op;
12921    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
12922      return Op;
12923  }
12924
12925  // Lower SHL with variable shift amount.
12926  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
12927    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
12928
12929    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
12930    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
12931    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
12932    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
12933  }
12934  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
12935    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
12936
12937    // a = a << 5;
12938    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
12939    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
12940
12941    // Turn 'a' into a mask suitable for VSELECT
12942    SDValue VSelM = DAG.getConstant(0x80, VT);
12943    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12944    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12945
12946    SDValue CM1 = DAG.getConstant(0x0f, VT);
12947    SDValue CM2 = DAG.getConstant(0x3f, VT);
12948
12949    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
12950    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
12951    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
12952    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12953    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12954
12955    // a += a
12956    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12957    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12958    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12959
12960    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
12961    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
12962    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
12963    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12964    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12965
12966    // a += a
12967    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12968    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12969    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12970
12971    // return VSELECT(r, r+r, a);
12972    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12973                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12974    return R;
12975  }
12976
12977  // Decompose 256-bit shifts into smaller 128-bit shifts.
12978  if (VT.is256BitVector()) {
12979    unsigned NumElems = VT.getVectorNumElements();
12980    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12981    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12982
12983    // Extract the two vectors
12984    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12985    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12986
12987    // Recreate the shift amount vectors
12988    SDValue Amt1, Amt2;
12989    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12990      // Constant shift amount
12991      SmallVector<SDValue, 4> Amt1Csts;
12992      SmallVector<SDValue, 4> Amt2Csts;
12993      for (unsigned i = 0; i != NumElems/2; ++i)
12994        Amt1Csts.push_back(Amt->getOperand(i));
12995      for (unsigned i = NumElems/2; i != NumElems; ++i)
12996        Amt2Csts.push_back(Amt->getOperand(i));
12997
12998      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12999                                 &Amt1Csts[0], NumElems/2);
13000      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
13001                                 &Amt2Csts[0], NumElems/2);
13002    } else {
13003      // Variable shift amount
13004      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
13005      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
13006    }
13007
13008    // Issue new vector shifts for the smaller types
13009    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
13010    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
13011
13012    // Concatenate the result back
13013    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
13014  }
13015
13016  return SDValue();
13017}
13018
13019static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
13020  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
13021  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
13022  // looks for this combo and may remove the "setcc" instruction if the "setcc"
13023  // has only one use.
13024  SDNode *N = Op.getNode();
13025  SDValue LHS = N->getOperand(0);
13026  SDValue RHS = N->getOperand(1);
13027  unsigned BaseOp = 0;
13028  unsigned Cond = 0;
13029  SDLoc DL(Op);
13030  switch (Op.getOpcode()) {
13031  default: llvm_unreachable("Unknown ovf instruction!");
13032  case ISD::SADDO:
13033    // A subtract of one will be selected as a INC. Note that INC doesn't
13034    // set CF, so we can't do this for UADDO.
13035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13036      if (C->isOne()) {
13037        BaseOp = X86ISD::INC;
13038        Cond = X86::COND_O;
13039        break;
13040      }
13041    BaseOp = X86ISD::ADD;
13042    Cond = X86::COND_O;
13043    break;
13044  case ISD::UADDO:
13045    BaseOp = X86ISD::ADD;
13046    Cond = X86::COND_B;
13047    break;
13048  case ISD::SSUBO:
13049    // A subtract of one will be selected as a DEC. Note that DEC doesn't
13050    // set CF, so we can't do this for USUBO.
13051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13052      if (C->isOne()) {
13053        BaseOp = X86ISD::DEC;
13054        Cond = X86::COND_O;
13055        break;
13056      }
13057    BaseOp = X86ISD::SUB;
13058    Cond = X86::COND_O;
13059    break;
13060  case ISD::USUBO:
13061    BaseOp = X86ISD::SUB;
13062    Cond = X86::COND_B;
13063    break;
13064  case ISD::SMULO:
13065    BaseOp = X86ISD::SMUL;
13066    Cond = X86::COND_O;
13067    break;
13068  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
13069    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
13070                                 MVT::i32);
13071    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
13072
13073    SDValue SetCC =
13074      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13075                  DAG.getConstant(X86::COND_O, MVT::i32),
13076                  SDValue(Sum.getNode(), 2));
13077
13078    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13079  }
13080  }
13081
13082  // Also sets EFLAGS.
13083  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
13084  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
13085
13086  SDValue SetCC =
13087    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
13088                DAG.getConstant(Cond, MVT::i32),
13089                SDValue(Sum.getNode(), 1));
13090
13091  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13092}
13093
13094SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
13095                                                  SelectionDAG &DAG) const {
13096  SDLoc dl(Op);
13097  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
13098  EVT VT = Op.getValueType();
13099
13100  if (!Subtarget->hasSSE2() || !VT.isVector())
13101    return SDValue();
13102
13103  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
13104                      ExtraVT.getScalarType().getSizeInBits();
13105
13106  switch (VT.getSimpleVT().SimpleTy) {
13107    default: return SDValue();
13108    case MVT::v8i32:
13109    case MVT::v16i16:
13110      if (!Subtarget->hasFp256())
13111        return SDValue();
13112      if (!Subtarget->hasInt256()) {
13113        // needs to be split
13114        unsigned NumElems = VT.getVectorNumElements();
13115
13116        // Extract the LHS vectors
13117        SDValue LHS = Op.getOperand(0);
13118        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
13119        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
13120
13121        MVT EltVT = VT.getVectorElementType().getSimpleVT();
13122        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
13123
13124        EVT ExtraEltVT = ExtraVT.getVectorElementType();
13125        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
13126        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
13127                                   ExtraNumElems/2);
13128        SDValue Extra = DAG.getValueType(ExtraVT);
13129
13130        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
13131        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
13132
13133        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
13134      }
13135      // fall through
13136    case MVT::v4i32:
13137    case MVT::v8i16: {
13138      SDValue Op0 = Op.getOperand(0);
13139      SDValue Op00 = Op0.getOperand(0);
13140      SDValue Tmp1;
13141      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
13142      if (Op0.getOpcode() == ISD::BITCAST &&
13143          Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
13144        // (sext (vzext x)) -> (vsext x)
13145        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
13146        if (Tmp1.getNode()) {
13147          EVT ExtraEltVT = ExtraVT.getVectorElementType();
13148          // This folding is only valid when the in-reg type is a vector of i8,
13149          // i16, or i32.
13150          if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
13151              ExtraEltVT == MVT::i32) {
13152            SDValue Tmp1Op0 = Tmp1.getOperand(0);
13153            assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
13154                   "This optimization is invalid without a VZEXT.");
13155            return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
13156          }
13157          Op0 = Tmp1;
13158        }
13159      }
13160
13161      // If the above didn't work, then just use Shift-Left + Shift-Right.
13162      Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
13163                                        DAG);
13164      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
13165                                        DAG);
13166    }
13167  }
13168}
13169
13170static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
13171                                 SelectionDAG &DAG) {
13172  SDLoc dl(Op);
13173  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
13174    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
13175  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
13176    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
13177
13178  // The only fence that needs an instruction is a sequentially-consistent
13179  // cross-thread fence.
13180  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
13181    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
13182    // no-sse2). There isn't any reason to disable it if the target processor
13183    // supports it.
13184    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
13185      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
13186
13187    SDValue Chain = Op.getOperand(0);
13188    SDValue Zero = DAG.getConstant(0, MVT::i32);
13189    SDValue Ops[] = {
13190      DAG.getRegister(X86::ESP, MVT::i32), // Base
13191      DAG.getTargetConstant(1, MVT::i8),   // Scale
13192      DAG.getRegister(0, MVT::i32),        // Index
13193      DAG.getTargetConstant(0, MVT::i32),  // Disp
13194      DAG.getRegister(0, MVT::i32),        // Segment.
13195      Zero,
13196      Chain
13197    };
13198    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
13199    return SDValue(Res, 0);
13200  }
13201
13202  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
13203  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
13204}
13205
13206static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
13207                             SelectionDAG &DAG) {
13208  EVT T = Op.getValueType();
13209  SDLoc DL(Op);
13210  unsigned Reg = 0;
13211  unsigned size = 0;
13212  switch(T.getSimpleVT().SimpleTy) {
13213  default: llvm_unreachable("Invalid value type!");
13214  case MVT::i8:  Reg = X86::AL;  size = 1; break;
13215  case MVT::i16: Reg = X86::AX;  size = 2; break;
13216  case MVT::i32: Reg = X86::EAX; size = 4; break;
13217  case MVT::i64:
13218    assert(Subtarget->is64Bit() && "Node not type legal!");
13219    Reg = X86::RAX; size = 8;
13220    break;
13221  }
13222  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
13223                                    Op.getOperand(2), SDValue());
13224  SDValue Ops[] = { cpIn.getValue(0),
13225                    Op.getOperand(1),
13226                    Op.getOperand(3),
13227                    DAG.getTargetConstant(size, MVT::i8),
13228                    cpIn.getValue(1) };
13229  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13230  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
13231  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
13232                                           Ops, array_lengthof(Ops), T, MMO);
13233  SDValue cpOut =
13234    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
13235  return cpOut;
13236}
13237
13238static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
13239                                     SelectionDAG &DAG) {
13240  assert(Subtarget->is64Bit() && "Result not type legalized?");
13241  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13242  SDValue TheChain = Op.getOperand(0);
13243  SDLoc dl(Op);
13244  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13245  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
13246  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
13247                                   rax.getValue(2));
13248  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
13249                            DAG.getConstant(32, MVT::i8));
13250  SDValue Ops[] = {
13251    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
13252    rdx.getValue(1)
13253  };
13254  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
13255}
13256
13257static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
13258                            SelectionDAG &DAG) {
13259  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
13260  MVT DstVT = Op.getSimpleValueType();
13261  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
13262         Subtarget->hasMMX() && "Unexpected custom BITCAST");
13263  assert((DstVT == MVT::i64 ||
13264          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
13265         "Unexpected custom BITCAST");
13266  // i64 <=> MMX conversions are Legal.
13267  if (SrcVT==MVT::i64 && DstVT.isVector())
13268    return Op;
13269  if (DstVT==MVT::i64 && SrcVT.isVector())
13270    return Op;
13271  // MMX <=> MMX conversions are Legal.
13272  if (SrcVT.isVector() && DstVT.isVector())
13273    return Op;
13274  // All other conversions need to be expanded.
13275  return SDValue();
13276}
13277
13278static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
13279  SDNode *Node = Op.getNode();
13280  SDLoc dl(Node);
13281  EVT T = Node->getValueType(0);
13282  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
13283                              DAG.getConstant(0, T), Node->getOperand(2));
13284  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
13285                       cast<AtomicSDNode>(Node)->getMemoryVT(),
13286                       Node->getOperand(0),
13287                       Node->getOperand(1), negOp,
13288                       cast<AtomicSDNode>(Node)->getSrcValue(),
13289                       cast<AtomicSDNode>(Node)->getAlignment(),
13290                       cast<AtomicSDNode>(Node)->getOrdering(),
13291                       cast<AtomicSDNode>(Node)->getSynchScope());
13292}
13293
13294static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
13295  SDNode *Node = Op.getNode();
13296  SDLoc dl(Node);
13297  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13298
13299  // Convert seq_cst store -> xchg
13300  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
13301  // FIXME: On 32-bit, store -> fist or movq would be more efficient
13302  //        (The only way to get a 16-byte store is cmpxchg16b)
13303  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
13304  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
13305      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13306    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
13307                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
13308                                 Node->getOperand(0),
13309                                 Node->getOperand(1), Node->getOperand(2),
13310                                 cast<AtomicSDNode>(Node)->getMemOperand(),
13311                                 cast<AtomicSDNode>(Node)->getOrdering(),
13312                                 cast<AtomicSDNode>(Node)->getSynchScope());
13313    return Swap.getValue(1);
13314  }
13315  // Other atomic stores have a simple pattern.
13316  return Op;
13317}
13318
13319static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
13320  EVT VT = Op.getNode()->getValueType(0);
13321
13322  // Let legalize expand this if it isn't a legal type yet.
13323  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13324    return SDValue();
13325
13326  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13327
13328  unsigned Opc;
13329  bool ExtraOp = false;
13330  switch (Op.getOpcode()) {
13331  default: llvm_unreachable("Invalid code");
13332  case ISD::ADDC: Opc = X86ISD::ADD; break;
13333  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
13334  case ISD::SUBC: Opc = X86ISD::SUB; break;
13335  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
13336  }
13337
13338  if (!ExtraOp)
13339    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13340                       Op.getOperand(1));
13341  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13342                     Op.getOperand(1), Op.getOperand(2));
13343}
13344
13345static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
13346                            SelectionDAG &DAG) {
13347  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
13348
13349  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
13350  // which returns the values as { float, float } (in XMM0) or
13351  // { double, double } (which is returned in XMM0, XMM1).
13352  SDLoc dl(Op);
13353  SDValue Arg = Op.getOperand(0);
13354  EVT ArgVT = Arg.getValueType();
13355  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13356
13357  TargetLowering::ArgListTy Args;
13358  TargetLowering::ArgListEntry Entry;
13359
13360  Entry.Node = Arg;
13361  Entry.Ty = ArgTy;
13362  Entry.isSExt = false;
13363  Entry.isZExt = false;
13364  Args.push_back(Entry);
13365
13366  bool isF64 = ArgVT == MVT::f64;
13367  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
13368  // the small struct {f32, f32} is returned in (eax, edx). For f64,
13369  // the results are returned via SRet in memory.
13370  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
13371  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13372  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
13373
13374  Type *RetTy = isF64
13375    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
13376    : (Type*)VectorType::get(ArgTy, 4);
13377  TargetLowering::
13378    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
13379                         false, false, false, false, 0,
13380                         CallingConv::C, /*isTaillCall=*/false,
13381                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
13382                         Callee, Args, DAG, dl);
13383  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
13384
13385  if (isF64)
13386    // Returned in xmm0 and xmm1.
13387    return CallResult.first;
13388
13389  // Returned in bits 0:31 and 32:64 xmm0.
13390  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13391                               CallResult.first, DAG.getIntPtrConstant(0));
13392  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13393                               CallResult.first, DAG.getIntPtrConstant(1));
13394  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
13395  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
13396}
13397
13398/// LowerOperation - Provide custom lowering hooks for some operations.
13399///
13400SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
13401  switch (Op.getOpcode()) {
13402  default: llvm_unreachable("Should not custom lower this!");
13403  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
13404  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
13405  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
13406  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
13407  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
13408  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
13409  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
13410  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
13411  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
13412  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
13413  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
13414  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
13415  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
13416  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
13417  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
13418  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
13419  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
13420  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
13421  case ISD::SHL_PARTS:
13422  case ISD::SRA_PARTS:
13423  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
13424  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
13425  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
13426  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
13427  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
13428  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
13429  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
13430  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
13431  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
13432  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
13433  case ISD::FABS:               return LowerFABS(Op, DAG);
13434  case ISD::FNEG:               return LowerFNEG(Op, DAG);
13435  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
13436  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
13437  case ISD::SETCC:              return LowerSETCC(Op, DAG);
13438  case ISD::SELECT:             return LowerSELECT(Op, DAG);
13439  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
13440  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
13441  case ISD::VASTART:            return LowerVASTART(Op, DAG);
13442  case ISD::VAARG:              return LowerVAARG(Op, DAG);
13443  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
13444  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
13445  case ISD::INTRINSIC_VOID:
13446  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
13447  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
13448  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
13449  case ISD::FRAME_TO_ARGS_OFFSET:
13450                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
13451  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
13452  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
13453  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
13454  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
13455  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
13456  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
13457  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
13458  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
13459  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
13460  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
13461  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
13462  case ISD::SRA:
13463  case ISD::SRL:
13464  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
13465  case ISD::SADDO:
13466  case ISD::UADDO:
13467  case ISD::SSUBO:
13468  case ISD::USUBO:
13469  case ISD::SMULO:
13470  case ISD::UMULO:              return LowerXALUO(Op, DAG);
13471  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
13472  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
13473  case ISD::ADDC:
13474  case ISD::ADDE:
13475  case ISD::SUBC:
13476  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
13477  case ISD::ADD:                return LowerADD(Op, DAG);
13478  case ISD::SUB:                return LowerSUB(Op, DAG);
13479  case ISD::SDIV:               return LowerSDIV(Op, DAG);
13480  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
13481  }
13482}
13483
13484static void ReplaceATOMIC_LOAD(SDNode *Node,
13485                                  SmallVectorImpl<SDValue> &Results,
13486                                  SelectionDAG &DAG) {
13487  SDLoc dl(Node);
13488  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13489
13490  // Convert wide load -> cmpxchg8b/cmpxchg16b
13491  // FIXME: On 32-bit, load -> fild or movq would be more efficient
13492  //        (The only way to get a 16-byte load is cmpxchg16b)
13493  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
13494  SDValue Zero = DAG.getConstant(0, VT);
13495  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
13496                               Node->getOperand(0),
13497                               Node->getOperand(1), Zero, Zero,
13498                               cast<AtomicSDNode>(Node)->getMemOperand(),
13499                               cast<AtomicSDNode>(Node)->getOrdering(),
13500                               cast<AtomicSDNode>(Node)->getSynchScope());
13501  Results.push_back(Swap.getValue(0));
13502  Results.push_back(Swap.getValue(1));
13503}
13504
13505static void
13506ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
13507                        SelectionDAG &DAG, unsigned NewOp) {
13508  SDLoc dl(Node);
13509  assert (Node->getValueType(0) == MVT::i64 &&
13510          "Only know how to expand i64 atomics");
13511
13512  SDValue Chain = Node->getOperand(0);
13513  SDValue In1 = Node->getOperand(1);
13514  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13515                             Node->getOperand(2), DAG.getIntPtrConstant(0));
13516  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13517                             Node->getOperand(2), DAG.getIntPtrConstant(1));
13518  SDValue Ops[] = { Chain, In1, In2L, In2H };
13519  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
13520  SDValue Result =
13521    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
13522                            cast<MemSDNode>(Node)->getMemOperand());
13523  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
13524  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
13525  Results.push_back(Result.getValue(2));
13526}
13527
13528/// ReplaceNodeResults - Replace a node with an illegal result type
13529/// with a new node built out of custom code.
13530void X86TargetLowering::ReplaceNodeResults(SDNode *N,
13531                                           SmallVectorImpl<SDValue>&Results,
13532                                           SelectionDAG &DAG) const {
13533  SDLoc dl(N);
13534  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13535  switch (N->getOpcode()) {
13536  default:
13537    llvm_unreachable("Do not know how to custom type legalize this operation!");
13538  case ISD::SIGN_EXTEND_INREG:
13539  case ISD::ADDC:
13540  case ISD::ADDE:
13541  case ISD::SUBC:
13542  case ISD::SUBE:
13543    // We don't want to expand or promote these.
13544    return;
13545  case ISD::FP_TO_SINT:
13546  case ISD::FP_TO_UINT: {
13547    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
13548
13549    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
13550      return;
13551
13552    std::pair<SDValue,SDValue> Vals =
13553        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
13554    SDValue FIST = Vals.first, StackSlot = Vals.second;
13555    if (FIST.getNode() != 0) {
13556      EVT VT = N->getValueType(0);
13557      // Return a load from the stack slot.
13558      if (StackSlot.getNode() != 0)
13559        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
13560                                      MachinePointerInfo(),
13561                                      false, false, false, 0));
13562      else
13563        Results.push_back(FIST);
13564    }
13565    return;
13566  }
13567  case ISD::UINT_TO_FP: {
13568    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
13569    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
13570        N->getValueType(0) != MVT::v2f32)
13571      return;
13572    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
13573                                 N->getOperand(0));
13574    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
13575                                     MVT::f64);
13576    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
13577    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
13578                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
13579    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
13580    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
13581    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
13582    return;
13583  }
13584  case ISD::FP_ROUND: {
13585    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
13586        return;
13587    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
13588    Results.push_back(V);
13589    return;
13590  }
13591  case ISD::READCYCLECOUNTER: {
13592    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13593    SDValue TheChain = N->getOperand(0);
13594    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13595    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
13596                                     rd.getValue(1));
13597    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
13598                                     eax.getValue(2));
13599    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
13600    SDValue Ops[] = { eax, edx };
13601    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
13602                                  array_lengthof(Ops)));
13603    Results.push_back(edx.getValue(1));
13604    return;
13605  }
13606  case ISD::ATOMIC_CMP_SWAP: {
13607    EVT T = N->getValueType(0);
13608    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
13609    bool Regs64bit = T == MVT::i128;
13610    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
13611    SDValue cpInL, cpInH;
13612    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13613                        DAG.getConstant(0, HalfT));
13614    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13615                        DAG.getConstant(1, HalfT));
13616    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
13617                             Regs64bit ? X86::RAX : X86::EAX,
13618                             cpInL, SDValue());
13619    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
13620                             Regs64bit ? X86::RDX : X86::EDX,
13621                             cpInH, cpInL.getValue(1));
13622    SDValue swapInL, swapInH;
13623    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13624                          DAG.getConstant(0, HalfT));
13625    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13626                          DAG.getConstant(1, HalfT));
13627    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
13628                               Regs64bit ? X86::RBX : X86::EBX,
13629                               swapInL, cpInH.getValue(1));
13630    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
13631                               Regs64bit ? X86::RCX : X86::ECX,
13632                               swapInH, swapInL.getValue(1));
13633    SDValue Ops[] = { swapInH.getValue(0),
13634                      N->getOperand(1),
13635                      swapInH.getValue(1) };
13636    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13637    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
13638    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
13639                                  X86ISD::LCMPXCHG8_DAG;
13640    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
13641                                             Ops, array_lengthof(Ops), T, MMO);
13642    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
13643                                        Regs64bit ? X86::RAX : X86::EAX,
13644                                        HalfT, Result.getValue(1));
13645    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
13646                                        Regs64bit ? X86::RDX : X86::EDX,
13647                                        HalfT, cpOutL.getValue(2));
13648    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
13649    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
13650    Results.push_back(cpOutH.getValue(1));
13651    return;
13652  }
13653  case ISD::ATOMIC_LOAD_ADD:
13654  case ISD::ATOMIC_LOAD_AND:
13655  case ISD::ATOMIC_LOAD_NAND:
13656  case ISD::ATOMIC_LOAD_OR:
13657  case ISD::ATOMIC_LOAD_SUB:
13658  case ISD::ATOMIC_LOAD_XOR:
13659  case ISD::ATOMIC_LOAD_MAX:
13660  case ISD::ATOMIC_LOAD_MIN:
13661  case ISD::ATOMIC_LOAD_UMAX:
13662  case ISD::ATOMIC_LOAD_UMIN:
13663  case ISD::ATOMIC_SWAP: {
13664    unsigned Opc;
13665    switch (N->getOpcode()) {
13666    default: llvm_unreachable("Unexpected opcode");
13667    case ISD::ATOMIC_LOAD_ADD:
13668      Opc = X86ISD::ATOMADD64_DAG;
13669      break;
13670    case ISD::ATOMIC_LOAD_AND:
13671      Opc = X86ISD::ATOMAND64_DAG;
13672      break;
13673    case ISD::ATOMIC_LOAD_NAND:
13674      Opc = X86ISD::ATOMNAND64_DAG;
13675      break;
13676    case ISD::ATOMIC_LOAD_OR:
13677      Opc = X86ISD::ATOMOR64_DAG;
13678      break;
13679    case ISD::ATOMIC_LOAD_SUB:
13680      Opc = X86ISD::ATOMSUB64_DAG;
13681      break;
13682    case ISD::ATOMIC_LOAD_XOR:
13683      Opc = X86ISD::ATOMXOR64_DAG;
13684      break;
13685    case ISD::ATOMIC_LOAD_MAX:
13686      Opc = X86ISD::ATOMMAX64_DAG;
13687      break;
13688    case ISD::ATOMIC_LOAD_MIN:
13689      Opc = X86ISD::ATOMMIN64_DAG;
13690      break;
13691    case ISD::ATOMIC_LOAD_UMAX:
13692      Opc = X86ISD::ATOMUMAX64_DAG;
13693      break;
13694    case ISD::ATOMIC_LOAD_UMIN:
13695      Opc = X86ISD::ATOMUMIN64_DAG;
13696      break;
13697    case ISD::ATOMIC_SWAP:
13698      Opc = X86ISD::ATOMSWAP64_DAG;
13699      break;
13700    }
13701    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
13702    return;
13703  }
13704  case ISD::ATOMIC_LOAD:
13705    ReplaceATOMIC_LOAD(N, Results, DAG);
13706  }
13707}
13708
13709const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
13710  switch (Opcode) {
13711  default: return NULL;
13712  case X86ISD::BSF:                return "X86ISD::BSF";
13713  case X86ISD::BSR:                return "X86ISD::BSR";
13714  case X86ISD::SHLD:               return "X86ISD::SHLD";
13715  case X86ISD::SHRD:               return "X86ISD::SHRD";
13716  case X86ISD::FAND:               return "X86ISD::FAND";
13717  case X86ISD::FANDN:              return "X86ISD::FANDN";
13718  case X86ISD::FOR:                return "X86ISD::FOR";
13719  case X86ISD::FXOR:               return "X86ISD::FXOR";
13720  case X86ISD::FSRL:               return "X86ISD::FSRL";
13721  case X86ISD::FILD:               return "X86ISD::FILD";
13722  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
13723  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
13724  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
13725  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
13726  case X86ISD::FLD:                return "X86ISD::FLD";
13727  case X86ISD::FST:                return "X86ISD::FST";
13728  case X86ISD::CALL:               return "X86ISD::CALL";
13729  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
13730  case X86ISD::BT:                 return "X86ISD::BT";
13731  case X86ISD::CMP:                return "X86ISD::CMP";
13732  case X86ISD::COMI:               return "X86ISD::COMI";
13733  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
13734  case X86ISD::CMPM:               return "X86ISD::CMPM";
13735  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
13736  case X86ISD::SETCC:              return "X86ISD::SETCC";
13737  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
13738  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
13739  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
13740  case X86ISD::CMOV:               return "X86ISD::CMOV";
13741  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
13742  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
13743  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
13744  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
13745  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
13746  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
13747  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
13748  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
13749  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
13750  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
13751  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
13752  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
13753  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
13754  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
13755  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
13756  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
13757  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
13758  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
13759  case X86ISD::HADD:               return "X86ISD::HADD";
13760  case X86ISD::HSUB:               return "X86ISD::HSUB";
13761  case X86ISD::FHADD:              return "X86ISD::FHADD";
13762  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
13763  case X86ISD::UMAX:               return "X86ISD::UMAX";
13764  case X86ISD::UMIN:               return "X86ISD::UMIN";
13765  case X86ISD::SMAX:               return "X86ISD::SMAX";
13766  case X86ISD::SMIN:               return "X86ISD::SMIN";
13767  case X86ISD::FMAX:               return "X86ISD::FMAX";
13768  case X86ISD::FMIN:               return "X86ISD::FMIN";
13769  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
13770  case X86ISD::FMINC:              return "X86ISD::FMINC";
13771  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
13772  case X86ISD::FRCP:               return "X86ISD::FRCP";
13773  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
13774  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
13775  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
13776  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
13777  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
13778  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
13779  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
13780  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
13781  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
13782  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
13783  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
13784  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
13785  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
13786  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
13787  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
13788  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
13789  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
13790  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
13791  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
13792  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
13793  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
13794  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
13795  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
13796  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
13797  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
13798  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
13799  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
13800  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
13801  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
13802  case X86ISD::VSHL:               return "X86ISD::VSHL";
13803  case X86ISD::VSRL:               return "X86ISD::VSRL";
13804  case X86ISD::VSRA:               return "X86ISD::VSRA";
13805  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
13806  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
13807  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
13808  case X86ISD::CMPP:               return "X86ISD::CMPP";
13809  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
13810  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
13811  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
13812  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
13813  case X86ISD::ADD:                return "X86ISD::ADD";
13814  case X86ISD::SUB:                return "X86ISD::SUB";
13815  case X86ISD::ADC:                return "X86ISD::ADC";
13816  case X86ISD::SBB:                return "X86ISD::SBB";
13817  case X86ISD::SMUL:               return "X86ISD::SMUL";
13818  case X86ISD::UMUL:               return "X86ISD::UMUL";
13819  case X86ISD::INC:                return "X86ISD::INC";
13820  case X86ISD::DEC:                return "X86ISD::DEC";
13821  case X86ISD::OR:                 return "X86ISD::OR";
13822  case X86ISD::XOR:                return "X86ISD::XOR";
13823  case X86ISD::AND:                return "X86ISD::AND";
13824  case X86ISD::BLSI:               return "X86ISD::BLSI";
13825  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
13826  case X86ISD::BLSR:               return "X86ISD::BLSR";
13827  case X86ISD::BZHI:               return "X86ISD::BZHI";
13828  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
13829  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
13830  case X86ISD::PTEST:              return "X86ISD::PTEST";
13831  case X86ISD::TESTP:              return "X86ISD::TESTP";
13832  case X86ISD::TESTM:              return "X86ISD::TESTM";
13833  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
13834  case X86ISD::KTEST:              return "X86ISD::KTEST";
13835  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
13836  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
13837  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
13838  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
13839  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
13840  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
13841  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
13842  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
13843  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
13844  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
13845  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
13846  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
13847  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
13848  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
13849  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
13850  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
13851  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
13852  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
13853  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
13854  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
13855  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
13856  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
13857  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
13858  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
13859  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
13860  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
13861  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
13862  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
13863  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
13864  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
13865  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
13866  case X86ISD::SAHF:               return "X86ISD::SAHF";
13867  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
13868  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
13869  case X86ISD::FMADD:              return "X86ISD::FMADD";
13870  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
13871  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
13872  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
13873  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
13874  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
13875  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
13876  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
13877  case X86ISD::XTEST:              return "X86ISD::XTEST";
13878  }
13879}
13880
13881// isLegalAddressingMode - Return true if the addressing mode represented
13882// by AM is legal for this target, for a load/store of the specified type.
13883bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
13884                                              Type *Ty) const {
13885  // X86 supports extremely general addressing modes.
13886  CodeModel::Model M = getTargetMachine().getCodeModel();
13887  Reloc::Model R = getTargetMachine().getRelocationModel();
13888
13889  // X86 allows a sign-extended 32-bit immediate field as a displacement.
13890  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
13891    return false;
13892
13893  if (AM.BaseGV) {
13894    unsigned GVFlags =
13895      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
13896
13897    // If a reference to this global requires an extra load, we can't fold it.
13898    if (isGlobalStubReference(GVFlags))
13899      return false;
13900
13901    // If BaseGV requires a register for the PIC base, we cannot also have a
13902    // BaseReg specified.
13903    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
13904      return false;
13905
13906    // If lower 4G is not available, then we must use rip-relative addressing.
13907    if ((M != CodeModel::Small || R != Reloc::Static) &&
13908        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
13909      return false;
13910  }
13911
13912  switch (AM.Scale) {
13913  case 0:
13914  case 1:
13915  case 2:
13916  case 4:
13917  case 8:
13918    // These scales always work.
13919    break;
13920  case 3:
13921  case 5:
13922  case 9:
13923    // These scales are formed with basereg+scalereg.  Only accept if there is
13924    // no basereg yet.
13925    if (AM.HasBaseReg)
13926      return false;
13927    break;
13928  default:  // Other stuff never works.
13929    return false;
13930  }
13931
13932  return true;
13933}
13934
13935bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13936  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13937    return false;
13938  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13939  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13940  return NumBits1 > NumBits2;
13941}
13942
13943bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13944  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13945    return false;
13946
13947  if (!isTypeLegal(EVT::getEVT(Ty1)))
13948    return false;
13949
13950  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13951
13952  // Assuming the caller doesn't have a zeroext or signext return parameter,
13953  // truncation all the way down to i1 is valid.
13954  return true;
13955}
13956
13957bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13958  return isInt<32>(Imm);
13959}
13960
13961bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
13962  // Can also use sub to handle negated immediates.
13963  return isInt<32>(Imm);
13964}
13965
13966bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13967  if (!VT1.isInteger() || !VT2.isInteger())
13968    return false;
13969  unsigned NumBits1 = VT1.getSizeInBits();
13970  unsigned NumBits2 = VT2.getSizeInBits();
13971  return NumBits1 > NumBits2;
13972}
13973
13974bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
13975  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13976  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
13977}
13978
13979bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
13980  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13981  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
13982}
13983
13984bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13985  EVT VT1 = Val.getValueType();
13986  if (isZExtFree(VT1, VT2))
13987    return true;
13988
13989  if (Val.getOpcode() != ISD::LOAD)
13990    return false;
13991
13992  if (!VT1.isSimple() || !VT1.isInteger() ||
13993      !VT2.isSimple() || !VT2.isInteger())
13994    return false;
13995
13996  switch (VT1.getSimpleVT().SimpleTy) {
13997  default: break;
13998  case MVT::i8:
13999  case MVT::i16:
14000  case MVT::i32:
14001    // X86 has 8, 16, and 32-bit zero-extending loads.
14002    return true;
14003  }
14004
14005  return false;
14006}
14007
14008bool
14009X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14010  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
14011    return false;
14012
14013  VT = VT.getScalarType();
14014
14015  if (!VT.isSimple())
14016    return false;
14017
14018  switch (VT.getSimpleVT().SimpleTy) {
14019  case MVT::f32:
14020  case MVT::f64:
14021    return true;
14022  default:
14023    break;
14024  }
14025
14026  return false;
14027}
14028
14029bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
14030  // i16 instructions are longer (0x66 prefix) and potentially slower.
14031  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
14032}
14033
14034/// isShuffleMaskLegal - Targets can use this to indicate that they only
14035/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
14036/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
14037/// are assumed to be legal.
14038bool
14039X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
14040                                      EVT VT) const {
14041  if (!VT.isSimple())
14042    return false;
14043
14044  MVT SVT = VT.getSimpleVT();
14045
14046  // Very little shuffling can be done for 64-bit vectors right now.
14047  if (VT.getSizeInBits() == 64)
14048    return false;
14049
14050  // FIXME: pshufb, blends, shifts.
14051  return (SVT.getVectorNumElements() == 2 ||
14052          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
14053          isMOVLMask(M, SVT) ||
14054          isSHUFPMask(M, SVT) ||
14055          isPSHUFDMask(M, SVT) ||
14056          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
14057          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
14058          isPALIGNRMask(M, SVT, Subtarget) ||
14059          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
14060          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
14061          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
14062          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
14063}
14064
14065bool
14066X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
14067                                          EVT VT) const {
14068  if (!VT.isSimple())
14069    return false;
14070
14071  MVT SVT = VT.getSimpleVT();
14072  unsigned NumElts = SVT.getVectorNumElements();
14073  // FIXME: This collection of masks seems suspect.
14074  if (NumElts == 2)
14075    return true;
14076  if (NumElts == 4 && SVT.is128BitVector()) {
14077    return (isMOVLMask(Mask, SVT)  ||
14078            isCommutedMOVLMask(Mask, SVT, true) ||
14079            isSHUFPMask(Mask, SVT) ||
14080            isSHUFPMask(Mask, SVT, /* Commuted */ true));
14081  }
14082  return false;
14083}
14084
14085//===----------------------------------------------------------------------===//
14086//                           X86 Scheduler Hooks
14087//===----------------------------------------------------------------------===//
14088
14089/// Utility function to emit xbegin specifying the start of an RTM region.
14090static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
14091                                     const TargetInstrInfo *TII) {
14092  DebugLoc DL = MI->getDebugLoc();
14093
14094  const BasicBlock *BB = MBB->getBasicBlock();
14095  MachineFunction::iterator I = MBB;
14096  ++I;
14097
14098  // For the v = xbegin(), we generate
14099  //
14100  // thisMBB:
14101  //  xbegin sinkMBB
14102  //
14103  // mainMBB:
14104  //  eax = -1
14105  //
14106  // sinkMBB:
14107  //  v = eax
14108
14109  MachineBasicBlock *thisMBB = MBB;
14110  MachineFunction *MF = MBB->getParent();
14111  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14112  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14113  MF->insert(I, mainMBB);
14114  MF->insert(I, sinkMBB);
14115
14116  // Transfer the remainder of BB and its successor edges to sinkMBB.
14117  sinkMBB->splice(sinkMBB->begin(), MBB,
14118                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14119  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14120
14121  // thisMBB:
14122  //  xbegin sinkMBB
14123  //  # fallthrough to mainMBB
14124  //  # abortion to sinkMBB
14125  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
14126  thisMBB->addSuccessor(mainMBB);
14127  thisMBB->addSuccessor(sinkMBB);
14128
14129  // mainMBB:
14130  //  EAX = -1
14131  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
14132  mainMBB->addSuccessor(sinkMBB);
14133
14134  // sinkMBB:
14135  // EAX is live into the sinkMBB
14136  sinkMBB->addLiveIn(X86::EAX);
14137  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14138          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14139    .addReg(X86::EAX);
14140
14141  MI->eraseFromParent();
14142  return sinkMBB;
14143}
14144
14145// Get CMPXCHG opcode for the specified data type.
14146static unsigned getCmpXChgOpcode(EVT VT) {
14147  switch (VT.getSimpleVT().SimpleTy) {
14148  case MVT::i8:  return X86::LCMPXCHG8;
14149  case MVT::i16: return X86::LCMPXCHG16;
14150  case MVT::i32: return X86::LCMPXCHG32;
14151  case MVT::i64: return X86::LCMPXCHG64;
14152  default:
14153    break;
14154  }
14155  llvm_unreachable("Invalid operand size!");
14156}
14157
14158// Get LOAD opcode for the specified data type.
14159static unsigned getLoadOpcode(EVT VT) {
14160  switch (VT.getSimpleVT().SimpleTy) {
14161  case MVT::i8:  return X86::MOV8rm;
14162  case MVT::i16: return X86::MOV16rm;
14163  case MVT::i32: return X86::MOV32rm;
14164  case MVT::i64: return X86::MOV64rm;
14165  default:
14166    break;
14167  }
14168  llvm_unreachable("Invalid operand size!");
14169}
14170
14171// Get opcode of the non-atomic one from the specified atomic instruction.
14172static unsigned getNonAtomicOpcode(unsigned Opc) {
14173  switch (Opc) {
14174  case X86::ATOMAND8:  return X86::AND8rr;
14175  case X86::ATOMAND16: return X86::AND16rr;
14176  case X86::ATOMAND32: return X86::AND32rr;
14177  case X86::ATOMAND64: return X86::AND64rr;
14178  case X86::ATOMOR8:   return X86::OR8rr;
14179  case X86::ATOMOR16:  return X86::OR16rr;
14180  case X86::ATOMOR32:  return X86::OR32rr;
14181  case X86::ATOMOR64:  return X86::OR64rr;
14182  case X86::ATOMXOR8:  return X86::XOR8rr;
14183  case X86::ATOMXOR16: return X86::XOR16rr;
14184  case X86::ATOMXOR32: return X86::XOR32rr;
14185  case X86::ATOMXOR64: return X86::XOR64rr;
14186  }
14187  llvm_unreachable("Unhandled atomic-load-op opcode!");
14188}
14189
14190// Get opcode of the non-atomic one from the specified atomic instruction with
14191// extra opcode.
14192static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
14193                                               unsigned &ExtraOpc) {
14194  switch (Opc) {
14195  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
14196  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
14197  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
14198  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
14199  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
14200  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
14201  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
14202  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
14203  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
14204  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
14205  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
14206  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
14207  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
14208  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
14209  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
14210  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
14211  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
14212  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
14213  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
14214  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
14215  }
14216  llvm_unreachable("Unhandled atomic-load-op opcode!");
14217}
14218
14219// Get opcode of the non-atomic one from the specified atomic instruction for
14220// 64-bit data type on 32-bit target.
14221static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
14222  switch (Opc) {
14223  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
14224  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
14225  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
14226  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
14227  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
14228  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
14229  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
14230  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
14231  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
14232  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
14233  }
14234  llvm_unreachable("Unhandled atomic-load-op opcode!");
14235}
14236
14237// Get opcode of the non-atomic one from the specified atomic instruction for
14238// 64-bit data type on 32-bit target with extra opcode.
14239static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
14240                                                   unsigned &HiOpc,
14241                                                   unsigned &ExtraOpc) {
14242  switch (Opc) {
14243  case X86::ATOMNAND6432:
14244    ExtraOpc = X86::NOT32r;
14245    HiOpc = X86::AND32rr;
14246    return X86::AND32rr;
14247  }
14248  llvm_unreachable("Unhandled atomic-load-op opcode!");
14249}
14250
14251// Get pseudo CMOV opcode from the specified data type.
14252static unsigned getPseudoCMOVOpc(EVT VT) {
14253  switch (VT.getSimpleVT().SimpleTy) {
14254  case MVT::i8:  return X86::CMOV_GR8;
14255  case MVT::i16: return X86::CMOV_GR16;
14256  case MVT::i32: return X86::CMOV_GR32;
14257  default:
14258    break;
14259  }
14260  llvm_unreachable("Unknown CMOV opcode!");
14261}
14262
14263// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
14264// They will be translated into a spin-loop or compare-exchange loop from
14265//
14266//    ...
14267//    dst = atomic-fetch-op MI.addr, MI.val
14268//    ...
14269//
14270// to
14271//
14272//    ...
14273//    t1 = LOAD MI.addr
14274// loop:
14275//    t4 = phi(t1, t3 / loop)
14276//    t2 = OP MI.val, t4
14277//    EAX = t4
14278//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
14279//    t3 = EAX
14280//    JNE loop
14281// sink:
14282//    dst = t3
14283//    ...
14284MachineBasicBlock *
14285X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
14286                                       MachineBasicBlock *MBB) const {
14287  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14288  DebugLoc DL = MI->getDebugLoc();
14289
14290  MachineFunction *MF = MBB->getParent();
14291  MachineRegisterInfo &MRI = MF->getRegInfo();
14292
14293  const BasicBlock *BB = MBB->getBasicBlock();
14294  MachineFunction::iterator I = MBB;
14295  ++I;
14296
14297  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
14298         "Unexpected number of operands");
14299
14300  assert(MI->hasOneMemOperand() &&
14301         "Expected atomic-load-op to have one memoperand");
14302
14303  // Memory Reference
14304  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14305  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14306
14307  unsigned DstReg, SrcReg;
14308  unsigned MemOpndSlot;
14309
14310  unsigned CurOp = 0;
14311
14312  DstReg = MI->getOperand(CurOp++).getReg();
14313  MemOpndSlot = CurOp;
14314  CurOp += X86::AddrNumOperands;
14315  SrcReg = MI->getOperand(CurOp++).getReg();
14316
14317  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14318  MVT::SimpleValueType VT = *RC->vt_begin();
14319  unsigned t1 = MRI.createVirtualRegister(RC);
14320  unsigned t2 = MRI.createVirtualRegister(RC);
14321  unsigned t3 = MRI.createVirtualRegister(RC);
14322  unsigned t4 = MRI.createVirtualRegister(RC);
14323  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
14324
14325  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
14326  unsigned LOADOpc = getLoadOpcode(VT);
14327
14328  // For the atomic load-arith operator, we generate
14329  //
14330  //  thisMBB:
14331  //    t1 = LOAD [MI.addr]
14332  //  mainMBB:
14333  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
14334  //    t1 = OP MI.val, EAX
14335  //    EAX = t4
14336  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
14337  //    t3 = EAX
14338  //    JNE mainMBB
14339  //  sinkMBB:
14340  //    dst = t3
14341
14342  MachineBasicBlock *thisMBB = MBB;
14343  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14344  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14345  MF->insert(I, mainMBB);
14346  MF->insert(I, sinkMBB);
14347
14348  MachineInstrBuilder MIB;
14349
14350  // Transfer the remainder of BB and its successor edges to sinkMBB.
14351  sinkMBB->splice(sinkMBB->begin(), MBB,
14352                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14353  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14354
14355  // thisMBB:
14356  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
14357  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14358    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14359    if (NewMO.isReg())
14360      NewMO.setIsKill(false);
14361    MIB.addOperand(NewMO);
14362  }
14363  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14364    unsigned flags = (*MMOI)->getFlags();
14365    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14366    MachineMemOperand *MMO =
14367      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14368                               (*MMOI)->getSize(),
14369                               (*MMOI)->getBaseAlignment(),
14370                               (*MMOI)->getTBAAInfo(),
14371                               (*MMOI)->getRanges());
14372    MIB.addMemOperand(MMO);
14373  }
14374
14375  thisMBB->addSuccessor(mainMBB);
14376
14377  // mainMBB:
14378  MachineBasicBlock *origMainMBB = mainMBB;
14379
14380  // Add a PHI.
14381  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
14382                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14383
14384  unsigned Opc = MI->getOpcode();
14385  switch (Opc) {
14386  default:
14387    llvm_unreachable("Unhandled atomic-load-op opcode!");
14388  case X86::ATOMAND8:
14389  case X86::ATOMAND16:
14390  case X86::ATOMAND32:
14391  case X86::ATOMAND64:
14392  case X86::ATOMOR8:
14393  case X86::ATOMOR16:
14394  case X86::ATOMOR32:
14395  case X86::ATOMOR64:
14396  case X86::ATOMXOR8:
14397  case X86::ATOMXOR16:
14398  case X86::ATOMXOR32:
14399  case X86::ATOMXOR64: {
14400    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
14401    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
14402      .addReg(t4);
14403    break;
14404  }
14405  case X86::ATOMNAND8:
14406  case X86::ATOMNAND16:
14407  case X86::ATOMNAND32:
14408  case X86::ATOMNAND64: {
14409    unsigned Tmp = MRI.createVirtualRegister(RC);
14410    unsigned NOTOpc;
14411    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
14412    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
14413      .addReg(t4);
14414    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
14415    break;
14416  }
14417  case X86::ATOMMAX8:
14418  case X86::ATOMMAX16:
14419  case X86::ATOMMAX32:
14420  case X86::ATOMMAX64:
14421  case X86::ATOMMIN8:
14422  case X86::ATOMMIN16:
14423  case X86::ATOMMIN32:
14424  case X86::ATOMMIN64:
14425  case X86::ATOMUMAX8:
14426  case X86::ATOMUMAX16:
14427  case X86::ATOMUMAX32:
14428  case X86::ATOMUMAX64:
14429  case X86::ATOMUMIN8:
14430  case X86::ATOMUMIN16:
14431  case X86::ATOMUMIN32:
14432  case X86::ATOMUMIN64: {
14433    unsigned CMPOpc;
14434    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
14435
14436    BuildMI(mainMBB, DL, TII->get(CMPOpc))
14437      .addReg(SrcReg)
14438      .addReg(t4);
14439
14440    if (Subtarget->hasCMov()) {
14441      if (VT != MVT::i8) {
14442        // Native support
14443        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
14444          .addReg(SrcReg)
14445          .addReg(t4);
14446      } else {
14447        // Promote i8 to i32 to use CMOV32
14448        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14449        const TargetRegisterClass *RC32 =
14450          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
14451        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
14452        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
14453        unsigned Tmp = MRI.createVirtualRegister(RC32);
14454
14455        unsigned Undef = MRI.createVirtualRegister(RC32);
14456        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
14457
14458        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
14459          .addReg(Undef)
14460          .addReg(SrcReg)
14461          .addImm(X86::sub_8bit);
14462        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
14463          .addReg(Undef)
14464          .addReg(t4)
14465          .addImm(X86::sub_8bit);
14466
14467        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
14468          .addReg(SrcReg32)
14469          .addReg(AccReg32);
14470
14471        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
14472          .addReg(Tmp, 0, X86::sub_8bit);
14473      }
14474    } else {
14475      // Use pseudo select and lower them.
14476      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
14477             "Invalid atomic-load-op transformation!");
14478      unsigned SelOpc = getPseudoCMOVOpc(VT);
14479      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
14480      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
14481      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
14482              .addReg(SrcReg).addReg(t4)
14483              .addImm(CC);
14484      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14485      // Replace the original PHI node as mainMBB is changed after CMOV
14486      // lowering.
14487      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
14488        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14489      Phi->eraseFromParent();
14490    }
14491    break;
14492  }
14493  }
14494
14495  // Copy PhyReg back from virtual register.
14496  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
14497    .addReg(t4);
14498
14499  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14500  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14501    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14502    if (NewMO.isReg())
14503      NewMO.setIsKill(false);
14504    MIB.addOperand(NewMO);
14505  }
14506  MIB.addReg(t2);
14507  MIB.setMemRefs(MMOBegin, MMOEnd);
14508
14509  // Copy PhyReg back to virtual register.
14510  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
14511    .addReg(PhyReg);
14512
14513  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14514
14515  mainMBB->addSuccessor(origMainMBB);
14516  mainMBB->addSuccessor(sinkMBB);
14517
14518  // sinkMBB:
14519  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14520          TII->get(TargetOpcode::COPY), DstReg)
14521    .addReg(t3);
14522
14523  MI->eraseFromParent();
14524  return sinkMBB;
14525}
14526
14527// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
14528// instructions. They will be translated into a spin-loop or compare-exchange
14529// loop from
14530//
14531//    ...
14532//    dst = atomic-fetch-op MI.addr, MI.val
14533//    ...
14534//
14535// to
14536//
14537//    ...
14538//    t1L = LOAD [MI.addr + 0]
14539//    t1H = LOAD [MI.addr + 4]
14540// loop:
14541//    t4L = phi(t1L, t3L / loop)
14542//    t4H = phi(t1H, t3H / loop)
14543//    t2L = OP MI.val.lo, t4L
14544//    t2H = OP MI.val.hi, t4H
14545//    EAX = t4L
14546//    EDX = t4H
14547//    EBX = t2L
14548//    ECX = t2H
14549//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14550//    t3L = EAX
14551//    t3H = EDX
14552//    JNE loop
14553// sink:
14554//    dstL = t3L
14555//    dstH = t3H
14556//    ...
14557MachineBasicBlock *
14558X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
14559                                           MachineBasicBlock *MBB) const {
14560  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14561  DebugLoc DL = MI->getDebugLoc();
14562
14563  MachineFunction *MF = MBB->getParent();
14564  MachineRegisterInfo &MRI = MF->getRegInfo();
14565
14566  const BasicBlock *BB = MBB->getBasicBlock();
14567  MachineFunction::iterator I = MBB;
14568  ++I;
14569
14570  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
14571         "Unexpected number of operands");
14572
14573  assert(MI->hasOneMemOperand() &&
14574         "Expected atomic-load-op32 to have one memoperand");
14575
14576  // Memory Reference
14577  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14578  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14579
14580  unsigned DstLoReg, DstHiReg;
14581  unsigned SrcLoReg, SrcHiReg;
14582  unsigned MemOpndSlot;
14583
14584  unsigned CurOp = 0;
14585
14586  DstLoReg = MI->getOperand(CurOp++).getReg();
14587  DstHiReg = MI->getOperand(CurOp++).getReg();
14588  MemOpndSlot = CurOp;
14589  CurOp += X86::AddrNumOperands;
14590  SrcLoReg = MI->getOperand(CurOp++).getReg();
14591  SrcHiReg = MI->getOperand(CurOp++).getReg();
14592
14593  const TargetRegisterClass *RC = &X86::GR32RegClass;
14594  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
14595
14596  unsigned t1L = MRI.createVirtualRegister(RC);
14597  unsigned t1H = MRI.createVirtualRegister(RC);
14598  unsigned t2L = MRI.createVirtualRegister(RC);
14599  unsigned t2H = MRI.createVirtualRegister(RC);
14600  unsigned t3L = MRI.createVirtualRegister(RC);
14601  unsigned t3H = MRI.createVirtualRegister(RC);
14602  unsigned t4L = MRI.createVirtualRegister(RC);
14603  unsigned t4H = MRI.createVirtualRegister(RC);
14604
14605  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
14606  unsigned LOADOpc = X86::MOV32rm;
14607
14608  // For the atomic load-arith operator, we generate
14609  //
14610  //  thisMBB:
14611  //    t1L = LOAD [MI.addr + 0]
14612  //    t1H = LOAD [MI.addr + 4]
14613  //  mainMBB:
14614  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
14615  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
14616  //    t2L = OP MI.val.lo, t4L
14617  //    t2H = OP MI.val.hi, t4H
14618  //    EBX = t2L
14619  //    ECX = t2H
14620  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14621  //    t3L = EAX
14622  //    t3H = EDX
14623  //    JNE loop
14624  //  sinkMBB:
14625  //    dstL = t3L
14626  //    dstH = t3H
14627
14628  MachineBasicBlock *thisMBB = MBB;
14629  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14630  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14631  MF->insert(I, mainMBB);
14632  MF->insert(I, sinkMBB);
14633
14634  MachineInstrBuilder MIB;
14635
14636  // Transfer the remainder of BB and its successor edges to sinkMBB.
14637  sinkMBB->splice(sinkMBB->begin(), MBB,
14638                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14639  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14640
14641  // thisMBB:
14642  // Lo
14643  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
14644  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14645    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14646    if (NewMO.isReg())
14647      NewMO.setIsKill(false);
14648    MIB.addOperand(NewMO);
14649  }
14650  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14651    unsigned flags = (*MMOI)->getFlags();
14652    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14653    MachineMemOperand *MMO =
14654      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14655                               (*MMOI)->getSize(),
14656                               (*MMOI)->getBaseAlignment(),
14657                               (*MMOI)->getTBAAInfo(),
14658                               (*MMOI)->getRanges());
14659    MIB.addMemOperand(MMO);
14660  };
14661  MachineInstr *LowMI = MIB;
14662
14663  // Hi
14664  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
14665  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14666    if (i == X86::AddrDisp) {
14667      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
14668    } else {
14669      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14670      if (NewMO.isReg())
14671        NewMO.setIsKill(false);
14672      MIB.addOperand(NewMO);
14673    }
14674  }
14675  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
14676
14677  thisMBB->addSuccessor(mainMBB);
14678
14679  // mainMBB:
14680  MachineBasicBlock *origMainMBB = mainMBB;
14681
14682  // Add PHIs.
14683  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
14684                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14685  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
14686                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14687
14688  unsigned Opc = MI->getOpcode();
14689  switch (Opc) {
14690  default:
14691    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
14692  case X86::ATOMAND6432:
14693  case X86::ATOMOR6432:
14694  case X86::ATOMXOR6432:
14695  case X86::ATOMADD6432:
14696  case X86::ATOMSUB6432: {
14697    unsigned HiOpc;
14698    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14699    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
14700      .addReg(SrcLoReg);
14701    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
14702      .addReg(SrcHiReg);
14703    break;
14704  }
14705  case X86::ATOMNAND6432: {
14706    unsigned HiOpc, NOTOpc;
14707    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
14708    unsigned TmpL = MRI.createVirtualRegister(RC);
14709    unsigned TmpH = MRI.createVirtualRegister(RC);
14710    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
14711      .addReg(t4L);
14712    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
14713      .addReg(t4H);
14714    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
14715    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
14716    break;
14717  }
14718  case X86::ATOMMAX6432:
14719  case X86::ATOMMIN6432:
14720  case X86::ATOMUMAX6432:
14721  case X86::ATOMUMIN6432: {
14722    unsigned HiOpc;
14723    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14724    unsigned cL = MRI.createVirtualRegister(RC8);
14725    unsigned cH = MRI.createVirtualRegister(RC8);
14726    unsigned cL32 = MRI.createVirtualRegister(RC);
14727    unsigned cH32 = MRI.createVirtualRegister(RC);
14728    unsigned cc = MRI.createVirtualRegister(RC);
14729    // cl := cmp src_lo, lo
14730    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14731      .addReg(SrcLoReg).addReg(t4L);
14732    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
14733    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
14734    // ch := cmp src_hi, hi
14735    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14736      .addReg(SrcHiReg).addReg(t4H);
14737    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
14738    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
14739    // cc := if (src_hi == hi) ? cl : ch;
14740    if (Subtarget->hasCMov()) {
14741      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
14742        .addReg(cH32).addReg(cL32);
14743    } else {
14744      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
14745              .addReg(cH32).addReg(cL32)
14746              .addImm(X86::COND_E);
14747      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14748    }
14749    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
14750    if (Subtarget->hasCMov()) {
14751      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
14752        .addReg(SrcLoReg).addReg(t4L);
14753      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
14754        .addReg(SrcHiReg).addReg(t4H);
14755    } else {
14756      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
14757              .addReg(SrcLoReg).addReg(t4L)
14758              .addImm(X86::COND_NE);
14759      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14760      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
14761      // 2nd CMOV lowering.
14762      mainMBB->addLiveIn(X86::EFLAGS);
14763      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
14764              .addReg(SrcHiReg).addReg(t4H)
14765              .addImm(X86::COND_NE);
14766      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14767      // Replace the original PHI node as mainMBB is changed after CMOV
14768      // lowering.
14769      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
14770        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14771      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
14772        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14773      PhiL->eraseFromParent();
14774      PhiH->eraseFromParent();
14775    }
14776    break;
14777  }
14778  case X86::ATOMSWAP6432: {
14779    unsigned HiOpc;
14780    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14781    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
14782    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
14783    break;
14784  }
14785  }
14786
14787  // Copy EDX:EAX back from HiReg:LoReg
14788  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
14789  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
14790  // Copy ECX:EBX from t1H:t1L
14791  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
14792  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
14793
14794  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14795  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14796    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14797    if (NewMO.isReg())
14798      NewMO.setIsKill(false);
14799    MIB.addOperand(NewMO);
14800  }
14801  MIB.setMemRefs(MMOBegin, MMOEnd);
14802
14803  // Copy EDX:EAX back to t3H:t3L
14804  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
14805  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
14806
14807  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14808
14809  mainMBB->addSuccessor(origMainMBB);
14810  mainMBB->addSuccessor(sinkMBB);
14811
14812  // sinkMBB:
14813  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14814          TII->get(TargetOpcode::COPY), DstLoReg)
14815    .addReg(t3L);
14816  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14817          TII->get(TargetOpcode::COPY), DstHiReg)
14818    .addReg(t3H);
14819
14820  MI->eraseFromParent();
14821  return sinkMBB;
14822}
14823
14824// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
14825// or XMM0_V32I8 in AVX all of this code can be replaced with that
14826// in the .td file.
14827static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
14828                                       const TargetInstrInfo *TII) {
14829  unsigned Opc;
14830  switch (MI->getOpcode()) {
14831  default: llvm_unreachable("illegal opcode!");
14832  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
14833  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
14834  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
14835  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
14836  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
14837  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
14838  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
14839  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
14840  }
14841
14842  DebugLoc dl = MI->getDebugLoc();
14843  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14844
14845  unsigned NumArgs = MI->getNumOperands();
14846  for (unsigned i = 1; i < NumArgs; ++i) {
14847    MachineOperand &Op = MI->getOperand(i);
14848    if (!(Op.isReg() && Op.isImplicit()))
14849      MIB.addOperand(Op);
14850  }
14851  if (MI->hasOneMemOperand())
14852    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14853
14854  BuildMI(*BB, MI, dl,
14855    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14856    .addReg(X86::XMM0);
14857
14858  MI->eraseFromParent();
14859  return BB;
14860}
14861
14862// FIXME: Custom handling because TableGen doesn't support multiple implicit
14863// defs in an instruction pattern
14864static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
14865                                       const TargetInstrInfo *TII) {
14866  unsigned Opc;
14867  switch (MI->getOpcode()) {
14868  default: llvm_unreachable("illegal opcode!");
14869  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
14870  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
14871  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
14872  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
14873  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
14874  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
14875  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
14876  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
14877  }
14878
14879  DebugLoc dl = MI->getDebugLoc();
14880  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14881
14882  unsigned NumArgs = MI->getNumOperands(); // remove the results
14883  for (unsigned i = 1; i < NumArgs; ++i) {
14884    MachineOperand &Op = MI->getOperand(i);
14885    if (!(Op.isReg() && Op.isImplicit()))
14886      MIB.addOperand(Op);
14887  }
14888  if (MI->hasOneMemOperand())
14889    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14890
14891  BuildMI(*BB, MI, dl,
14892    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14893    .addReg(X86::ECX);
14894
14895  MI->eraseFromParent();
14896  return BB;
14897}
14898
14899static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
14900                                       const TargetInstrInfo *TII,
14901                                       const X86Subtarget* Subtarget) {
14902  DebugLoc dl = MI->getDebugLoc();
14903
14904  // Address into RAX/EAX, other two args into ECX, EDX.
14905  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
14906  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
14907  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
14908  for (int i = 0; i < X86::AddrNumOperands; ++i)
14909    MIB.addOperand(MI->getOperand(i));
14910
14911  unsigned ValOps = X86::AddrNumOperands;
14912  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
14913    .addReg(MI->getOperand(ValOps).getReg());
14914  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
14915    .addReg(MI->getOperand(ValOps+1).getReg());
14916
14917  // The instruction doesn't actually take any operands though.
14918  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
14919
14920  MI->eraseFromParent(); // The pseudo is gone now.
14921  return BB;
14922}
14923
14924MachineBasicBlock *
14925X86TargetLowering::EmitVAARG64WithCustomInserter(
14926                   MachineInstr *MI,
14927                   MachineBasicBlock *MBB) const {
14928  // Emit va_arg instruction on X86-64.
14929
14930  // Operands to this pseudo-instruction:
14931  // 0  ) Output        : destination address (reg)
14932  // 1-5) Input         : va_list address (addr, i64mem)
14933  // 6  ) ArgSize       : Size (in bytes) of vararg type
14934  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
14935  // 8  ) Align         : Alignment of type
14936  // 9  ) EFLAGS (implicit-def)
14937
14938  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
14939  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
14940
14941  unsigned DestReg = MI->getOperand(0).getReg();
14942  MachineOperand &Base = MI->getOperand(1);
14943  MachineOperand &Scale = MI->getOperand(2);
14944  MachineOperand &Index = MI->getOperand(3);
14945  MachineOperand &Disp = MI->getOperand(4);
14946  MachineOperand &Segment = MI->getOperand(5);
14947  unsigned ArgSize = MI->getOperand(6).getImm();
14948  unsigned ArgMode = MI->getOperand(7).getImm();
14949  unsigned Align = MI->getOperand(8).getImm();
14950
14951  // Memory Reference
14952  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
14953  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14954  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14955
14956  // Machine Information
14957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14958  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
14959  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
14960  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
14961  DebugLoc DL = MI->getDebugLoc();
14962
14963  // struct va_list {
14964  //   i32   gp_offset
14965  //   i32   fp_offset
14966  //   i64   overflow_area (address)
14967  //   i64   reg_save_area (address)
14968  // }
14969  // sizeof(va_list) = 24
14970  // alignment(va_list) = 8
14971
14972  unsigned TotalNumIntRegs = 6;
14973  unsigned TotalNumXMMRegs = 8;
14974  bool UseGPOffset = (ArgMode == 1);
14975  bool UseFPOffset = (ArgMode == 2);
14976  unsigned MaxOffset = TotalNumIntRegs * 8 +
14977                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
14978
14979  /* Align ArgSize to a multiple of 8 */
14980  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
14981  bool NeedsAlign = (Align > 8);
14982
14983  MachineBasicBlock *thisMBB = MBB;
14984  MachineBasicBlock *overflowMBB;
14985  MachineBasicBlock *offsetMBB;
14986  MachineBasicBlock *endMBB;
14987
14988  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
14989  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
14990  unsigned OffsetReg = 0;
14991
14992  if (!UseGPOffset && !UseFPOffset) {
14993    // If we only pull from the overflow region, we don't create a branch.
14994    // We don't need to alter control flow.
14995    OffsetDestReg = 0; // unused
14996    OverflowDestReg = DestReg;
14997
14998    offsetMBB = NULL;
14999    overflowMBB = thisMBB;
15000    endMBB = thisMBB;
15001  } else {
15002    // First emit code to check if gp_offset (or fp_offset) is below the bound.
15003    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
15004    // If not, pull from overflow_area. (branch to overflowMBB)
15005    //
15006    //       thisMBB
15007    //         |     .
15008    //         |        .
15009    //     offsetMBB   overflowMBB
15010    //         |        .
15011    //         |     .
15012    //        endMBB
15013
15014    // Registers for the PHI in endMBB
15015    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
15016    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
15017
15018    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15019    MachineFunction *MF = MBB->getParent();
15020    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15021    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15022    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15023
15024    MachineFunction::iterator MBBIter = MBB;
15025    ++MBBIter;
15026
15027    // Insert the new basic blocks
15028    MF->insert(MBBIter, offsetMBB);
15029    MF->insert(MBBIter, overflowMBB);
15030    MF->insert(MBBIter, endMBB);
15031
15032    // Transfer the remainder of MBB and its successor edges to endMBB.
15033    endMBB->splice(endMBB->begin(), thisMBB,
15034                    llvm::next(MachineBasicBlock::iterator(MI)),
15035                    thisMBB->end());
15036    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
15037
15038    // Make offsetMBB and overflowMBB successors of thisMBB
15039    thisMBB->addSuccessor(offsetMBB);
15040    thisMBB->addSuccessor(overflowMBB);
15041
15042    // endMBB is a successor of both offsetMBB and overflowMBB
15043    offsetMBB->addSuccessor(endMBB);
15044    overflowMBB->addSuccessor(endMBB);
15045
15046    // Load the offset value into a register
15047    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15048    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
15049      .addOperand(Base)
15050      .addOperand(Scale)
15051      .addOperand(Index)
15052      .addDisp(Disp, UseFPOffset ? 4 : 0)
15053      .addOperand(Segment)
15054      .setMemRefs(MMOBegin, MMOEnd);
15055
15056    // Check if there is enough room left to pull this argument.
15057    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
15058      .addReg(OffsetReg)
15059      .addImm(MaxOffset + 8 - ArgSizeA8);
15060
15061    // Branch to "overflowMBB" if offset >= max
15062    // Fall through to "offsetMBB" otherwise
15063    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
15064      .addMBB(overflowMBB);
15065  }
15066
15067  // In offsetMBB, emit code to use the reg_save_area.
15068  if (offsetMBB) {
15069    assert(OffsetReg != 0);
15070
15071    // Read the reg_save_area address.
15072    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
15073    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
15074      .addOperand(Base)
15075      .addOperand(Scale)
15076      .addOperand(Index)
15077      .addDisp(Disp, 16)
15078      .addOperand(Segment)
15079      .setMemRefs(MMOBegin, MMOEnd);
15080
15081    // Zero-extend the offset
15082    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
15083      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
15084        .addImm(0)
15085        .addReg(OffsetReg)
15086        .addImm(X86::sub_32bit);
15087
15088    // Add the offset to the reg_save_area to get the final address.
15089    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
15090      .addReg(OffsetReg64)
15091      .addReg(RegSaveReg);
15092
15093    // Compute the offset for the next argument
15094    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15095    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
15096      .addReg(OffsetReg)
15097      .addImm(UseFPOffset ? 16 : 8);
15098
15099    // Store it back into the va_list.
15100    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
15101      .addOperand(Base)
15102      .addOperand(Scale)
15103      .addOperand(Index)
15104      .addDisp(Disp, UseFPOffset ? 4 : 0)
15105      .addOperand(Segment)
15106      .addReg(NextOffsetReg)
15107      .setMemRefs(MMOBegin, MMOEnd);
15108
15109    // Jump to endMBB
15110    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
15111      .addMBB(endMBB);
15112  }
15113
15114  //
15115  // Emit code to use overflow area
15116  //
15117
15118  // Load the overflow_area address into a register.
15119  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
15120  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
15121    .addOperand(Base)
15122    .addOperand(Scale)
15123    .addOperand(Index)
15124    .addDisp(Disp, 8)
15125    .addOperand(Segment)
15126    .setMemRefs(MMOBegin, MMOEnd);
15127
15128  // If we need to align it, do so. Otherwise, just copy the address
15129  // to OverflowDestReg.
15130  if (NeedsAlign) {
15131    // Align the overflow address
15132    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
15133    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
15134
15135    // aligned_addr = (addr + (align-1)) & ~(align-1)
15136    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
15137      .addReg(OverflowAddrReg)
15138      .addImm(Align-1);
15139
15140    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
15141      .addReg(TmpReg)
15142      .addImm(~(uint64_t)(Align-1));
15143  } else {
15144    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
15145      .addReg(OverflowAddrReg);
15146  }
15147
15148  // Compute the next overflow address after this argument.
15149  // (the overflow address should be kept 8-byte aligned)
15150  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
15151  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
15152    .addReg(OverflowDestReg)
15153    .addImm(ArgSizeA8);
15154
15155  // Store the new overflow address.
15156  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
15157    .addOperand(Base)
15158    .addOperand(Scale)
15159    .addOperand(Index)
15160    .addDisp(Disp, 8)
15161    .addOperand(Segment)
15162    .addReg(NextAddrReg)
15163    .setMemRefs(MMOBegin, MMOEnd);
15164
15165  // If we branched, emit the PHI to the front of endMBB.
15166  if (offsetMBB) {
15167    BuildMI(*endMBB, endMBB->begin(), DL,
15168            TII->get(X86::PHI), DestReg)
15169      .addReg(OffsetDestReg).addMBB(offsetMBB)
15170      .addReg(OverflowDestReg).addMBB(overflowMBB);
15171  }
15172
15173  // Erase the pseudo instruction
15174  MI->eraseFromParent();
15175
15176  return endMBB;
15177}
15178
15179MachineBasicBlock *
15180X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
15181                                                 MachineInstr *MI,
15182                                                 MachineBasicBlock *MBB) const {
15183  // Emit code to save XMM registers to the stack. The ABI says that the
15184  // number of registers to save is given in %al, so it's theoretically
15185  // possible to do an indirect jump trick to avoid saving all of them,
15186  // however this code takes a simpler approach and just executes all
15187  // of the stores if %al is non-zero. It's less code, and it's probably
15188  // easier on the hardware branch predictor, and stores aren't all that
15189  // expensive anyway.
15190
15191  // Create the new basic blocks. One block contains all the XMM stores,
15192  // and one block is the final destination regardless of whether any
15193  // stores were performed.
15194  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15195  MachineFunction *F = MBB->getParent();
15196  MachineFunction::iterator MBBIter = MBB;
15197  ++MBBIter;
15198  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
15199  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
15200  F->insert(MBBIter, XMMSaveMBB);
15201  F->insert(MBBIter, EndMBB);
15202
15203  // Transfer the remainder of MBB and its successor edges to EndMBB.
15204  EndMBB->splice(EndMBB->begin(), MBB,
15205                 llvm::next(MachineBasicBlock::iterator(MI)),
15206                 MBB->end());
15207  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
15208
15209  // The original block will now fall through to the XMM save block.
15210  MBB->addSuccessor(XMMSaveMBB);
15211  // The XMMSaveMBB will fall through to the end block.
15212  XMMSaveMBB->addSuccessor(EndMBB);
15213
15214  // Now add the instructions.
15215  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15216  DebugLoc DL = MI->getDebugLoc();
15217
15218  unsigned CountReg = MI->getOperand(0).getReg();
15219  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
15220  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
15221
15222  if (!Subtarget->isTargetWin64()) {
15223    // If %al is 0, branch around the XMM save block.
15224    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
15225    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
15226    MBB->addSuccessor(EndMBB);
15227  }
15228
15229  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
15230  // In the XMM save block, save all the XMM argument registers.
15231  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
15232    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
15233    MachineMemOperand *MMO =
15234      F->getMachineMemOperand(
15235          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
15236        MachineMemOperand::MOStore,
15237        /*Size=*/16, /*Align=*/16);
15238    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
15239      .addFrameIndex(RegSaveFrameIndex)
15240      .addImm(/*Scale=*/1)
15241      .addReg(/*IndexReg=*/0)
15242      .addImm(/*Disp=*/Offset)
15243      .addReg(/*Segment=*/0)
15244      .addReg(MI->getOperand(i).getReg())
15245      .addMemOperand(MMO);
15246  }
15247
15248  MI->eraseFromParent();   // The pseudo instruction is gone now.
15249
15250  return EndMBB;
15251}
15252
15253// The EFLAGS operand of SelectItr might be missing a kill marker
15254// because there were multiple uses of EFLAGS, and ISel didn't know
15255// which to mark. Figure out whether SelectItr should have had a
15256// kill marker, and set it if it should. Returns the correct kill
15257// marker value.
15258static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
15259                                     MachineBasicBlock* BB,
15260                                     const TargetRegisterInfo* TRI) {
15261  // Scan forward through BB for a use/def of EFLAGS.
15262  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
15263  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
15264    const MachineInstr& mi = *miI;
15265    if (mi.readsRegister(X86::EFLAGS))
15266      return false;
15267    if (mi.definesRegister(X86::EFLAGS))
15268      break; // Should have kill-flag - update below.
15269  }
15270
15271  // If we hit the end of the block, check whether EFLAGS is live into a
15272  // successor.
15273  if (miI == BB->end()) {
15274    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
15275                                          sEnd = BB->succ_end();
15276         sItr != sEnd; ++sItr) {
15277      MachineBasicBlock* succ = *sItr;
15278      if (succ->isLiveIn(X86::EFLAGS))
15279        return false;
15280    }
15281  }
15282
15283  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
15284  // out. SelectMI should have a kill flag on EFLAGS.
15285  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
15286  return true;
15287}
15288
15289MachineBasicBlock *
15290X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
15291                                     MachineBasicBlock *BB) const {
15292  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15293  DebugLoc DL = MI->getDebugLoc();
15294
15295  // To "insert" a SELECT_CC instruction, we actually have to insert the
15296  // diamond control-flow pattern.  The incoming instruction knows the
15297  // destination vreg to set, the condition code register to branch on, the
15298  // true/false values to select between, and a branch opcode to use.
15299  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15300  MachineFunction::iterator It = BB;
15301  ++It;
15302
15303  //  thisMBB:
15304  //  ...
15305  //   TrueVal = ...
15306  //   cmpTY ccX, r1, r2
15307  //   bCC copy1MBB
15308  //   fallthrough --> copy0MBB
15309  MachineBasicBlock *thisMBB = BB;
15310  MachineFunction *F = BB->getParent();
15311  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
15312  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
15313  F->insert(It, copy0MBB);
15314  F->insert(It, sinkMBB);
15315
15316  // If the EFLAGS register isn't dead in the terminator, then claim that it's
15317  // live into the sink and copy blocks.
15318  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
15319  if (!MI->killsRegister(X86::EFLAGS) &&
15320      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
15321    copy0MBB->addLiveIn(X86::EFLAGS);
15322    sinkMBB->addLiveIn(X86::EFLAGS);
15323  }
15324
15325  // Transfer the remainder of BB and its successor edges to sinkMBB.
15326  sinkMBB->splice(sinkMBB->begin(), BB,
15327                  llvm::next(MachineBasicBlock::iterator(MI)),
15328                  BB->end());
15329  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
15330
15331  // Add the true and fallthrough blocks as its successors.
15332  BB->addSuccessor(copy0MBB);
15333  BB->addSuccessor(sinkMBB);
15334
15335  // Create the conditional branch instruction.
15336  unsigned Opc =
15337    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
15338  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
15339
15340  //  copy0MBB:
15341  //   %FalseValue = ...
15342  //   # fallthrough to sinkMBB
15343  copy0MBB->addSuccessor(sinkMBB);
15344
15345  //  sinkMBB:
15346  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
15347  //  ...
15348  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15349          TII->get(X86::PHI), MI->getOperand(0).getReg())
15350    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
15351    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
15352
15353  MI->eraseFromParent();   // The pseudo instruction is gone now.
15354  return sinkMBB;
15355}
15356
15357MachineBasicBlock *
15358X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
15359                                        bool Is64Bit) const {
15360  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15361  DebugLoc DL = MI->getDebugLoc();
15362  MachineFunction *MF = BB->getParent();
15363  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15364
15365  assert(getTargetMachine().Options.EnableSegmentedStacks);
15366
15367  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
15368  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
15369
15370  // BB:
15371  //  ... [Till the alloca]
15372  // If stacklet is not large enough, jump to mallocMBB
15373  //
15374  // bumpMBB:
15375  //  Allocate by subtracting from RSP
15376  //  Jump to continueMBB
15377  //
15378  // mallocMBB:
15379  //  Allocate by call to runtime
15380  //
15381  // continueMBB:
15382  //  ...
15383  //  [rest of original BB]
15384  //
15385
15386  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15387  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15388  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15389
15390  MachineRegisterInfo &MRI = MF->getRegInfo();
15391  const TargetRegisterClass *AddrRegClass =
15392    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
15393
15394  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15395    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15396    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
15397    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
15398    sizeVReg = MI->getOperand(1).getReg(),
15399    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
15400
15401  MachineFunction::iterator MBBIter = BB;
15402  ++MBBIter;
15403
15404  MF->insert(MBBIter, bumpMBB);
15405  MF->insert(MBBIter, mallocMBB);
15406  MF->insert(MBBIter, continueMBB);
15407
15408  continueMBB->splice(continueMBB->begin(), BB, llvm::next
15409                      (MachineBasicBlock::iterator(MI)), BB->end());
15410  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
15411
15412  // Add code to the main basic block to check if the stack limit has been hit,
15413  // and if so, jump to mallocMBB otherwise to bumpMBB.
15414  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
15415  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
15416    .addReg(tmpSPVReg).addReg(sizeVReg);
15417  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
15418    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
15419    .addReg(SPLimitVReg);
15420  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
15421
15422  // bumpMBB simply decreases the stack pointer, since we know the current
15423  // stacklet has enough space.
15424  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
15425    .addReg(SPLimitVReg);
15426  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
15427    .addReg(SPLimitVReg);
15428  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15429
15430  // Calls into a routine in libgcc to allocate more space from the heap.
15431  const uint32_t *RegMask =
15432    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15433  if (Is64Bit) {
15434    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
15435      .addReg(sizeVReg);
15436    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
15437      .addExternalSymbol("__morestack_allocate_stack_space")
15438      .addRegMask(RegMask)
15439      .addReg(X86::RDI, RegState::Implicit)
15440      .addReg(X86::RAX, RegState::ImplicitDefine);
15441  } else {
15442    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
15443      .addImm(12);
15444    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
15445    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
15446      .addExternalSymbol("__morestack_allocate_stack_space")
15447      .addRegMask(RegMask)
15448      .addReg(X86::EAX, RegState::ImplicitDefine);
15449  }
15450
15451  if (!Is64Bit)
15452    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
15453      .addImm(16);
15454
15455  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
15456    .addReg(Is64Bit ? X86::RAX : X86::EAX);
15457  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15458
15459  // Set up the CFG correctly.
15460  BB->addSuccessor(bumpMBB);
15461  BB->addSuccessor(mallocMBB);
15462  mallocMBB->addSuccessor(continueMBB);
15463  bumpMBB->addSuccessor(continueMBB);
15464
15465  // Take care of the PHI nodes.
15466  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
15467          MI->getOperand(0).getReg())
15468    .addReg(mallocPtrVReg).addMBB(mallocMBB)
15469    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
15470
15471  // Delete the original pseudo instruction.
15472  MI->eraseFromParent();
15473
15474  // And we're done.
15475  return continueMBB;
15476}
15477
15478MachineBasicBlock *
15479X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
15480                                          MachineBasicBlock *BB) const {
15481  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15482  DebugLoc DL = MI->getDebugLoc();
15483
15484  assert(!Subtarget->isTargetEnvMacho());
15485
15486  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
15487  // non-trivial part is impdef of ESP.
15488
15489  if (Subtarget->isTargetWin64()) {
15490    if (Subtarget->isTargetCygMing()) {
15491      // ___chkstk(Mingw64):
15492      // Clobbers R10, R11, RAX and EFLAGS.
15493      // Updates RSP.
15494      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15495        .addExternalSymbol("___chkstk")
15496        .addReg(X86::RAX, RegState::Implicit)
15497        .addReg(X86::RSP, RegState::Implicit)
15498        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
15499        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
15500        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15501    } else {
15502      // __chkstk(MSVCRT): does not update stack pointer.
15503      // Clobbers R10, R11 and EFLAGS.
15504      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15505        .addExternalSymbol("__chkstk")
15506        .addReg(X86::RAX, RegState::Implicit)
15507        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15508      // RAX has the offset to be subtracted from RSP.
15509      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
15510        .addReg(X86::RSP)
15511        .addReg(X86::RAX);
15512    }
15513  } else {
15514    const char *StackProbeSymbol =
15515      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
15516
15517    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
15518      .addExternalSymbol(StackProbeSymbol)
15519      .addReg(X86::EAX, RegState::Implicit)
15520      .addReg(X86::ESP, RegState::Implicit)
15521      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
15522      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
15523      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15524  }
15525
15526  MI->eraseFromParent();   // The pseudo instruction is gone now.
15527  return BB;
15528}
15529
15530MachineBasicBlock *
15531X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
15532                                      MachineBasicBlock *BB) const {
15533  // This is pretty easy.  We're taking the value that we received from
15534  // our load from the relocation, sticking it in either RDI (x86-64)
15535  // or EAX and doing an indirect call.  The return value will then
15536  // be in the normal return register.
15537  const X86InstrInfo *TII
15538    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
15539  DebugLoc DL = MI->getDebugLoc();
15540  MachineFunction *F = BB->getParent();
15541
15542  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
15543  assert(MI->getOperand(3).isGlobal() && "This should be a global");
15544
15545  // Get a register mask for the lowered call.
15546  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
15547  // proper register mask.
15548  const uint32_t *RegMask =
15549    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15550  if (Subtarget->is64Bit()) {
15551    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15552                                      TII->get(X86::MOV64rm), X86::RDI)
15553    .addReg(X86::RIP)
15554    .addImm(0).addReg(0)
15555    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15556                      MI->getOperand(3).getTargetFlags())
15557    .addReg(0);
15558    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
15559    addDirectMem(MIB, X86::RDI);
15560    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
15561  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
15562    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15563                                      TII->get(X86::MOV32rm), X86::EAX)
15564    .addReg(0)
15565    .addImm(0).addReg(0)
15566    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15567                      MI->getOperand(3).getTargetFlags())
15568    .addReg(0);
15569    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15570    addDirectMem(MIB, X86::EAX);
15571    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15572  } else {
15573    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15574                                      TII->get(X86::MOV32rm), X86::EAX)
15575    .addReg(TII->getGlobalBaseReg(F))
15576    .addImm(0).addReg(0)
15577    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15578                      MI->getOperand(3).getTargetFlags())
15579    .addReg(0);
15580    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15581    addDirectMem(MIB, X86::EAX);
15582    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15583  }
15584
15585  MI->eraseFromParent(); // The pseudo instruction is gone now.
15586  return BB;
15587}
15588
15589MachineBasicBlock *
15590X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
15591                                    MachineBasicBlock *MBB) const {
15592  DebugLoc DL = MI->getDebugLoc();
15593  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15594
15595  MachineFunction *MF = MBB->getParent();
15596  MachineRegisterInfo &MRI = MF->getRegInfo();
15597
15598  const BasicBlock *BB = MBB->getBasicBlock();
15599  MachineFunction::iterator I = MBB;
15600  ++I;
15601
15602  // Memory Reference
15603  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15604  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15605
15606  unsigned DstReg;
15607  unsigned MemOpndSlot = 0;
15608
15609  unsigned CurOp = 0;
15610
15611  DstReg = MI->getOperand(CurOp++).getReg();
15612  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15613  assert(RC->hasType(MVT::i32) && "Invalid destination!");
15614  unsigned mainDstReg = MRI.createVirtualRegister(RC);
15615  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
15616
15617  MemOpndSlot = CurOp;
15618
15619  MVT PVT = getPointerTy();
15620  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15621         "Invalid Pointer Size!");
15622
15623  // For v = setjmp(buf), we generate
15624  //
15625  // thisMBB:
15626  //  buf[LabelOffset] = restoreMBB
15627  //  SjLjSetup restoreMBB
15628  //
15629  // mainMBB:
15630  //  v_main = 0
15631  //
15632  // sinkMBB:
15633  //  v = phi(main, restore)
15634  //
15635  // restoreMBB:
15636  //  v_restore = 1
15637
15638  MachineBasicBlock *thisMBB = MBB;
15639  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15640  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15641  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
15642  MF->insert(I, mainMBB);
15643  MF->insert(I, sinkMBB);
15644  MF->push_back(restoreMBB);
15645
15646  MachineInstrBuilder MIB;
15647
15648  // Transfer the remainder of BB and its successor edges to sinkMBB.
15649  sinkMBB->splice(sinkMBB->begin(), MBB,
15650                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
15651  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15652
15653  // thisMBB:
15654  unsigned PtrStoreOpc = 0;
15655  unsigned LabelReg = 0;
15656  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15657  Reloc::Model RM = getTargetMachine().getRelocationModel();
15658  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
15659                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
15660
15661  // Prepare IP either in reg or imm.
15662  if (!UseImmLabel) {
15663    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
15664    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
15665    LabelReg = MRI.createVirtualRegister(PtrRC);
15666    if (Subtarget->is64Bit()) {
15667      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
15668              .addReg(X86::RIP)
15669              .addImm(0)
15670              .addReg(0)
15671              .addMBB(restoreMBB)
15672              .addReg(0);
15673    } else {
15674      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
15675      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
15676              .addReg(XII->getGlobalBaseReg(MF))
15677              .addImm(0)
15678              .addReg(0)
15679              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
15680              .addReg(0);
15681    }
15682  } else
15683    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
15684  // Store IP
15685  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
15686  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15687    if (i == X86::AddrDisp)
15688      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
15689    else
15690      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
15691  }
15692  if (!UseImmLabel)
15693    MIB.addReg(LabelReg);
15694  else
15695    MIB.addMBB(restoreMBB);
15696  MIB.setMemRefs(MMOBegin, MMOEnd);
15697  // Setup
15698  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
15699          .addMBB(restoreMBB);
15700
15701  const X86RegisterInfo *RegInfo =
15702    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15703  MIB.addRegMask(RegInfo->getNoPreservedMask());
15704  thisMBB->addSuccessor(mainMBB);
15705  thisMBB->addSuccessor(restoreMBB);
15706
15707  // mainMBB:
15708  //  EAX = 0
15709  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
15710  mainMBB->addSuccessor(sinkMBB);
15711
15712  // sinkMBB:
15713  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15714          TII->get(X86::PHI), DstReg)
15715    .addReg(mainDstReg).addMBB(mainMBB)
15716    .addReg(restoreDstReg).addMBB(restoreMBB);
15717
15718  // restoreMBB:
15719  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
15720  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
15721  restoreMBB->addSuccessor(sinkMBB);
15722
15723  MI->eraseFromParent();
15724  return sinkMBB;
15725}
15726
15727MachineBasicBlock *
15728X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
15729                                     MachineBasicBlock *MBB) const {
15730  DebugLoc DL = MI->getDebugLoc();
15731  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15732
15733  MachineFunction *MF = MBB->getParent();
15734  MachineRegisterInfo &MRI = MF->getRegInfo();
15735
15736  // Memory Reference
15737  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15738  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15739
15740  MVT PVT = getPointerTy();
15741  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15742         "Invalid Pointer Size!");
15743
15744  const TargetRegisterClass *RC =
15745    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
15746  unsigned Tmp = MRI.createVirtualRegister(RC);
15747  // Since FP is only updated here but NOT referenced, it's treated as GPR.
15748  const X86RegisterInfo *RegInfo =
15749    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15750  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
15751  unsigned SP = RegInfo->getStackRegister();
15752
15753  MachineInstrBuilder MIB;
15754
15755  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15756  const int64_t SPOffset = 2 * PVT.getStoreSize();
15757
15758  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
15759  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
15760
15761  // Reload FP
15762  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
15763  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
15764    MIB.addOperand(MI->getOperand(i));
15765  MIB.setMemRefs(MMOBegin, MMOEnd);
15766  // Reload IP
15767  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
15768  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15769    if (i == X86::AddrDisp)
15770      MIB.addDisp(MI->getOperand(i), LabelOffset);
15771    else
15772      MIB.addOperand(MI->getOperand(i));
15773  }
15774  MIB.setMemRefs(MMOBegin, MMOEnd);
15775  // Reload SP
15776  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
15777  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15778    if (i == X86::AddrDisp)
15779      MIB.addDisp(MI->getOperand(i), SPOffset);
15780    else
15781      MIB.addOperand(MI->getOperand(i));
15782  }
15783  MIB.setMemRefs(MMOBegin, MMOEnd);
15784  // Jump
15785  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
15786
15787  MI->eraseFromParent();
15788  return MBB;
15789}
15790
15791MachineBasicBlock *
15792X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
15793                                               MachineBasicBlock *BB) const {
15794  switch (MI->getOpcode()) {
15795  default: llvm_unreachable("Unexpected instr type to insert");
15796  case X86::TAILJMPd64:
15797  case X86::TAILJMPr64:
15798  case X86::TAILJMPm64:
15799    llvm_unreachable("TAILJMP64 would not be touched here.");
15800  case X86::TCRETURNdi64:
15801  case X86::TCRETURNri64:
15802  case X86::TCRETURNmi64:
15803    return BB;
15804  case X86::WIN_ALLOCA:
15805    return EmitLoweredWinAlloca(MI, BB);
15806  case X86::SEG_ALLOCA_32:
15807    return EmitLoweredSegAlloca(MI, BB, false);
15808  case X86::SEG_ALLOCA_64:
15809    return EmitLoweredSegAlloca(MI, BB, true);
15810  case X86::TLSCall_32:
15811  case X86::TLSCall_64:
15812    return EmitLoweredTLSCall(MI, BB);
15813  case X86::CMOV_GR8:
15814  case X86::CMOV_FR32:
15815  case X86::CMOV_FR64:
15816  case X86::CMOV_V4F32:
15817  case X86::CMOV_V2F64:
15818  case X86::CMOV_V2I64:
15819  case X86::CMOV_V8F32:
15820  case X86::CMOV_V4F64:
15821  case X86::CMOV_V4I64:
15822  case X86::CMOV_V16F32:
15823  case X86::CMOV_V8F64:
15824  case X86::CMOV_V8I64:
15825  case X86::CMOV_GR16:
15826  case X86::CMOV_GR32:
15827  case X86::CMOV_RFP32:
15828  case X86::CMOV_RFP64:
15829  case X86::CMOV_RFP80:
15830    return EmitLoweredSelect(MI, BB);
15831
15832  case X86::FP32_TO_INT16_IN_MEM:
15833  case X86::FP32_TO_INT32_IN_MEM:
15834  case X86::FP32_TO_INT64_IN_MEM:
15835  case X86::FP64_TO_INT16_IN_MEM:
15836  case X86::FP64_TO_INT32_IN_MEM:
15837  case X86::FP64_TO_INT64_IN_MEM:
15838  case X86::FP80_TO_INT16_IN_MEM:
15839  case X86::FP80_TO_INT32_IN_MEM:
15840  case X86::FP80_TO_INT64_IN_MEM: {
15841    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15842    DebugLoc DL = MI->getDebugLoc();
15843
15844    // Change the floating point control register to use "round towards zero"
15845    // mode when truncating to an integer value.
15846    MachineFunction *F = BB->getParent();
15847    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
15848    addFrameReference(BuildMI(*BB, MI, DL,
15849                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
15850
15851    // Load the old value of the high byte of the control word...
15852    unsigned OldCW =
15853      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
15854    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
15855                      CWFrameIdx);
15856
15857    // Set the high part to be round to zero...
15858    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
15859      .addImm(0xC7F);
15860
15861    // Reload the modified control word now...
15862    addFrameReference(BuildMI(*BB, MI, DL,
15863                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15864
15865    // Restore the memory image of control word to original value
15866    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
15867      .addReg(OldCW);
15868
15869    // Get the X86 opcode to use.
15870    unsigned Opc;
15871    switch (MI->getOpcode()) {
15872    default: llvm_unreachable("illegal opcode!");
15873    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
15874    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
15875    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
15876    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
15877    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
15878    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
15879    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
15880    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
15881    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
15882    }
15883
15884    X86AddressMode AM;
15885    MachineOperand &Op = MI->getOperand(0);
15886    if (Op.isReg()) {
15887      AM.BaseType = X86AddressMode::RegBase;
15888      AM.Base.Reg = Op.getReg();
15889    } else {
15890      AM.BaseType = X86AddressMode::FrameIndexBase;
15891      AM.Base.FrameIndex = Op.getIndex();
15892    }
15893    Op = MI->getOperand(1);
15894    if (Op.isImm())
15895      AM.Scale = Op.getImm();
15896    Op = MI->getOperand(2);
15897    if (Op.isImm())
15898      AM.IndexReg = Op.getImm();
15899    Op = MI->getOperand(3);
15900    if (Op.isGlobal()) {
15901      AM.GV = Op.getGlobal();
15902    } else {
15903      AM.Disp = Op.getImm();
15904    }
15905    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
15906                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
15907
15908    // Reload the original control word now.
15909    addFrameReference(BuildMI(*BB, MI, DL,
15910                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15911
15912    MI->eraseFromParent();   // The pseudo instruction is gone now.
15913    return BB;
15914  }
15915    // String/text processing lowering.
15916  case X86::PCMPISTRM128REG:
15917  case X86::VPCMPISTRM128REG:
15918  case X86::PCMPISTRM128MEM:
15919  case X86::VPCMPISTRM128MEM:
15920  case X86::PCMPESTRM128REG:
15921  case X86::VPCMPESTRM128REG:
15922  case X86::PCMPESTRM128MEM:
15923  case X86::VPCMPESTRM128MEM:
15924    assert(Subtarget->hasSSE42() &&
15925           "Target must have SSE4.2 or AVX features enabled");
15926    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
15927
15928  // String/text processing lowering.
15929  case X86::PCMPISTRIREG:
15930  case X86::VPCMPISTRIREG:
15931  case X86::PCMPISTRIMEM:
15932  case X86::VPCMPISTRIMEM:
15933  case X86::PCMPESTRIREG:
15934  case X86::VPCMPESTRIREG:
15935  case X86::PCMPESTRIMEM:
15936  case X86::VPCMPESTRIMEM:
15937    assert(Subtarget->hasSSE42() &&
15938           "Target must have SSE4.2 or AVX features enabled");
15939    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
15940
15941  // Thread synchronization.
15942  case X86::MONITOR:
15943    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
15944
15945  // xbegin
15946  case X86::XBEGIN:
15947    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
15948
15949  // Atomic Lowering.
15950  case X86::ATOMAND8:
15951  case X86::ATOMAND16:
15952  case X86::ATOMAND32:
15953  case X86::ATOMAND64:
15954    // Fall through
15955  case X86::ATOMOR8:
15956  case X86::ATOMOR16:
15957  case X86::ATOMOR32:
15958  case X86::ATOMOR64:
15959    // Fall through
15960  case X86::ATOMXOR16:
15961  case X86::ATOMXOR8:
15962  case X86::ATOMXOR32:
15963  case X86::ATOMXOR64:
15964    // Fall through
15965  case X86::ATOMNAND8:
15966  case X86::ATOMNAND16:
15967  case X86::ATOMNAND32:
15968  case X86::ATOMNAND64:
15969    // Fall through
15970  case X86::ATOMMAX8:
15971  case X86::ATOMMAX16:
15972  case X86::ATOMMAX32:
15973  case X86::ATOMMAX64:
15974    // Fall through
15975  case X86::ATOMMIN8:
15976  case X86::ATOMMIN16:
15977  case X86::ATOMMIN32:
15978  case X86::ATOMMIN64:
15979    // Fall through
15980  case X86::ATOMUMAX8:
15981  case X86::ATOMUMAX16:
15982  case X86::ATOMUMAX32:
15983  case X86::ATOMUMAX64:
15984    // Fall through
15985  case X86::ATOMUMIN8:
15986  case X86::ATOMUMIN16:
15987  case X86::ATOMUMIN32:
15988  case X86::ATOMUMIN64:
15989    return EmitAtomicLoadArith(MI, BB);
15990
15991  // This group does 64-bit operations on a 32-bit host.
15992  case X86::ATOMAND6432:
15993  case X86::ATOMOR6432:
15994  case X86::ATOMXOR6432:
15995  case X86::ATOMNAND6432:
15996  case X86::ATOMADD6432:
15997  case X86::ATOMSUB6432:
15998  case X86::ATOMMAX6432:
15999  case X86::ATOMMIN6432:
16000  case X86::ATOMUMAX6432:
16001  case X86::ATOMUMIN6432:
16002  case X86::ATOMSWAP6432:
16003    return EmitAtomicLoadArith6432(MI, BB);
16004
16005  case X86::VASTART_SAVE_XMM_REGS:
16006    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
16007
16008  case X86::VAARG_64:
16009    return EmitVAARG64WithCustomInserter(MI, BB);
16010
16011  case X86::EH_SjLj_SetJmp32:
16012  case X86::EH_SjLj_SetJmp64:
16013    return emitEHSjLjSetJmp(MI, BB);
16014
16015  case X86::EH_SjLj_LongJmp32:
16016  case X86::EH_SjLj_LongJmp64:
16017    return emitEHSjLjLongJmp(MI, BB);
16018  }
16019}
16020
16021//===----------------------------------------------------------------------===//
16022//                           X86 Optimization Hooks
16023//===----------------------------------------------------------------------===//
16024
16025void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
16026                                                       APInt &KnownZero,
16027                                                       APInt &KnownOne,
16028                                                       const SelectionDAG &DAG,
16029                                                       unsigned Depth) const {
16030  unsigned BitWidth = KnownZero.getBitWidth();
16031  unsigned Opc = Op.getOpcode();
16032  assert((Opc >= ISD::BUILTIN_OP_END ||
16033          Opc == ISD::INTRINSIC_WO_CHAIN ||
16034          Opc == ISD::INTRINSIC_W_CHAIN ||
16035          Opc == ISD::INTRINSIC_VOID) &&
16036         "Should use MaskedValueIsZero if you don't know whether Op"
16037         " is a target node!");
16038
16039  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
16040  switch (Opc) {
16041  default: break;
16042  case X86ISD::ADD:
16043  case X86ISD::SUB:
16044  case X86ISD::ADC:
16045  case X86ISD::SBB:
16046  case X86ISD::SMUL:
16047  case X86ISD::UMUL:
16048  case X86ISD::INC:
16049  case X86ISD::DEC:
16050  case X86ISD::OR:
16051  case X86ISD::XOR:
16052  case X86ISD::AND:
16053    // These nodes' second result is a boolean.
16054    if (Op.getResNo() == 0)
16055      break;
16056    // Fallthrough
16057  case X86ISD::SETCC:
16058    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
16059    break;
16060  case ISD::INTRINSIC_WO_CHAIN: {
16061    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16062    unsigned NumLoBits = 0;
16063    switch (IntId) {
16064    default: break;
16065    case Intrinsic::x86_sse_movmsk_ps:
16066    case Intrinsic::x86_avx_movmsk_ps_256:
16067    case Intrinsic::x86_sse2_movmsk_pd:
16068    case Intrinsic::x86_avx_movmsk_pd_256:
16069    case Intrinsic::x86_mmx_pmovmskb:
16070    case Intrinsic::x86_sse2_pmovmskb_128:
16071    case Intrinsic::x86_avx2_pmovmskb: {
16072      // High bits of movmskp{s|d}, pmovmskb are known zero.
16073      switch (IntId) {
16074        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
16075        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
16076        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
16077        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
16078        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
16079        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
16080        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
16081        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
16082      }
16083      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
16084      break;
16085    }
16086    }
16087    break;
16088  }
16089  }
16090}
16091
16092unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
16093                                                         unsigned Depth) const {
16094  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
16095  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
16096    return Op.getValueType().getScalarType().getSizeInBits();
16097
16098  // Fallback case.
16099  return 1;
16100}
16101
16102/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
16103/// node is a GlobalAddress + offset.
16104bool X86TargetLowering::isGAPlusOffset(SDNode *N,
16105                                       const GlobalValue* &GA,
16106                                       int64_t &Offset) const {
16107  if (N->getOpcode() == X86ISD::Wrapper) {
16108    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
16109      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
16110      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
16111      return true;
16112    }
16113  }
16114  return TargetLowering::isGAPlusOffset(N, GA, Offset);
16115}
16116
16117/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
16118/// same as extracting the high 128-bit part of 256-bit vector and then
16119/// inserting the result into the low part of a new 256-bit vector
16120static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
16121  EVT VT = SVOp->getValueType(0);
16122  unsigned NumElems = VT.getVectorNumElements();
16123
16124  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16125  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
16126    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16127        SVOp->getMaskElt(j) >= 0)
16128      return false;
16129
16130  return true;
16131}
16132
16133/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
16134/// same as extracting the low 128-bit part of 256-bit vector and then
16135/// inserting the result into the high part of a new 256-bit vector
16136static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
16137  EVT VT = SVOp->getValueType(0);
16138  unsigned NumElems = VT.getVectorNumElements();
16139
16140  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16141  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
16142    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16143        SVOp->getMaskElt(j) >= 0)
16144      return false;
16145
16146  return true;
16147}
16148
16149/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
16150static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
16151                                        TargetLowering::DAGCombinerInfo &DCI,
16152                                        const X86Subtarget* Subtarget) {
16153  SDLoc dl(N);
16154  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
16155  SDValue V1 = SVOp->getOperand(0);
16156  SDValue V2 = SVOp->getOperand(1);
16157  EVT VT = SVOp->getValueType(0);
16158  unsigned NumElems = VT.getVectorNumElements();
16159
16160  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
16161      V2.getOpcode() == ISD::CONCAT_VECTORS) {
16162    //
16163    //                   0,0,0,...
16164    //                      |
16165    //    V      UNDEF    BUILD_VECTOR    UNDEF
16166    //     \      /           \           /
16167    //  CONCAT_VECTOR         CONCAT_VECTOR
16168    //         \                  /
16169    //          \                /
16170    //          RESULT: V + zero extended
16171    //
16172    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
16173        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
16174        V1.getOperand(1).getOpcode() != ISD::UNDEF)
16175      return SDValue();
16176
16177    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
16178      return SDValue();
16179
16180    // To match the shuffle mask, the first half of the mask should
16181    // be exactly the first vector, and all the rest a splat with the
16182    // first element of the second one.
16183    for (unsigned i = 0; i != NumElems/2; ++i)
16184      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
16185          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
16186        return SDValue();
16187
16188    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
16189    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
16190      if (Ld->hasNUsesOfValue(1, 0)) {
16191        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
16192        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
16193        SDValue ResNode =
16194          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
16195                                  array_lengthof(Ops),
16196                                  Ld->getMemoryVT(),
16197                                  Ld->getPointerInfo(),
16198                                  Ld->getAlignment(),
16199                                  false/*isVolatile*/, true/*ReadMem*/,
16200                                  false/*WriteMem*/);
16201
16202        // Make sure the newly-created LOAD is in the same position as Ld in
16203        // terms of dependency. We create a TokenFactor for Ld and ResNode,
16204        // and update uses of Ld's output chain to use the TokenFactor.
16205        if (Ld->hasAnyUseOfValue(1)) {
16206          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16207                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
16208          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
16209          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
16210                                 SDValue(ResNode.getNode(), 1));
16211        }
16212
16213        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
16214      }
16215    }
16216
16217    // Emit a zeroed vector and insert the desired subvector on its
16218    // first half.
16219    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16220    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
16221    return DCI.CombineTo(N, InsV);
16222  }
16223
16224  //===--------------------------------------------------------------------===//
16225  // Combine some shuffles into subvector extracts and inserts:
16226  //
16227
16228  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16229  if (isShuffleHigh128VectorInsertLow(SVOp)) {
16230    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
16231    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
16232    return DCI.CombineTo(N, InsV);
16233  }
16234
16235  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16236  if (isShuffleLow128VectorInsertHigh(SVOp)) {
16237    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
16238    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
16239    return DCI.CombineTo(N, InsV);
16240  }
16241
16242  return SDValue();
16243}
16244
16245/// PerformShuffleCombine - Performs several different shuffle combines.
16246static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
16247                                     TargetLowering::DAGCombinerInfo &DCI,
16248                                     const X86Subtarget *Subtarget) {
16249  SDLoc dl(N);
16250  EVT VT = N->getValueType(0);
16251
16252  // Don't create instructions with illegal types after legalize types has run.
16253  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16254  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
16255    return SDValue();
16256
16257  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
16258  if (Subtarget->hasFp256() && VT.is256BitVector() &&
16259      N->getOpcode() == ISD::VECTOR_SHUFFLE)
16260    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
16261
16262  // Only handle 128 wide vector from here on.
16263  if (!VT.is128BitVector())
16264    return SDValue();
16265
16266  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
16267  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
16268  // consecutive, non-overlapping, and in the right order.
16269  SmallVector<SDValue, 16> Elts;
16270  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
16271    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
16272
16273  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
16274}
16275
16276/// PerformTruncateCombine - Converts truncate operation to
16277/// a sequence of vector shuffle operations.
16278/// It is possible when we truncate 256-bit vector to 128-bit vector
16279static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
16280                                      TargetLowering::DAGCombinerInfo &DCI,
16281                                      const X86Subtarget *Subtarget)  {
16282  return SDValue();
16283}
16284
16285/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
16286/// specific shuffle of a load can be folded into a single element load.
16287/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
16288/// shuffles have been customed lowered so we need to handle those here.
16289static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
16290                                         TargetLowering::DAGCombinerInfo &DCI) {
16291  if (DCI.isBeforeLegalizeOps())
16292    return SDValue();
16293
16294  SDValue InVec = N->getOperand(0);
16295  SDValue EltNo = N->getOperand(1);
16296
16297  if (!isa<ConstantSDNode>(EltNo))
16298    return SDValue();
16299
16300  EVT VT = InVec.getValueType();
16301
16302  bool HasShuffleIntoBitcast = false;
16303  if (InVec.getOpcode() == ISD::BITCAST) {
16304    // Don't duplicate a load with other uses.
16305    if (!InVec.hasOneUse())
16306      return SDValue();
16307    EVT BCVT = InVec.getOperand(0).getValueType();
16308    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
16309      return SDValue();
16310    InVec = InVec.getOperand(0);
16311    HasShuffleIntoBitcast = true;
16312  }
16313
16314  if (!isTargetShuffle(InVec.getOpcode()))
16315    return SDValue();
16316
16317  // Don't duplicate a load with other uses.
16318  if (!InVec.hasOneUse())
16319    return SDValue();
16320
16321  SmallVector<int, 16> ShuffleMask;
16322  bool UnaryShuffle;
16323  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
16324                            UnaryShuffle))
16325    return SDValue();
16326
16327  // Select the input vector, guarding against out of range extract vector.
16328  unsigned NumElems = VT.getVectorNumElements();
16329  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
16330  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
16331  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
16332                                         : InVec.getOperand(1);
16333
16334  // If inputs to shuffle are the same for both ops, then allow 2 uses
16335  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
16336
16337  if (LdNode.getOpcode() == ISD::BITCAST) {
16338    // Don't duplicate a load with other uses.
16339    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
16340      return SDValue();
16341
16342    AllowedUses = 1; // only allow 1 load use if we have a bitcast
16343    LdNode = LdNode.getOperand(0);
16344  }
16345
16346  if (!ISD::isNormalLoad(LdNode.getNode()))
16347    return SDValue();
16348
16349  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
16350
16351  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
16352    return SDValue();
16353
16354  if (HasShuffleIntoBitcast) {
16355    // If there's a bitcast before the shuffle, check if the load type and
16356    // alignment is valid.
16357    unsigned Align = LN0->getAlignment();
16358    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16359    unsigned NewAlign = TLI.getDataLayout()->
16360      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
16361
16362    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
16363      return SDValue();
16364  }
16365
16366  // All checks match so transform back to vector_shuffle so that DAG combiner
16367  // can finish the job
16368  SDLoc dl(N);
16369
16370  // Create shuffle node taking into account the case that its a unary shuffle
16371  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
16372  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
16373                                 InVec.getOperand(0), Shuffle,
16374                                 &ShuffleMask[0]);
16375  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
16376  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
16377                     EltNo);
16378}
16379
16380/// Extract one bit from mask vector, like v16i1 or v8i1.
16381/// AVX-512 feature.
16382static SDValue ExtractBitFromMaskVector(SDNode *N, SelectionDAG &DAG) {
16383  SDValue Vec = N->getOperand(0);
16384  SDLoc dl(Vec);
16385  MVT VecVT = Vec.getSimpleValueType();
16386  SDValue Idx = N->getOperand(1);
16387  MVT EltVT = N->getSimpleValueType(0);
16388
16389  assert((VecVT.getVectorElementType() == MVT::i1 && EltVT == MVT::i8) ||
16390         "Unexpected operands in ExtractBitFromMaskVector");
16391
16392  // variable index
16393  if (!isa<ConstantSDNode>(Idx)) {
16394    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
16395    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
16396    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16397                              ExtVT.getVectorElementType(), Ext);
16398    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
16399  }
16400
16401  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
16402
16403  MVT ScalarVT = MVT::getIntegerVT(VecVT.getSizeInBits());
16404  unsigned MaxShift = VecVT.getSizeInBits() - 1;
16405  Vec = DAG.getNode(ISD::BITCAST, dl, ScalarVT, Vec);
16406  Vec = DAG.getNode(ISD::SHL, dl, ScalarVT, Vec,
16407              DAG.getConstant(MaxShift - IdxVal, ScalarVT));
16408  Vec = DAG.getNode(ISD::SRL, dl, ScalarVT, Vec,
16409    DAG.getConstant(MaxShift, ScalarVT));
16410
16411  if (VecVT == MVT::v16i1) {
16412    Vec = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Vec);
16413    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Vec);
16414  }
16415  return DAG.getNode(ISD::BITCAST, dl, MVT::i8, Vec);
16416}
16417
16418/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
16419/// generation and convert it from being a bunch of shuffles and extracts
16420/// to a simple store and scalar loads to extract the elements.
16421static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16422                                         TargetLowering::DAGCombinerInfo &DCI) {
16423  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
16424  if (NewOp.getNode())
16425    return NewOp;
16426
16427  SDValue InputVector = N->getOperand(0);
16428
16429  if (InputVector.getValueType().getVectorElementType() == MVT::i1 &&
16430      !DCI.isBeforeLegalize())
16431    return ExtractBitFromMaskVector(N, DAG);
16432
16433  // Detect whether we are trying to convert from mmx to i32 and the bitcast
16434  // from mmx to v2i32 has a single usage.
16435  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
16436      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
16437      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
16438    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
16439                       N->getValueType(0),
16440                       InputVector.getNode()->getOperand(0));
16441
16442  // Only operate on vectors of 4 elements, where the alternative shuffling
16443  // gets to be more expensive.
16444  if (InputVector.getValueType() != MVT::v4i32)
16445    return SDValue();
16446
16447  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
16448  // single use which is a sign-extend or zero-extend, and all elements are
16449  // used.
16450  SmallVector<SDNode *, 4> Uses;
16451  unsigned ExtractedElements = 0;
16452  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
16453       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
16454    if (UI.getUse().getResNo() != InputVector.getResNo())
16455      return SDValue();
16456
16457    SDNode *Extract = *UI;
16458    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16459      return SDValue();
16460
16461    if (Extract->getValueType(0) != MVT::i32)
16462      return SDValue();
16463    if (!Extract->hasOneUse())
16464      return SDValue();
16465    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
16466        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
16467      return SDValue();
16468    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
16469      return SDValue();
16470
16471    // Record which element was extracted.
16472    ExtractedElements |=
16473      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
16474
16475    Uses.push_back(Extract);
16476  }
16477
16478  // If not all the elements were used, this may not be worthwhile.
16479  if (ExtractedElements != 15)
16480    return SDValue();
16481
16482  // Ok, we've now decided to do the transformation.
16483  SDLoc dl(InputVector);
16484
16485  // Store the value to a temporary stack slot.
16486  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
16487  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
16488                            MachinePointerInfo(), false, false, 0);
16489
16490  // Replace each use (extract) with a load of the appropriate element.
16491  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
16492       UE = Uses.end(); UI != UE; ++UI) {
16493    SDNode *Extract = *UI;
16494
16495    // cOMpute the element's address.
16496    SDValue Idx = Extract->getOperand(1);
16497    unsigned EltSize =
16498        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
16499    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
16500    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16501    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
16502
16503    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
16504                                     StackPtr, OffsetVal);
16505
16506    // Load the scalar.
16507    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
16508                                     ScalarAddr, MachinePointerInfo(),
16509                                     false, false, false, 0);
16510
16511    // Replace the exact with the load.
16512    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
16513  }
16514
16515  // The replacement was made in place; don't return anything.
16516  return SDValue();
16517}
16518
16519/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
16520static std::pair<unsigned, bool>
16521matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
16522                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
16523  if (!VT.isVector())
16524    return std::make_pair(0, false);
16525
16526  bool NeedSplit = false;
16527  switch (VT.getSimpleVT().SimpleTy) {
16528  default: return std::make_pair(0, false);
16529  case MVT::v32i8:
16530  case MVT::v16i16:
16531  case MVT::v8i32:
16532    if (!Subtarget->hasAVX2())
16533      NeedSplit = true;
16534    if (!Subtarget->hasAVX())
16535      return std::make_pair(0, false);
16536    break;
16537  case MVT::v16i8:
16538  case MVT::v8i16:
16539  case MVT::v4i32:
16540    if (!Subtarget->hasSSE2())
16541      return std::make_pair(0, false);
16542  }
16543
16544  // SSE2 has only a small subset of the operations.
16545  bool hasUnsigned = Subtarget->hasSSE41() ||
16546                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
16547  bool hasSigned = Subtarget->hasSSE41() ||
16548                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
16549
16550  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16551
16552  unsigned Opc = 0;
16553  // Check for x CC y ? x : y.
16554  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16555      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16556    switch (CC) {
16557    default: break;
16558    case ISD::SETULT:
16559    case ISD::SETULE:
16560      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16561    case ISD::SETUGT:
16562    case ISD::SETUGE:
16563      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16564    case ISD::SETLT:
16565    case ISD::SETLE:
16566      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16567    case ISD::SETGT:
16568    case ISD::SETGE:
16569      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16570    }
16571  // Check for x CC y ? y : x -- a min/max with reversed arms.
16572  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16573             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16574    switch (CC) {
16575    default: break;
16576    case ISD::SETULT:
16577    case ISD::SETULE:
16578      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16579    case ISD::SETUGT:
16580    case ISD::SETUGE:
16581      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16582    case ISD::SETLT:
16583    case ISD::SETLE:
16584      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16585    case ISD::SETGT:
16586    case ISD::SETGE:
16587      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16588    }
16589  }
16590
16591  return std::make_pair(Opc, NeedSplit);
16592}
16593
16594/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
16595/// nodes.
16596static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
16597                                    TargetLowering::DAGCombinerInfo &DCI,
16598                                    const X86Subtarget *Subtarget) {
16599  SDLoc DL(N);
16600  SDValue Cond = N->getOperand(0);
16601  // Get the LHS/RHS of the select.
16602  SDValue LHS = N->getOperand(1);
16603  SDValue RHS = N->getOperand(2);
16604  EVT VT = LHS.getValueType();
16605  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16606
16607  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
16608  // instructions match the semantics of the common C idiom x<y?x:y but not
16609  // x<=y?x:y, because of how they handle negative zero (which can be
16610  // ignored in unsafe-math mode).
16611  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
16612      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
16613      (Subtarget->hasSSE2() ||
16614       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
16615    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16616
16617    unsigned Opcode = 0;
16618    // Check for x CC y ? x : y.
16619    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16620        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16621      switch (CC) {
16622      default: break;
16623      case ISD::SETULT:
16624        // Converting this to a min would handle NaNs incorrectly, and swapping
16625        // the operands would cause it to handle comparisons between positive
16626        // and negative zero incorrectly.
16627        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16628          if (!DAG.getTarget().Options.UnsafeFPMath &&
16629              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16630            break;
16631          std::swap(LHS, RHS);
16632        }
16633        Opcode = X86ISD::FMIN;
16634        break;
16635      case ISD::SETOLE:
16636        // Converting this to a min would handle comparisons between positive
16637        // and negative zero incorrectly.
16638        if (!DAG.getTarget().Options.UnsafeFPMath &&
16639            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16640          break;
16641        Opcode = X86ISD::FMIN;
16642        break;
16643      case ISD::SETULE:
16644        // Converting this to a min would handle both negative zeros and NaNs
16645        // incorrectly, but we can swap the operands to fix both.
16646        std::swap(LHS, RHS);
16647      case ISD::SETOLT:
16648      case ISD::SETLT:
16649      case ISD::SETLE:
16650        Opcode = X86ISD::FMIN;
16651        break;
16652
16653      case ISD::SETOGE:
16654        // Converting this to a max would handle comparisons between positive
16655        // and negative zero incorrectly.
16656        if (!DAG.getTarget().Options.UnsafeFPMath &&
16657            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16658          break;
16659        Opcode = X86ISD::FMAX;
16660        break;
16661      case ISD::SETUGT:
16662        // Converting this to a max would handle NaNs incorrectly, and swapping
16663        // the operands would cause it to handle comparisons between positive
16664        // and negative zero incorrectly.
16665        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16666          if (!DAG.getTarget().Options.UnsafeFPMath &&
16667              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16668            break;
16669          std::swap(LHS, RHS);
16670        }
16671        Opcode = X86ISD::FMAX;
16672        break;
16673      case ISD::SETUGE:
16674        // Converting this to a max would handle both negative zeros and NaNs
16675        // incorrectly, but we can swap the operands to fix both.
16676        std::swap(LHS, RHS);
16677      case ISD::SETOGT:
16678      case ISD::SETGT:
16679      case ISD::SETGE:
16680        Opcode = X86ISD::FMAX;
16681        break;
16682      }
16683    // Check for x CC y ? y : x -- a min/max with reversed arms.
16684    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16685               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16686      switch (CC) {
16687      default: break;
16688      case ISD::SETOGE:
16689        // Converting this to a min would handle comparisons between positive
16690        // and negative zero incorrectly, and swapping the operands would
16691        // cause it to handle NaNs incorrectly.
16692        if (!DAG.getTarget().Options.UnsafeFPMath &&
16693            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
16694          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16695            break;
16696          std::swap(LHS, RHS);
16697        }
16698        Opcode = X86ISD::FMIN;
16699        break;
16700      case ISD::SETUGT:
16701        // Converting this to a min would handle NaNs incorrectly.
16702        if (!DAG.getTarget().Options.UnsafeFPMath &&
16703            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
16704          break;
16705        Opcode = X86ISD::FMIN;
16706        break;
16707      case ISD::SETUGE:
16708        // Converting this to a min would handle both negative zeros and NaNs
16709        // incorrectly, but we can swap the operands to fix both.
16710        std::swap(LHS, RHS);
16711      case ISD::SETOGT:
16712      case ISD::SETGT:
16713      case ISD::SETGE:
16714        Opcode = X86ISD::FMIN;
16715        break;
16716
16717      case ISD::SETULT:
16718        // Converting this to a max would handle NaNs incorrectly.
16719        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16720          break;
16721        Opcode = X86ISD::FMAX;
16722        break;
16723      case ISD::SETOLE:
16724        // Converting this to a max would handle comparisons between positive
16725        // and negative zero incorrectly, and swapping the operands would
16726        // cause it to handle NaNs incorrectly.
16727        if (!DAG.getTarget().Options.UnsafeFPMath &&
16728            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
16729          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16730            break;
16731          std::swap(LHS, RHS);
16732        }
16733        Opcode = X86ISD::FMAX;
16734        break;
16735      case ISD::SETULE:
16736        // Converting this to a max would handle both negative zeros and NaNs
16737        // incorrectly, but we can swap the operands to fix both.
16738        std::swap(LHS, RHS);
16739      case ISD::SETOLT:
16740      case ISD::SETLT:
16741      case ISD::SETLE:
16742        Opcode = X86ISD::FMAX;
16743        break;
16744      }
16745    }
16746
16747    if (Opcode)
16748      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
16749  }
16750
16751  EVT CondVT = Cond.getValueType();
16752  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
16753      CondVT.getVectorElementType() == MVT::i1) {
16754    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
16755    // lowering on AVX-512. In this case we convert it to
16756    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
16757    // The same situation for all 128 and 256-bit vectors of i8 and i16
16758    EVT OpVT = LHS.getValueType();
16759    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
16760        (OpVT.getVectorElementType() == MVT::i8 ||
16761         OpVT.getVectorElementType() == MVT::i16)) {
16762      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
16763      DCI.AddToWorklist(Cond.getNode());
16764      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
16765    }
16766  }
16767  // If this is a select between two integer constants, try to do some
16768  // optimizations.
16769  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
16770    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
16771      // Don't do this for crazy integer types.
16772      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
16773        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
16774        // so that TrueC (the true value) is larger than FalseC.
16775        bool NeedsCondInvert = false;
16776
16777        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
16778            // Efficiently invertible.
16779            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
16780             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
16781              isa<ConstantSDNode>(Cond.getOperand(1))))) {
16782          NeedsCondInvert = true;
16783          std::swap(TrueC, FalseC);
16784        }
16785
16786        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
16787        if (FalseC->getAPIntValue() == 0 &&
16788            TrueC->getAPIntValue().isPowerOf2()) {
16789          if (NeedsCondInvert) // Invert the condition if needed.
16790            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16791                               DAG.getConstant(1, Cond.getValueType()));
16792
16793          // Zero extend the condition if needed.
16794          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
16795
16796          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16797          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
16798                             DAG.getConstant(ShAmt, MVT::i8));
16799        }
16800
16801        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
16802        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16803          if (NeedsCondInvert) // Invert the condition if needed.
16804            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16805                               DAG.getConstant(1, Cond.getValueType()));
16806
16807          // Zero extend the condition if needed.
16808          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16809                             FalseC->getValueType(0), Cond);
16810          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16811                             SDValue(FalseC, 0));
16812        }
16813
16814        // Optimize cases that will turn into an LEA instruction.  This requires
16815        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16816        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16817          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16818          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16819
16820          bool isFastMultiplier = false;
16821          if (Diff < 10) {
16822            switch ((unsigned char)Diff) {
16823              default: break;
16824              case 1:  // result = add base, cond
16825              case 2:  // result = lea base(    , cond*2)
16826              case 3:  // result = lea base(cond, cond*2)
16827              case 4:  // result = lea base(    , cond*4)
16828              case 5:  // result = lea base(cond, cond*4)
16829              case 8:  // result = lea base(    , cond*8)
16830              case 9:  // result = lea base(cond, cond*8)
16831                isFastMultiplier = true;
16832                break;
16833            }
16834          }
16835
16836          if (isFastMultiplier) {
16837            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16838            if (NeedsCondInvert) // Invert the condition if needed.
16839              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16840                                 DAG.getConstant(1, Cond.getValueType()));
16841
16842            // Zero extend the condition if needed.
16843            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16844                               Cond);
16845            // Scale the condition by the difference.
16846            if (Diff != 1)
16847              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16848                                 DAG.getConstant(Diff, Cond.getValueType()));
16849
16850            // Add the base if non-zero.
16851            if (FalseC->getAPIntValue() != 0)
16852              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16853                                 SDValue(FalseC, 0));
16854            return Cond;
16855          }
16856        }
16857      }
16858  }
16859
16860  // Canonicalize max and min:
16861  // (x > y) ? x : y -> (x >= y) ? x : y
16862  // (x < y) ? x : y -> (x <= y) ? x : y
16863  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
16864  // the need for an extra compare
16865  // against zero. e.g.
16866  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
16867  // subl   %esi, %edi
16868  // testl  %edi, %edi
16869  // movl   $0, %eax
16870  // cmovgl %edi, %eax
16871  // =>
16872  // xorl   %eax, %eax
16873  // subl   %esi, $edi
16874  // cmovsl %eax, %edi
16875  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
16876      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16877      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16878    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16879    switch (CC) {
16880    default: break;
16881    case ISD::SETLT:
16882    case ISD::SETGT: {
16883      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
16884      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
16885                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
16886      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
16887    }
16888    }
16889  }
16890
16891  // Early exit check
16892  if (!TLI.isTypeLegal(VT))
16893    return SDValue();
16894
16895  // Match VSELECTs into subs with unsigned saturation.
16896  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16897      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
16898      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
16899       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
16900    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16901
16902    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
16903    // left side invert the predicate to simplify logic below.
16904    SDValue Other;
16905    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
16906      Other = RHS;
16907      CC = ISD::getSetCCInverse(CC, true);
16908    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
16909      Other = LHS;
16910    }
16911
16912    if (Other.getNode() && Other->getNumOperands() == 2 &&
16913        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
16914      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
16915      SDValue CondRHS = Cond->getOperand(1);
16916
16917      // Look for a general sub with unsigned saturation first.
16918      // x >= y ? x-y : 0 --> subus x, y
16919      // x >  y ? x-y : 0 --> subus x, y
16920      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
16921          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
16922        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16923
16924      // If the RHS is a constant we have to reverse the const canonicalization.
16925      // x > C-1 ? x+-C : 0 --> subus x, C
16926      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
16927          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
16928        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16929        if (CondRHS.getConstantOperandVal(0) == -A-1)
16930          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
16931                             DAG.getConstant(-A, VT));
16932      }
16933
16934      // Another special case: If C was a sign bit, the sub has been
16935      // canonicalized into a xor.
16936      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
16937      //        it's safe to decanonicalize the xor?
16938      // x s< 0 ? x^C : 0 --> subus x, C
16939      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
16940          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
16941          isSplatVector(OpRHS.getNode())) {
16942        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16943        if (A.isSignBit())
16944          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16945      }
16946    }
16947  }
16948
16949  // Try to match a min/max vector operation.
16950  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
16951    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
16952    unsigned Opc = ret.first;
16953    bool NeedSplit = ret.second;
16954
16955    if (Opc && NeedSplit) {
16956      unsigned NumElems = VT.getVectorNumElements();
16957      // Extract the LHS vectors
16958      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
16959      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
16960
16961      // Extract the RHS vectors
16962      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
16963      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
16964
16965      // Create min/max for each subvector
16966      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
16967      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
16968
16969      // Merge the result
16970      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
16971    } else if (Opc)
16972      return DAG.getNode(Opc, DL, VT, LHS, RHS);
16973  }
16974
16975  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
16976  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16977      // Check if SETCC has already been promoted
16978      TLI.getSetCCResultType(*DAG.getContext(), VT) == Cond.getValueType()) {
16979
16980    assert(Cond.getValueType().isVector() &&
16981           "vector select expects a vector selector!");
16982
16983    EVT IntVT = Cond.getValueType();
16984    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
16985    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
16986
16987    if (!TValIsAllOnes && !FValIsAllZeros) {
16988      // Try invert the condition if true value is not all 1s and false value
16989      // is not all 0s.
16990      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
16991      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
16992
16993      if (TValIsAllZeros || FValIsAllOnes) {
16994        SDValue CC = Cond.getOperand(2);
16995        ISD::CondCode NewCC =
16996          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
16997                               Cond.getOperand(0).getValueType().isInteger());
16998        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
16999        std::swap(LHS, RHS);
17000        TValIsAllOnes = FValIsAllOnes;
17001        FValIsAllZeros = TValIsAllZeros;
17002      }
17003    }
17004
17005    if (TValIsAllOnes || FValIsAllZeros) {
17006      SDValue Ret;
17007
17008      if (TValIsAllOnes && FValIsAllZeros)
17009        Ret = Cond;
17010      else if (TValIsAllOnes)
17011        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
17012                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
17013      else if (FValIsAllZeros)
17014        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
17015                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
17016
17017      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
17018    }
17019  }
17020
17021  // If we know that this node is legal then we know that it is going to be
17022  // matched by one of the SSE/AVX BLEND instructions. These instructions only
17023  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
17024  // to simplify previous instructions.
17025  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
17026      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
17027    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
17028
17029    // Don't optimize vector selects that map to mask-registers.
17030    if (BitWidth == 1)
17031      return SDValue();
17032
17033    // Check all uses of that condition operand to check whether it will be
17034    // consumed by non-BLEND instructions, which may depend on all bits are set
17035    // properly.
17036    for (SDNode::use_iterator I = Cond->use_begin(),
17037                              E = Cond->use_end(); I != E; ++I)
17038      if (I->getOpcode() != ISD::VSELECT)
17039        // TODO: Add other opcodes eventually lowered into BLEND.
17040        return SDValue();
17041
17042    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
17043    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
17044
17045    APInt KnownZero, KnownOne;
17046    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
17047                                          DCI.isBeforeLegalizeOps());
17048    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
17049        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
17050      DCI.CommitTargetLoweringOpt(TLO);
17051  }
17052
17053  return SDValue();
17054}
17055
17056// Check whether a boolean test is testing a boolean value generated by
17057// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
17058// code.
17059//
17060// Simplify the following patterns:
17061// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
17062// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
17063// to (Op EFLAGS Cond)
17064//
17065// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
17066// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
17067// to (Op EFLAGS !Cond)
17068//
17069// where Op could be BRCOND or CMOV.
17070//
17071static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
17072  // Quit if not CMP and SUB with its value result used.
17073  if (Cmp.getOpcode() != X86ISD::CMP &&
17074      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
17075      return SDValue();
17076
17077  // Quit if not used as a boolean value.
17078  if (CC != X86::COND_E && CC != X86::COND_NE)
17079    return SDValue();
17080
17081  // Check CMP operands. One of them should be 0 or 1 and the other should be
17082  // an SetCC or extended from it.
17083  SDValue Op1 = Cmp.getOperand(0);
17084  SDValue Op2 = Cmp.getOperand(1);
17085
17086  SDValue SetCC;
17087  const ConstantSDNode* C = 0;
17088  bool needOppositeCond = (CC == X86::COND_E);
17089  bool checkAgainstTrue = false; // Is it a comparison against 1?
17090
17091  if ((C = dyn_cast<ConstantSDNode>(Op1)))
17092    SetCC = Op2;
17093  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
17094    SetCC = Op1;
17095  else // Quit if all operands are not constants.
17096    return SDValue();
17097
17098  if (C->getZExtValue() == 1) {
17099    needOppositeCond = !needOppositeCond;
17100    checkAgainstTrue = true;
17101  } else if (C->getZExtValue() != 0)
17102    // Quit if the constant is neither 0 or 1.
17103    return SDValue();
17104
17105  bool truncatedToBoolWithAnd = false;
17106  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
17107  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
17108         SetCC.getOpcode() == ISD::TRUNCATE ||
17109         SetCC.getOpcode() == ISD::AND) {
17110    if (SetCC.getOpcode() == ISD::AND) {
17111      int OpIdx = -1;
17112      ConstantSDNode *CS;
17113      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
17114          CS->getZExtValue() == 1)
17115        OpIdx = 1;
17116      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
17117          CS->getZExtValue() == 1)
17118        OpIdx = 0;
17119      if (OpIdx == -1)
17120        break;
17121      SetCC = SetCC.getOperand(OpIdx);
17122      truncatedToBoolWithAnd = true;
17123    } else
17124      SetCC = SetCC.getOperand(0);
17125  }
17126
17127  switch (SetCC.getOpcode()) {
17128  case X86ISD::SETCC_CARRY:
17129    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
17130    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
17131    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
17132    // truncated to i1 using 'and'.
17133    if (checkAgainstTrue && !truncatedToBoolWithAnd)
17134      break;
17135    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
17136           "Invalid use of SETCC_CARRY!");
17137    // FALL THROUGH
17138  case X86ISD::SETCC:
17139    // Set the condition code or opposite one if necessary.
17140    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
17141    if (needOppositeCond)
17142      CC = X86::GetOppositeBranchCondition(CC);
17143    return SetCC.getOperand(1);
17144  case X86ISD::CMOV: {
17145    // Check whether false/true value has canonical one, i.e. 0 or 1.
17146    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
17147    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
17148    // Quit if true value is not a constant.
17149    if (!TVal)
17150      return SDValue();
17151    // Quit if false value is not a constant.
17152    if (!FVal) {
17153      SDValue Op = SetCC.getOperand(0);
17154      // Skip 'zext' or 'trunc' node.
17155      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
17156          Op.getOpcode() == ISD::TRUNCATE)
17157        Op = Op.getOperand(0);
17158      // A special case for rdrand/rdseed, where 0 is set if false cond is
17159      // found.
17160      if ((Op.getOpcode() != X86ISD::RDRAND &&
17161           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
17162        return SDValue();
17163    }
17164    // Quit if false value is not the constant 0 or 1.
17165    bool FValIsFalse = true;
17166    if (FVal && FVal->getZExtValue() != 0) {
17167      if (FVal->getZExtValue() != 1)
17168        return SDValue();
17169      // If FVal is 1, opposite cond is needed.
17170      needOppositeCond = !needOppositeCond;
17171      FValIsFalse = false;
17172    }
17173    // Quit if TVal is not the constant opposite of FVal.
17174    if (FValIsFalse && TVal->getZExtValue() != 1)
17175      return SDValue();
17176    if (!FValIsFalse && TVal->getZExtValue() != 0)
17177      return SDValue();
17178    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
17179    if (needOppositeCond)
17180      CC = X86::GetOppositeBranchCondition(CC);
17181    return SetCC.getOperand(3);
17182  }
17183  }
17184
17185  return SDValue();
17186}
17187
17188/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
17189static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
17190                                  TargetLowering::DAGCombinerInfo &DCI,
17191                                  const X86Subtarget *Subtarget) {
17192  SDLoc DL(N);
17193
17194  // If the flag operand isn't dead, don't touch this CMOV.
17195  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
17196    return SDValue();
17197
17198  SDValue FalseOp = N->getOperand(0);
17199  SDValue TrueOp = N->getOperand(1);
17200  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
17201  SDValue Cond = N->getOperand(3);
17202
17203  if (CC == X86::COND_E || CC == X86::COND_NE) {
17204    switch (Cond.getOpcode()) {
17205    default: break;
17206    case X86ISD::BSR:
17207    case X86ISD::BSF:
17208      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
17209      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
17210        return (CC == X86::COND_E) ? FalseOp : TrueOp;
17211    }
17212  }
17213
17214  SDValue Flags;
17215
17216  Flags = checkBoolTestSetCCCombine(Cond, CC);
17217  if (Flags.getNode() &&
17218      // Extra check as FCMOV only supports a subset of X86 cond.
17219      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
17220    SDValue Ops[] = { FalseOp, TrueOp,
17221                      DAG.getConstant(CC, MVT::i8), Flags };
17222    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
17223                       Ops, array_lengthof(Ops));
17224  }
17225
17226  // If this is a select between two integer constants, try to do some
17227  // optimizations.  Note that the operands are ordered the opposite of SELECT
17228  // operands.
17229  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
17230    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
17231      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
17232      // larger than FalseC (the false value).
17233      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
17234        CC = X86::GetOppositeBranchCondition(CC);
17235        std::swap(TrueC, FalseC);
17236        std::swap(TrueOp, FalseOp);
17237      }
17238
17239      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
17240      // This is efficient for any integer data type (including i8/i16) and
17241      // shift amount.
17242      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
17243        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17244                           DAG.getConstant(CC, MVT::i8), Cond);
17245
17246        // Zero extend the condition if needed.
17247        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
17248
17249        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
17250        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
17251                           DAG.getConstant(ShAmt, MVT::i8));
17252        if (N->getNumValues() == 2)  // Dead flag value?
17253          return DCI.CombineTo(N, Cond, SDValue());
17254        return Cond;
17255      }
17256
17257      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
17258      // for any integer data type, including i8/i16.
17259      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
17260        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17261                           DAG.getConstant(CC, MVT::i8), Cond);
17262
17263        // Zero extend the condition if needed.
17264        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
17265                           FalseC->getValueType(0), Cond);
17266        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17267                           SDValue(FalseC, 0));
17268
17269        if (N->getNumValues() == 2)  // Dead flag value?
17270          return DCI.CombineTo(N, Cond, SDValue());
17271        return Cond;
17272      }
17273
17274      // Optimize cases that will turn into an LEA instruction.  This requires
17275      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
17276      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
17277        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
17278        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
17279
17280        bool isFastMultiplier = false;
17281        if (Diff < 10) {
17282          switch ((unsigned char)Diff) {
17283          default: break;
17284          case 1:  // result = add base, cond
17285          case 2:  // result = lea base(    , cond*2)
17286          case 3:  // result = lea base(cond, cond*2)
17287          case 4:  // result = lea base(    , cond*4)
17288          case 5:  // result = lea base(cond, cond*4)
17289          case 8:  // result = lea base(    , cond*8)
17290          case 9:  // result = lea base(cond, cond*8)
17291            isFastMultiplier = true;
17292            break;
17293          }
17294        }
17295
17296        if (isFastMultiplier) {
17297          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
17298          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17299                             DAG.getConstant(CC, MVT::i8), Cond);
17300          // Zero extend the condition if needed.
17301          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
17302                             Cond);
17303          // Scale the condition by the difference.
17304          if (Diff != 1)
17305            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
17306                               DAG.getConstant(Diff, Cond.getValueType()));
17307
17308          // Add the base if non-zero.
17309          if (FalseC->getAPIntValue() != 0)
17310            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17311                               SDValue(FalseC, 0));
17312          if (N->getNumValues() == 2)  // Dead flag value?
17313            return DCI.CombineTo(N, Cond, SDValue());
17314          return Cond;
17315        }
17316      }
17317    }
17318  }
17319
17320  // Handle these cases:
17321  //   (select (x != c), e, c) -> select (x != c), e, x),
17322  //   (select (x == c), c, e) -> select (x == c), x, e)
17323  // where the c is an integer constant, and the "select" is the combination
17324  // of CMOV and CMP.
17325  //
17326  // The rationale for this change is that the conditional-move from a constant
17327  // needs two instructions, however, conditional-move from a register needs
17328  // only one instruction.
17329  //
17330  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
17331  //  some instruction-combining opportunities. This opt needs to be
17332  //  postponed as late as possible.
17333  //
17334  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
17335    // the DCI.xxxx conditions are provided to postpone the optimization as
17336    // late as possible.
17337
17338    ConstantSDNode *CmpAgainst = 0;
17339    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
17340        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
17341        !isa<ConstantSDNode>(Cond.getOperand(0))) {
17342
17343      if (CC == X86::COND_NE &&
17344          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
17345        CC = X86::GetOppositeBranchCondition(CC);
17346        std::swap(TrueOp, FalseOp);
17347      }
17348
17349      if (CC == X86::COND_E &&
17350          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
17351        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
17352                          DAG.getConstant(CC, MVT::i8), Cond };
17353        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
17354                           array_lengthof(Ops));
17355      }
17356    }
17357  }
17358
17359  return SDValue();
17360}
17361
17362/// PerformMulCombine - Optimize a single multiply with constant into two
17363/// in order to implement it with two cheaper instructions, e.g.
17364/// LEA + SHL, LEA + LEA.
17365static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
17366                                 TargetLowering::DAGCombinerInfo &DCI) {
17367  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17368    return SDValue();
17369
17370  EVT VT = N->getValueType(0);
17371  if (VT != MVT::i64)
17372    return SDValue();
17373
17374  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
17375  if (!C)
17376    return SDValue();
17377  uint64_t MulAmt = C->getZExtValue();
17378  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
17379    return SDValue();
17380
17381  uint64_t MulAmt1 = 0;
17382  uint64_t MulAmt2 = 0;
17383  if ((MulAmt % 9) == 0) {
17384    MulAmt1 = 9;
17385    MulAmt2 = MulAmt / 9;
17386  } else if ((MulAmt % 5) == 0) {
17387    MulAmt1 = 5;
17388    MulAmt2 = MulAmt / 5;
17389  } else if ((MulAmt % 3) == 0) {
17390    MulAmt1 = 3;
17391    MulAmt2 = MulAmt / 3;
17392  }
17393  if (MulAmt2 &&
17394      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
17395    SDLoc DL(N);
17396
17397    if (isPowerOf2_64(MulAmt2) &&
17398        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
17399      // If second multiplifer is pow2, issue it first. We want the multiply by
17400      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
17401      // is an add.
17402      std::swap(MulAmt1, MulAmt2);
17403
17404    SDValue NewMul;
17405    if (isPowerOf2_64(MulAmt1))
17406      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17407                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
17408    else
17409      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
17410                           DAG.getConstant(MulAmt1, VT));
17411
17412    if (isPowerOf2_64(MulAmt2))
17413      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
17414                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
17415    else
17416      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
17417                           DAG.getConstant(MulAmt2, VT));
17418
17419    // Do not add new nodes to DAG combiner worklist.
17420    DCI.CombineTo(N, NewMul, false);
17421  }
17422  return SDValue();
17423}
17424
17425static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
17426  SDValue N0 = N->getOperand(0);
17427  SDValue N1 = N->getOperand(1);
17428  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
17429  EVT VT = N0.getValueType();
17430
17431  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
17432  // since the result of setcc_c is all zero's or all ones.
17433  if (VT.isInteger() && !VT.isVector() &&
17434      N1C && N0.getOpcode() == ISD::AND &&
17435      N0.getOperand(1).getOpcode() == ISD::Constant) {
17436    SDValue N00 = N0.getOperand(0);
17437    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
17438        ((N00.getOpcode() == ISD::ANY_EXTEND ||
17439          N00.getOpcode() == ISD::ZERO_EXTEND) &&
17440         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
17441      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
17442      APInt ShAmt = N1C->getAPIntValue();
17443      Mask = Mask.shl(ShAmt);
17444      if (Mask != 0)
17445        return DAG.getNode(ISD::AND, SDLoc(N), VT,
17446                           N00, DAG.getConstant(Mask, VT));
17447    }
17448  }
17449
17450  // Hardware support for vector shifts is sparse which makes us scalarize the
17451  // vector operations in many cases. Also, on sandybridge ADD is faster than
17452  // shl.
17453  // (shl V, 1) -> add V,V
17454  if (isSplatVector(N1.getNode())) {
17455    assert(N0.getValueType().isVector() && "Invalid vector shift type");
17456    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
17457    // We shift all of the values by one. In many cases we do not have
17458    // hardware support for this operation. This is better expressed as an ADD
17459    // of two values.
17460    if (N1C && (1 == N1C->getZExtValue())) {
17461      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
17462    }
17463  }
17464
17465  return SDValue();
17466}
17467
17468/// \brief Returns a vector of 0s if the node in input is a vector logical
17469/// shift by a constant amount which is known to be bigger than or equal
17470/// to the vector element size in bits.
17471static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
17472                                      const X86Subtarget *Subtarget) {
17473  EVT VT = N->getValueType(0);
17474
17475  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
17476      (!Subtarget->hasInt256() ||
17477       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
17478    return SDValue();
17479
17480  SDValue Amt = N->getOperand(1);
17481  SDLoc DL(N);
17482  if (isSplatVector(Amt.getNode())) {
17483    SDValue SclrAmt = Amt->getOperand(0);
17484    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
17485      APInt ShiftAmt = C->getAPIntValue();
17486      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
17487
17488      // SSE2/AVX2 logical shifts always return a vector of 0s
17489      // if the shift amount is bigger than or equal to
17490      // the element size. The constant shift amount will be
17491      // encoded as a 8-bit immediate.
17492      if (ShiftAmt.trunc(8).uge(MaxAmount))
17493        return getZeroVector(VT, Subtarget, DAG, DL);
17494    }
17495  }
17496
17497  return SDValue();
17498}
17499
17500/// PerformShiftCombine - Combine shifts.
17501static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
17502                                   TargetLowering::DAGCombinerInfo &DCI,
17503                                   const X86Subtarget *Subtarget) {
17504  if (N->getOpcode() == ISD::SHL) {
17505    SDValue V = PerformSHLCombine(N, DAG);
17506    if (V.getNode()) return V;
17507  }
17508
17509  if (N->getOpcode() != ISD::SRA) {
17510    // Try to fold this logical shift into a zero vector.
17511    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
17512    if (V.getNode()) return V;
17513  }
17514
17515  return SDValue();
17516}
17517
17518// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
17519// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
17520// and friends.  Likewise for OR -> CMPNEQSS.
17521static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
17522                            TargetLowering::DAGCombinerInfo &DCI,
17523                            const X86Subtarget *Subtarget) {
17524  unsigned opcode;
17525
17526  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
17527  // we're requiring SSE2 for both.
17528  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
17529    SDValue N0 = N->getOperand(0);
17530    SDValue N1 = N->getOperand(1);
17531    SDValue CMP0 = N0->getOperand(1);
17532    SDValue CMP1 = N1->getOperand(1);
17533    SDLoc DL(N);
17534
17535    // The SETCCs should both refer to the same CMP.
17536    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
17537      return SDValue();
17538
17539    SDValue CMP00 = CMP0->getOperand(0);
17540    SDValue CMP01 = CMP0->getOperand(1);
17541    EVT     VT    = CMP00.getValueType();
17542
17543    if (VT == MVT::f32 || VT == MVT::f64) {
17544      bool ExpectingFlags = false;
17545      // Check for any users that want flags:
17546      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
17547           !ExpectingFlags && UI != UE; ++UI)
17548        switch (UI->getOpcode()) {
17549        default:
17550        case ISD::BR_CC:
17551        case ISD::BRCOND:
17552        case ISD::SELECT:
17553          ExpectingFlags = true;
17554          break;
17555        case ISD::CopyToReg:
17556        case ISD::SIGN_EXTEND:
17557        case ISD::ZERO_EXTEND:
17558        case ISD::ANY_EXTEND:
17559          break;
17560        }
17561
17562      if (!ExpectingFlags) {
17563        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
17564        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
17565
17566        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
17567          X86::CondCode tmp = cc0;
17568          cc0 = cc1;
17569          cc1 = tmp;
17570        }
17571
17572        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
17573            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
17574          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
17575          X86ISD::NodeType NTOperator = is64BitFP ?
17576            X86ISD::FSETCCsd : X86ISD::FSETCCss;
17577          // FIXME: need symbolic constants for these magic numbers.
17578          // See X86ATTInstPrinter.cpp:printSSECC().
17579          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
17580          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
17581                                              DAG.getConstant(x86cc, MVT::i8));
17582          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
17583                                              OnesOrZeroesF);
17584          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
17585                                      DAG.getConstant(1, MVT::i32));
17586          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
17587          return OneBitOfTruth;
17588        }
17589      }
17590    }
17591  }
17592  return SDValue();
17593}
17594
17595/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
17596/// so it can be folded inside ANDNP.
17597static bool CanFoldXORWithAllOnes(const SDNode *N) {
17598  EVT VT = N->getValueType(0);
17599
17600  // Match direct AllOnes for 128 and 256-bit vectors
17601  if (ISD::isBuildVectorAllOnes(N))
17602    return true;
17603
17604  // Look through a bit convert.
17605  if (N->getOpcode() == ISD::BITCAST)
17606    N = N->getOperand(0).getNode();
17607
17608  // Sometimes the operand may come from a insert_subvector building a 256-bit
17609  // allones vector
17610  if (VT.is256BitVector() &&
17611      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
17612    SDValue V1 = N->getOperand(0);
17613    SDValue V2 = N->getOperand(1);
17614
17615    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
17616        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
17617        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
17618        ISD::isBuildVectorAllOnes(V2.getNode()))
17619      return true;
17620  }
17621
17622  return false;
17623}
17624
17625// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
17626// register. In most cases we actually compare or select YMM-sized registers
17627// and mixing the two types creates horrible code. This method optimizes
17628// some of the transition sequences.
17629static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
17630                                 TargetLowering::DAGCombinerInfo &DCI,
17631                                 const X86Subtarget *Subtarget) {
17632  EVT VT = N->getValueType(0);
17633  if (!VT.is256BitVector())
17634    return SDValue();
17635
17636  assert((N->getOpcode() == ISD::ANY_EXTEND ||
17637          N->getOpcode() == ISD::ZERO_EXTEND ||
17638          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
17639
17640  SDValue Narrow = N->getOperand(0);
17641  EVT NarrowVT = Narrow->getValueType(0);
17642  if (!NarrowVT.is128BitVector())
17643    return SDValue();
17644
17645  if (Narrow->getOpcode() != ISD::XOR &&
17646      Narrow->getOpcode() != ISD::AND &&
17647      Narrow->getOpcode() != ISD::OR)
17648    return SDValue();
17649
17650  SDValue N0  = Narrow->getOperand(0);
17651  SDValue N1  = Narrow->getOperand(1);
17652  SDLoc DL(Narrow);
17653
17654  // The Left side has to be a trunc.
17655  if (N0.getOpcode() != ISD::TRUNCATE)
17656    return SDValue();
17657
17658  // The type of the truncated inputs.
17659  EVT WideVT = N0->getOperand(0)->getValueType(0);
17660  if (WideVT != VT)
17661    return SDValue();
17662
17663  // The right side has to be a 'trunc' or a constant vector.
17664  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
17665  bool RHSConst = (isSplatVector(N1.getNode()) &&
17666                   isa<ConstantSDNode>(N1->getOperand(0)));
17667  if (!RHSTrunc && !RHSConst)
17668    return SDValue();
17669
17670  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17671
17672  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
17673    return SDValue();
17674
17675  // Set N0 and N1 to hold the inputs to the new wide operation.
17676  N0 = N0->getOperand(0);
17677  if (RHSConst) {
17678    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
17679                     N1->getOperand(0));
17680    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
17681    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
17682  } else if (RHSTrunc) {
17683    N1 = N1->getOperand(0);
17684  }
17685
17686  // Generate the wide operation.
17687  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
17688  unsigned Opcode = N->getOpcode();
17689  switch (Opcode) {
17690  case ISD::ANY_EXTEND:
17691    return Op;
17692  case ISD::ZERO_EXTEND: {
17693    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
17694    APInt Mask = APInt::getAllOnesValue(InBits);
17695    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
17696    return DAG.getNode(ISD::AND, DL, VT,
17697                       Op, DAG.getConstant(Mask, VT));
17698  }
17699  case ISD::SIGN_EXTEND:
17700    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
17701                       Op, DAG.getValueType(NarrowVT));
17702  default:
17703    llvm_unreachable("Unexpected opcode");
17704  }
17705}
17706
17707static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
17708                                 TargetLowering::DAGCombinerInfo &DCI,
17709                                 const X86Subtarget *Subtarget) {
17710  EVT VT = N->getValueType(0);
17711  if (DCI.isBeforeLegalizeOps())
17712    return SDValue();
17713
17714  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17715  if (R.getNode())
17716    return R;
17717
17718  // Create BLSI, BLSR, and BZHI instructions
17719  // BLSI is X & (-X)
17720  // BLSR is X & (X-1)
17721  // BZHI is X & ((1 << Y) - 1)
17722  // BEXTR is ((X >> imm) & (2**size-1))
17723  if (VT == MVT::i32 || VT == MVT::i64) {
17724    SDValue N0 = N->getOperand(0);
17725    SDValue N1 = N->getOperand(1);
17726    SDLoc DL(N);
17727
17728    if (Subtarget->hasBMI()) {
17729      // Check LHS for neg
17730      if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
17731          isZero(N0.getOperand(0)))
17732        return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
17733
17734      // Check RHS for neg
17735      if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
17736          isZero(N1.getOperand(0)))
17737        return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
17738
17739      // Check LHS for X-1
17740      if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17741          isAllOnes(N0.getOperand(1)))
17742        return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
17743
17744      // Check RHS for X-1
17745      if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17746          isAllOnes(N1.getOperand(1)))
17747        return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
17748    }
17749
17750    if (Subtarget->hasBMI2()) {
17751      // Check for (and (add (shl 1, Y), -1), X)
17752      if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
17753        SDValue N00 = N0.getOperand(0);
17754        if (N00.getOpcode() == ISD::SHL) {
17755          SDValue N001 = N00.getOperand(1);
17756          assert(N001.getValueType() == MVT::i8 && "unexpected type");
17757          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
17758          if (C && C->getZExtValue() == 1)
17759            return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001);
17760        }
17761      }
17762
17763      // Check for (and X, (add (shl 1, Y), -1))
17764      if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
17765        SDValue N10 = N1.getOperand(0);
17766        if (N10.getOpcode() == ISD::SHL) {
17767          SDValue N101 = N10.getOperand(1);
17768          assert(N101.getValueType() == MVT::i8 && "unexpected type");
17769          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
17770          if (C && C->getZExtValue() == 1)
17771            return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101);
17772        }
17773      }
17774    }
17775
17776    // Check for BEXTR.
17777    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
17778        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
17779      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
17780      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17781      if (MaskNode && ShiftNode) {
17782        uint64_t Mask = MaskNode->getZExtValue();
17783        uint64_t Shift = ShiftNode->getZExtValue();
17784        if (isMask_64(Mask)) {
17785          uint64_t MaskSize = CountPopulation_64(Mask);
17786          if (Shift + MaskSize <= VT.getSizeInBits())
17787            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
17788                               DAG.getConstant(Shift | (MaskSize << 8), VT));
17789        }
17790      }
17791    } // BEXTR
17792
17793    return SDValue();
17794  }
17795
17796  // Want to form ANDNP nodes:
17797  // 1) In the hopes of then easily combining them with OR and AND nodes
17798  //    to form PBLEND/PSIGN.
17799  // 2) To match ANDN packed intrinsics
17800  if (VT != MVT::v2i64 && VT != MVT::v4i64)
17801    return SDValue();
17802
17803  SDValue N0 = N->getOperand(0);
17804  SDValue N1 = N->getOperand(1);
17805  SDLoc DL(N);
17806
17807  // Check LHS for vnot
17808  if (N0.getOpcode() == ISD::XOR &&
17809      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
17810      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
17811    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
17812
17813  // Check RHS for vnot
17814  if (N1.getOpcode() == ISD::XOR &&
17815      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
17816      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
17817    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
17818
17819  return SDValue();
17820}
17821
17822static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
17823                                TargetLowering::DAGCombinerInfo &DCI,
17824                                const X86Subtarget *Subtarget) {
17825  EVT VT = N->getValueType(0);
17826  if (DCI.isBeforeLegalizeOps())
17827    return SDValue();
17828
17829  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17830  if (R.getNode())
17831    return R;
17832
17833  SDValue N0 = N->getOperand(0);
17834  SDValue N1 = N->getOperand(1);
17835
17836  // look for psign/blend
17837  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
17838    if (!Subtarget->hasSSSE3() ||
17839        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
17840      return SDValue();
17841
17842    // Canonicalize pandn to RHS
17843    if (N0.getOpcode() == X86ISD::ANDNP)
17844      std::swap(N0, N1);
17845    // or (and (m, y), (pandn m, x))
17846    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
17847      SDValue Mask = N1.getOperand(0);
17848      SDValue X    = N1.getOperand(1);
17849      SDValue Y;
17850      if (N0.getOperand(0) == Mask)
17851        Y = N0.getOperand(1);
17852      if (N0.getOperand(1) == Mask)
17853        Y = N0.getOperand(0);
17854
17855      // Check to see if the mask appeared in both the AND and ANDNP and
17856      if (!Y.getNode())
17857        return SDValue();
17858
17859      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
17860      // Look through mask bitcast.
17861      if (Mask.getOpcode() == ISD::BITCAST)
17862        Mask = Mask.getOperand(0);
17863      if (X.getOpcode() == ISD::BITCAST)
17864        X = X.getOperand(0);
17865      if (Y.getOpcode() == ISD::BITCAST)
17866        Y = Y.getOperand(0);
17867
17868      EVT MaskVT = Mask.getValueType();
17869
17870      // Validate that the Mask operand is a vector sra node.
17871      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
17872      // there is no psrai.b
17873      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
17874      unsigned SraAmt = ~0;
17875      if (Mask.getOpcode() == ISD::SRA) {
17876        SDValue Amt = Mask.getOperand(1);
17877        if (isSplatVector(Amt.getNode())) {
17878          SDValue SclrAmt = Amt->getOperand(0);
17879          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
17880            SraAmt = C->getZExtValue();
17881        }
17882      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
17883        SDValue SraC = Mask.getOperand(1);
17884        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
17885      }
17886      if ((SraAmt + 1) != EltBits)
17887        return SDValue();
17888
17889      SDLoc DL(N);
17890
17891      // Now we know we at least have a plendvb with the mask val.  See if
17892      // we can form a psignb/w/d.
17893      // psign = x.type == y.type == mask.type && y = sub(0, x);
17894      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
17895          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
17896          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
17897        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
17898               "Unsupported VT for PSIGN");
17899        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
17900        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17901      }
17902      // PBLENDVB only available on SSE 4.1
17903      if (!Subtarget->hasSSE41())
17904        return SDValue();
17905
17906      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
17907
17908      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
17909      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
17910      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
17911      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
17912      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17913    }
17914  }
17915
17916  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
17917    return SDValue();
17918
17919  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
17920  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
17921    std::swap(N0, N1);
17922  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
17923    return SDValue();
17924  if (!N0.hasOneUse() || !N1.hasOneUse())
17925    return SDValue();
17926
17927  SDValue ShAmt0 = N0.getOperand(1);
17928  if (ShAmt0.getValueType() != MVT::i8)
17929    return SDValue();
17930  SDValue ShAmt1 = N1.getOperand(1);
17931  if (ShAmt1.getValueType() != MVT::i8)
17932    return SDValue();
17933  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
17934    ShAmt0 = ShAmt0.getOperand(0);
17935  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
17936    ShAmt1 = ShAmt1.getOperand(0);
17937
17938  SDLoc DL(N);
17939  unsigned Opc = X86ISD::SHLD;
17940  SDValue Op0 = N0.getOperand(0);
17941  SDValue Op1 = N1.getOperand(0);
17942  if (ShAmt0.getOpcode() == ISD::SUB) {
17943    Opc = X86ISD::SHRD;
17944    std::swap(Op0, Op1);
17945    std::swap(ShAmt0, ShAmt1);
17946  }
17947
17948  unsigned Bits = VT.getSizeInBits();
17949  if (ShAmt1.getOpcode() == ISD::SUB) {
17950    SDValue Sum = ShAmt1.getOperand(0);
17951    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
17952      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
17953      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
17954        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
17955      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
17956        return DAG.getNode(Opc, DL, VT,
17957                           Op0, Op1,
17958                           DAG.getNode(ISD::TRUNCATE, DL,
17959                                       MVT::i8, ShAmt0));
17960    }
17961  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
17962    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
17963    if (ShAmt0C &&
17964        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
17965      return DAG.getNode(Opc, DL, VT,
17966                         N0.getOperand(0), N1.getOperand(0),
17967                         DAG.getNode(ISD::TRUNCATE, DL,
17968                                       MVT::i8, ShAmt0));
17969  }
17970
17971  return SDValue();
17972}
17973
17974// Generate NEG and CMOV for integer abs.
17975static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
17976  EVT VT = N->getValueType(0);
17977
17978  // Since X86 does not have CMOV for 8-bit integer, we don't convert
17979  // 8-bit integer abs to NEG and CMOV.
17980  if (VT.isInteger() && VT.getSizeInBits() == 8)
17981    return SDValue();
17982
17983  SDValue N0 = N->getOperand(0);
17984  SDValue N1 = N->getOperand(1);
17985  SDLoc DL(N);
17986
17987  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
17988  // and change it to SUB and CMOV.
17989  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
17990      N0.getOpcode() == ISD::ADD &&
17991      N0.getOperand(1) == N1 &&
17992      N1.getOpcode() == ISD::SRA &&
17993      N1.getOperand(0) == N0.getOperand(0))
17994    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
17995      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
17996        // Generate SUB & CMOV.
17997        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
17998                                  DAG.getConstant(0, VT), N0.getOperand(0));
17999
18000        SDValue Ops[] = { N0.getOperand(0), Neg,
18001                          DAG.getConstant(X86::COND_GE, MVT::i8),
18002                          SDValue(Neg.getNode(), 1) };
18003        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
18004                           Ops, array_lengthof(Ops));
18005      }
18006  return SDValue();
18007}
18008
18009// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
18010static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
18011                                 TargetLowering::DAGCombinerInfo &DCI,
18012                                 const X86Subtarget *Subtarget) {
18013  EVT VT = N->getValueType(0);
18014  if (DCI.isBeforeLegalizeOps())
18015    return SDValue();
18016
18017  if (Subtarget->hasCMov()) {
18018    SDValue RV = performIntegerAbsCombine(N, DAG);
18019    if (RV.getNode())
18020      return RV;
18021  }
18022
18023  // Try forming BMI if it is available.
18024  if (!Subtarget->hasBMI())
18025    return SDValue();
18026
18027  if (VT != MVT::i32 && VT != MVT::i64)
18028    return SDValue();
18029
18030  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
18031
18032  // Create BLSMSK instructions by finding X ^ (X-1)
18033  SDValue N0 = N->getOperand(0);
18034  SDValue N1 = N->getOperand(1);
18035  SDLoc DL(N);
18036
18037  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
18038      isAllOnes(N0.getOperand(1)))
18039    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
18040
18041  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
18042      isAllOnes(N1.getOperand(1)))
18043    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
18044
18045  return SDValue();
18046}
18047
18048/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
18049static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
18050                                  TargetLowering::DAGCombinerInfo &DCI,
18051                                  const X86Subtarget *Subtarget) {
18052  LoadSDNode *Ld = cast<LoadSDNode>(N);
18053  EVT RegVT = Ld->getValueType(0);
18054  EVT MemVT = Ld->getMemoryVT();
18055  SDLoc dl(Ld);
18056  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18057  unsigned RegSz = RegVT.getSizeInBits();
18058
18059  // On Sandybridge unaligned 256bit loads are inefficient.
18060  ISD::LoadExtType Ext = Ld->getExtensionType();
18061  unsigned Alignment = Ld->getAlignment();
18062  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
18063  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
18064      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
18065    unsigned NumElems = RegVT.getVectorNumElements();
18066    if (NumElems < 2)
18067      return SDValue();
18068
18069    SDValue Ptr = Ld->getBasePtr();
18070    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
18071
18072    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18073                                  NumElems/2);
18074    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18075                                Ld->getPointerInfo(), Ld->isVolatile(),
18076                                Ld->isNonTemporal(), Ld->isInvariant(),
18077                                Alignment);
18078    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18079    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18080                                Ld->getPointerInfo(), Ld->isVolatile(),
18081                                Ld->isNonTemporal(), Ld->isInvariant(),
18082                                std::min(16U, Alignment));
18083    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18084                             Load1.getValue(1),
18085                             Load2.getValue(1));
18086
18087    SDValue NewVec = DAG.getUNDEF(RegVT);
18088    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
18089    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
18090    return DCI.CombineTo(N, NewVec, TF, true);
18091  }
18092
18093  // If this is a vector EXT Load then attempt to optimize it using a
18094  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
18095  // expansion is still better than scalar code.
18096  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
18097  // emit a shuffle and a arithmetic shift.
18098  // TODO: It is possible to support ZExt by zeroing the undef values
18099  // during the shuffle phase or after the shuffle.
18100  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
18101      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
18102    assert(MemVT != RegVT && "Cannot extend to the same type");
18103    assert(MemVT.isVector() && "Must load a vector from memory");
18104
18105    unsigned NumElems = RegVT.getVectorNumElements();
18106    unsigned MemSz = MemVT.getSizeInBits();
18107    assert(RegSz > MemSz && "Register size must be greater than the mem size");
18108
18109    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
18110      return SDValue();
18111
18112    // All sizes must be a power of two.
18113    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
18114      return SDValue();
18115
18116    // Attempt to load the original value using scalar loads.
18117    // Find the largest scalar type that divides the total loaded size.
18118    MVT SclrLoadTy = MVT::i8;
18119    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18120         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18121      MVT Tp = (MVT::SimpleValueType)tp;
18122      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
18123        SclrLoadTy = Tp;
18124      }
18125    }
18126
18127    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18128    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
18129        (64 <= MemSz))
18130      SclrLoadTy = MVT::f64;
18131
18132    // Calculate the number of scalar loads that we need to perform
18133    // in order to load our vector from memory.
18134    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
18135    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
18136      return SDValue();
18137
18138    unsigned loadRegZize = RegSz;
18139    if (Ext == ISD::SEXTLOAD && RegSz == 256)
18140      loadRegZize /= 2;
18141
18142    // Represent our vector as a sequence of elements which are the
18143    // largest scalar that we can load.
18144    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
18145      loadRegZize/SclrLoadTy.getSizeInBits());
18146
18147    // Represent the data using the same element type that is stored in
18148    // memory. In practice, we ''widen'' MemVT.
18149    EVT WideVecVT =
18150          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18151                       loadRegZize/MemVT.getScalarType().getSizeInBits());
18152
18153    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
18154      "Invalid vector type");
18155
18156    // We can't shuffle using an illegal type.
18157    if (!TLI.isTypeLegal(WideVecVT))
18158      return SDValue();
18159
18160    SmallVector<SDValue, 8> Chains;
18161    SDValue Ptr = Ld->getBasePtr();
18162    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
18163                                        TLI.getPointerTy());
18164    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
18165
18166    for (unsigned i = 0; i < NumLoads; ++i) {
18167      // Perform a single load.
18168      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
18169                                       Ptr, Ld->getPointerInfo(),
18170                                       Ld->isVolatile(), Ld->isNonTemporal(),
18171                                       Ld->isInvariant(), Ld->getAlignment());
18172      Chains.push_back(ScalarLoad.getValue(1));
18173      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
18174      // another round of DAGCombining.
18175      if (i == 0)
18176        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
18177      else
18178        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
18179                          ScalarLoad, DAG.getIntPtrConstant(i));
18180
18181      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18182    }
18183
18184    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18185                               Chains.size());
18186
18187    // Bitcast the loaded value to a vector of the original element type, in
18188    // the size of the target vector type.
18189    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
18190    unsigned SizeRatio = RegSz/MemSz;
18191
18192    if (Ext == ISD::SEXTLOAD) {
18193      // If we have SSE4.1 we can directly emit a VSEXT node.
18194      if (Subtarget->hasSSE41()) {
18195        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
18196        return DCI.CombineTo(N, Sext, TF, true);
18197      }
18198
18199      // Otherwise we'll shuffle the small elements in the high bits of the
18200      // larger type and perform an arithmetic shift. If the shift is not legal
18201      // it's better to scalarize.
18202      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
18203        return SDValue();
18204
18205      // Redistribute the loaded elements into the different locations.
18206      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18207      for (unsigned i = 0; i != NumElems; ++i)
18208        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
18209
18210      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18211                                           DAG.getUNDEF(WideVecVT),
18212                                           &ShuffleVec[0]);
18213
18214      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18215
18216      // Build the arithmetic shift.
18217      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
18218                     MemVT.getVectorElementType().getSizeInBits();
18219      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
18220                          DAG.getConstant(Amt, RegVT));
18221
18222      return DCI.CombineTo(N, Shuff, TF, true);
18223    }
18224
18225    // Redistribute the loaded elements into the different locations.
18226    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18227    for (unsigned i = 0; i != NumElems; ++i)
18228      ShuffleVec[i*SizeRatio] = i;
18229
18230    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18231                                         DAG.getUNDEF(WideVecVT),
18232                                         &ShuffleVec[0]);
18233
18234    // Bitcast to the requested type.
18235    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18236    // Replace the original load with the new sequence
18237    // and return the new chain.
18238    return DCI.CombineTo(N, Shuff, TF, true);
18239  }
18240
18241  return SDValue();
18242}
18243
18244/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
18245static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
18246                                   const X86Subtarget *Subtarget) {
18247  StoreSDNode *St = cast<StoreSDNode>(N);
18248  EVT VT = St->getValue().getValueType();
18249  EVT StVT = St->getMemoryVT();
18250  SDLoc dl(St);
18251  SDValue StoredVal = St->getOperand(1);
18252  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18253
18254  // If we are saving a concatenation of two XMM registers, perform two stores.
18255  // On Sandy Bridge, 256-bit memory operations are executed by two
18256  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
18257  // memory  operation.
18258  unsigned Alignment = St->getAlignment();
18259  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
18260  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
18261      StVT == VT && !IsAligned) {
18262    unsigned NumElems = VT.getVectorNumElements();
18263    if (NumElems < 2)
18264      return SDValue();
18265
18266    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
18267    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
18268
18269    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
18270    SDValue Ptr0 = St->getBasePtr();
18271    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
18272
18273    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
18274                                St->getPointerInfo(), St->isVolatile(),
18275                                St->isNonTemporal(), Alignment);
18276    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
18277                                St->getPointerInfo(), St->isVolatile(),
18278                                St->isNonTemporal(),
18279                                std::min(16U, Alignment));
18280    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
18281  }
18282
18283  // Optimize trunc store (of multiple scalars) to shuffle and store.
18284  // First, pack all of the elements in one place. Next, store to memory
18285  // in fewer chunks.
18286  if (St->isTruncatingStore() && VT.isVector()) {
18287    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18288    unsigned NumElems = VT.getVectorNumElements();
18289    assert(StVT != VT && "Cannot truncate to the same type");
18290    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
18291    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
18292
18293    // From, To sizes and ElemCount must be pow of two
18294    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
18295    // We are going to use the original vector elt for storing.
18296    // Accumulated smaller vector elements must be a multiple of the store size.
18297    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
18298
18299    unsigned SizeRatio  = FromSz / ToSz;
18300
18301    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
18302
18303    // Create a type on which we perform the shuffle
18304    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
18305            StVT.getScalarType(), NumElems*SizeRatio);
18306
18307    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
18308
18309    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
18310    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18311    for (unsigned i = 0; i != NumElems; ++i)
18312      ShuffleVec[i] = i * SizeRatio;
18313
18314    // Can't shuffle using an illegal type.
18315    if (!TLI.isTypeLegal(WideVecVT))
18316      return SDValue();
18317
18318    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
18319                                         DAG.getUNDEF(WideVecVT),
18320                                         &ShuffleVec[0]);
18321    // At this point all of the data is stored at the bottom of the
18322    // register. We now need to save it to mem.
18323
18324    // Find the largest store unit
18325    MVT StoreType = MVT::i8;
18326    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18327         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18328      MVT Tp = (MVT::SimpleValueType)tp;
18329      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
18330        StoreType = Tp;
18331    }
18332
18333    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18334    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
18335        (64 <= NumElems * ToSz))
18336      StoreType = MVT::f64;
18337
18338    // Bitcast the original vector into a vector of store-size units
18339    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
18340            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
18341    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
18342    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
18343    SmallVector<SDValue, 8> Chains;
18344    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
18345                                        TLI.getPointerTy());
18346    SDValue Ptr = St->getBasePtr();
18347
18348    // Perform one or more big stores into memory.
18349    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
18350      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
18351                                   StoreType, ShuffWide,
18352                                   DAG.getIntPtrConstant(i));
18353      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
18354                                St->getPointerInfo(), St->isVolatile(),
18355                                St->isNonTemporal(), St->getAlignment());
18356      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18357      Chains.push_back(Ch);
18358    }
18359
18360    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18361                               Chains.size());
18362  }
18363
18364  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
18365  // the FP state in cases where an emms may be missing.
18366  // A preferable solution to the general problem is to figure out the right
18367  // places to insert EMMS.  This qualifies as a quick hack.
18368
18369  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
18370  if (VT.getSizeInBits() != 64)
18371    return SDValue();
18372
18373  const Function *F = DAG.getMachineFunction().getFunction();
18374  bool NoImplicitFloatOps = F->getAttributes().
18375    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
18376  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
18377                     && Subtarget->hasSSE2();
18378  if ((VT.isVector() ||
18379       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
18380      isa<LoadSDNode>(St->getValue()) &&
18381      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
18382      St->getChain().hasOneUse() && !St->isVolatile()) {
18383    SDNode* LdVal = St->getValue().getNode();
18384    LoadSDNode *Ld = 0;
18385    int TokenFactorIndex = -1;
18386    SmallVector<SDValue, 8> Ops;
18387    SDNode* ChainVal = St->getChain().getNode();
18388    // Must be a store of a load.  We currently handle two cases:  the load
18389    // is a direct child, and it's under an intervening TokenFactor.  It is
18390    // possible to dig deeper under nested TokenFactors.
18391    if (ChainVal == LdVal)
18392      Ld = cast<LoadSDNode>(St->getChain());
18393    else if (St->getValue().hasOneUse() &&
18394             ChainVal->getOpcode() == ISD::TokenFactor) {
18395      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
18396        if (ChainVal->getOperand(i).getNode() == LdVal) {
18397          TokenFactorIndex = i;
18398          Ld = cast<LoadSDNode>(St->getValue());
18399        } else
18400          Ops.push_back(ChainVal->getOperand(i));
18401      }
18402    }
18403
18404    if (!Ld || !ISD::isNormalLoad(Ld))
18405      return SDValue();
18406
18407    // If this is not the MMX case, i.e. we are just turning i64 load/store
18408    // into f64 load/store, avoid the transformation if there are multiple
18409    // uses of the loaded value.
18410    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
18411      return SDValue();
18412
18413    SDLoc LdDL(Ld);
18414    SDLoc StDL(N);
18415    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
18416    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
18417    // pair instead.
18418    if (Subtarget->is64Bit() || F64IsLegal) {
18419      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
18420      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
18421                                  Ld->getPointerInfo(), Ld->isVolatile(),
18422                                  Ld->isNonTemporal(), Ld->isInvariant(),
18423                                  Ld->getAlignment());
18424      SDValue NewChain = NewLd.getValue(1);
18425      if (TokenFactorIndex != -1) {
18426        Ops.push_back(NewChain);
18427        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18428                               Ops.size());
18429      }
18430      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
18431                          St->getPointerInfo(),
18432                          St->isVolatile(), St->isNonTemporal(),
18433                          St->getAlignment());
18434    }
18435
18436    // Otherwise, lower to two pairs of 32-bit loads / stores.
18437    SDValue LoAddr = Ld->getBasePtr();
18438    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
18439                                 DAG.getConstant(4, MVT::i32));
18440
18441    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
18442                               Ld->getPointerInfo(),
18443                               Ld->isVolatile(), Ld->isNonTemporal(),
18444                               Ld->isInvariant(), Ld->getAlignment());
18445    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
18446                               Ld->getPointerInfo().getWithOffset(4),
18447                               Ld->isVolatile(), Ld->isNonTemporal(),
18448                               Ld->isInvariant(),
18449                               MinAlign(Ld->getAlignment(), 4));
18450
18451    SDValue NewChain = LoLd.getValue(1);
18452    if (TokenFactorIndex != -1) {
18453      Ops.push_back(LoLd);
18454      Ops.push_back(HiLd);
18455      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18456                             Ops.size());
18457    }
18458
18459    LoAddr = St->getBasePtr();
18460    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
18461                         DAG.getConstant(4, MVT::i32));
18462
18463    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
18464                                St->getPointerInfo(),
18465                                St->isVolatile(), St->isNonTemporal(),
18466                                St->getAlignment());
18467    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
18468                                St->getPointerInfo().getWithOffset(4),
18469                                St->isVolatile(),
18470                                St->isNonTemporal(),
18471                                MinAlign(St->getAlignment(), 4));
18472    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
18473  }
18474  return SDValue();
18475}
18476
18477/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
18478/// and return the operands for the horizontal operation in LHS and RHS.  A
18479/// horizontal operation performs the binary operation on successive elements
18480/// of its first operand, then on successive elements of its second operand,
18481/// returning the resulting values in a vector.  For example, if
18482///   A = < float a0, float a1, float a2, float a3 >
18483/// and
18484///   B = < float b0, float b1, float b2, float b3 >
18485/// then the result of doing a horizontal operation on A and B is
18486///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
18487/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
18488/// A horizontal-op B, for some already available A and B, and if so then LHS is
18489/// set to A, RHS to B, and the routine returns 'true'.
18490/// Note that the binary operation should have the property that if one of the
18491/// operands is UNDEF then the result is UNDEF.
18492static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
18493  // Look for the following pattern: if
18494  //   A = < float a0, float a1, float a2, float a3 >
18495  //   B = < float b0, float b1, float b2, float b3 >
18496  // and
18497  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
18498  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
18499  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
18500  // which is A horizontal-op B.
18501
18502  // At least one of the operands should be a vector shuffle.
18503  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
18504      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
18505    return false;
18506
18507  MVT VT = LHS.getSimpleValueType();
18508
18509  assert((VT.is128BitVector() || VT.is256BitVector()) &&
18510         "Unsupported vector type for horizontal add/sub");
18511
18512  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
18513  // operate independently on 128-bit lanes.
18514  unsigned NumElts = VT.getVectorNumElements();
18515  unsigned NumLanes = VT.getSizeInBits()/128;
18516  unsigned NumLaneElts = NumElts / NumLanes;
18517  assert((NumLaneElts % 2 == 0) &&
18518         "Vector type should have an even number of elements in each lane");
18519  unsigned HalfLaneElts = NumLaneElts/2;
18520
18521  // View LHS in the form
18522  //   LHS = VECTOR_SHUFFLE A, B, LMask
18523  // If LHS is not a shuffle then pretend it is the shuffle
18524  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
18525  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
18526  // type VT.
18527  SDValue A, B;
18528  SmallVector<int, 16> LMask(NumElts);
18529  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18530    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
18531      A = LHS.getOperand(0);
18532    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
18533      B = LHS.getOperand(1);
18534    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
18535    std::copy(Mask.begin(), Mask.end(), LMask.begin());
18536  } else {
18537    if (LHS.getOpcode() != ISD::UNDEF)
18538      A = LHS;
18539    for (unsigned i = 0; i != NumElts; ++i)
18540      LMask[i] = i;
18541  }
18542
18543  // Likewise, view RHS in the form
18544  //   RHS = VECTOR_SHUFFLE C, D, RMask
18545  SDValue C, D;
18546  SmallVector<int, 16> RMask(NumElts);
18547  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18548    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
18549      C = RHS.getOperand(0);
18550    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
18551      D = RHS.getOperand(1);
18552    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
18553    std::copy(Mask.begin(), Mask.end(), RMask.begin());
18554  } else {
18555    if (RHS.getOpcode() != ISD::UNDEF)
18556      C = RHS;
18557    for (unsigned i = 0; i != NumElts; ++i)
18558      RMask[i] = i;
18559  }
18560
18561  // Check that the shuffles are both shuffling the same vectors.
18562  if (!(A == C && B == D) && !(A == D && B == C))
18563    return false;
18564
18565  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
18566  if (!A.getNode() && !B.getNode())
18567    return false;
18568
18569  // If A and B occur in reverse order in RHS, then "swap" them (which means
18570  // rewriting the mask).
18571  if (A != C)
18572    CommuteVectorShuffleMask(RMask, NumElts);
18573
18574  // At this point LHS and RHS are equivalent to
18575  //   LHS = VECTOR_SHUFFLE A, B, LMask
18576  //   RHS = VECTOR_SHUFFLE A, B, RMask
18577  // Check that the masks correspond to performing a horizontal operation.
18578  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
18579    for (unsigned i = 0; i != NumLaneElts; ++i) {
18580      int LIdx = LMask[i+l], RIdx = RMask[i+l];
18581
18582      // Ignore any UNDEF components.
18583      if (LIdx < 0 || RIdx < 0 ||
18584          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
18585          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
18586        continue;
18587
18588      // Check that successive elements are being operated on.  If not, this is
18589      // not a horizontal operation.
18590      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
18591      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
18592      if (!(LIdx == Index && RIdx == Index + 1) &&
18593          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
18594        return false;
18595    }
18596  }
18597
18598  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
18599  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
18600  return true;
18601}
18602
18603/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
18604static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
18605                                  const X86Subtarget *Subtarget) {
18606  EVT VT = N->getValueType(0);
18607  SDValue LHS = N->getOperand(0);
18608  SDValue RHS = N->getOperand(1);
18609
18610  // Try to synthesize horizontal adds from adds of shuffles.
18611  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18612       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18613      isHorizontalBinOp(LHS, RHS, true))
18614    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
18615  return SDValue();
18616}
18617
18618/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
18619static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
18620                                  const X86Subtarget *Subtarget) {
18621  EVT VT = N->getValueType(0);
18622  SDValue LHS = N->getOperand(0);
18623  SDValue RHS = N->getOperand(1);
18624
18625  // Try to synthesize horizontal subs from subs of shuffles.
18626  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18627       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18628      isHorizontalBinOp(LHS, RHS, false))
18629    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
18630  return SDValue();
18631}
18632
18633/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
18634/// X86ISD::FXOR nodes.
18635static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
18636  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
18637  // F[X]OR(0.0, x) -> x
18638  // F[X]OR(x, 0.0) -> x
18639  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18640    if (C->getValueAPF().isPosZero())
18641      return N->getOperand(1);
18642  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18643    if (C->getValueAPF().isPosZero())
18644      return N->getOperand(0);
18645  return SDValue();
18646}
18647
18648/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
18649/// X86ISD::FMAX nodes.
18650static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
18651  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
18652
18653  // Only perform optimizations if UnsafeMath is used.
18654  if (!DAG.getTarget().Options.UnsafeFPMath)
18655    return SDValue();
18656
18657  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
18658  // into FMINC and FMAXC, which are Commutative operations.
18659  unsigned NewOp = 0;
18660  switch (N->getOpcode()) {
18661    default: llvm_unreachable("unknown opcode");
18662    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
18663    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
18664  }
18665
18666  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
18667                     N->getOperand(0), N->getOperand(1));
18668}
18669
18670/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
18671static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
18672  // FAND(0.0, x) -> 0.0
18673  // FAND(x, 0.0) -> 0.0
18674  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18675    if (C->getValueAPF().isPosZero())
18676      return N->getOperand(0);
18677  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18678    if (C->getValueAPF().isPosZero())
18679      return N->getOperand(1);
18680  return SDValue();
18681}
18682
18683/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
18684static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
18685  // FANDN(x, 0.0) -> 0.0
18686  // FANDN(0.0, x) -> x
18687  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18688    if (C->getValueAPF().isPosZero())
18689      return N->getOperand(1);
18690  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18691    if (C->getValueAPF().isPosZero())
18692      return N->getOperand(1);
18693  return SDValue();
18694}
18695
18696static SDValue PerformBTCombine(SDNode *N,
18697                                SelectionDAG &DAG,
18698                                TargetLowering::DAGCombinerInfo &DCI) {
18699  // BT ignores high bits in the bit index operand.
18700  SDValue Op1 = N->getOperand(1);
18701  if (Op1.hasOneUse()) {
18702    unsigned BitWidth = Op1.getValueSizeInBits();
18703    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
18704    APInt KnownZero, KnownOne;
18705    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
18706                                          !DCI.isBeforeLegalizeOps());
18707    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18708    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
18709        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
18710      DCI.CommitTargetLoweringOpt(TLO);
18711  }
18712  return SDValue();
18713}
18714
18715static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
18716  SDValue Op = N->getOperand(0);
18717  if (Op.getOpcode() == ISD::BITCAST)
18718    Op = Op.getOperand(0);
18719  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
18720  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
18721      VT.getVectorElementType().getSizeInBits() ==
18722      OpVT.getVectorElementType().getSizeInBits()) {
18723    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
18724  }
18725  return SDValue();
18726}
18727
18728static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
18729                                               const X86Subtarget *Subtarget) {
18730  EVT VT = N->getValueType(0);
18731  if (!VT.isVector())
18732    return SDValue();
18733
18734  SDValue N0 = N->getOperand(0);
18735  SDValue N1 = N->getOperand(1);
18736  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
18737  SDLoc dl(N);
18738
18739  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
18740  // both SSE and AVX2 since there is no sign-extended shift right
18741  // operation on a vector with 64-bit elements.
18742  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
18743  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
18744  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
18745      N0.getOpcode() == ISD::SIGN_EXTEND)) {
18746    SDValue N00 = N0.getOperand(0);
18747
18748    // EXTLOAD has a better solution on AVX2,
18749    // it may be replaced with X86ISD::VSEXT node.
18750    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
18751      if (!ISD::isNormalLoad(N00.getNode()))
18752        return SDValue();
18753
18754    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
18755        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
18756                                  N00, N1);
18757      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
18758    }
18759  }
18760  return SDValue();
18761}
18762
18763static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
18764                                  TargetLowering::DAGCombinerInfo &DCI,
18765                                  const X86Subtarget *Subtarget) {
18766  if (!DCI.isBeforeLegalizeOps())
18767    return SDValue();
18768
18769  if (!Subtarget->hasFp256())
18770    return SDValue();
18771
18772  EVT VT = N->getValueType(0);
18773  if (VT.isVector() && VT.getSizeInBits() == 256) {
18774    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18775    if (R.getNode())
18776      return R;
18777  }
18778
18779  return SDValue();
18780}
18781
18782static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
18783                                 const X86Subtarget* Subtarget) {
18784  SDLoc dl(N);
18785  EVT VT = N->getValueType(0);
18786
18787  // Let legalize expand this if it isn't a legal type yet.
18788  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18789    return SDValue();
18790
18791  EVT ScalarVT = VT.getScalarType();
18792  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
18793      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
18794    return SDValue();
18795
18796  SDValue A = N->getOperand(0);
18797  SDValue B = N->getOperand(1);
18798  SDValue C = N->getOperand(2);
18799
18800  bool NegA = (A.getOpcode() == ISD::FNEG);
18801  bool NegB = (B.getOpcode() == ISD::FNEG);
18802  bool NegC = (C.getOpcode() == ISD::FNEG);
18803
18804  // Negative multiplication when NegA xor NegB
18805  bool NegMul = (NegA != NegB);
18806  if (NegA)
18807    A = A.getOperand(0);
18808  if (NegB)
18809    B = B.getOperand(0);
18810  if (NegC)
18811    C = C.getOperand(0);
18812
18813  unsigned Opcode;
18814  if (!NegMul)
18815    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
18816  else
18817    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
18818
18819  return DAG.getNode(Opcode, dl, VT, A, B, C);
18820}
18821
18822static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
18823                                  TargetLowering::DAGCombinerInfo &DCI,
18824                                  const X86Subtarget *Subtarget) {
18825  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
18826  //           (and (i32 x86isd::setcc_carry), 1)
18827  // This eliminates the zext. This transformation is necessary because
18828  // ISD::SETCC is always legalized to i8.
18829  SDLoc dl(N);
18830  SDValue N0 = N->getOperand(0);
18831  EVT VT = N->getValueType(0);
18832
18833  if (N0.getOpcode() == ISD::AND &&
18834      N0.hasOneUse() &&
18835      N0.getOperand(0).hasOneUse()) {
18836    SDValue N00 = N0.getOperand(0);
18837    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
18838      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
18839      if (!C || C->getZExtValue() != 1)
18840        return SDValue();
18841      return DAG.getNode(ISD::AND, dl, VT,
18842                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
18843                                     N00.getOperand(0), N00.getOperand(1)),
18844                         DAG.getConstant(1, VT));
18845    }
18846  }
18847
18848  if (VT.is256BitVector()) {
18849    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18850    if (R.getNode())
18851      return R;
18852  }
18853
18854  return SDValue();
18855}
18856
18857// Optimize x == -y --> x+y == 0
18858//          x != -y --> x+y != 0
18859static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
18860  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
18861  SDValue LHS = N->getOperand(0);
18862  SDValue RHS = N->getOperand(1);
18863
18864  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
18865    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
18866      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
18867        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18868                                   LHS.getValueType(), RHS, LHS.getOperand(1));
18869        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18870                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18871      }
18872  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
18873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
18874      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
18875        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18876                                   RHS.getValueType(), LHS, RHS.getOperand(1));
18877        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18878                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18879      }
18880  return SDValue();
18881}
18882
18883// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
18884// as "sbb reg,reg", since it can be extended without zext and produces
18885// an all-ones bit which is more useful than 0/1 in some cases.
18886static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
18887  return DAG.getNode(ISD::AND, DL, MVT::i8,
18888                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
18889                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
18890                     DAG.getConstant(1, MVT::i8));
18891}
18892
18893// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
18894static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
18895                                   TargetLowering::DAGCombinerInfo &DCI,
18896                                   const X86Subtarget *Subtarget) {
18897  SDLoc DL(N);
18898  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
18899  SDValue EFLAGS = N->getOperand(1);
18900
18901  if (CC == X86::COND_A) {
18902    // Try to convert COND_A into COND_B in an attempt to facilitate
18903    // materializing "setb reg".
18904    //
18905    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
18906    // cannot take an immediate as its first operand.
18907    //
18908    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
18909        EFLAGS.getValueType().isInteger() &&
18910        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
18911      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
18912                                   EFLAGS.getNode()->getVTList(),
18913                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
18914      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
18915      return MaterializeSETB(DL, NewEFLAGS, DAG);
18916    }
18917  }
18918
18919  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
18920  // a zext and produces an all-ones bit which is more useful than 0/1 in some
18921  // cases.
18922  if (CC == X86::COND_B)
18923    return MaterializeSETB(DL, EFLAGS, DAG);
18924
18925  SDValue Flags;
18926
18927  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18928  if (Flags.getNode()) {
18929    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18930    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
18931  }
18932
18933  return SDValue();
18934}
18935
18936// Optimize branch condition evaluation.
18937//
18938static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
18939                                    TargetLowering::DAGCombinerInfo &DCI,
18940                                    const X86Subtarget *Subtarget) {
18941  SDLoc DL(N);
18942  SDValue Chain = N->getOperand(0);
18943  SDValue Dest = N->getOperand(1);
18944  SDValue EFLAGS = N->getOperand(3);
18945  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
18946
18947  SDValue Flags;
18948
18949  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18950  if (Flags.getNode()) {
18951    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18952    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
18953                       Flags);
18954  }
18955
18956  return SDValue();
18957}
18958
18959static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
18960                                        const X86TargetLowering *XTLI) {
18961  SDValue Op0 = N->getOperand(0);
18962  EVT InVT = Op0->getValueType(0);
18963
18964  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
18965  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
18966    SDLoc dl(N);
18967    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
18968    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
18969    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
18970  }
18971
18972  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
18973  // a 32-bit target where SSE doesn't support i64->FP operations.
18974  if (Op0.getOpcode() == ISD::LOAD) {
18975    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
18976    EVT VT = Ld->getValueType(0);
18977    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
18978        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
18979        !XTLI->getSubtarget()->is64Bit() &&
18980        VT == MVT::i64) {
18981      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
18982                                          Ld->getChain(), Op0, DAG);
18983      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
18984      return FILDChain;
18985    }
18986  }
18987  return SDValue();
18988}
18989
18990// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
18991static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
18992                                 X86TargetLowering::DAGCombinerInfo &DCI) {
18993  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
18994  // the result is either zero or one (depending on the input carry bit).
18995  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
18996  if (X86::isZeroNode(N->getOperand(0)) &&
18997      X86::isZeroNode(N->getOperand(1)) &&
18998      // We don't have a good way to replace an EFLAGS use, so only do this when
18999      // dead right now.
19000      SDValue(N, 1).use_empty()) {
19001    SDLoc DL(N);
19002    EVT VT = N->getValueType(0);
19003    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
19004    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
19005                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
19006                                           DAG.getConstant(X86::COND_B,MVT::i8),
19007                                           N->getOperand(2)),
19008                               DAG.getConstant(1, VT));
19009    return DCI.CombineTo(N, Res1, CarryOut);
19010  }
19011
19012  return SDValue();
19013}
19014
19015// fold (add Y, (sete  X, 0)) -> adc  0, Y
19016//      (add Y, (setne X, 0)) -> sbb -1, Y
19017//      (sub (sete  X, 0), Y) -> sbb  0, Y
19018//      (sub (setne X, 0), Y) -> adc -1, Y
19019static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
19020  SDLoc DL(N);
19021
19022  // Look through ZExts.
19023  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
19024  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
19025    return SDValue();
19026
19027  SDValue SetCC = Ext.getOperand(0);
19028  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
19029    return SDValue();
19030
19031  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
19032  if (CC != X86::COND_E && CC != X86::COND_NE)
19033    return SDValue();
19034
19035  SDValue Cmp = SetCC.getOperand(1);
19036  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
19037      !X86::isZeroNode(Cmp.getOperand(1)) ||
19038      !Cmp.getOperand(0).getValueType().isInteger())
19039    return SDValue();
19040
19041  SDValue CmpOp0 = Cmp.getOperand(0);
19042  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
19043                               DAG.getConstant(1, CmpOp0.getValueType()));
19044
19045  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
19046  if (CC == X86::COND_NE)
19047    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
19048                       DL, OtherVal.getValueType(), OtherVal,
19049                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
19050  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
19051                     DL, OtherVal.getValueType(), OtherVal,
19052                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
19053}
19054
19055/// PerformADDCombine - Do target-specific dag combines on integer adds.
19056static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
19057                                 const X86Subtarget *Subtarget) {
19058  EVT VT = N->getValueType(0);
19059  SDValue Op0 = N->getOperand(0);
19060  SDValue Op1 = N->getOperand(1);
19061
19062  // Try to synthesize horizontal adds from adds of shuffles.
19063  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19064       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19065      isHorizontalBinOp(Op0, Op1, true))
19066    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
19067
19068  return OptimizeConditionalInDecrement(N, DAG);
19069}
19070
19071static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
19072                                 const X86Subtarget *Subtarget) {
19073  SDValue Op0 = N->getOperand(0);
19074  SDValue Op1 = N->getOperand(1);
19075
19076  // X86 can't encode an immediate LHS of a sub. See if we can push the
19077  // negation into a preceding instruction.
19078  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
19079    // If the RHS of the sub is a XOR with one use and a constant, invert the
19080    // immediate. Then add one to the LHS of the sub so we can turn
19081    // X-Y -> X+~Y+1, saving one register.
19082    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
19083        isa<ConstantSDNode>(Op1.getOperand(1))) {
19084      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
19085      EVT VT = Op0.getValueType();
19086      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
19087                                   Op1.getOperand(0),
19088                                   DAG.getConstant(~XorC, VT));
19089      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
19090                         DAG.getConstant(C->getAPIntValue()+1, VT));
19091    }
19092  }
19093
19094  // Try to synthesize horizontal adds from adds of shuffles.
19095  EVT VT = N->getValueType(0);
19096  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19097       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19098      isHorizontalBinOp(Op0, Op1, true))
19099    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
19100
19101  return OptimizeConditionalInDecrement(N, DAG);
19102}
19103
19104/// performVZEXTCombine - Performs build vector combines
19105static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
19106                                        TargetLowering::DAGCombinerInfo &DCI,
19107                                        const X86Subtarget *Subtarget) {
19108  // (vzext (bitcast (vzext (x)) -> (vzext x)
19109  SDValue In = N->getOperand(0);
19110  while (In.getOpcode() == ISD::BITCAST)
19111    In = In.getOperand(0);
19112
19113  if (In.getOpcode() != X86ISD::VZEXT)
19114    return SDValue();
19115
19116  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
19117                     In.getOperand(0));
19118}
19119
19120SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
19121                                             DAGCombinerInfo &DCI) const {
19122  SelectionDAG &DAG = DCI.DAG;
19123  switch (N->getOpcode()) {
19124  default: break;
19125  case ISD::EXTRACT_VECTOR_ELT:
19126    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
19127  case ISD::VSELECT:
19128  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
19129  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
19130  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
19131  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
19132  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
19133  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
19134  case ISD::SHL:
19135  case ISD::SRA:
19136  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
19137  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
19138  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
19139  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
19140  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
19141  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
19142  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
19143  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
19144  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
19145  case X86ISD::FXOR:
19146  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
19147  case X86ISD::FMIN:
19148  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
19149  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
19150  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
19151  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
19152  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
19153  case ISD::ANY_EXTEND:
19154  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
19155  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
19156  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
19157  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
19158  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
19159  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
19160  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
19161  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
19162  case X86ISD::SHUFP:       // Handle all target specific shuffles
19163  case X86ISD::PALIGNR:
19164  case X86ISD::UNPCKH:
19165  case X86ISD::UNPCKL:
19166  case X86ISD::MOVHLPS:
19167  case X86ISD::MOVLHPS:
19168  case X86ISD::PSHUFD:
19169  case X86ISD::PSHUFHW:
19170  case X86ISD::PSHUFLW:
19171  case X86ISD::MOVSS:
19172  case X86ISD::MOVSD:
19173  case X86ISD::VPERMILP:
19174  case X86ISD::VPERM2X128:
19175  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
19176  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
19177  }
19178
19179  return SDValue();
19180}
19181
19182/// isTypeDesirableForOp - Return true if the target has native support for
19183/// the specified value type and it is 'desirable' to use the type for the
19184/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
19185/// instruction encodings are longer and some i16 instructions are slow.
19186bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
19187  if (!isTypeLegal(VT))
19188    return false;
19189  if (VT != MVT::i16)
19190    return true;
19191
19192  switch (Opc) {
19193  default:
19194    return true;
19195  case ISD::LOAD:
19196  case ISD::SIGN_EXTEND:
19197  case ISD::ZERO_EXTEND:
19198  case ISD::ANY_EXTEND:
19199  case ISD::SHL:
19200  case ISD::SRL:
19201  case ISD::SUB:
19202  case ISD::ADD:
19203  case ISD::MUL:
19204  case ISD::AND:
19205  case ISD::OR:
19206  case ISD::XOR:
19207    return false;
19208  }
19209}
19210
19211/// IsDesirableToPromoteOp - This method query the target whether it is
19212/// beneficial for dag combiner to promote the specified node. If true, it
19213/// should return the desired promotion type by reference.
19214bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
19215  EVT VT = Op.getValueType();
19216  if (VT != MVT::i16)
19217    return false;
19218
19219  bool Promote = false;
19220  bool Commute = false;
19221  switch (Op.getOpcode()) {
19222  default: break;
19223  case ISD::LOAD: {
19224    LoadSDNode *LD = cast<LoadSDNode>(Op);
19225    // If the non-extending load has a single use and it's not live out, then it
19226    // might be folded.
19227    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
19228                                                     Op.hasOneUse()*/) {
19229      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
19230             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
19231        // The only case where we'd want to promote LOAD (rather then it being
19232        // promoted as an operand is when it's only use is liveout.
19233        if (UI->getOpcode() != ISD::CopyToReg)
19234          return false;
19235      }
19236    }
19237    Promote = true;
19238    break;
19239  }
19240  case ISD::SIGN_EXTEND:
19241  case ISD::ZERO_EXTEND:
19242  case ISD::ANY_EXTEND:
19243    Promote = true;
19244    break;
19245  case ISD::SHL:
19246  case ISD::SRL: {
19247    SDValue N0 = Op.getOperand(0);
19248    // Look out for (store (shl (load), x)).
19249    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
19250      return false;
19251    Promote = true;
19252    break;
19253  }
19254  case ISD::ADD:
19255  case ISD::MUL:
19256  case ISD::AND:
19257  case ISD::OR:
19258  case ISD::XOR:
19259    Commute = true;
19260    // fallthrough
19261  case ISD::SUB: {
19262    SDValue N0 = Op.getOperand(0);
19263    SDValue N1 = Op.getOperand(1);
19264    if (!Commute && MayFoldLoad(N1))
19265      return false;
19266    // Avoid disabling potential load folding opportunities.
19267    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
19268      return false;
19269    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
19270      return false;
19271    Promote = true;
19272  }
19273  }
19274
19275  PVT = MVT::i32;
19276  return Promote;
19277}
19278
19279//===----------------------------------------------------------------------===//
19280//                           X86 Inline Assembly Support
19281//===----------------------------------------------------------------------===//
19282
19283namespace {
19284  // Helper to match a string separated by whitespace.
19285  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
19286    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
19287
19288    for (unsigned i = 0, e = args.size(); i != e; ++i) {
19289      StringRef piece(*args[i]);
19290      if (!s.startswith(piece)) // Check if the piece matches.
19291        return false;
19292
19293      s = s.substr(piece.size());
19294      StringRef::size_type pos = s.find_first_not_of(" \t");
19295      if (pos == 0) // We matched a prefix.
19296        return false;
19297
19298      s = s.substr(pos);
19299    }
19300
19301    return s.empty();
19302  }
19303  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
19304}
19305
19306static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
19307
19308  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
19309    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
19310        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
19311        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
19312
19313      if (AsmPieces.size() == 3)
19314        return true;
19315      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
19316        return true;
19317    }
19318  }
19319  return false;
19320}
19321
19322bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
19323  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
19324
19325  std::string AsmStr = IA->getAsmString();
19326
19327  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
19328  if (!Ty || Ty->getBitWidth() % 16 != 0)
19329    return false;
19330
19331  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
19332  SmallVector<StringRef, 4> AsmPieces;
19333  SplitString(AsmStr, AsmPieces, ";\n");
19334
19335  switch (AsmPieces.size()) {
19336  default: return false;
19337  case 1:
19338    // FIXME: this should verify that we are targeting a 486 or better.  If not,
19339    // we will turn this bswap into something that will be lowered to logical
19340    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
19341    // lower so don't worry about this.
19342    // bswap $0
19343    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
19344        matchAsm(AsmPieces[0], "bswapl", "$0") ||
19345        matchAsm(AsmPieces[0], "bswapq", "$0") ||
19346        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
19347        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
19348        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
19349      // No need to check constraints, nothing other than the equivalent of
19350      // "=r,0" would be valid here.
19351      return IntrinsicLowering::LowerToByteSwap(CI);
19352    }
19353
19354    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
19355    if (CI->getType()->isIntegerTy(16) &&
19356        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19357        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
19358         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
19359      AsmPieces.clear();
19360      const std::string &ConstraintsStr = IA->getConstraintString();
19361      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19362      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19363      if (clobbersFlagRegisters(AsmPieces))
19364        return IntrinsicLowering::LowerToByteSwap(CI);
19365    }
19366    break;
19367  case 3:
19368    if (CI->getType()->isIntegerTy(32) &&
19369        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19370        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
19371        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
19372        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
19373      AsmPieces.clear();
19374      const std::string &ConstraintsStr = IA->getConstraintString();
19375      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19376      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19377      if (clobbersFlagRegisters(AsmPieces))
19378        return IntrinsicLowering::LowerToByteSwap(CI);
19379    }
19380
19381    if (CI->getType()->isIntegerTy(64)) {
19382      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
19383      if (Constraints.size() >= 2 &&
19384          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
19385          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
19386        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
19387        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
19388            matchAsm(AsmPieces[1], "bswap", "%edx") &&
19389            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
19390          return IntrinsicLowering::LowerToByteSwap(CI);
19391      }
19392    }
19393    break;
19394  }
19395  return false;
19396}
19397
19398/// getConstraintType - Given a constraint letter, return the type of
19399/// constraint it is for this target.
19400X86TargetLowering::ConstraintType
19401X86TargetLowering::getConstraintType(const std::string &Constraint) const {
19402  if (Constraint.size() == 1) {
19403    switch (Constraint[0]) {
19404    case 'R':
19405    case 'q':
19406    case 'Q':
19407    case 'f':
19408    case 't':
19409    case 'u':
19410    case 'y':
19411    case 'x':
19412    case 'Y':
19413    case 'l':
19414      return C_RegisterClass;
19415    case 'a':
19416    case 'b':
19417    case 'c':
19418    case 'd':
19419    case 'S':
19420    case 'D':
19421    case 'A':
19422      return C_Register;
19423    case 'I':
19424    case 'J':
19425    case 'K':
19426    case 'L':
19427    case 'M':
19428    case 'N':
19429    case 'G':
19430    case 'C':
19431    case 'e':
19432    case 'Z':
19433      return C_Other;
19434    default:
19435      break;
19436    }
19437  }
19438  return TargetLowering::getConstraintType(Constraint);
19439}
19440
19441/// Examine constraint type and operand type and determine a weight value.
19442/// This object must already have been set up with the operand type
19443/// and the current alternative constraint selected.
19444TargetLowering::ConstraintWeight
19445  X86TargetLowering::getSingleConstraintMatchWeight(
19446    AsmOperandInfo &info, const char *constraint) const {
19447  ConstraintWeight weight = CW_Invalid;
19448  Value *CallOperandVal = info.CallOperandVal;
19449    // If we don't have a value, we can't do a match,
19450    // but allow it at the lowest weight.
19451  if (CallOperandVal == NULL)
19452    return CW_Default;
19453  Type *type = CallOperandVal->getType();
19454  // Look at the constraint type.
19455  switch (*constraint) {
19456  default:
19457    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
19458  case 'R':
19459  case 'q':
19460  case 'Q':
19461  case 'a':
19462  case 'b':
19463  case 'c':
19464  case 'd':
19465  case 'S':
19466  case 'D':
19467  case 'A':
19468    if (CallOperandVal->getType()->isIntegerTy())
19469      weight = CW_SpecificReg;
19470    break;
19471  case 'f':
19472  case 't':
19473  case 'u':
19474    if (type->isFloatingPointTy())
19475      weight = CW_SpecificReg;
19476    break;
19477  case 'y':
19478    if (type->isX86_MMXTy() && Subtarget->hasMMX())
19479      weight = CW_SpecificReg;
19480    break;
19481  case 'x':
19482  case 'Y':
19483    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
19484        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
19485      weight = CW_Register;
19486    break;
19487  case 'I':
19488    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
19489      if (C->getZExtValue() <= 31)
19490        weight = CW_Constant;
19491    }
19492    break;
19493  case 'J':
19494    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19495      if (C->getZExtValue() <= 63)
19496        weight = CW_Constant;
19497    }
19498    break;
19499  case 'K':
19500    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19501      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
19502        weight = CW_Constant;
19503    }
19504    break;
19505  case 'L':
19506    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19507      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
19508        weight = CW_Constant;
19509    }
19510    break;
19511  case 'M':
19512    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19513      if (C->getZExtValue() <= 3)
19514        weight = CW_Constant;
19515    }
19516    break;
19517  case 'N':
19518    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19519      if (C->getZExtValue() <= 0xff)
19520        weight = CW_Constant;
19521    }
19522    break;
19523  case 'G':
19524  case 'C':
19525    if (dyn_cast<ConstantFP>(CallOperandVal)) {
19526      weight = CW_Constant;
19527    }
19528    break;
19529  case 'e':
19530    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19531      if ((C->getSExtValue() >= -0x80000000LL) &&
19532          (C->getSExtValue() <= 0x7fffffffLL))
19533        weight = CW_Constant;
19534    }
19535    break;
19536  case 'Z':
19537    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19538      if (C->getZExtValue() <= 0xffffffff)
19539        weight = CW_Constant;
19540    }
19541    break;
19542  }
19543  return weight;
19544}
19545
19546/// LowerXConstraint - try to replace an X constraint, which matches anything,
19547/// with another that has more specific requirements based on the type of the
19548/// corresponding operand.
19549const char *X86TargetLowering::
19550LowerXConstraint(EVT ConstraintVT) const {
19551  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
19552  // 'f' like normal targets.
19553  if (ConstraintVT.isFloatingPoint()) {
19554    if (Subtarget->hasSSE2())
19555      return "Y";
19556    if (Subtarget->hasSSE1())
19557      return "x";
19558  }
19559
19560  return TargetLowering::LowerXConstraint(ConstraintVT);
19561}
19562
19563/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
19564/// vector.  If it is invalid, don't add anything to Ops.
19565void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
19566                                                     std::string &Constraint,
19567                                                     std::vector<SDValue>&Ops,
19568                                                     SelectionDAG &DAG) const {
19569  SDValue Result(0, 0);
19570
19571  // Only support length 1 constraints for now.
19572  if (Constraint.length() > 1) return;
19573
19574  char ConstraintLetter = Constraint[0];
19575  switch (ConstraintLetter) {
19576  default: break;
19577  case 'I':
19578    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19579      if (C->getZExtValue() <= 31) {
19580        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19581        break;
19582      }
19583    }
19584    return;
19585  case 'J':
19586    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19587      if (C->getZExtValue() <= 63) {
19588        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19589        break;
19590      }
19591    }
19592    return;
19593  case 'K':
19594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19595      if (isInt<8>(C->getSExtValue())) {
19596        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19597        break;
19598      }
19599    }
19600    return;
19601  case 'N':
19602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19603      if (C->getZExtValue() <= 255) {
19604        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19605        break;
19606      }
19607    }
19608    return;
19609  case 'e': {
19610    // 32-bit signed value
19611    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19612      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19613                                           C->getSExtValue())) {
19614        // Widen to 64 bits here to get it sign extended.
19615        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
19616        break;
19617      }
19618    // FIXME gcc accepts some relocatable values here too, but only in certain
19619    // memory models; it's complicated.
19620    }
19621    return;
19622  }
19623  case 'Z': {
19624    // 32-bit unsigned value
19625    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19626      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19627                                           C->getZExtValue())) {
19628        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19629        break;
19630      }
19631    }
19632    // FIXME gcc accepts some relocatable values here too, but only in certain
19633    // memory models; it's complicated.
19634    return;
19635  }
19636  case 'i': {
19637    // Literal immediates are always ok.
19638    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
19639      // Widen to 64 bits here to get it sign extended.
19640      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
19641      break;
19642    }
19643
19644    // In any sort of PIC mode addresses need to be computed at runtime by
19645    // adding in a register or some sort of table lookup.  These can't
19646    // be used as immediates.
19647    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
19648      return;
19649
19650    // If we are in non-pic codegen mode, we allow the address of a global (with
19651    // an optional displacement) to be used with 'i'.
19652    GlobalAddressSDNode *GA = 0;
19653    int64_t Offset = 0;
19654
19655    // Match either (GA), (GA+C), (GA+C1+C2), etc.
19656    while (1) {
19657      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
19658        Offset += GA->getOffset();
19659        break;
19660      } else if (Op.getOpcode() == ISD::ADD) {
19661        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19662          Offset += C->getZExtValue();
19663          Op = Op.getOperand(0);
19664          continue;
19665        }
19666      } else if (Op.getOpcode() == ISD::SUB) {
19667        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19668          Offset += -C->getZExtValue();
19669          Op = Op.getOperand(0);
19670          continue;
19671        }
19672      }
19673
19674      // Otherwise, this isn't something we can handle, reject it.
19675      return;
19676    }
19677
19678    const GlobalValue *GV = GA->getGlobal();
19679    // If we require an extra load to get this address, as in PIC mode, we
19680    // can't accept it.
19681    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
19682                                                        getTargetMachine())))
19683      return;
19684
19685    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
19686                                        GA->getValueType(0), Offset);
19687    break;
19688  }
19689  }
19690
19691  if (Result.getNode()) {
19692    Ops.push_back(Result);
19693    return;
19694  }
19695  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
19696}
19697
19698std::pair<unsigned, const TargetRegisterClass*>
19699X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
19700                                                MVT VT) const {
19701  // First, see if this is a constraint that directly corresponds to an LLVM
19702  // register class.
19703  if (Constraint.size() == 1) {
19704    // GCC Constraint Letters
19705    switch (Constraint[0]) {
19706    default: break;
19707      // TODO: Slight differences here in allocation order and leaving
19708      // RIP in the class. Do they matter any more here than they do
19709      // in the normal allocation?
19710    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
19711      if (Subtarget->is64Bit()) {
19712        if (VT == MVT::i32 || VT == MVT::f32)
19713          return std::make_pair(0U, &X86::GR32RegClass);
19714        if (VT == MVT::i16)
19715          return std::make_pair(0U, &X86::GR16RegClass);
19716        if (VT == MVT::i8 || VT == MVT::i1)
19717          return std::make_pair(0U, &X86::GR8RegClass);
19718        if (VT == MVT::i64 || VT == MVT::f64)
19719          return std::make_pair(0U, &X86::GR64RegClass);
19720        break;
19721      }
19722      // 32-bit fallthrough
19723    case 'Q':   // Q_REGS
19724      if (VT == MVT::i32 || VT == MVT::f32)
19725        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
19726      if (VT == MVT::i16)
19727        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
19728      if (VT == MVT::i8 || VT == MVT::i1)
19729        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
19730      if (VT == MVT::i64)
19731        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
19732      break;
19733    case 'r':   // GENERAL_REGS
19734    case 'l':   // INDEX_REGS
19735      if (VT == MVT::i8 || VT == MVT::i1)
19736        return std::make_pair(0U, &X86::GR8RegClass);
19737      if (VT == MVT::i16)
19738        return std::make_pair(0U, &X86::GR16RegClass);
19739      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
19740        return std::make_pair(0U, &X86::GR32RegClass);
19741      return std::make_pair(0U, &X86::GR64RegClass);
19742    case 'R':   // LEGACY_REGS
19743      if (VT == MVT::i8 || VT == MVT::i1)
19744        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
19745      if (VT == MVT::i16)
19746        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
19747      if (VT == MVT::i32 || !Subtarget->is64Bit())
19748        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
19749      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
19750    case 'f':  // FP Stack registers.
19751      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
19752      // value to the correct fpstack register class.
19753      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
19754        return std::make_pair(0U, &X86::RFP32RegClass);
19755      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
19756        return std::make_pair(0U, &X86::RFP64RegClass);
19757      return std::make_pair(0U, &X86::RFP80RegClass);
19758    case 'y':   // MMX_REGS if MMX allowed.
19759      if (!Subtarget->hasMMX()) break;
19760      return std::make_pair(0U, &X86::VR64RegClass);
19761    case 'Y':   // SSE_REGS if SSE2 allowed
19762      if (!Subtarget->hasSSE2()) break;
19763      // FALL THROUGH.
19764    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
19765      if (!Subtarget->hasSSE1()) break;
19766
19767      switch (VT.SimpleTy) {
19768      default: break;
19769      // Scalar SSE types.
19770      case MVT::f32:
19771      case MVT::i32:
19772        return std::make_pair(0U, &X86::FR32RegClass);
19773      case MVT::f64:
19774      case MVT::i64:
19775        return std::make_pair(0U, &X86::FR64RegClass);
19776      // Vector types.
19777      case MVT::v16i8:
19778      case MVT::v8i16:
19779      case MVT::v4i32:
19780      case MVT::v2i64:
19781      case MVT::v4f32:
19782      case MVT::v2f64:
19783        return std::make_pair(0U, &X86::VR128RegClass);
19784      // AVX types.
19785      case MVT::v32i8:
19786      case MVT::v16i16:
19787      case MVT::v8i32:
19788      case MVT::v4i64:
19789      case MVT::v8f32:
19790      case MVT::v4f64:
19791        return std::make_pair(0U, &X86::VR256RegClass);
19792      case MVT::v8f64:
19793      case MVT::v16f32:
19794      case MVT::v16i32:
19795      case MVT::v8i64:
19796        return std::make_pair(0U, &X86::VR512RegClass);
19797      }
19798      break;
19799    }
19800  }
19801
19802  // Use the default implementation in TargetLowering to convert the register
19803  // constraint into a member of a register class.
19804  std::pair<unsigned, const TargetRegisterClass*> Res;
19805  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
19806
19807  // Not found as a standard register?
19808  if (Res.second == 0) {
19809    // Map st(0) -> st(7) -> ST0
19810    if (Constraint.size() == 7 && Constraint[0] == '{' &&
19811        tolower(Constraint[1]) == 's' &&
19812        tolower(Constraint[2]) == 't' &&
19813        Constraint[3] == '(' &&
19814        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
19815        Constraint[5] == ')' &&
19816        Constraint[6] == '}') {
19817
19818      Res.first = X86::ST0+Constraint[4]-'0';
19819      Res.second = &X86::RFP80RegClass;
19820      return Res;
19821    }
19822
19823    // GCC allows "st(0)" to be called just plain "st".
19824    if (StringRef("{st}").equals_lower(Constraint)) {
19825      Res.first = X86::ST0;
19826      Res.second = &X86::RFP80RegClass;
19827      return Res;
19828    }
19829
19830    // flags -> EFLAGS
19831    if (StringRef("{flags}").equals_lower(Constraint)) {
19832      Res.first = X86::EFLAGS;
19833      Res.second = &X86::CCRRegClass;
19834      return Res;
19835    }
19836
19837    // 'A' means EAX + EDX.
19838    if (Constraint == "A") {
19839      Res.first = X86::EAX;
19840      Res.second = &X86::GR32_ADRegClass;
19841      return Res;
19842    }
19843    return Res;
19844  }
19845
19846  // Otherwise, check to see if this is a register class of the wrong value
19847  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
19848  // turn into {ax},{dx}.
19849  if (Res.second->hasType(VT))
19850    return Res;   // Correct type already, nothing to do.
19851
19852  // All of the single-register GCC register classes map their values onto
19853  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
19854  // really want an 8-bit or 32-bit register, map to the appropriate register
19855  // class and return the appropriate register.
19856  if (Res.second == &X86::GR16RegClass) {
19857    if (VT == MVT::i8 || VT == MVT::i1) {
19858      unsigned DestReg = 0;
19859      switch (Res.first) {
19860      default: break;
19861      case X86::AX: DestReg = X86::AL; break;
19862      case X86::DX: DestReg = X86::DL; break;
19863      case X86::CX: DestReg = X86::CL; break;
19864      case X86::BX: DestReg = X86::BL; break;
19865      }
19866      if (DestReg) {
19867        Res.first = DestReg;
19868        Res.second = &X86::GR8RegClass;
19869      }
19870    } else if (VT == MVT::i32 || VT == MVT::f32) {
19871      unsigned DestReg = 0;
19872      switch (Res.first) {
19873      default: break;
19874      case X86::AX: DestReg = X86::EAX; break;
19875      case X86::DX: DestReg = X86::EDX; break;
19876      case X86::CX: DestReg = X86::ECX; break;
19877      case X86::BX: DestReg = X86::EBX; break;
19878      case X86::SI: DestReg = X86::ESI; break;
19879      case X86::DI: DestReg = X86::EDI; break;
19880      case X86::BP: DestReg = X86::EBP; break;
19881      case X86::SP: DestReg = X86::ESP; break;
19882      }
19883      if (DestReg) {
19884        Res.first = DestReg;
19885        Res.second = &X86::GR32RegClass;
19886      }
19887    } else if (VT == MVT::i64 || VT == MVT::f64) {
19888      unsigned DestReg = 0;
19889      switch (Res.first) {
19890      default: break;
19891      case X86::AX: DestReg = X86::RAX; break;
19892      case X86::DX: DestReg = X86::RDX; break;
19893      case X86::CX: DestReg = X86::RCX; break;
19894      case X86::BX: DestReg = X86::RBX; break;
19895      case X86::SI: DestReg = X86::RSI; break;
19896      case X86::DI: DestReg = X86::RDI; break;
19897      case X86::BP: DestReg = X86::RBP; break;
19898      case X86::SP: DestReg = X86::RSP; break;
19899      }
19900      if (DestReg) {
19901        Res.first = DestReg;
19902        Res.second = &X86::GR64RegClass;
19903      }
19904    }
19905  } else if (Res.second == &X86::FR32RegClass ||
19906             Res.second == &X86::FR64RegClass ||
19907             Res.second == &X86::VR128RegClass ||
19908             Res.second == &X86::VR256RegClass ||
19909             Res.second == &X86::FR32XRegClass ||
19910             Res.second == &X86::FR64XRegClass ||
19911             Res.second == &X86::VR128XRegClass ||
19912             Res.second == &X86::VR256XRegClass ||
19913             Res.second == &X86::VR512RegClass) {
19914    // Handle references to XMM physical registers that got mapped into the
19915    // wrong class.  This can happen with constraints like {xmm0} where the
19916    // target independent register mapper will just pick the first match it can
19917    // find, ignoring the required type.
19918
19919    if (VT == MVT::f32 || VT == MVT::i32)
19920      Res.second = &X86::FR32RegClass;
19921    else if (VT == MVT::f64 || VT == MVT::i64)
19922      Res.second = &X86::FR64RegClass;
19923    else if (X86::VR128RegClass.hasType(VT))
19924      Res.second = &X86::VR128RegClass;
19925    else if (X86::VR256RegClass.hasType(VT))
19926      Res.second = &X86::VR256RegClass;
19927    else if (X86::VR512RegClass.hasType(VT))
19928      Res.second = &X86::VR512RegClass;
19929  }
19930
19931  return Res;
19932}
19933