SparcInstrInfo.td revision 263763
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// HasHardQuad - This is true when the target processor supports quad floating
43// point instructions.
44def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
45
46// UseDeprecatedInsts - This predicate is true when the target processor is a
47// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
48// to use when appropriate.  In either of these cases, the instruction selector
49// will pick deprecated instructions.
50def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
51
52//===----------------------------------------------------------------------===//
53// Instruction Pattern Stuff
54//===----------------------------------------------------------------------===//
55
56def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
57
58def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
59
60def LO10 : SDNodeXForm<imm, [{
61  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
62                                   MVT::i32);
63}]>;
64
65def HI22 : SDNodeXForm<imm, [{
66  // Transformation function: shift the immediate value down into the low bits.
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
68}]>;
69
70def SETHIimm : PatLeaf<(imm), [{
71  return isShiftedUInt<22, 10>(N->getZExtValue());
72}], HI22>;
73
74// Addressing modes.
75def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
76def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
77
78// Address operands
79def SparcMEMrrAsmOperand : AsmOperandClass {
80  let Name = "MEMrr";
81  let ParserMethod = "parseMEMOperand";
82}
83
84def SparcMEMriAsmOperand : AsmOperandClass {
85  let Name = "MEMri";
86  let ParserMethod = "parseMEMOperand";
87}
88
89def MEMrr : Operand<iPTR> {
90  let PrintMethod = "printMemOperand";
91  let MIOperandInfo = (ops ptr_rc, ptr_rc);
92  let ParserMatchClass = SparcMEMrrAsmOperand;
93}
94def MEMri : Operand<iPTR> {
95  let PrintMethod = "printMemOperand";
96  let MIOperandInfo = (ops ptr_rc, i32imm);
97  let ParserMatchClass = SparcMEMriAsmOperand;
98}
99
100def TLSSym : Operand<iPTR>;
101
102// Branch targets have OtherVT type.
103def brtarget : Operand<OtherVT> {
104  let EncoderMethod = "getBranchTargetOpValue";
105}
106
107def calltarget : Operand<i32> {
108  let EncoderMethod = "getCallTargetOpValue";
109}
110
111// Operand for printing out a condition code.
112let PrintMethod = "printCCOperand" in
113  def CCOp : Operand<i32>;
114
115def SDTSPcmpicc :
116SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
117def SDTSPcmpfcc :
118SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
119def SDTSPbrcc :
120SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
121def SDTSPselectcc :
122SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
123def SDTSPFTOI :
124SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
125def SDTSPITOF :
126SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
127def SDTSPFTOX :
128SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
129def SDTSPXTOF :
130SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
131
132def SDTSPtlsadd :
133SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
134def SDTSPtlsld :
135SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
136
137def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
138def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
139def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
140def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
141def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
142
143def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
144def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
145
146def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
147def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
148def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
149def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
150
151def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
152def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
153def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
154
155//  These are target-independent nodes, but have target-specific formats.
156def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
157def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
158                                        SDTCisVT<1, i32> ]>;
159
160def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
161                           [SDNPHasChain, SDNPOutGlue]>;
162def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
163                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
164
165def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
166def call          : SDNode<"SPISD::CALL", SDT_SPCall,
167                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
168                            SDNPVariadic]>;
169
170def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
171def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
172                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
173
174def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
175                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
176
177def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
178def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
179def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
180                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
181                             SDNPVariadic]>;
182
183def getPCX        : Operand<iPTR> {
184  let PrintMethod = "printGetPCX";
185}
186
187//===----------------------------------------------------------------------===//
188// SPARC Flag Conditions
189//===----------------------------------------------------------------------===//
190
191// Note that these values must be kept in sync with the CCOp::CondCode enum
192// values.
193class ICC_VAL<int N> : PatLeaf<(i32 N)>;
194def ICC_NE  : ICC_VAL< 9>;  // Not Equal
195def ICC_E   : ICC_VAL< 1>;  // Equal
196def ICC_G   : ICC_VAL<10>;  // Greater
197def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
198def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
199def ICC_L   : ICC_VAL< 3>;  // Less
200def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
201def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
202def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
203def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
204def ICC_POS : ICC_VAL<14>;  // Positive
205def ICC_NEG : ICC_VAL< 6>;  // Negative
206def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
207def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
208
209class FCC_VAL<int N> : PatLeaf<(i32 N)>;
210def FCC_U   : FCC_VAL<23>;  // Unordered
211def FCC_G   : FCC_VAL<22>;  // Greater
212def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
213def FCC_L   : FCC_VAL<20>;  // Less
214def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
215def FCC_LG  : FCC_VAL<18>;  // Less or Greater
216def FCC_NE  : FCC_VAL<17>;  // Not Equal
217def FCC_E   : FCC_VAL<25>;  // Equal
218def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
219def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
220def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
221def FCC_LE  : FCC_VAL<27>;  // Less or Equal
222def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
223def FCC_O   : FCC_VAL<29>;  // Ordered
224
225//===----------------------------------------------------------------------===//
226// Instruction Class Templates
227//===----------------------------------------------------------------------===//
228
229/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
230multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
231                 RegisterClass RC, ValueType Ty, Operand immOp> {
232  def rr  : F3_1<2, Op3Val,
233                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
234                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
235                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
236  def ri  : F3_2<2, Op3Val,
237                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
238                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
239                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
240}
241
242/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
243/// pattern.
244multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
245  def rr  : F3_1<2, Op3Val,
246                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
247                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
248  def ri  : F3_2<2, Op3Val,
249                 (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
250                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
251}
252
253// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
254multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
255           RegisterClass RC, ValueType Ty> {
256  def rr  : F3_1<3, Op3Val,
257                 (outs RC:$dst), (ins MEMrr:$addr),
258                 !strconcat(OpcStr, " [$addr], $dst"),
259                 [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
260  def ri  : F3_2<3, Op3Val,
261                 (outs RC:$dst), (ins MEMri:$addr),
262                 !strconcat(OpcStr, " [$addr], $dst"),
263                 [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
264}
265
266// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
267multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
268           RegisterClass RC, ValueType Ty> {
269  def rr  : F3_1<3, Op3Val,
270                 (outs), (ins MEMrr:$addr, RC:$rd),
271                 !strconcat(OpcStr, " $rd, [$addr]"),
272                 [(OpNode Ty:$rd, ADDRrr:$addr)]>;
273  def ri  : F3_2<3, Op3Val,
274                 (outs), (ins MEMri:$addr, RC:$rd),
275                 !strconcat(OpcStr, " $rd, [$addr]"),
276                 [(OpNode Ty:$rd, ADDRri:$addr)]>;
277}
278
279//===----------------------------------------------------------------------===//
280// Instructions
281//===----------------------------------------------------------------------===//
282
283// Pseudo instructions.
284class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
285   : InstSP<outs, ins, asmstr, pattern> {
286  let isCodeGenOnly = 1;
287  let isPseudo = 1;
288}
289
290// GETPCX for PIC
291let Defs = [O7] in {
292  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
293}
294
295let Defs = [O6], Uses = [O6] in {
296def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
297                               "!ADJCALLSTACKDOWN $amt",
298                               [(callseq_start timm:$amt)]>;
299def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
300                            "!ADJCALLSTACKUP $amt1",
301                            [(callseq_end timm:$amt1, timm:$amt2)]>;
302}
303
304let hasSideEffects = 1, mayStore = 1 in {
305  let rd = 0, rs1 = 0, rs2 = 0 in
306    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
307                      "flushw",
308                      [(flushw)]>, Requires<[HasV9]>;
309  let rd = 0, rs1 = 1, simm13 = 3 in
310    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
311                   "ta 3",
312                   [(flushw)]>;
313}
314
315let isBarrier = 1, isTerminator = 1, rd = 0b1000, rs1 = 0, simm13 = 5 in
316  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
317
318let rd = 0 in
319  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
320                  "unimp $val", []>;
321
322// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
323// instruction selection into a branch sequence.  This has to handle all
324// permutations of selection between i32/f32/f64 on ICC and FCC.
325// Expanded after instruction selection.
326let Uses = [ICC], usesCustomInserter = 1 in {
327  def SELECT_CC_Int_ICC
328   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
329            "; SELECT_CC_Int_ICC PSEUDO!",
330            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
331  def SELECT_CC_FP_ICC
332   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
333            "; SELECT_CC_FP_ICC PSEUDO!",
334            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
335
336  def SELECT_CC_DFP_ICC
337   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
338            "; SELECT_CC_DFP_ICC PSEUDO!",
339            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
340
341  def SELECT_CC_QFP_ICC
342   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
343            "; SELECT_CC_QFP_ICC PSEUDO!",
344            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
345}
346
347let usesCustomInserter = 1, Uses = [FCC] in {
348
349  def SELECT_CC_Int_FCC
350   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
351            "; SELECT_CC_Int_FCC PSEUDO!",
352            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
353
354  def SELECT_CC_FP_FCC
355   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
356            "; SELECT_CC_FP_FCC PSEUDO!",
357            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
358  def SELECT_CC_DFP_FCC
359   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
360            "; SELECT_CC_DFP_FCC PSEUDO!",
361            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
362  def SELECT_CC_QFP_FCC
363   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
364            "; SELECT_CC_QFP_FCC PSEUDO!",
365            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
366}
367
368// JMPL Instruction.
369let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
370  def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
371                  "jmpl $addr, $dst", []>;
372  def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
373                  "jmpl $addr, $dst", []>;
374}
375
376// Section A.3 - Synthetic Instructions, p. 85
377// special cases of JMPL:
378let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
379    isCodeGenOnly = 1 in {
380  let rd = 0, rs1 = 15 in
381    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
382                   "jmp %o7+$val", [(retflag simm13:$val)]>;
383
384  let rd = 0, rs1 = 31 in
385    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
386                  "jmp %i7+$val", []>;
387}
388
389// Section B.1 - Load Integer Instructions, p. 90
390defm LDSB : Load<"ldsb", 0b001001, sextloadi8,  IntRegs, i32>;
391defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
392defm LDUB : Load<"ldub", 0b000001, zextloadi8,  IntRegs, i32>;
393defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
394defm LD   : Load<"ld",   0b000000, load,        IntRegs, i32>;
395
396// Section B.2 - Load Floating-point Instructions, p. 92
397defm LDF   : Load<"ld",  0b100000, load, FPRegs,  f32>;
398defm LDDF  : Load<"ldd", 0b100011, load, DFPRegs, f64>;
399defm LDQF  : Load<"ldq", 0b100010, load, QFPRegs, f128>,
400             Requires<[HasV9, HasHardQuad]>;
401
402// Section B.4 - Store Integer Instructions, p. 95
403defm STB   : Store<"stb", 0b000101, truncstorei8,  IntRegs, i32>;
404defm STH   : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
405defm ST    : Store<"st",  0b000100, store,         IntRegs, i32>;
406
407// Section B.5 - Store Floating-point Instructions, p. 97
408defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
409defm STDF  : Store<"std", 0b100111, store,         DFPRegs, f64>;
410defm STQF  : Store<"stq", 0b100110, store,         QFPRegs, f128>,
411             Requires<[HasV9, HasHardQuad]>;
412
413// Section B.9 - SETHI Instruction, p. 104
414def SETHIi: F2_1<0b100,
415                 (outs IntRegs:$rd), (ins i32imm:$imm22),
416                 "sethi $imm22, $rd",
417                 [(set i32:$rd, SETHIimm:$imm22)]>;
418
419// Section B.10 - NOP Instruction, p. 105
420// (It's a special case of SETHI)
421let rd = 0, imm22 = 0 in
422  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
423
424// Section B.11 - Logical Instructions, p. 106
425defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, i32imm>;
426
427def ANDNrr  : F3_1<2, 0b000101,
428                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
429                   "andn $rs1, $rs2, $rd",
430                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
431def ANDNri  : F3_2<2, 0b000101,
432                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
433                   "andn $rs1, $simm13, $rd", []>;
434
435defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, i32imm>;
436
437def ORNrr   : F3_1<2, 0b000110,
438                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
439                   "orn $rs1, $rs2, $rd",
440                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
441def ORNri   : F3_2<2, 0b000110,
442                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
443                   "orn $rs1, $simm13, $rd", []>;
444defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, i32imm>;
445
446def XNORrr  : F3_1<2, 0b000111,
447                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
448                   "xnor $rs1, $rs2, $rd",
449                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
450def XNORri  : F3_2<2, 0b000111,
451                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
452                   "xnor $rs1, $simm13, $rd", []>;
453
454// Section B.12 - Shift Instructions, p. 107
455defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, i32imm>;
456defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, i32imm>;
457defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, i32imm>;
458
459// Section B.13 - Add Instructions, p. 108
460defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, i32imm>;
461
462// "LEA" forms of add (patterns to make tblgen happy)
463let Predicates = [Is32Bit], isCodeGenOnly = 1 in
464  def LEA_ADDri   : F3_2<2, 0b000000,
465                     (outs IntRegs:$dst), (ins MEMri:$addr),
466                     "add ${addr:arith}, $dst",
467                     [(set iPTR:$dst, ADDRri:$addr)]>;
468
469let Defs = [ICC] in
470  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, i32imm>;
471
472let Uses = [ICC], Defs = [ICC] in
473  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, i32imm>;
474
475// Section B.15 - Subtract Instructions, p. 110
476defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, i32imm>;
477let Uses = [ICC], Defs = [ICC] in
478  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, i32imm>;
479
480let Defs = [ICC] in
481  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, i32imm>;
482
483let Defs = [ICC], rd = 0 in {
484  def CMPrr   : F3_1<2, 0b010100,
485                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
486                     "cmp $rs1, $rs2",
487                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
488  def CMPri   : F3_2<2, 0b010100,
489                     (outs), (ins IntRegs:$rs1, i32imm:$simm13),
490                     "cmp $rs1, $simm13",
491                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
492}
493
494// Section B.18 - Multiply Instructions, p. 113
495let Defs = [Y] in {
496  defm UMUL : F3_12np<"umul", 0b001010>;
497  defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, i32imm>;
498}
499
500// Section B.19 - Divide Instructions, p. 115
501let Defs = [Y] in {
502  defm UDIV : F3_12np<"udiv", 0b001110>;
503  defm SDIV : F3_12np<"sdiv", 0b001111>;
504}
505
506// Section B.20 - SAVE and RESTORE, p. 117
507defm SAVE    : F3_12np<"save"   , 0b111100>;
508defm RESTORE : F3_12np<"restore", 0b111101>;
509
510// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
511
512// unconditional branch class.
513class BranchAlways<dag ins, string asmstr, list<dag> pattern>
514  : F2_2<0b010, (outs), ins, asmstr, pattern> {
515  let isBranch     = 1;
516  let isTerminator = 1;
517  let hasDelaySlot = 1;
518  let isBarrier    = 1;
519}
520
521let cond = 8 in
522  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
523
524// conditional branch class:
525class BranchSP<dag ins, string asmstr, list<dag> pattern>
526 : F2_2<0b010, (outs), ins, asmstr, pattern> {
527  let isBranch = 1;
528  let isTerminator = 1;
529  let hasDelaySlot = 1;
530}
531
532// Indirect branch instructions.
533let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
534     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
535  def BINDrr  : F3_1<2, 0b111000,
536                   (outs), (ins MEMrr:$ptr),
537                   "jmp $ptr",
538                   [(brind ADDRrr:$ptr)]>;
539  def BINDri  : F3_2<2, 0b111000,
540                   (outs), (ins MEMri:$ptr),
541                   "jmp $ptr",
542                   [(brind ADDRri:$ptr)]>;
543}
544
545let Uses = [ICC] in
546  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
547                         "b$cond $imm22",
548                        [(SPbricc bb:$imm22, imm:$cond)]>;
549
550// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
551
552// floating-point conditional branch class:
553class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
554 : F2_2<0b110, (outs), ins, asmstr, pattern> {
555  let isBranch = 1;
556  let isTerminator = 1;
557  let hasDelaySlot = 1;
558}
559
560let Uses = [FCC] in
561  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
562                              "fb$cond $imm22",
563                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
564
565
566// Section B.24 - Call and Link Instruction, p. 125
567// This is the only Format 1 instruction
568let Uses = [O6],
569    hasDelaySlot = 1, isCall = 1 in {
570  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
571                    "call $dst", []> {
572    bits<30> disp;
573    let op = 1;
574    let Inst{29-0} = disp;
575  }
576
577  // indirect calls: special cases of JMPL.
578  let isCodeGenOnly = 1, rd = 15 in {
579    def CALLrr : F3_1<2, 0b111000,
580                      (outs), (ins MEMrr:$ptr, variable_ops),
581                      "call $ptr",
582                      [(call ADDRrr:$ptr)]>;
583    def CALLri : F3_2<2, 0b111000,
584                      (outs), (ins MEMri:$ptr, variable_ops),
585                      "call $ptr",
586                      [(call ADDRri:$ptr)]>;
587  }
588}
589
590// Section B.28 - Read State Register Instructions
591let Uses = [Y], rs1 = 0, rs2 = 0 in
592  def RDY : F3_1<2, 0b101000,
593                 (outs IntRegs:$dst), (ins),
594                 "rd %y, $dst", []>;
595
596// Section B.29 - Write State Register Instructions
597let Defs = [Y], rd = 0 in {
598  def WRYrr : F3_1<2, 0b110000,
599                   (outs), (ins IntRegs:$b, IntRegs:$c),
600                   "wr $b, $c, %y", []>;
601  def WRYri : F3_2<2, 0b110000,
602                   (outs), (ins IntRegs:$b, i32imm:$c),
603                   "wr $b, $c, %y", []>;
604}
605// Convert Integer to Floating-point Instructions, p. 141
606def FITOS : F3_3u<2, 0b110100, 0b011000100,
607                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
608                 "fitos $rs2, $rd",
609                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
610def FITOD : F3_3u<2, 0b110100, 0b011001000,
611                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
612                 "fitod $rs2, $rd",
613                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
614def FITOQ : F3_3u<2, 0b110100, 0b011001100,
615                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
616                 "fitoq $rs2, $rd",
617                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
618                 Requires<[HasHardQuad]>;
619
620// Convert Floating-point to Integer Instructions, p. 142
621def FSTOI : F3_3u<2, 0b110100, 0b011010001,
622                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
623                 "fstoi $rs2, $rd",
624                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
625def FDTOI : F3_3u<2, 0b110100, 0b011010010,
626                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
627                 "fdtoi $rs2, $rd",
628                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
629def FQTOI : F3_3u<2, 0b110100, 0b011010011,
630                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
631                 "fqtoi $rs2, $rd",
632                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
633                 Requires<[HasHardQuad]>;
634
635// Convert between Floating-point Formats Instructions, p. 143
636def FSTOD : F3_3u<2, 0b110100, 0b011001001,
637                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
638                 "fstod $rs2, $rd",
639                 [(set f64:$rd, (fextend f32:$rs2))]>;
640def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
641                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
642                 "fstoq $rs2, $rd",
643                 [(set f128:$rd, (fextend f32:$rs2))]>,
644                 Requires<[HasHardQuad]>;
645def FDTOS : F3_3u<2, 0b110100, 0b011000110,
646                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
647                 "fdtos $rs2, $rd",
648                 [(set f32:$rd, (fround f64:$rs2))]>;
649def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
650                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
651                 "fdtoq $rs2, $rd",
652                 [(set f128:$rd, (fextend f64:$rs2))]>,
653                 Requires<[HasHardQuad]>;
654def FQTOS : F3_3u<2, 0b110100, 0b011000111,
655                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
656                 "fqtos $rs2, $rd",
657                 [(set f32:$rd, (fround f128:$rs2))]>,
658                 Requires<[HasHardQuad]>;
659def FQTOD : F3_3u<2, 0b110100, 0b011001011,
660                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
661                 "fqtod $rs2, $rd",
662                 [(set f64:$rd, (fround f128:$rs2))]>,
663                 Requires<[HasHardQuad]>;
664
665// Floating-point Move Instructions, p. 144
666def FMOVS : F3_3u<2, 0b110100, 0b000000001,
667                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
668                 "fmovs $rs2, $rd", []>;
669def FNEGS : F3_3u<2, 0b110100, 0b000000101,
670                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
671                 "fnegs $rs2, $rd",
672                 [(set f32:$rd, (fneg f32:$rs2))]>;
673def FABSS : F3_3u<2, 0b110100, 0b000001001,
674                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
675                 "fabss $rs2, $rd",
676                 [(set f32:$rd, (fabs f32:$rs2))]>;
677
678
679// Floating-point Square Root Instructions, p.145
680def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
681                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
682                  "fsqrts $rs2, $rd",
683                  [(set f32:$rd, (fsqrt f32:$rs2))]>;
684def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
685                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
686                  "fsqrtd $rs2, $rd",
687                  [(set f64:$rd, (fsqrt f64:$rs2))]>;
688def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
689                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
690                  "fsqrtq $rs2, $rd",
691                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
692                  Requires<[HasHardQuad]>;
693
694
695
696// Floating-point Add and Subtract Instructions, p. 146
697def FADDS  : F3_3<2, 0b110100, 0b001000001,
698                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
699                  "fadds $rs1, $rs2, $rd",
700                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
701def FADDD  : F3_3<2, 0b110100, 0b001000010,
702                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
703                  "faddd $rs1, $rs2, $rd",
704                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
705def FADDQ  : F3_3<2, 0b110100, 0b001000011,
706                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
707                  "faddq $rs1, $rs2, $rd",
708                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
709                  Requires<[HasHardQuad]>;
710
711def FSUBS  : F3_3<2, 0b110100, 0b001000101,
712                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
713                  "fsubs $rs1, $rs2, $rd",
714                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
715def FSUBD  : F3_3<2, 0b110100, 0b001000110,
716                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
717                  "fsubd $rs1, $rs2, $rd",
718                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
719def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
720                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
721                  "fsubq $rs1, $rs2, $rd",
722                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
723                  Requires<[HasHardQuad]>;
724
725
726// Floating-point Multiply and Divide Instructions, p. 147
727def FMULS  : F3_3<2, 0b110100, 0b001001001,
728                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
729                  "fmuls $rs1, $rs2, $rd",
730                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
731def FMULD  : F3_3<2, 0b110100, 0b001001010,
732                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
733                  "fmuld $rs1, $rs2, $rd",
734                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
735def FMULQ  : F3_3<2, 0b110100, 0b001001011,
736                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
737                  "fmulq $rs1, $rs2, $rd",
738                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
739                  Requires<[HasHardQuad]>;
740
741def FSMULD : F3_3<2, 0b110100, 0b001101001,
742                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
743                  "fsmuld $rs1, $rs2, $rd",
744                  [(set f64:$rd, (fmul (fextend f32:$rs1),
745                                        (fextend f32:$rs2)))]>;
746def FDMULQ : F3_3<2, 0b110100, 0b001101110,
747                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
748                  "fdmulq $rs1, $rs2, $rd",
749                  [(set f128:$rd, (fmul (fextend f64:$rs1),
750                                         (fextend f64:$rs2)))]>,
751                  Requires<[HasHardQuad]>;
752
753def FDIVS  : F3_3<2, 0b110100, 0b001001101,
754                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
755                 "fdivs $rs1, $rs2, $rd",
756                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
757def FDIVD  : F3_3<2, 0b110100, 0b001001110,
758                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
759                 "fdivd $rs1, $rs2, $rd",
760                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
761def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
762                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
763                 "fdivq $rs1, $rs2, $rd",
764                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
765                 Requires<[HasHardQuad]>;
766
767// Floating-point Compare Instructions, p. 148
768// Note: the 2nd template arg is different for these guys.
769// Note 2: the result of a FCMP is not available until the 2nd cycle
770// after the instr is retired, but there is no interlock in Sparc V8.
771// This behavior is modeled with a forced noop after the instruction in
772// DelaySlotFiller.
773
774let Defs = [FCC] in {
775  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
776                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
777                   "fcmps $rs1, $rs2",
778                   [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
779  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
780                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
781                   "fcmpd $rs1, $rs2",
782                   [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
783  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
784                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
785                   "fcmpq $rs1, $rs2",
786                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
787                   Requires<[HasHardQuad]>;
788}
789
790//===----------------------------------------------------------------------===//
791// Instructions for Thread Local Storage(TLS).
792//===----------------------------------------------------------------------===//
793let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
794def TLS_ADDrr : F3_1<2, 0b000000,
795                    (outs IntRegs:$rd),
796                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
797                    "add $rs1, $rs2, $rd, $sym",
798                    [(set i32:$rd,
799                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
800
801let mayLoad = 1 in
802  def TLS_LDrr : F3_1<3, 0b000000,
803                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
804                      "ld [$addr], $dst, $sym",
805                      [(set i32:$dst,
806                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
807
808let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
809  def TLS_CALL : InstSP<(outs),
810                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
811                        "call $disp, $sym",
812                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
813  bits<30> disp;
814  let op = 1;
815  let Inst{29-0} = disp;
816}
817}
818
819//===----------------------------------------------------------------------===//
820// V9 Instructions
821//===----------------------------------------------------------------------===//
822
823// V9 Conditional Moves.
824let Predicates = [HasV9], Constraints = "$f = $rd" in {
825  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
826  let Uses = [ICC], cc = 0b100 in {
827    def MOVICCrr
828      : F4_1<0b101100, (outs IntRegs:$rd),
829             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
830             "mov$cond %icc, $rs2, $rd",
831             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
832
833    def MOVICCri
834      : F4_2<0b101100, (outs IntRegs:$rd),
835             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
836             "mov$cond %icc, $simm11, $rd",
837             [(set i32:$rd,
838                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
839  }
840
841  let Uses = [FCC], cc = 0b000 in {
842    def MOVFCCrr
843      : F4_1<0b101100, (outs IntRegs:$rd),
844             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
845             "mov$cond %fcc0, $rs2, $rd",
846             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
847    def MOVFCCri
848      : F4_2<0b101100, (outs IntRegs:$rd),
849             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
850             "mov$cond %fcc0, $simm11, $rd",
851             [(set i32:$rd,
852                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
853  }
854
855  let Uses = [ICC], opf_cc = 0b100 in {
856    def FMOVS_ICC
857      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
858             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
859             "fmovs$cond %icc, $rs2, $rd",
860             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
861    def FMOVD_ICC
862      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
863               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
864               "fmovd$cond %icc, $rs2, $rd",
865               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
866    def FMOVQ_ICC
867      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
868               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
869               "fmovq$cond %icc, $rs2, $rd",
870               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
871               Requires<[HasHardQuad]>;
872  }
873
874  let Uses = [FCC], opf_cc = 0b000 in {
875    def FMOVS_FCC
876      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
877             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
878             "fmovs$cond %fcc0, $rs2, $rd",
879             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
880    def FMOVD_FCC
881      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
882             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
883             "fmovd$cond %fcc0, $rs2, $rd",
884             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
885    def FMOVQ_FCC
886      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
887             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
888             "fmovq$cond %fcc0, $rs2, $rd",
889             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
890             Requires<[HasHardQuad]>;
891  }
892
893}
894
895// Floating-Point Move Instructions, p. 164 of the V9 manual.
896let Predicates = [HasV9] in {
897  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
898                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
899                   "fmovd $rs2, $rd", []>;
900  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
901                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
902                   "fmovq $rs2, $rd", []>,
903                   Requires<[HasHardQuad]>;
904  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
905                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
906                   "fnegd $rs2, $rd",
907                   [(set f64:$rd, (fneg f64:$rs2))]>;
908  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
909                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
910                   "fnegq $rs2, $rd",
911                   [(set f128:$rd, (fneg f128:$rs2))]>,
912                   Requires<[HasHardQuad]>;
913  def FABSD : F3_3u<2, 0b110100, 0b000001010,
914                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
915                   "fabsd $rs2, $rd",
916                   [(set f64:$rd, (fabs f64:$rs2))]>;
917  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
918                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
919                   "fabsq $rs2, $rd",
920                   [(set f128:$rd, (fabs f128:$rs2))]>,
921                   Requires<[HasHardQuad]>;
922}
923
924// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
925// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
926let rs1 = 0 in
927  def POPCrr : F3_1<2, 0b101110,
928                    (outs IntRegs:$dst), (ins IntRegs:$src),
929                    "popc $src, $dst", []>, Requires<[HasV9]>;
930def : Pat<(ctpop i32:$src),
931          (POPCrr (SRLri $src, 0))>;
932
933// Atomic swap.
934let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in
935  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
936
937let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
938 def MEMBARi : F3_2<2, 0b101000, (outs), (ins i32imm:$simm13),
939                    "membar $simm13", []>;
940
941let Constraints = "$val = $dst" in {
942  def SWAPrr : F3_1<3, 0b001111,
943                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
944                 "swap [$addr], $dst",
945                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
946  def SWAPri : F3_2<3, 0b001111,
947                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
948                 "swap [$addr], $dst",
949                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
950}
951
952let Predicates = [HasV9], Constraints = "$swap = $rd" in
953  def CASrr: F3_1_asi<3, 0b111100, 0b10000000,
954                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
955                                     IntRegs:$swap),
956                 "cas [$rs1], $rs2, $rd",
957                 [(set i32:$rd,
958                     (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
959
960//===----------------------------------------------------------------------===//
961// Non-Instruction Patterns
962//===----------------------------------------------------------------------===//
963
964// Small immediates.
965def : Pat<(i32 simm13:$val),
966          (ORri (i32 G0), imm:$val)>;
967// Arbitrary immediates.
968def : Pat<(i32 imm:$val),
969          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
970
971
972// Global addresses, constant pool entries
973let Predicates = [Is32Bit] in {
974
975def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
976def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
977def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
978def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
979
980// GlobalTLS addresses
981def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
982def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
983def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
984          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
985def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
986          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
987
988// Blockaddress
989def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
990def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
991
992// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
993def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
994def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
995def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
996                        (ADDri $r, tblockaddress:$in)>;
997}
998
999// Calls:
1000def : Pat<(call tglobaladdr:$dst),
1001          (CALL tglobaladdr:$dst)>;
1002def : Pat<(call texternalsym:$dst),
1003          (CALL texternalsym:$dst)>;
1004
1005// Map integer extload's to zextloads.
1006def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1007def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1008def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1009def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1010def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1011def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1012
1013// zextload bool -> zextload byte
1014def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1015def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1016
1017// store 0, addr -> store %g0, addr
1018def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1019def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1020
1021// store bar for all atomic_fence in V8.
1022let Predicates = [HasNoV9] in
1023  def : Pat<(atomic_fence imm, imm), (STBAR)>;
1024
1025// atomic_load_32 addr -> load addr
1026def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1027def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
1028
1029// atomic_store_32 val, addr -> store val, addr
1030def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1031def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1032
1033
1034include "SparcInstr64Bit.td"
1035include "SparcInstrAliases.td"
1036