PPCFastISel.cpp revision 263508
1//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PowerPC-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// PPCGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "ppcfastisel"
17#include "PPC.h"
18#include "PPCISelLowering.h"
19#include "PPCSubtarget.h"
20#include "PPCTargetMachine.h"
21#include "MCTargetDesc/PPCPredicates.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39
40//===----------------------------------------------------------------------===//
41//
42// TBD:
43//   FastLowerArguments: Handle simple cases.
44//   PPCMaterializeGV: Handle TLS.
45//   SelectCall: Handle function pointers.
46//   SelectCall: Handle multi-register return values.
47//   SelectCall: Optimize away nops for local calls.
48//   processCallArgs: Handle bit-converted arguments.
49//   finishCall: Handle multi-register return values.
50//   PPCComputeAddress: Handle parameter references as FrameIndex's.
51//   PPCEmitCmp: Handle immediate as operand 1.
52//   SelectCall: Handle small byval arguments.
53//   SelectIntrinsicCall: Implement.
54//   SelectSelect: Implement.
55//   Consider factoring isTypeLegal into the base class.
56//   Implement switches and jump tables.
57//
58//===----------------------------------------------------------------------===//
59using namespace llvm;
60
61namespace {
62
63typedef struct Address {
64  enum {
65    RegBase,
66    FrameIndexBase
67  } BaseType;
68
69  union {
70    unsigned Reg;
71    int FI;
72  } Base;
73
74  long Offset;
75
76  // Innocuous defaults for our address.
77  Address()
78   : BaseType(RegBase), Offset(0) {
79     Base.Reg = 0;
80   }
81} Address;
82
83class PPCFastISel : public FastISel {
84
85  const TargetMachine &TM;
86  const TargetInstrInfo &TII;
87  const TargetLowering &TLI;
88  const PPCSubtarget &PPCSubTarget;
89  LLVMContext *Context;
90
91  public:
92    explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
93                         const TargetLibraryInfo *LibInfo)
94    : FastISel(FuncInfo, LibInfo),
95      TM(FuncInfo.MF->getTarget()),
96      TII(*TM.getInstrInfo()),
97      TLI(*TM.getTargetLowering()),
98      PPCSubTarget(
99       *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
100      ),
101      Context(&FuncInfo.Fn->getContext()) { }
102
103  // Backend specific FastISel code.
104  private:
105    virtual bool TargetSelectInstruction(const Instruction *I);
106    virtual unsigned TargetMaterializeConstant(const Constant *C);
107    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
108    virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109                                     const LoadInst *LI);
110    virtual bool FastLowerArguments();
111    virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm);
112    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
113                                     const TargetRegisterClass *RC,
114                                     unsigned Op0, bool Op0IsKill,
115                                     uint64_t Imm);
116    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
117                                    const TargetRegisterClass *RC,
118                                    unsigned Op0, bool Op0IsKill);
119    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
120                                     const TargetRegisterClass *RC,
121                                     unsigned Op0, bool Op0IsKill,
122                                     unsigned Op1, bool Op1IsKill);
123
124  // Instruction selection routines.
125  private:
126    bool SelectLoad(const Instruction *I);
127    bool SelectStore(const Instruction *I);
128    bool SelectBranch(const Instruction *I);
129    bool SelectIndirectBr(const Instruction *I);
130    bool SelectCmp(const Instruction *I);
131    bool SelectFPExt(const Instruction *I);
132    bool SelectFPTrunc(const Instruction *I);
133    bool SelectIToFP(const Instruction *I, bool IsSigned);
134    bool SelectFPToI(const Instruction *I, bool IsSigned);
135    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
136    bool SelectCall(const Instruction *I);
137    bool SelectRet(const Instruction *I);
138    bool SelectTrunc(const Instruction *I);
139    bool SelectIntExt(const Instruction *I);
140
141  // Utility routines.
142  private:
143    bool isTypeLegal(Type *Ty, MVT &VT);
144    bool isLoadTypeLegal(Type *Ty, MVT &VT);
145    bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
146                    bool isZExt, unsigned DestReg);
147    bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
148                     const TargetRegisterClass *RC, bool IsZExt = true,
149                     unsigned FP64LoadOpc = PPC::LFD);
150    bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
151    bool PPCComputeAddress(const Value *Obj, Address &Addr);
152    void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
153                            unsigned &IndexReg);
154    bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
155                           unsigned DestReg, bool IsZExt);
156    unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
157    unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
158    unsigned PPCMaterializeInt(const Constant *C, MVT VT);
159    unsigned PPCMaterialize32BitInt(int64_t Imm,
160                                    const TargetRegisterClass *RC);
161    unsigned PPCMaterialize64BitInt(int64_t Imm,
162                                    const TargetRegisterClass *RC);
163    unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
164                             unsigned SrcReg, bool IsSigned);
165    unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
166
167  // Call handling routines.
168  private:
169    bool processCallArgs(SmallVectorImpl<Value*> &Args,
170                         SmallVectorImpl<unsigned> &ArgRegs,
171                         SmallVectorImpl<MVT> &ArgVTs,
172                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
173                         SmallVectorImpl<unsigned> &RegArgs,
174                         CallingConv::ID CC,
175                         unsigned &NumBytes,
176                         bool IsVarArg);
177    void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
178                    const Instruction *I, CallingConv::ID CC,
179                    unsigned &NumBytes, bool IsVarArg);
180    CCAssignFn *usePPC32CCs(unsigned Flag);
181
182  private:
183  #include "PPCGenFastISel.inc"
184
185};
186
187} // end anonymous namespace
188
189#include "PPCGenCallingConv.inc"
190
191// Function whose sole purpose is to kill compiler warnings
192// stemming from unused functions included from PPCGenCallingConv.inc.
193CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
194  if (Flag == 1)
195    return CC_PPC32_SVR4;
196  else if (Flag == 2)
197    return CC_PPC32_SVR4_ByVal;
198  else if (Flag == 3)
199    return CC_PPC32_SVR4_VarArg;
200  else
201    return RetCC_PPC;
202}
203
204static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
205  switch (Pred) {
206    // These are not representable with any single compare.
207    case CmpInst::FCMP_FALSE:
208    case CmpInst::FCMP_UEQ:
209    case CmpInst::FCMP_UGT:
210    case CmpInst::FCMP_UGE:
211    case CmpInst::FCMP_ULT:
212    case CmpInst::FCMP_ULE:
213    case CmpInst::FCMP_UNE:
214    case CmpInst::FCMP_TRUE:
215    default:
216      return Optional<PPC::Predicate>();
217
218    case CmpInst::FCMP_OEQ:
219    case CmpInst::ICMP_EQ:
220      return PPC::PRED_EQ;
221
222    case CmpInst::FCMP_OGT:
223    case CmpInst::ICMP_UGT:
224    case CmpInst::ICMP_SGT:
225      return PPC::PRED_GT;
226
227    case CmpInst::FCMP_OGE:
228    case CmpInst::ICMP_UGE:
229    case CmpInst::ICMP_SGE:
230      return PPC::PRED_GE;
231
232    case CmpInst::FCMP_OLT:
233    case CmpInst::ICMP_ULT:
234    case CmpInst::ICMP_SLT:
235      return PPC::PRED_LT;
236
237    case CmpInst::FCMP_OLE:
238    case CmpInst::ICMP_ULE:
239    case CmpInst::ICMP_SLE:
240      return PPC::PRED_LE;
241
242    case CmpInst::FCMP_ONE:
243    case CmpInst::ICMP_NE:
244      return PPC::PRED_NE;
245
246    case CmpInst::FCMP_ORD:
247      return PPC::PRED_NU;
248
249    case CmpInst::FCMP_UNO:
250      return PPC::PRED_UN;
251  }
252}
253
254// Determine whether the type Ty is simple enough to be handled by
255// fast-isel, and return its equivalent machine type in VT.
256// FIXME: Copied directly from ARM -- factor into base class?
257bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
258  EVT Evt = TLI.getValueType(Ty, true);
259
260  // Only handle simple types.
261  if (Evt == MVT::Other || !Evt.isSimple()) return false;
262  VT = Evt.getSimpleVT();
263
264  // Handle all legal types, i.e. a register that will directly hold this
265  // value.
266  return TLI.isTypeLegal(VT);
267}
268
269// Determine whether the type Ty is simple enough to be handled by
270// fast-isel as a load target, and return its equivalent machine type in VT.
271bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
272  if (isTypeLegal(Ty, VT)) return true;
273
274  // If this is a type than can be sign or zero-extended to a basic operation
275  // go ahead and accept it now.
276  if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
277    return true;
278  }
279
280  return false;
281}
282
283// Given a value Obj, create an Address object Addr that represents its
284// address.  Return false if we can't handle it.
285bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
286  const User *U = NULL;
287  unsigned Opcode = Instruction::UserOp1;
288  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
289    // Don't walk into other basic blocks unless the object is an alloca from
290    // another block, otherwise it may not have a virtual register assigned.
291    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
292        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
293      Opcode = I->getOpcode();
294      U = I;
295    }
296  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
297    Opcode = C->getOpcode();
298    U = C;
299  }
300
301  switch (Opcode) {
302    default:
303      break;
304    case Instruction::BitCast:
305      // Look through bitcasts.
306      return PPCComputeAddress(U->getOperand(0), Addr);
307    case Instruction::IntToPtr:
308      // Look past no-op inttoptrs.
309      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
310        return PPCComputeAddress(U->getOperand(0), Addr);
311      break;
312    case Instruction::PtrToInt:
313      // Look past no-op ptrtoints.
314      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
315        return PPCComputeAddress(U->getOperand(0), Addr);
316      break;
317    case Instruction::GetElementPtr: {
318      Address SavedAddr = Addr;
319      long TmpOffset = Addr.Offset;
320
321      // Iterate through the GEP folding the constants into offsets where
322      // we can.
323      gep_type_iterator GTI = gep_type_begin(U);
324      for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
325           II != IE; ++II, ++GTI) {
326        const Value *Op = *II;
327        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
328          const StructLayout *SL = TD.getStructLayout(STy);
329          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
330          TmpOffset += SL->getElementOffset(Idx);
331        } else {
332          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
333          for (;;) {
334            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
335              // Constant-offset addressing.
336              TmpOffset += CI->getSExtValue() * S;
337              break;
338            }
339            if (canFoldAddIntoGEP(U, Op)) {
340              // A compatible add with a constant operand. Fold the constant.
341              ConstantInt *CI =
342              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
343              TmpOffset += CI->getSExtValue() * S;
344              // Iterate on the other operand.
345              Op = cast<AddOperator>(Op)->getOperand(0);
346              continue;
347            }
348            // Unsupported
349            goto unsupported_gep;
350          }
351        }
352      }
353
354      // Try to grab the base operand now.
355      Addr.Offset = TmpOffset;
356      if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
357
358      // We failed, restore everything and try the other options.
359      Addr = SavedAddr;
360
361      unsupported_gep:
362      break;
363    }
364    case Instruction::Alloca: {
365      const AllocaInst *AI = cast<AllocaInst>(Obj);
366      DenseMap<const AllocaInst*, int>::iterator SI =
367        FuncInfo.StaticAllocaMap.find(AI);
368      if (SI != FuncInfo.StaticAllocaMap.end()) {
369        Addr.BaseType = Address::FrameIndexBase;
370        Addr.Base.FI = SI->second;
371        return true;
372      }
373      break;
374    }
375  }
376
377  // FIXME: References to parameters fall through to the behavior
378  // below.  They should be able to reference a frame index since
379  // they are stored to the stack, so we can get "ld rx, offset(r1)"
380  // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
381  // just contain the parameter.  Try to handle this with a FI.
382
383  // Try to get this in a register if nothing else has worked.
384  if (Addr.Base.Reg == 0)
385    Addr.Base.Reg = getRegForValue(Obj);
386
387  // Prevent assignment of base register to X0, which is inappropriate
388  // for loads and stores alike.
389  if (Addr.Base.Reg != 0)
390    MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
391
392  return Addr.Base.Reg != 0;
393}
394
395// Fix up some addresses that can't be used directly.  For example, if
396// an offset won't fit in an instruction field, we may need to move it
397// into an index register.
398void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
399                                     unsigned &IndexReg) {
400
401  // Check whether the offset fits in the instruction field.
402  if (!isInt<16>(Addr.Offset))
403    UseOffset = false;
404
405  // If this is a stack pointer and the offset needs to be simplified then
406  // put the alloca address into a register, set the base type back to
407  // register and continue. This should almost never happen.
408  if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
409    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
410    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
411            ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
412    Addr.Base.Reg = ResultReg;
413    Addr.BaseType = Address::RegBase;
414  }
415
416  if (!UseOffset) {
417    IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
418                             : Type::getInt64Ty(*Context));
419    const ConstantInt *Offset =
420      ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
421    IndexReg = PPCMaterializeInt(Offset, MVT::i64);
422    assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
423  }
424}
425
426// Emit a load instruction if possible, returning true if we succeeded,
427// otherwise false.  See commentary below for how the register class of
428// the load is determined.
429bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
430                              const TargetRegisterClass *RC,
431                              bool IsZExt, unsigned FP64LoadOpc) {
432  unsigned Opc;
433  bool UseOffset = true;
434
435  // If ResultReg is given, it determines the register class of the load.
436  // Otherwise, RC is the register class to use.  If the result of the
437  // load isn't anticipated in this block, both may be zero, in which
438  // case we must make a conservative guess.  In particular, don't assign
439  // R0 or X0 to the result register, as the result may be used in a load,
440  // store, add-immediate, or isel that won't permit this.  (Though
441  // perhaps the spill and reload of live-exit values would handle this?)
442  const TargetRegisterClass *UseRC =
443    (ResultReg ? MRI.getRegClass(ResultReg) :
444     (RC ? RC :
445      (VT == MVT::f64 ? &PPC::F8RCRegClass :
446       (VT == MVT::f32 ? &PPC::F4RCRegClass :
447        (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
448         &PPC::GPRC_and_GPRC_NOR0RegClass)))));
449
450  bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
451
452  switch (VT.SimpleTy) {
453    default: // e.g., vector types not handled
454      return false;
455    case MVT::i8:
456      Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
457      break;
458    case MVT::i16:
459      Opc = (IsZExt ?
460             (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
461             (Is32BitInt ? PPC::LHA : PPC::LHA8));
462      break;
463    case MVT::i32:
464      Opc = (IsZExt ?
465             (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
466             (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
467      if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
468        UseOffset = false;
469      break;
470    case MVT::i64:
471      Opc = PPC::LD;
472      assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
473             "64-bit load with 32-bit target??");
474      UseOffset = ((Addr.Offset & 3) == 0);
475      break;
476    case MVT::f32:
477      Opc = PPC::LFS;
478      break;
479    case MVT::f64:
480      Opc = FP64LoadOpc;
481      break;
482  }
483
484  // If necessary, materialize the offset into a register and use
485  // the indexed form.  Also handle stack pointers with special needs.
486  unsigned IndexReg = 0;
487  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
488  if (ResultReg == 0)
489    ResultReg = createResultReg(UseRC);
490
491  // Note: If we still have a frame index here, we know the offset is
492  // in range, as otherwise PPCSimplifyAddress would have converted it
493  // into a RegBase.
494  if (Addr.BaseType == Address::FrameIndexBase) {
495
496    MachineMemOperand *MMO =
497      FuncInfo.MF->getMachineMemOperand(
498        MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
499        MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
500        MFI.getObjectAlignment(Addr.Base.FI));
501
502    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
503      .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
504
505  // Base reg with offset in range.
506  } else if (UseOffset) {
507
508    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
509      .addImm(Addr.Offset).addReg(Addr.Base.Reg);
510
511  // Indexed form.
512  } else {
513    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
514    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
515    // is hard to get at.
516    switch (Opc) {
517      default:        llvm_unreachable("Unexpected opcode!");
518      case PPC::LBZ:    Opc = PPC::LBZX;    break;
519      case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
520      case PPC::LHZ:    Opc = PPC::LHZX;    break;
521      case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
522      case PPC::LHA:    Opc = PPC::LHAX;    break;
523      case PPC::LHA8:   Opc = PPC::LHAX8;   break;
524      case PPC::LWZ:    Opc = PPC::LWZX;    break;
525      case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
526      case PPC::LWA:    Opc = PPC::LWAX;    break;
527      case PPC::LWA_32: Opc = PPC::LWAX_32; break;
528      case PPC::LD:     Opc = PPC::LDX;     break;
529      case PPC::LFS:    Opc = PPC::LFSX;    break;
530      case PPC::LFD:    Opc = PPC::LFDX;    break;
531    }
532    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
533      .addReg(Addr.Base.Reg).addReg(IndexReg);
534  }
535
536  return true;
537}
538
539// Attempt to fast-select a load instruction.
540bool PPCFastISel::SelectLoad(const Instruction *I) {
541  // FIXME: No atomic loads are supported.
542  if (cast<LoadInst>(I)->isAtomic())
543    return false;
544
545  // Verify we have a legal type before going any further.
546  MVT VT;
547  if (!isLoadTypeLegal(I->getType(), VT))
548    return false;
549
550  // See if we can handle this address.
551  Address Addr;
552  if (!PPCComputeAddress(I->getOperand(0), Addr))
553    return false;
554
555  // Look at the currently assigned register for this instruction
556  // to determine the required register class.  This is necessary
557  // to constrain RA from using R0/X0 when this is not legal.
558  unsigned AssignedReg = FuncInfo.ValueMap[I];
559  const TargetRegisterClass *RC =
560    AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
561
562  unsigned ResultReg = 0;
563  if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
564    return false;
565  UpdateValueMap(I, ResultReg);
566  return true;
567}
568
569// Emit a store instruction to store SrcReg at Addr.
570bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
571  assert(SrcReg && "Nothing to store!");
572  unsigned Opc;
573  bool UseOffset = true;
574
575  const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
576  bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
577
578  switch (VT.SimpleTy) {
579    default: // e.g., vector types not handled
580      return false;
581    case MVT::i8:
582      Opc = Is32BitInt ? PPC::STB : PPC::STB8;
583      break;
584    case MVT::i16:
585      Opc = Is32BitInt ? PPC::STH : PPC::STH8;
586      break;
587    case MVT::i32:
588      assert(Is32BitInt && "Not GPRC for i32??");
589      Opc = PPC::STW;
590      break;
591    case MVT::i64:
592      Opc = PPC::STD;
593      UseOffset = ((Addr.Offset & 3) == 0);
594      break;
595    case MVT::f32:
596      Opc = PPC::STFS;
597      break;
598    case MVT::f64:
599      Opc = PPC::STFD;
600      break;
601  }
602
603  // If necessary, materialize the offset into a register and use
604  // the indexed form.  Also handle stack pointers with special needs.
605  unsigned IndexReg = 0;
606  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
607
608  // Note: If we still have a frame index here, we know the offset is
609  // in range, as otherwise PPCSimplifyAddress would have converted it
610  // into a RegBase.
611  if (Addr.BaseType == Address::FrameIndexBase) {
612    MachineMemOperand *MMO =
613      FuncInfo.MF->getMachineMemOperand(
614        MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
615        MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
616        MFI.getObjectAlignment(Addr.Base.FI));
617
618    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg)
619      .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
620
621  // Base reg with offset in range.
622  } else if (UseOffset)
623    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
624      .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
625
626  // Indexed form.
627  else {
628    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
629    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
630    // is hard to get at.
631    switch (Opc) {
632      default:        llvm_unreachable("Unexpected opcode!");
633      case PPC::STB:  Opc = PPC::STBX;  break;
634      case PPC::STH : Opc = PPC::STHX;  break;
635      case PPC::STW : Opc = PPC::STWX;  break;
636      case PPC::STB8: Opc = PPC::STBX8; break;
637      case PPC::STH8: Opc = PPC::STHX8; break;
638      case PPC::STW8: Opc = PPC::STWX8; break;
639      case PPC::STD:  Opc = PPC::STDX;  break;
640      case PPC::STFS: Opc = PPC::STFSX; break;
641      case PPC::STFD: Opc = PPC::STFDX; break;
642    }
643    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
644      .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
645  }
646
647  return true;
648}
649
650// Attempt to fast-select a store instruction.
651bool PPCFastISel::SelectStore(const Instruction *I) {
652  Value *Op0 = I->getOperand(0);
653  unsigned SrcReg = 0;
654
655  // FIXME: No atomics loads are supported.
656  if (cast<StoreInst>(I)->isAtomic())
657    return false;
658
659  // Verify we have a legal type before going any further.
660  MVT VT;
661  if (!isLoadTypeLegal(Op0->getType(), VT))
662    return false;
663
664  // Get the value to be stored into a register.
665  SrcReg = getRegForValue(Op0);
666  if (SrcReg == 0)
667    return false;
668
669  // See if we can handle this address.
670  Address Addr;
671  if (!PPCComputeAddress(I->getOperand(1), Addr))
672    return false;
673
674  if (!PPCEmitStore(VT, SrcReg, Addr))
675    return false;
676
677  return true;
678}
679
680// Attempt to fast-select a branch instruction.
681bool PPCFastISel::SelectBranch(const Instruction *I) {
682  const BranchInst *BI = cast<BranchInst>(I);
683  MachineBasicBlock *BrBB = FuncInfo.MBB;
684  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
685  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
686
687  // For now, just try the simplest case where it's fed by a compare.
688  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
689    Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
690    if (!OptPPCPred)
691      return false;
692
693    PPC::Predicate PPCPred = OptPPCPred.getValue();
694
695    // Take advantage of fall-through opportunities.
696    if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
697      std::swap(TBB, FBB);
698      PPCPred = PPC::InvertPredicate(PPCPred);
699    }
700
701    unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
702
703    if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
704                    CondReg))
705      return false;
706
707    BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC))
708      .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
709    FastEmitBranch(FBB, DL);
710    FuncInfo.MBB->addSuccessor(TBB);
711    return true;
712
713  } else if (const ConstantInt *CI =
714             dyn_cast<ConstantInt>(BI->getCondition())) {
715    uint64_t Imm = CI->getZExtValue();
716    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
717    FastEmitBranch(Target, DL);
718    return true;
719  }
720
721  // FIXME: ARM looks for a case where the block containing the compare
722  // has been split from the block containing the branch.  If this happens,
723  // there is a vreg available containing the result of the compare.  I'm
724  // not sure we can do much, as we've lost the predicate information with
725  // the compare instruction -- we have a 4-bit CR but don't know which bit
726  // to test here.
727  return false;
728}
729
730// Attempt to emit a compare of the two source values.  Signed and unsigned
731// comparisons are supported.  Return false if we can't handle it.
732bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
733                             bool IsZExt, unsigned DestReg) {
734  Type *Ty = SrcValue1->getType();
735  EVT SrcEVT = TLI.getValueType(Ty, true);
736  if (!SrcEVT.isSimple())
737    return false;
738  MVT SrcVT = SrcEVT.getSimpleVT();
739
740  // See if operand 2 is an immediate encodeable in the compare.
741  // FIXME: Operands are not in canonical order at -O0, so an immediate
742  // operand in position 1 is a lost opportunity for now.  We are
743  // similar to ARM in this regard.
744  long Imm = 0;
745  bool UseImm = false;
746
747  // Only 16-bit integer constants can be represented in compares for
748  // PowerPC.  Others will be materialized into a register.
749  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
750    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
751        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
752      const APInt &CIVal = ConstInt->getValue();
753      Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
754      if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
755        UseImm = true;
756    }
757  }
758
759  unsigned CmpOpc;
760  bool NeedsExt = false;
761  switch (SrcVT.SimpleTy) {
762    default: return false;
763    case MVT::f32:
764      CmpOpc = PPC::FCMPUS;
765      break;
766    case MVT::f64:
767      CmpOpc = PPC::FCMPUD;
768      break;
769    case MVT::i1:
770    case MVT::i8:
771    case MVT::i16:
772      NeedsExt = true;
773      // Intentional fall-through.
774    case MVT::i32:
775      if (!UseImm)
776        CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
777      else
778        CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
779      break;
780    case MVT::i64:
781      if (!UseImm)
782        CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
783      else
784        CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
785      break;
786  }
787
788  unsigned SrcReg1 = getRegForValue(SrcValue1);
789  if (SrcReg1 == 0)
790    return false;
791
792  unsigned SrcReg2 = 0;
793  if (!UseImm) {
794    SrcReg2 = getRegForValue(SrcValue2);
795    if (SrcReg2 == 0)
796      return false;
797  }
798
799  if (NeedsExt) {
800    unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
801    if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
802      return false;
803    SrcReg1 = ExtReg;
804
805    if (!UseImm) {
806      unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
807      if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
808        return false;
809      SrcReg2 = ExtReg;
810    }
811  }
812
813  if (!UseImm)
814    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
815      .addReg(SrcReg1).addReg(SrcReg2);
816  else
817    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
818      .addReg(SrcReg1).addImm(Imm);
819
820  return true;
821}
822
823// Attempt to fast-select a floating-point extend instruction.
824bool PPCFastISel::SelectFPExt(const Instruction *I) {
825  Value *Src  = I->getOperand(0);
826  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
827  EVT DestVT = TLI.getValueType(I->getType(), true);
828
829  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
830    return false;
831
832  unsigned SrcReg = getRegForValue(Src);
833  if (!SrcReg)
834    return false;
835
836  // No code is generated for a FP extend.
837  UpdateValueMap(I, SrcReg);
838  return true;
839}
840
841// Attempt to fast-select a floating-point truncate instruction.
842bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
843  Value *Src  = I->getOperand(0);
844  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
845  EVT DestVT = TLI.getValueType(I->getType(), true);
846
847  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
848    return false;
849
850  unsigned SrcReg = getRegForValue(Src);
851  if (!SrcReg)
852    return false;
853
854  // Round the result to single precision.
855  unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), DestReg)
857    .addReg(SrcReg);
858
859  UpdateValueMap(I, DestReg);
860  return true;
861}
862
863// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
864// FIXME: When direct register moves are implemented (see PowerISA 2.08),
865// those should be used instead of moving via a stack slot when the
866// subtarget permits.
867// FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
868// stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
869// case to 8 bytes which produces tighter code but wastes stack space.
870unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
871                                     bool IsSigned) {
872
873  // If necessary, extend 32-bit int to 64-bit.
874  if (SrcVT == MVT::i32) {
875    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
876    if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
877      return 0;
878    SrcReg = TmpReg;
879  }
880
881  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
882  Address Addr;
883  Addr.BaseType = Address::FrameIndexBase;
884  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
885
886  // Store the value from the GPR.
887  if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
888    return 0;
889
890  // Load the integer value into an FPR.  The kind of load used depends
891  // on a number of conditions.
892  unsigned LoadOpc = PPC::LFD;
893
894  if (SrcVT == MVT::i32) {
895    Addr.Offset = 4;
896    if (!IsSigned)
897      LoadOpc = PPC::LFIWZX;
898    else if (PPCSubTarget.hasLFIWAX())
899      LoadOpc = PPC::LFIWAX;
900  }
901
902  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
903  unsigned ResultReg = 0;
904  if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
905    return 0;
906
907  return ResultReg;
908}
909
910// Attempt to fast-select an integer-to-floating-point conversion.
911bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
912  MVT DstVT;
913  Type *DstTy = I->getType();
914  if (!isTypeLegal(DstTy, DstVT))
915    return false;
916
917  if (DstVT != MVT::f32 && DstVT != MVT::f64)
918    return false;
919
920  Value *Src = I->getOperand(0);
921  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
922  if (!SrcEVT.isSimple())
923    return false;
924
925  MVT SrcVT = SrcEVT.getSimpleVT();
926
927  if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
928      SrcVT != MVT::i32 && SrcVT != MVT::i64)
929    return false;
930
931  unsigned SrcReg = getRegForValue(Src);
932  if (SrcReg == 0)
933    return false;
934
935  // We can only lower an unsigned convert if we have the newer
936  // floating-point conversion operations.
937  if (!IsSigned && !PPCSubTarget.hasFPCVT())
938    return false;
939
940  // FIXME: For now we require the newer floating-point conversion operations
941  // (which are present only on P7 and A2 server models) when converting
942  // to single-precision float.  Otherwise we have to generate a lot of
943  // fiddly code to avoid double rounding.  If necessary, the fiddly code
944  // can be found in PPCTargetLowering::LowerINT_TO_FP().
945  if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT())
946    return false;
947
948  // Extend the input if necessary.
949  if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
950    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
951    if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
952      return false;
953    SrcVT = MVT::i64;
954    SrcReg = TmpReg;
955  }
956
957  // Move the integer value to an FPR.
958  unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
959  if (FPReg == 0)
960    return false;
961
962  // Determine the opcode for the conversion.
963  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
964  unsigned DestReg = createResultReg(RC);
965  unsigned Opc;
966
967  if (DstVT == MVT::f32)
968    Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
969  else
970    Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
971
972  // Generate the convert.
973  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
974    .addReg(FPReg);
975
976  UpdateValueMap(I, DestReg);
977  return true;
978}
979
980// Move the floating-point value in SrcReg into an integer destination
981// register, and return the register (or zero if we can't handle it).
982// FIXME: When direct register moves are implemented (see PowerISA 2.08),
983// those should be used instead of moving via a stack slot when the
984// subtarget permits.
985unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
986                                      unsigned SrcReg, bool IsSigned) {
987  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
988  // Note that if have STFIWX available, we could use a 4-byte stack
989  // slot for i32, but this being fast-isel we'll just go with the
990  // easiest code gen possible.
991  Address Addr;
992  Addr.BaseType = Address::FrameIndexBase;
993  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
994
995  // Store the value from the FPR.
996  if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
997    return 0;
998
999  // Reload it into a GPR.  If we want an i32, modify the address
1000  // to have a 4-byte offset so we load from the right place.
1001  if (VT == MVT::i32)
1002    Addr.Offset = 4;
1003
1004  // Look at the currently assigned register for this instruction
1005  // to determine the required register class.
1006  unsigned AssignedReg = FuncInfo.ValueMap[I];
1007  const TargetRegisterClass *RC =
1008    AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
1009
1010  unsigned ResultReg = 0;
1011  if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1012    return 0;
1013
1014  return ResultReg;
1015}
1016
1017// Attempt to fast-select a floating-point-to-integer conversion.
1018bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1019  MVT DstVT, SrcVT;
1020  Type *DstTy = I->getType();
1021  if (!isTypeLegal(DstTy, DstVT))
1022    return false;
1023
1024  if (DstVT != MVT::i32 && DstVT != MVT::i64)
1025    return false;
1026
1027  Value *Src = I->getOperand(0);
1028  Type *SrcTy = Src->getType();
1029  if (!isTypeLegal(SrcTy, SrcVT))
1030    return false;
1031
1032  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1033    return false;
1034
1035  unsigned SrcReg = getRegForValue(Src);
1036  if (SrcReg == 0)
1037    return false;
1038
1039  // Convert f32 to f64 if necessary.  This is just a meaningless copy
1040  // to get the register class right.  COPY_TO_REGCLASS is needed since
1041  // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1042  const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1043  if (InRC == &PPC::F4RCRegClass) {
1044    unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1045    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1046            TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1047      .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1048    SrcReg = TmpReg;
1049  }
1050
1051  // Determine the opcode for the conversion, which takes place
1052  // entirely within FPRs.
1053  unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1054  unsigned Opc;
1055
1056  if (DstVT == MVT::i32)
1057    if (IsSigned)
1058      Opc = PPC::FCTIWZ;
1059    else
1060      Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1061  else
1062    Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1063
1064  // Generate the convert.
1065  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1066    .addReg(SrcReg);
1067
1068  // Now move the integer value from a float register to an integer register.
1069  unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1070  if (IntReg == 0)
1071    return false;
1072
1073  UpdateValueMap(I, IntReg);
1074  return true;
1075}
1076
1077// Attempt to fast-select a binary integer operation that isn't already
1078// handled automatically.
1079bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1080  EVT DestVT  = TLI.getValueType(I->getType(), true);
1081
1082  // We can get here in the case when we have a binary operation on a non-legal
1083  // type and the target independent selector doesn't know how to handle it.
1084  if (DestVT != MVT::i16 && DestVT != MVT::i8)
1085    return false;
1086
1087  // Look at the currently assigned register for this instruction
1088  // to determine the required register class.  If there is no register,
1089  // make a conservative choice (don't assign R0).
1090  unsigned AssignedReg = FuncInfo.ValueMap[I];
1091  const TargetRegisterClass *RC =
1092    (AssignedReg ? MRI.getRegClass(AssignedReg) :
1093     &PPC::GPRC_and_GPRC_NOR0RegClass);
1094  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1095
1096  unsigned Opc;
1097  switch (ISDOpcode) {
1098    default: return false;
1099    case ISD::ADD:
1100      Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1101      break;
1102    case ISD::OR:
1103      Opc = IsGPRC ? PPC::OR : PPC::OR8;
1104      break;
1105    case ISD::SUB:
1106      Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1107      break;
1108  }
1109
1110  unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1111  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1112  if (SrcReg1 == 0) return false;
1113
1114  // Handle case of small immediate operand.
1115  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1116    const APInt &CIVal = ConstInt->getValue();
1117    int Imm = (int)CIVal.getSExtValue();
1118    bool UseImm = true;
1119    if (isInt<16>(Imm)) {
1120      switch (Opc) {
1121        default:
1122          llvm_unreachable("Missing case!");
1123        case PPC::ADD4:
1124          Opc = PPC::ADDI;
1125          MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1126          break;
1127        case PPC::ADD8:
1128          Opc = PPC::ADDI8;
1129          MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1130          break;
1131        case PPC::OR:
1132          Opc = PPC::ORI;
1133          break;
1134        case PPC::OR8:
1135          Opc = PPC::ORI8;
1136          break;
1137        case PPC::SUBF:
1138          if (Imm == -32768)
1139            UseImm = false;
1140          else {
1141            Opc = PPC::ADDI;
1142            MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1143            Imm = -Imm;
1144          }
1145          break;
1146        case PPC::SUBF8:
1147          if (Imm == -32768)
1148            UseImm = false;
1149          else {
1150            Opc = PPC::ADDI8;
1151            MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1152            Imm = -Imm;
1153          }
1154          break;
1155      }
1156
1157      if (UseImm) {
1158        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1159          .addReg(SrcReg1).addImm(Imm);
1160        UpdateValueMap(I, ResultReg);
1161        return true;
1162      }
1163    }
1164  }
1165
1166  // Reg-reg case.
1167  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1168  if (SrcReg2 == 0) return false;
1169
1170  // Reverse operands for subtract-from.
1171  if (ISDOpcode == ISD::SUB)
1172    std::swap(SrcReg1, SrcReg2);
1173
1174  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1175    .addReg(SrcReg1).addReg(SrcReg2);
1176  UpdateValueMap(I, ResultReg);
1177  return true;
1178}
1179
1180// Handle arguments to a call that we're attempting to fast-select.
1181// Return false if the arguments are too complex for us at the moment.
1182bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1183                                  SmallVectorImpl<unsigned> &ArgRegs,
1184                                  SmallVectorImpl<MVT> &ArgVTs,
1185                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1186                                  SmallVectorImpl<unsigned> &RegArgs,
1187                                  CallingConv::ID CC,
1188                                  unsigned &NumBytes,
1189                                  bool IsVarArg) {
1190  SmallVector<CCValAssign, 16> ArgLocs;
1191  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1192  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1193
1194  // Bail out if we can't handle any of the arguments.
1195  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1196    CCValAssign &VA = ArgLocs[I];
1197    MVT ArgVT = ArgVTs[VA.getValNo()];
1198
1199    // Skip vector arguments for now, as well as long double and
1200    // uint128_t, and anything that isn't passed in a register.
1201    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 ||
1202        !VA.isRegLoc() || VA.needsCustom())
1203      return false;
1204
1205    // Skip bit-converted arguments for now.
1206    if (VA.getLocInfo() == CCValAssign::BCvt)
1207      return false;
1208  }
1209
1210  // Get a count of how many bytes are to be pushed onto the stack.
1211  NumBytes = CCInfo.getNextStackOffset();
1212
1213  // Issue CALLSEQ_START.
1214  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1215          TII.get(TII.getCallFrameSetupOpcode()))
1216    .addImm(NumBytes);
1217
1218  // Prepare to assign register arguments.  Every argument uses up a
1219  // GPR protocol register even if it's passed in a floating-point
1220  // register.
1221  unsigned NextGPR = PPC::X3;
1222  unsigned NextFPR = PPC::F1;
1223
1224  // Process arguments.
1225  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1226    CCValAssign &VA = ArgLocs[I];
1227    unsigned Arg = ArgRegs[VA.getValNo()];
1228    MVT ArgVT = ArgVTs[VA.getValNo()];
1229
1230    // Handle argument promotion and bitcasts.
1231    switch (VA.getLocInfo()) {
1232      default:
1233        llvm_unreachable("Unknown loc info!");
1234      case CCValAssign::Full:
1235        break;
1236      case CCValAssign::SExt: {
1237        MVT DestVT = VA.getLocVT();
1238        const TargetRegisterClass *RC =
1239          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1240        unsigned TmpReg = createResultReg(RC);
1241        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1242          llvm_unreachable("Failed to emit a sext!");
1243        ArgVT = DestVT;
1244        Arg = TmpReg;
1245        break;
1246      }
1247      case CCValAssign::AExt:
1248      case CCValAssign::ZExt: {
1249        MVT DestVT = VA.getLocVT();
1250        const TargetRegisterClass *RC =
1251          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1252        unsigned TmpReg = createResultReg(RC);
1253        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1254          llvm_unreachable("Failed to emit a zext!");
1255        ArgVT = DestVT;
1256        Arg = TmpReg;
1257        break;
1258      }
1259      case CCValAssign::BCvt: {
1260        // FIXME: Not yet handled.
1261        llvm_unreachable("Should have bailed before getting here!");
1262        break;
1263      }
1264    }
1265
1266    // Copy this argument to the appropriate register.
1267    unsigned ArgReg;
1268    if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1269      ArgReg = NextFPR++;
1270      ++NextGPR;
1271    } else
1272      ArgReg = NextGPR++;
1273
1274    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1275            ArgReg).addReg(Arg);
1276    RegArgs.push_back(ArgReg);
1277  }
1278
1279  return true;
1280}
1281
1282// For a call that we've determined we can fast-select, finish the
1283// call sequence and generate a copy to obtain the return value (if any).
1284void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1285                             const Instruction *I, CallingConv::ID CC,
1286                             unsigned &NumBytes, bool IsVarArg) {
1287  // Issue CallSEQ_END.
1288  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1289          TII.get(TII.getCallFrameDestroyOpcode()))
1290    .addImm(NumBytes).addImm(0);
1291
1292  // Next, generate a copy to obtain the return value.
1293  // FIXME: No multi-register return values yet, though I don't foresee
1294  // any real difficulties there.
1295  if (RetVT != MVT::isVoid) {
1296    SmallVector<CCValAssign, 16> RVLocs;
1297    CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1298    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1299    CCValAssign &VA = RVLocs[0];
1300    assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1301    assert(VA.isRegLoc() && "Can only return in registers!");
1302
1303    MVT DestVT = VA.getValVT();
1304    MVT CopyVT = DestVT;
1305
1306    // Ints smaller than a register still arrive in a full 64-bit
1307    // register, so make sure we recognize this.
1308    if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1309      CopyVT = MVT::i64;
1310
1311    unsigned SourcePhysReg = VA.getLocReg();
1312    unsigned ResultReg = 0;
1313
1314    if (RetVT == CopyVT) {
1315      const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1316      ResultReg = createResultReg(CpyRC);
1317
1318      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1319              TII.get(TargetOpcode::COPY), ResultReg)
1320        .addReg(SourcePhysReg);
1321
1322    // If necessary, round the floating result to single precision.
1323    } else if (CopyVT == MVT::f64) {
1324      ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1325      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP),
1326              ResultReg).addReg(SourcePhysReg);
1327
1328    // If only the low half of a general register is needed, generate
1329    // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1330    // used along the fast-isel path (not lowered), and downstream logic
1331    // also doesn't like a direct subreg copy on a physical reg.)
1332    } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1333      ResultReg = createResultReg(&PPC::GPRCRegClass);
1334      // Convert physical register from G8RC to GPRC.
1335      SourcePhysReg -= PPC::X0 - PPC::R0;
1336      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1337              TII.get(TargetOpcode::COPY), ResultReg)
1338        .addReg(SourcePhysReg);
1339    }
1340
1341    assert(ResultReg && "ResultReg unset!");
1342    UsedRegs.push_back(SourcePhysReg);
1343    UpdateValueMap(I, ResultReg);
1344  }
1345}
1346
1347// Attempt to fast-select a call instruction.
1348bool PPCFastISel::SelectCall(const Instruction *I) {
1349  const CallInst *CI = cast<CallInst>(I);
1350  const Value *Callee = CI->getCalledValue();
1351
1352  // Can't handle inline asm.
1353  if (isa<InlineAsm>(Callee))
1354    return false;
1355
1356  // Allow SelectionDAG isel to handle tail calls.
1357  if (CI->isTailCall())
1358    return false;
1359
1360  // Obtain calling convention.
1361  ImmutableCallSite CS(CI);
1362  CallingConv::ID CC = CS.getCallingConv();
1363
1364  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1365  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1366  bool IsVarArg = FTy->isVarArg();
1367
1368  // Not ready for varargs yet.
1369  if (IsVarArg)
1370    return false;
1371
1372  // Handle simple calls for now, with legal return types and
1373  // those that can be extended.
1374  Type *RetTy = I->getType();
1375  MVT RetVT;
1376  if (RetTy->isVoidTy())
1377    RetVT = MVT::isVoid;
1378  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1379           RetVT != MVT::i8)
1380    return false;
1381
1382  // FIXME: No multi-register return values yet.
1383  if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1384      RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1385      RetVT != MVT::f64) {
1386    SmallVector<CCValAssign, 16> RVLocs;
1387    CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1388    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1389    if (RVLocs.size() > 1)
1390      return false;
1391  }
1392
1393  // Bail early if more than 8 arguments, as we only currently
1394  // handle arguments passed in registers.
1395  unsigned NumArgs = CS.arg_size();
1396  if (NumArgs > 8)
1397    return false;
1398
1399  // Set up the argument vectors.
1400  SmallVector<Value*, 8> Args;
1401  SmallVector<unsigned, 8> ArgRegs;
1402  SmallVector<MVT, 8> ArgVTs;
1403  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1404
1405  Args.reserve(NumArgs);
1406  ArgRegs.reserve(NumArgs);
1407  ArgVTs.reserve(NumArgs);
1408  ArgFlags.reserve(NumArgs);
1409
1410  for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
1411       II != IE; ++II) {
1412    // FIXME: ARM does something for intrinsic calls here, check into that.
1413
1414    unsigned AttrIdx = II - CS.arg_begin() + 1;
1415
1416    // Only handle easy calls for now.  It would be reasonably easy
1417    // to handle <= 8-byte structures passed ByVal in registers, but we
1418    // have to ensure they are right-justified in the register.
1419    if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
1420        CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
1421        CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
1422        CS.paramHasAttr(AttrIdx, Attribute::ByVal))
1423      return false;
1424
1425    ISD::ArgFlagsTy Flags;
1426    if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
1427      Flags.setSExt();
1428    if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
1429      Flags.setZExt();
1430
1431    Type *ArgTy = (*II)->getType();
1432    MVT ArgVT;
1433    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1434      return false;
1435
1436    if (ArgVT.isVector())
1437      return false;
1438
1439    unsigned Arg = getRegForValue(*II);
1440    if (Arg == 0)
1441      return false;
1442
1443    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1444    Flags.setOrigAlign(OriginalAlignment);
1445
1446    Args.push_back(*II);
1447    ArgRegs.push_back(Arg);
1448    ArgVTs.push_back(ArgVT);
1449    ArgFlags.push_back(Flags);
1450  }
1451
1452  // Process the arguments.
1453  SmallVector<unsigned, 8> RegArgs;
1454  unsigned NumBytes;
1455
1456  if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1457                       RegArgs, CC, NumBytes, IsVarArg))
1458    return false;
1459
1460  // FIXME: No handling for function pointers yet.  This requires
1461  // implementing the function descriptor (OPD) setup.
1462  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1463  if (!GV)
1464    return false;
1465
1466  // Build direct call with NOP for TOC restore.
1467  // FIXME: We can and should optimize away the NOP for local calls.
1468  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1469                                    TII.get(PPC::BL8_NOP));
1470  // Add callee.
1471  MIB.addGlobalAddress(GV);
1472
1473  // Add implicit physical register uses to the call.
1474  for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1475    MIB.addReg(RegArgs[II], RegState::Implicit);
1476
1477  // Add a register mask with the call-preserved registers.  Proper
1478  // defs for return values will be added by setPhysRegsDeadExcept().
1479  MIB.addRegMask(TRI.getCallPreservedMask(CC));
1480
1481  // Finish off the call including any return values.
1482  SmallVector<unsigned, 4> UsedRegs;
1483  finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
1484
1485  // Set all unused physregs defs as dead.
1486  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1487
1488  return true;
1489}
1490
1491// Attempt to fast-select a return instruction.
1492bool PPCFastISel::SelectRet(const Instruction *I) {
1493
1494  if (!FuncInfo.CanLowerReturn)
1495    return false;
1496
1497  const ReturnInst *Ret = cast<ReturnInst>(I);
1498  const Function &F = *I->getParent()->getParent();
1499
1500  // Build a list of return value registers.
1501  SmallVector<unsigned, 4> RetRegs;
1502  CallingConv::ID CC = F.getCallingConv();
1503
1504  if (Ret->getNumOperands() > 0) {
1505    SmallVector<ISD::OutputArg, 4> Outs;
1506    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1507
1508    // Analyze operands of the call, assigning locations to each operand.
1509    SmallVector<CCValAssign, 16> ValLocs;
1510    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
1511    CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1512    const Value *RV = Ret->getOperand(0);
1513
1514    // FIXME: Only one output register for now.
1515    if (ValLocs.size() > 1)
1516      return false;
1517
1518    // Special case for returning a constant integer of any size.
1519    // Materialize the constant as an i64 and copy it to the return
1520    // register.  This avoids an unnecessary extend or truncate.
1521    if (isa<ConstantInt>(*RV)) {
1522      const Constant *C = cast<Constant>(RV);
1523      unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
1524      unsigned RetReg = ValLocs[0].getLocReg();
1525      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1526              RetReg).addReg(SrcReg);
1527      RetRegs.push_back(RetReg);
1528
1529    } else {
1530      unsigned Reg = getRegForValue(RV);
1531
1532      if (Reg == 0)
1533        return false;
1534
1535      // Copy the result values into the output registers.
1536      for (unsigned i = 0; i < ValLocs.size(); ++i) {
1537
1538        CCValAssign &VA = ValLocs[i];
1539        assert(VA.isRegLoc() && "Can only return in registers!");
1540        RetRegs.push_back(VA.getLocReg());
1541        unsigned SrcReg = Reg + VA.getValNo();
1542
1543        EVT RVEVT = TLI.getValueType(RV->getType());
1544        if (!RVEVT.isSimple())
1545          return false;
1546        MVT RVVT = RVEVT.getSimpleVT();
1547        MVT DestVT = VA.getLocVT();
1548
1549        if (RVVT != DestVT && RVVT != MVT::i8 &&
1550            RVVT != MVT::i16 && RVVT != MVT::i32)
1551          return false;
1552
1553        if (RVVT != DestVT) {
1554          switch (VA.getLocInfo()) {
1555            default:
1556              llvm_unreachable("Unknown loc info!");
1557            case CCValAssign::Full:
1558              llvm_unreachable("Full value assign but types don't match?");
1559            case CCValAssign::AExt:
1560            case CCValAssign::ZExt: {
1561              const TargetRegisterClass *RC =
1562                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1563              unsigned TmpReg = createResultReg(RC);
1564              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1565                return false;
1566              SrcReg = TmpReg;
1567              break;
1568            }
1569            case CCValAssign::SExt: {
1570              const TargetRegisterClass *RC =
1571                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1572              unsigned TmpReg = createResultReg(RC);
1573              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1574                return false;
1575              SrcReg = TmpReg;
1576              break;
1577            }
1578          }
1579        }
1580
1581        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1582                TII.get(TargetOpcode::COPY), RetRegs[i])
1583          .addReg(SrcReg);
1584      }
1585    }
1586  }
1587
1588  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1589                                    TII.get(PPC::BLR));
1590
1591  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1592    MIB.addReg(RetRegs[i], RegState::Implicit);
1593
1594  return true;
1595}
1596
1597// Attempt to emit an integer extend of SrcReg into DestReg.  Both
1598// signed and zero extensions are supported.  Return false if we
1599// can't handle it.
1600bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1601                                unsigned DestReg, bool IsZExt) {
1602  if (DestVT != MVT::i32 && DestVT != MVT::i64)
1603    return false;
1604  if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1605    return false;
1606
1607  // Signed extensions use EXTSB, EXTSH, EXTSW.
1608  if (!IsZExt) {
1609    unsigned Opc;
1610    if (SrcVT == MVT::i8)
1611      Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1612    else if (SrcVT == MVT::i16)
1613      Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1614    else {
1615      assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1616      Opc = PPC::EXTSW_32_64;
1617    }
1618    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1619      .addReg(SrcReg);
1620
1621  // Unsigned 32-bit extensions use RLWINM.
1622  } else if (DestVT == MVT::i32) {
1623    unsigned MB;
1624    if (SrcVT == MVT::i8)
1625      MB = 24;
1626    else {
1627      assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1628      MB = 16;
1629    }
1630    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM),
1631            DestReg)
1632      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1633
1634  // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1635  } else {
1636    unsigned MB;
1637    if (SrcVT == MVT::i8)
1638      MB = 56;
1639    else if (SrcVT == MVT::i16)
1640      MB = 48;
1641    else
1642      MB = 32;
1643    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1644            TII.get(PPC::RLDICL_32_64), DestReg)
1645      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1646  }
1647
1648  return true;
1649}
1650
1651// Attempt to fast-select an indirect branch instruction.
1652bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1653  unsigned AddrReg = getRegForValue(I->getOperand(0));
1654  if (AddrReg == 0)
1655    return false;
1656
1657  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8))
1658    .addReg(AddrReg);
1659  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8));
1660
1661  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1662  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1663    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1664
1665  return true;
1666}
1667
1668// Attempt to fast-select an integer truncate instruction.
1669bool PPCFastISel::SelectTrunc(const Instruction *I) {
1670  Value *Src  = I->getOperand(0);
1671  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
1672  EVT DestVT = TLI.getValueType(I->getType(), true);
1673
1674  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1675    return false;
1676
1677  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1678    return false;
1679
1680  unsigned SrcReg = getRegForValue(Src);
1681  if (!SrcReg)
1682    return false;
1683
1684  // The only interesting case is when we need to switch register classes.
1685  if (SrcVT == MVT::i64) {
1686    unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1687    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1688            ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1689    SrcReg = ResultReg;
1690  }
1691
1692  UpdateValueMap(I, SrcReg);
1693  return true;
1694}
1695
1696// Attempt to fast-select an integer extend instruction.
1697bool PPCFastISel::SelectIntExt(const Instruction *I) {
1698  Type *DestTy = I->getType();
1699  Value *Src = I->getOperand(0);
1700  Type *SrcTy = Src->getType();
1701
1702  bool IsZExt = isa<ZExtInst>(I);
1703  unsigned SrcReg = getRegForValue(Src);
1704  if (!SrcReg) return false;
1705
1706  EVT SrcEVT, DestEVT;
1707  SrcEVT = TLI.getValueType(SrcTy, true);
1708  DestEVT = TLI.getValueType(DestTy, true);
1709  if (!SrcEVT.isSimple())
1710    return false;
1711  if (!DestEVT.isSimple())
1712    return false;
1713
1714  MVT SrcVT = SrcEVT.getSimpleVT();
1715  MVT DestVT = DestEVT.getSimpleVT();
1716
1717  // If we know the register class needed for the result of this
1718  // instruction, use it.  Otherwise pick the register class of the
1719  // correct size that does not contain X0/R0, since we don't know
1720  // whether downstream uses permit that assignment.
1721  unsigned AssignedReg = FuncInfo.ValueMap[I];
1722  const TargetRegisterClass *RC =
1723    (AssignedReg ? MRI.getRegClass(AssignedReg) :
1724     (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1725      &PPC::GPRC_and_GPRC_NOR0RegClass));
1726  unsigned ResultReg = createResultReg(RC);
1727
1728  if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1729    return false;
1730
1731  UpdateValueMap(I, ResultReg);
1732  return true;
1733}
1734
1735// Attempt to fast-select an instruction that wasn't handled by
1736// the table-generated machinery.
1737bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
1738
1739  switch (I->getOpcode()) {
1740    case Instruction::Load:
1741      return SelectLoad(I);
1742    case Instruction::Store:
1743      return SelectStore(I);
1744    case Instruction::Br:
1745      return SelectBranch(I);
1746    case Instruction::IndirectBr:
1747      return SelectIndirectBr(I);
1748    case Instruction::FPExt:
1749      return SelectFPExt(I);
1750    case Instruction::FPTrunc:
1751      return SelectFPTrunc(I);
1752    case Instruction::SIToFP:
1753      return SelectIToFP(I, /*IsSigned*/ true);
1754    case Instruction::UIToFP:
1755      return SelectIToFP(I, /*IsSigned*/ false);
1756    case Instruction::FPToSI:
1757      return SelectFPToI(I, /*IsSigned*/ true);
1758    case Instruction::FPToUI:
1759      return SelectFPToI(I, /*IsSigned*/ false);
1760    case Instruction::Add:
1761      return SelectBinaryIntOp(I, ISD::ADD);
1762    case Instruction::Or:
1763      return SelectBinaryIntOp(I, ISD::OR);
1764    case Instruction::Sub:
1765      return SelectBinaryIntOp(I, ISD::SUB);
1766    case Instruction::Call:
1767      if (dyn_cast<IntrinsicInst>(I))
1768        return false;
1769      return SelectCall(I);
1770    case Instruction::Ret:
1771      return SelectRet(I);
1772    case Instruction::Trunc:
1773      return SelectTrunc(I);
1774    case Instruction::ZExt:
1775    case Instruction::SExt:
1776      return SelectIntExt(I);
1777    // Here add other flavors of Instruction::XXX that automated
1778    // cases don't catch.  For example, switches are terminators
1779    // that aren't yet handled.
1780    default:
1781      break;
1782  }
1783  return false;
1784}
1785
1786// Materialize a floating-point constant into a register, and return
1787// the register number (or zero if we failed to handle it).
1788unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1789  // No plans to handle long double here.
1790  if (VT != MVT::f32 && VT != MVT::f64)
1791    return 0;
1792
1793  // All FP constants are loaded from the constant pool.
1794  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
1795  assert(Align > 0 && "Unexpectedly missing alignment information!");
1796  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1797  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1798  CodeModel::Model CModel = TM.getCodeModel();
1799
1800  MachineMemOperand *MMO =
1801    FuncInfo.MF->getMachineMemOperand(
1802      MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1803      (VT == MVT::f32) ? 4 : 8, Align);
1804
1805  unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1806  unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1807
1808  // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1809  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1810    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
1811            TmpReg)
1812      .addConstantPoolIndex(Idx).addReg(PPC::X2);
1813    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1814      .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1815  } else {
1816    // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1817    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1818            TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1819    // But for large code model, we must generate a LDtocL followed
1820    // by the LF[SD].
1821    if (CModel == CodeModel::Large) {
1822      unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1823      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1824              TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1825      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1826        .addImm(0).addReg(TmpReg2);
1827    } else
1828      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1829        .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1830        .addReg(TmpReg)
1831        .addMemOperand(MMO);
1832  }
1833
1834  return DestReg;
1835}
1836
1837// Materialize the address of a global value into a register, and return
1838// the register number (or zero if we failed to handle it).
1839unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1840  assert(VT == MVT::i64 && "Non-address!");
1841  const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1842  unsigned DestReg = createResultReg(RC);
1843
1844  // Global values may be plain old object addresses, TLS object
1845  // addresses, constant pool entries, or jump tables.  How we generate
1846  // code for these may depend on small, medium, or large code model.
1847  CodeModel::Model CModel = TM.getCodeModel();
1848
1849  // FIXME: Jump tables are not yet required because fast-isel doesn't
1850  // handle switches; if that changes, we need them as well.  For now,
1851  // what follows assumes everything's a generic (or TLS) global address.
1852  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1853  if (!GVar) {
1854    // If GV is an alias, use the aliasee for determining thread-locality.
1855    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1856      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1857  }
1858
1859  // FIXME: We don't yet handle the complexity of TLS.
1860  bool IsTLS = GVar && GVar->isThreadLocal();
1861  if (IsTLS)
1862    return 0;
1863
1864  // For small code model, generate a simple TOC load.
1865  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1866    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg)
1867      .addGlobalAddress(GV).addReg(PPC::X2);
1868  else {
1869    // If the address is an externally defined symbol, a symbol with
1870    // common or externally available linkage, a function address, or a
1871    // jump table address (not yet needed), or if we are generating code
1872    // for large code model, we generate:
1873    //       LDtocL(GV, ADDIStocHA(%X2, GV))
1874    // Otherwise we generate:
1875    //       ADDItocL(ADDIStocHA(%X2, GV), GV)
1876    // Either way, start with the ADDIStocHA:
1877    unsigned HighPartReg = createResultReg(RC);
1878    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1879            HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1880
1881    // !GVar implies a function address.  An external variable is one
1882    // without an initializer.
1883    // If/when switches are implemented, jump tables should be handled
1884    // on the "if" path here.
1885    if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() ||
1886        GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage())
1887      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1888              DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1889    else
1890      // Otherwise generate the ADDItocL.
1891      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL),
1892              DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1893  }
1894
1895  return DestReg;
1896}
1897
1898// Materialize a 32-bit integer constant into a register, and return
1899// the register number (or zero if we failed to handle it).
1900unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1901                                             const TargetRegisterClass *RC) {
1902  unsigned Lo = Imm & 0xFFFF;
1903  unsigned Hi = (Imm >> 16) & 0xFFFF;
1904
1905  unsigned ResultReg = createResultReg(RC);
1906  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1907
1908  if (isInt<16>(Imm))
1909    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1910            TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1911      .addImm(Imm);
1912  else if (Lo) {
1913    // Both Lo and Hi have nonzero bits.
1914    unsigned TmpReg = createResultReg(RC);
1915    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1916            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1917      .addImm(Hi);
1918    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1919            TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1920      .addReg(TmpReg).addImm(Lo);
1921  } else
1922    // Just Hi bits.
1923    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1924            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
1925      .addImm(Hi);
1926
1927  return ResultReg;
1928}
1929
1930// Materialize a 64-bit integer constant into a register, and return
1931// the register number (or zero if we failed to handle it).
1932unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
1933                                             const TargetRegisterClass *RC) {
1934  unsigned Remainder = 0;
1935  unsigned Shift = 0;
1936
1937  // If the value doesn't fit in 32 bits, see if we can shift it
1938  // so that it fits in 32 bits.
1939  if (!isInt<32>(Imm)) {
1940    Shift = countTrailingZeros<uint64_t>(Imm);
1941    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
1942
1943    if (isInt<32>(ImmSh))
1944      Imm = ImmSh;
1945    else {
1946      Remainder = Imm;
1947      Shift = 32;
1948      Imm >>= 32;
1949    }
1950  }
1951
1952  // Handle the high-order 32 bits (if shifted) or the whole 32 bits
1953  // (if not shifted).
1954  unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
1955  if (!Shift)
1956    return TmpReg1;
1957
1958  // If upper 32 bits were not zero, we've built them and need to shift
1959  // them into place.
1960  unsigned TmpReg2;
1961  if (Imm) {
1962    TmpReg2 = createResultReg(RC);
1963    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
1964            TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
1965  } else
1966    TmpReg2 = TmpReg1;
1967
1968  unsigned TmpReg3, Hi, Lo;
1969  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
1970    TmpReg3 = createResultReg(RC);
1971    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
1972            TmpReg3).addReg(TmpReg2).addImm(Hi);
1973  } else
1974    TmpReg3 = TmpReg2;
1975
1976  if ((Lo = Remainder & 0xFFFF)) {
1977    unsigned ResultReg = createResultReg(RC);
1978    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
1979            ResultReg).addReg(TmpReg3).addImm(Lo);
1980    return ResultReg;
1981  }
1982
1983  return TmpReg3;
1984}
1985
1986
1987// Materialize an integer constant into a register, and return
1988// the register number (or zero if we failed to handle it).
1989unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
1990
1991  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1992      VT != MVT::i8 && VT != MVT::i1)
1993    return 0;
1994
1995  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1996                                   &PPC::GPRCRegClass);
1997
1998  // If the constant is in range, use a load-immediate.
1999  const ConstantInt *CI = cast<ConstantInt>(C);
2000  if (isInt<16>(CI->getSExtValue())) {
2001    unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2002    unsigned ImmReg = createResultReg(RC);
2003    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
2004      .addImm(CI->getSExtValue());
2005    return ImmReg;
2006  }
2007
2008  // Construct the constant piecewise.
2009  int64_t Imm = CI->getZExtValue();
2010
2011  if (VT == MVT::i64)
2012    return PPCMaterialize64BitInt(Imm, RC);
2013  else if (VT == MVT::i32)
2014    return PPCMaterialize32BitInt(Imm, RC);
2015
2016  return 0;
2017}
2018
2019// Materialize a constant into a register, and return the register
2020// number (or zero if we failed to handle it).
2021unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
2022  EVT CEVT = TLI.getValueType(C->getType(), true);
2023
2024  // Only handle simple types.
2025  if (!CEVT.isSimple()) return 0;
2026  MVT VT = CEVT.getSimpleVT();
2027
2028  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2029    return PPCMaterializeFP(CFP, VT);
2030  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2031    return PPCMaterializeGV(GV, VT);
2032  else if (isa<ConstantInt>(C))
2033    return PPCMaterializeInt(C, VT);
2034
2035  return 0;
2036}
2037
2038// Materialize the address created by an alloca into a register, and
2039// return the register number (or zero if we failed to handle it).
2040unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
2041  // Don't handle dynamic allocas.
2042  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2043
2044  MVT VT;
2045  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2046
2047  DenseMap<const AllocaInst*, int>::iterator SI =
2048    FuncInfo.StaticAllocaMap.find(AI);
2049
2050  if (SI != FuncInfo.StaticAllocaMap.end()) {
2051    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2052    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
2053            ResultReg).addFrameIndex(SI->second).addImm(0);
2054    return ResultReg;
2055  }
2056
2057  return 0;
2058}
2059
2060// Fold loads into extends when possible.
2061// FIXME: We can have multiple redundant extend/trunc instructions
2062// following a load.  The folding only picks up one.  Extend this
2063// to check subsequent instructions for the same pattern and remove
2064// them.  Thus ResultReg should be the def reg for the last redundant
2065// instruction in a chain, and all intervening instructions can be
2066// removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2067// to add ELF64-NOT: rldicl to the appropriate tests when this works.
2068bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2069                                      const LoadInst *LI) {
2070  // Verify we have a legal type before going any further.
2071  MVT VT;
2072  if (!isLoadTypeLegal(LI->getType(), VT))
2073    return false;
2074
2075  // Combine load followed by zero- or sign-extend.
2076  bool IsZExt = false;
2077  switch(MI->getOpcode()) {
2078    default:
2079      return false;
2080
2081    case PPC::RLDICL:
2082    case PPC::RLDICL_32_64: {
2083      IsZExt = true;
2084      unsigned MB = MI->getOperand(3).getImm();
2085      if ((VT == MVT::i8 && MB <= 56) ||
2086          (VT == MVT::i16 && MB <= 48) ||
2087          (VT == MVT::i32 && MB <= 32))
2088        break;
2089      return false;
2090    }
2091
2092    case PPC::RLWINM:
2093    case PPC::RLWINM8: {
2094      IsZExt = true;
2095      unsigned MB = MI->getOperand(3).getImm();
2096      if ((VT == MVT::i8 && MB <= 24) ||
2097          (VT == MVT::i16 && MB <= 16))
2098        break;
2099      return false;
2100    }
2101
2102    case PPC::EXTSB:
2103    case PPC::EXTSB8:
2104    case PPC::EXTSB8_32_64:
2105      /* There is no sign-extending load-byte instruction. */
2106      return false;
2107
2108    case PPC::EXTSH:
2109    case PPC::EXTSH8:
2110    case PPC::EXTSH8_32_64: {
2111      if (VT != MVT::i16 && VT != MVT::i8)
2112        return false;
2113      break;
2114    }
2115
2116    case PPC::EXTSW:
2117    case PPC::EXTSW_32_64: {
2118      if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2119        return false;
2120      break;
2121    }
2122  }
2123
2124  // See if we can handle this address.
2125  Address Addr;
2126  if (!PPCComputeAddress(LI->getOperand(0), Addr))
2127    return false;
2128
2129  unsigned ResultReg = MI->getOperand(0).getReg();
2130
2131  if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt))
2132    return false;
2133
2134  MI->eraseFromParent();
2135  return true;
2136}
2137
2138// Attempt to lower call arguments in a faster way than done by
2139// the selection DAG code.
2140bool PPCFastISel::FastLowerArguments() {
2141  // Defer to normal argument lowering for now.  It's reasonably
2142  // efficient.  Consider doing something like ARM to handle the
2143  // case where all args fit in registers, no varargs, no float
2144  // or vector args.
2145  return false;
2146}
2147
2148// Handle materializing integer constants into a register.  This is not
2149// automatically generated for PowerPC, so must be explicitly created here.
2150unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2151
2152  if (Opc != ISD::Constant)
2153    return 0;
2154
2155  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2156      VT != MVT::i8 && VT != MVT::i1)
2157    return 0;
2158
2159  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2160                                   &PPC::GPRCRegClass);
2161  if (VT == MVT::i64)
2162    return PPCMaterialize64BitInt(Imm, RC);
2163  else
2164    return PPCMaterialize32BitInt(Imm, RC);
2165}
2166
2167// Override for ADDI and ADDI8 to set the correct register class
2168// on RHS operand 0.  The automatic infrastructure naively assumes
2169// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2170// for these cases.  At the moment, none of the other automatically
2171// generated RI instructions require special treatment.  However, once
2172// SelectSelect is implemented, "isel" requires similar handling.
2173//
2174// Also be conservative about the output register class.  Avoid
2175// assigning R0 or X0 to the output register for GPRC and G8RC
2176// register classes, as any such result could be used in ADDI, etc.,
2177// where those regs have another meaning.
2178unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
2179                                      const TargetRegisterClass *RC,
2180                                      unsigned Op0, bool Op0IsKill,
2181                                      uint64_t Imm) {
2182  if (MachineInstOpcode == PPC::ADDI)
2183    MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2184  else if (MachineInstOpcode == PPC::ADDI8)
2185    MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2186
2187  const TargetRegisterClass *UseRC =
2188    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2189     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2190
2191  return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
2192                                   Op0, Op0IsKill, Imm);
2193}
2194
2195// Override for instructions with one register operand to avoid use of
2196// R0/X0.  The automatic infrastructure isn't aware of the context so
2197// we must be conservative.
2198unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
2199                                     const TargetRegisterClass* RC,
2200                                     unsigned Op0, bool Op0IsKill) {
2201  const TargetRegisterClass *UseRC =
2202    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2203     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2204
2205  return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2206}
2207
2208// Override for instructions with two register operands to avoid use
2209// of R0/X0.  The automatic infrastructure isn't aware of the context
2210// so we must be conservative.
2211unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
2212                                      const TargetRegisterClass* RC,
2213                                      unsigned Op0, bool Op0IsKill,
2214                                      unsigned Op1, bool Op1IsKill) {
2215  const TargetRegisterClass *UseRC =
2216    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2217     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2218
2219  return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2220                                   Op1, Op1IsKill);
2221}
2222
2223namespace llvm {
2224  // Create the fast instruction selector for PowerPC64 ELF.
2225  FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2226                                const TargetLibraryInfo *LibInfo) {
2227    const TargetMachine &TM = FuncInfo.MF->getTarget();
2228
2229    // Only available on 64-bit ELF for now.
2230    const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
2231    if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
2232      return new PPCFastISel(FuncInfo, LibInfo);
2233
2234    return 0;
2235  }
2236}
2237