Mips16InstrInfo.td revision 263508
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35// I-type instruction format
36//
37// this is only used by bimm. the actual assembly value is a 12 bit signed
38// number
39//
40class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
41  FI16<op, (outs), (ins brtarget:$imm16),
42            !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
43
44//
45//
46// I8 instruction format
47//
48
49class FI816_ins_base<bits<3> _func, string asmstr,
50                     string asmstr2, InstrItinClass itin>:
51  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
52        [], itin>;
53
54class FI816_ins<bits<3> _func, string asmstr,
55                InstrItinClass itin>:
56  FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
57 
58class FI816_SP_ins<bits<3> _func, string asmstr,
59                   InstrItinClass itin>:
60  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
61
62//
63// RI instruction format
64//
65
66
67class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
68                     InstrItinClass itin>:
69  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
70        !strconcat(asmstr, asmstr2), [], itin>;
71
72class FRI16_ins<bits<5> op, string asmstr,
73                InstrItinClass itin>:
74  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
75
76class FRI16_TCP_ins<bits<5> _op, string asmstr,
77                    InstrItinClass itin>:
78  FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
79            !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
80            
81class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
82                     InstrItinClass itin>:
83  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
84        !strconcat(asmstr, asmstr2), [], itin>;
85
86class FRI16R_ins<bits<5> op, string asmstr,
87                InstrItinClass itin>:
88  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
89
90class F2RI16_ins<bits<5> _op, string asmstr,
91                     InstrItinClass itin>:
92  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
93        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
94  let Constraints = "$rx_ = $rx";
95}
96
97class FRI16_B_ins<bits<5> _op, string asmstr,
98                  InstrItinClass itin>:
99  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
100        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
101//
102// Compare a register and immediate and place result in CC
103// Implicit use of T8
104//
105// EXT-CCRR Instruction format
106//
107class FEXT_CCRXI16_ins<string asmstr>:
108  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
109               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
110  let isCodeGenOnly=1;
111  let usesCustomInserter = 1;
112}
113
114// JAL and JALX instruction format
115//
116class FJAL16_ins<bits<1> _X, string asmstr,
117                 InstrItinClass itin>:
118  FJAL16<_X, (outs), (ins simm20:$imm),
119         !strconcat(asmstr, "\t$imm\n\tnop"),[],
120         itin>  {
121  let isCodeGenOnly=1;
122}
123//
124// EXT-I instruction format
125//
126class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
127  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
128           !strconcat(asmstr, "\t$imm16"),[], itin>;
129
130//
131// EXT-I8 instruction format
132//
133
134class FEXT_I816_ins_base<bits<3> _func, string asmstr,
135                         string asmstr2, InstrItinClass itin>:
136  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
137            [], itin>;
138
139class FEXT_I816_ins<bits<3> _func, string asmstr,
140                    InstrItinClass itin>:
141  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
142
143class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
144                       InstrItinClass itin>:
145      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
146
147//
148// Assembler formats in alphabetical order.
149// Natural and pseudos are mixed together.
150//
151// Compare two registers and place result in CC
152// Implicit use of T8
153//
154// CC-RR Instruction format
155//
156class FCCRR16_ins<string asmstr> :
157  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
158               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
159  let isCodeGenOnly=1;
160  let usesCustomInserter = 1;
161}
162
163//
164// EXT-RI instruction format
165//
166
167class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
168                         InstrItinClass itin>:
169  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
170                  !strconcat(asmstr, asmstr2), [], itin>;
171
172class FEXT_RI16_ins<bits<5> _op, string asmstr,
173                    InstrItinClass itin>:
174  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
175
176class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
177                         InstrItinClass itin>:
178  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
179                  !strconcat(asmstr, asmstr2), [], itin>;
180
181class FEXT_RI16R_ins<bits<5> _op, string asmstr,
182                    InstrItinClass itin>:
183  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
184
185class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
186  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
187
188class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
189                      InstrItinClass itin>:
190  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
191            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
192
193class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
194                        InstrItinClass itin>:
195  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
196            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
197
198class FEXT_2RI16_ins<bits<5> _op, string asmstr,
199                     InstrItinClass itin>:
200  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
201            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
202  let Constraints = "$rx_ = $rx";
203}
204
205
206// this has an explicit sp argument that we ignore to work around a problem
207// in the compiler
208class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
209                                InstrItinClass itin>:
210  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
211            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
212
213class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
214                                InstrItinClass itin>:
215  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
216            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
217
218//
219// EXT-RRI instruction format
220//
221
222class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
223                         InstrItinClass itin>:
224  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
225             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
226
227class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
228                          InstrItinClass itin>:
229  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
230             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
231
232//
233//
234// EXT-RRI-A instruction format
235//
236
237class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
238                           InstrItinClass itin>:
239  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
240               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
241
242//
243// EXT-SHIFT instruction format
244//
245class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
246  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
247               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
248
249//
250// EXT-T8I8
251//
252class FEXT_T8I816_ins<string asmstr, string asmstr2>:
253  MipsPseudo16<(outs),
254               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
255               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
256               !strconcat(asmstr, "\t$imm"))),[]> {
257  let isCodeGenOnly=1;
258  let usesCustomInserter = 1;
259}
260
261//
262// EXT-T8I8I
263//
264class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
265  MipsPseudo16<(outs),
266               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
267               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
268               !strconcat(asmstr, "\t$targ"))), []> {
269  let isCodeGenOnly=1;
270  let usesCustomInserter = 1;
271}
272//
273
274
275//
276// I8_MOVR32 instruction format (used only by the MOVR32 instructio
277//
278class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
279       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
280       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
281
282//
283// I8_MOV32R instruction format (used only by MOV32R instruction)
284//
285
286class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
287  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
288               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
289
290//
291// This are pseudo formats for multiply
292// This first one can be changed to non pseudo now.
293//
294// MULT
295//
296class FMULT16_ins<string asmstr, InstrItinClass itin> :
297  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
298               !strconcat(asmstr, "\t$rx, $ry"), []>;
299
300//
301// MULT-LO
302//
303class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
304  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
305               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
306  let isCodeGenOnly=1;
307}
308
309//
310// RR-type instruction format
311//
312
313class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
314  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
315        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
316}
317
318class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
319  FRRBreak16<(outs), (ins), asmstr, [], itin> {
320  let Code=0;
321}
322
323class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
324  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
325        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
326}
327
328class FRRTR16_ins<string asmstr> :
329  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
330               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
331
332//
333// maybe refactor but need a $zero as a dummy first parameter
334//
335class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
336  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
337        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
338
339class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
340  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
341        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
342
343
344class FRR16_M_ins<bits<5> f, string asmstr,
345                  InstrItinClass itin> :
346  FRR16<f, (outs CPU16Regs:$rx), (ins),
347        !strconcat(asmstr, "\t$rx"), [], itin>;
348
349class FRxRxRy16_ins<bits<5> f, string asmstr,
350                    InstrItinClass itin> :
351  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
352            !strconcat(asmstr, "\t$rz, $ry"),
353            [], itin> {
354  let Constraints = "$rx = $rz";
355}
356
357let rx=0 in
358class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
359                              string asmstr, InstrItinClass itin>:
360  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
361              [], itin> ;
362
363
364class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
365                      string asmstr, InstrItinClass itin>:
366  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
367              !strconcat(asmstr, "\t $rx"), [], itin> ;
368
369class FRR_SF16_ins
370  <bits<5> _funct, bits<3> _subfunc,
371    string asmstr, InstrItinClass itin>:
372  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
373           !strconcat(asmstr, "\t $rx"),
374           [], itin> {
375  let Constraints = "$rx_ = $rx";
376  }
377//
378// RRR-type instruction format
379//
380
381class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
382  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
383         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
384
385//
386// These Sel patterns support the generation of conditional move
387// pseudo instructions.
388//
389// The nomenclature uses the components making up the pseudo and may
390// be a bit counter intuitive when compared with the end result we seek.
391// For example using a bqez in the example directly below results in the
392// conditional move being done if the tested register is not zero.
393// I considered in easier to check by keeping the pseudo consistent with
394// it's components but it could have been done differently.
395//
396// The simplest case is when can test and operand directly and do the
397// conditional move based on a simple mips16 conditional
398//  branch instruction.
399// for example:
400// if $op == beqz or bnez:
401//
402// $op1 $rt, .+4
403// move $rd, $rs
404//
405// if $op == beqz, then if $rt != 0, then the conditional assignment
406// $rd = $rs is done.
407
408// if $op == bnez, then if $rt == 0, then the conditional assignment
409// $rd = $rs is done.
410//
411// So this pseudo class only has one operand, i.e. op
412//
413class Sel<string op>:
414  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
415               CPU16Regs:$rt),
416               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
417  //let isCodeGenOnly=1;
418  let Constraints = "$rd = $rd_";
419  let usesCustomInserter = 1;
420}
421
422//
423// The next two instruction classes allow for an operand which tests
424// two operands and returns a value in register T8 and
425//then does a conditional branch based on the value of T8
426//
427
428// op2 can be cmpi or slti/sltiu
429// op1 can bteqz or btnez
430// the operands for op2 are a register and a signed constant
431//
432// $op2 $t, $imm  ;test register t and branch conditionally
433// $op1 .+4       ;op1 is a conditional branch
434// move $rd, $rs
435//
436//
437class SeliT<string op1, string op2>:
438  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
439                                       CPU16Regs:$rl, simm16:$imm),
440               !strconcat(op2,
441               !strconcat("\t$rl, $imm\n\t",
442               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
443  let isCodeGenOnly=1;
444  let Constraints = "$rd = $rd_";
445  let usesCustomInserter = 1;
446}
447
448//
449// op2 can be cmp or slt/sltu
450// op1 can be bteqz or btnez
451// the operands for op2 are two registers
452// op1 is a conditional branch
453//
454//
455// $op2 $rl, $rr  ;test registers rl,rr
456// $op1 .+4       ;op2 is a conditional branch
457// move $rd, $rs
458//
459//
460class SelT<string op1, string op2>:
461  MipsPseudo16<(outs CPU16Regs:$rd_),
462               (ins CPU16Regs:$rd, CPU16Regs:$rs,
463                CPU16Regs:$rl, CPU16Regs:$rr),
464               !strconcat(op2,
465               !strconcat("\t$rl, $rr\n\t",
466               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
467  let isCodeGenOnly=1;
468  let Constraints = "$rd = $rd_";
469  let usesCustomInserter = 1;
470}
471
472//
473// 32 bit constant
474//
475def imm32: Operand<i32>;
476
477def Constant32:
478  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
479
480def LwConstant32:
481  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm, imm32:$constid),
482    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
483
484
485//
486// Some general instruction class info
487//
488//
489
490class ArithLogic16Defs<bit isCom=0> {
491  bits<5> shamt = 0;
492  bit isCommutable = isCom;
493  bit isReMaterializable = 1;
494  bit neverHasSideEffects = 1;
495}
496
497class branch16 {
498  bit isBranch = 1;
499  bit isTerminator = 1;
500  bit isBarrier = 1;
501}
502
503class cbranch16 {
504  bit isBranch = 1;
505  bit isTerminator = 1;
506}
507
508class MayLoad {
509  bit mayLoad = 1;
510}
511
512class MayStore {
513  bit mayStore = 1;
514}
515//
516
517
518// Format: ADDIU rx, immediate MIPS16e
519// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
520// To add a constant to a 32-bit integer.
521//
522def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
523
524def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
525  ArithLogic16Defs<0> {
526  let AddedComplexity = 5;
527}
528def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
529  ArithLogic16Defs<0> {
530  let isCodeGenOnly = 1;
531}
532
533def AddiuRxRyOffMemX16:
534  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
535
536//
537
538// Format: ADDIU rx, pc, immediate MIPS16e
539// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
540// To add a constant to the program counter.
541//
542def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
543
544//
545// Format: ADDIU sp, immediate MIPS16e
546// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
547// To add a constant to the stack pointer.
548//
549def AddiuSpImm16
550  : FI816_SP_ins<0b011, "addiu", IIAlu> {
551  let Defs = [SP];
552  let Uses = [SP];
553  let AddedComplexity = 5;
554}
555
556def AddiuSpImmX16
557  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
558  let Defs = [SP];
559  let Uses = [SP];
560}
561
562//
563// Format: ADDU rz, rx, ry MIPS16e
564// Purpose: Add Unsigned Word (3-Operand)
565// To add 32-bit integers.
566//
567
568def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
569
570//
571// Format: AND rx, ry MIPS16e
572// Purpose: AND
573// To do a bitwise logical AND.
574
575def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
576
577
578//
579// Format: BEQZ rx, offset MIPS16e
580// Purpose: Branch on Equal to Zero
581// To test a GPR then do a PC-relative conditional branch.
582//
583def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
584
585
586//
587// Format: BEQZ rx, offset MIPS16e
588// Purpose: Branch on Equal to Zero (Extended)
589// To test a GPR then do a PC-relative conditional branch.
590//
591def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
592
593//
594// Format: B offset MIPS16e
595// Purpose: Unconditional Branch (Extended)
596// To do an unconditional PC-relative branch.
597//
598
599def Bimm16: FI16_ins<0b00010, "b", IIAlu>, branch16;
600
601// Format: B offset MIPS16e
602// Purpose: Unconditional Branch
603// To do an unconditional PC-relative branch.
604//
605def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
606
607//
608// Format: BNEZ rx, offset MIPS16e
609// Purpose: Branch on Not Equal to Zero
610// To test a GPR then do a PC-relative conditional branch.
611//
612def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
613
614//
615// Format: BNEZ rx, offset MIPS16e
616// Purpose: Branch on Not Equal to Zero (Extended)
617// To test a GPR then do a PC-relative conditional branch.
618//
619def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
620
621
622//
623//Format: BREAK immediate
624// Purpose: Breakpoint
625// To cause a Breakpoint exception.
626
627def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
628//
629// Format: BTEQZ offset MIPS16e
630// Purpose: Branch on T Equal to Zero (Extended)
631// To test special register T then do a PC-relative conditional branch.
632//
633def Bteqz16: FI816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
634  let Uses = [T8];
635}
636
637def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
638  let Uses = [T8];
639}
640
641def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
642
643def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
644  cbranch16;
645
646def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
647
648def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
649
650def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
651
652def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
653  cbranch16;
654
655//
656// Format: BTNEZ offset MIPS16e
657// Purpose: Branch on T Not Equal to Zero (Extended)
658// To test special register T then do a PC-relative conditional branch.
659//
660
661def Btnez16: FI816_ins<0b001, "btnez", IIAlu>, cbranch16 {
662  let Uses = [T8];
663}
664
665def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
666  let Uses = [T8];
667}
668
669def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
670
671def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
672
673def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
674
675def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
676
677def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
678
679def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
680  cbranch16;
681
682//
683// Format: CMP rx, ry MIPS16e
684// Purpose: Compare
685// To compare the contents of two GPRs.
686//
687def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
688  let Defs = [T8];
689}
690
691//
692// Format: CMPI rx, immediate MIPS16e
693// Purpose: Compare Immediate
694// To compare a constant with the contents of a GPR.
695//
696def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
697  let Defs = [T8];
698}
699
700//
701// Format: CMPI rx, immediate MIPS16e
702// Purpose: Compare Immediate (Extended)
703// To compare a constant with the contents of a GPR.
704//
705def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
706  let Defs = [T8];
707}
708
709
710//
711// Format: DIV rx, ry MIPS16e
712// Purpose: Divide Word
713// To divide 32-bit signed integers.
714//
715def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
716  let Defs = [HI0, LO0];
717}
718
719//
720// Format: DIVU rx, ry MIPS16e
721// Purpose: Divide Unsigned Word
722// To divide 32-bit unsigned integers.
723//
724def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
725  let Defs = [HI0, LO0];
726}
727//
728// Format: JAL target MIPS16e
729// Purpose: Jump and Link
730// To execute a procedure call within the current 256 MB-aligned
731// region and preserve the current ISA.
732//
733
734def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
735  let hasDelaySlot = 0;  // not true, but we add the nop for now
736  let isCall=1;
737}
738
739//
740// Format: JR ra MIPS16e
741// Purpose: Jump Register Through Register ra
742// To execute a branch to the instruction address in the return
743// address register.
744//
745
746def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
747  let isBranch = 1;
748  let isIndirectBranch = 1;
749  let hasDelaySlot = 1;
750  let isTerminator=1;
751  let isBarrier=1;
752}
753
754def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
755  let isBranch = 1;
756  let isIndirectBranch = 1;
757  let isTerminator=1;
758  let isBarrier=1;
759}
760
761def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
762  let isBranch = 1;
763  let isIndirectBranch = 1;
764  let isTerminator=1;
765  let isBarrier=1;
766}
767//
768// Format: LB ry, offset(rx) MIPS16e
769// Purpose: Load Byte (Extended)
770// To load a byte from memory as a signed value.
771//
772def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
773  let isCodeGenOnly = 1;
774}
775
776//
777// Format: LBU ry, offset(rx) MIPS16e
778// Purpose: Load Byte Unsigned (Extended)
779// To load a byte from memory as a unsigned value.
780//
781def LbuRxRyOffMemX16:
782  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
783  let isCodeGenOnly = 1;
784}
785
786//
787// Format: LH ry, offset(rx) MIPS16e
788// Purpose: Load Halfword signed (Extended)
789// To load a halfword from memory as a signed value.
790//
791def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
792  let isCodeGenOnly = 1;
793}
794
795//
796// Format: LHU ry, offset(rx) MIPS16e
797// Purpose: Load Halfword unsigned (Extended)
798// To load a halfword from memory as an unsigned value.
799//
800def LhuRxRyOffMemX16:
801  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
802  let isCodeGenOnly = 1;
803}
804
805//
806// Format: LI rx, immediate MIPS16e
807// Purpose: Load Immediate
808// To load a constant into a GPR.
809//
810def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
811
812//
813// Format: LI rx, immediate MIPS16e
814// Purpose: Load Immediate (Extended)
815// To load a constant into a GPR.
816//
817def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
818
819def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIAlu> {
820  let isCodeGenOnly = 1;
821}
822
823//
824// Format: LW ry, offset(rx) MIPS16e
825// Purpose: Load Word (Extended)
826// To load a word from memory as a signed value.
827//
828def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
829  let isCodeGenOnly = 1;
830}
831
832// Format: LW rx, offset(sp) MIPS16e
833// Purpose: Load Word (SP-Relative, Extended)
834// To load an SP-relative word from memory as a signed value.
835//
836def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10010, "lw", IILoad>, MayLoad{
837  let Uses = [SP];
838}
839
840def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", IILoad>, MayLoad;
841
842def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", IILoad>, MayLoad;
843//
844// Format: MOVE r32, rz MIPS16e
845// Purpose: Move
846// To move the contents of a GPR to a GPR.
847//
848def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
849
850//
851// Format: MOVE ry, r32 MIPS16e
852//Purpose: Move
853// To move the contents of a GPR to a GPR.
854//
855def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
856
857//
858// Format: MFHI rx MIPS16e
859// Purpose: Move From HI Register
860// To copy the special purpose HI register to a GPR.
861//
862def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
863  let Uses = [HI0];
864  let neverHasSideEffects = 1;
865}
866
867//
868// Format: MFLO rx MIPS16e
869// Purpose: Move From LO Register
870// To copy the special purpose LO register to a GPR.
871//
872def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
873  let Uses = [LO0];
874  let neverHasSideEffects = 1;
875}
876
877//
878// Pseudo Instruction for mult
879//
880def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
881  let isCommutable = 1;
882  let neverHasSideEffects = 1;
883  let Defs = [HI0, LO0];
884}
885
886def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
887  let isCommutable = 1;
888  let neverHasSideEffects = 1;
889  let Defs = [HI0, LO0];
890}
891
892//
893// Format: MULT rx, ry MIPS16e
894// Purpose: Multiply Word
895// To multiply 32-bit signed integers.
896//
897def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
898  let isCommutable = 1;
899  let neverHasSideEffects = 1;
900  let Defs = [HI0, LO0];
901}
902
903//
904// Format: MULTU rx, ry MIPS16e
905// Purpose: Multiply Unsigned Word
906// To multiply 32-bit unsigned integers.
907//
908def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
909  let isCommutable = 1;
910  let neverHasSideEffects = 1;
911  let Defs = [HI0, LO0];
912}
913
914//
915// Format: NEG rx, ry MIPS16e
916// Purpose: Negate
917// To negate an integer value.
918//
919def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
920
921//
922// Format: NOT rx, ry MIPS16e
923// Purpose: Not
924// To complement an integer value
925//
926def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
927
928//
929// Format: OR rx, ry MIPS16e
930// Purpose: Or
931// To do a bitwise logical OR.
932//
933def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
934
935//
936// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
937// (All args are optional) MIPS16e
938// Purpose: Restore Registers and Deallocate Stack Frame
939// To deallocate a stack frame before exit from a subroutine,
940// restoring return address and static registers, and adjusting
941// stack
942//
943
944// fixed form for restoring RA and the frame
945// for direct object emitter, encoding needs to be adjusted for the
946// frame size
947//
948let ra=1, s=0,s0=1,s1=1 in
949def RestoreRaF16:
950  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
951             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
952  let isCodeGenOnly = 1;
953  let Defs = [S0, S1, S2, RA, SP];
954  let Uses = [SP];
955}
956
957// Use Restore to increment SP since SP is not a Mip 16 register, this
958// is an easy way to do that which does not require a register.
959//
960let ra=0, s=0,s0=0,s1=0 in
961def RestoreIncSpF16:
962  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
963             "restore\t$frame_size", [], IILoad >, MayLoad {
964  let isCodeGenOnly = 1;
965  let Defs = [SP];
966  let Uses = [SP];
967}
968
969//
970// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
971// MIPS16e
972// Purpose: Save Registers and Set Up Stack Frame
973// To set up a stack frame on entry to a subroutine,
974// saving return address and static registers, and adjusting stack
975//
976let ra=1, s=1,s0=1,s1=1 in
977def SaveRaF16:
978  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
979             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
980  let isCodeGenOnly = 1;
981  let Uses = [RA, SP, S0, S1, S2];
982  let Defs = [SP];
983}
984
985//
986// Use Save to decrement the SP by a constant since SP is not
987// a Mips16 register.
988//
989let ra=0, s=0,s0=0,s1=0 in
990def SaveDecSpF16:
991  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
992             "save\t$frame_size", [], IIStore >, MayStore {
993  let isCodeGenOnly = 1;
994  let Uses = [SP];
995  let Defs = [SP];
996}
997//
998// Format: SB ry, offset(rx) MIPS16e
999// Purpose: Store Byte (Extended)
1000// To store a byte to memory.
1001//
1002def SbRxRyOffMemX16:
1003  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
1004
1005//
1006// Format: SEB rx MIPS16e
1007// Purpose: Sign-Extend Byte
1008// Sign-extend least significant byte in register rx.
1009//
1010def SebRx16
1011  : FRR_SF16_ins<0b10001, 0b100, "seb", IIAlu>;
1012
1013//
1014// Format: SEH rx MIPS16e
1015// Purpose: Sign-Extend Halfword
1016// Sign-extend least significant word in register rx.
1017//
1018def SehRx16
1019  : FRR_SF16_ins<0b10001, 0b101, "seh", IIAlu>;
1020
1021//
1022// The Sel(T) instructions are pseudos
1023// T means that they use T8 implicitly.
1024//
1025//
1026// Format: SelBeqZ rd, rs, rt
1027// Purpose: if rt==0, do nothing
1028//          else rs = rt
1029//
1030def SelBeqZ: Sel<"beqz">;
1031
1032//
1033// Format:  SelTBteqZCmp rd, rs, rl, rr
1034// Purpose: b = Cmp rl, rr.
1035//          If b==0 then do nothing.
1036//          if b!=0 then rd = rs
1037//
1038def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1039
1040//
1041// Format:  SelTBteqZCmpi rd, rs, rl, rr
1042// Purpose: b = Cmpi rl, imm.
1043//          If b==0 then do nothing.
1044//          if b!=0 then rd = rs
1045//
1046def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1047
1048//
1049// Format:  SelTBteqZSlt rd, rs, rl, rr
1050// Purpose: b = Slt rl, rr.
1051//          If b==0 then do nothing.
1052//          if b!=0 then rd = rs
1053//
1054def SelTBteqZSlt: SelT<"bteqz", "slt">;
1055
1056//
1057// Format:  SelTBteqZSlti rd, rs, rl, rr
1058// Purpose: b = Slti rl, imm.
1059//          If b==0 then do nothing.
1060//          if b!=0 then rd = rs
1061//
1062def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1063
1064//
1065// Format:  SelTBteqZSltu rd, rs, rl, rr
1066// Purpose: b = Sltu rl, rr.
1067//          If b==0 then do nothing.
1068//          if b!=0 then rd = rs
1069//
1070def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1071
1072//
1073// Format:  SelTBteqZSltiu rd, rs, rl, rr
1074// Purpose: b = Sltiu rl, imm.
1075//          If b==0 then do nothing.
1076//          if b!=0 then rd = rs
1077//
1078def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1079
1080//
1081// Format: SelBnez rd, rs, rt
1082// Purpose: if rt!=0, do nothing
1083//          else rs = rt
1084//
1085def SelBneZ: Sel<"bnez">;
1086
1087//
1088// Format:  SelTBtneZCmp rd, rs, rl, rr
1089// Purpose: b = Cmp rl, rr.
1090//          If b!=0 then do nothing.
1091//          if b0=0 then rd = rs
1092//
1093def SelTBtneZCmp: SelT<"btnez", "cmp">;
1094
1095//
1096// Format:  SelTBtnezCmpi rd, rs, rl, rr
1097// Purpose: b = Cmpi rl, imm.
1098//          If b!=0 then do nothing.
1099//          if b==0 then rd = rs
1100//
1101def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1102
1103//
1104// Format:  SelTBtneZSlt rd, rs, rl, rr
1105// Purpose: b = Slt rl, rr.
1106//          If b!=0 then do nothing.
1107//          if b==0 then rd = rs
1108//
1109def SelTBtneZSlt: SelT<"btnez", "slt">;
1110
1111//
1112// Format:  SelTBtneZSlti rd, rs, rl, rr
1113// Purpose: b = Slti rl, imm.
1114//          If b!=0 then do nothing.
1115//          if b==0 then rd = rs
1116//
1117def SelTBtneZSlti: SeliT<"btnez", "slti">;
1118
1119//
1120// Format:  SelTBtneZSltu rd, rs, rl, rr
1121// Purpose: b = Sltu rl, rr.
1122//          If b!=0 then do nothing.
1123//          if b==0 then rd = rs
1124//
1125def SelTBtneZSltu: SelT<"btnez", "sltu">;
1126
1127//
1128// Format:  SelTBtneZSltiu rd, rs, rl, rr
1129// Purpose: b = Slti rl, imm.
1130//          If b!=0 then do nothing.
1131//          if b==0 then rd = rs
1132//
1133def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1134//
1135//
1136// Format: SH ry, offset(rx) MIPS16e
1137// Purpose: Store Halfword (Extended)
1138// To store a halfword to memory.
1139//
1140def ShRxRyOffMemX16:
1141  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1142
1143//
1144// Format: SLL rx, ry, sa MIPS16e
1145// Purpose: Shift Word Left Logical (Extended)
1146// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1147//
1148def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1149
1150//
1151// Format: SLLV ry, rx MIPS16e
1152// Purpose: Shift Word Left Logical Variable
1153// To execute a left-shift of a word by a variable number of bits.
1154//
1155def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1156
1157// Format: SLTI rx, immediate MIPS16e
1158// Purpose: Set on Less Than Immediate
1159// To record the result of a less-than comparison with a constant.
1160//
1161//
1162def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1163  let Defs = [T8];
1164}
1165
1166//
1167// Format: SLTI rx, immediate MIPS16e
1168// Purpose: Set on Less Than Immediate (Extended)
1169// To record the result of a less-than comparison with a constant.
1170//
1171//
1172def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1173  let Defs = [T8];
1174}
1175
1176def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1177
1178// Format: SLTIU rx, immediate MIPS16e
1179// Purpose: Set on Less Than Immediate Unsigned
1180// To record the result of a less-than comparison with a constant.
1181//
1182//
1183def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1184  let Defs = [T8];
1185}
1186
1187//
1188// Format: SLTI rx, immediate MIPS16e
1189// Purpose: Set on Less Than Immediate Unsigned (Extended)
1190// To record the result of a less-than comparison with a constant.
1191//
1192//
1193def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1194  let Defs = [T8];
1195}
1196//
1197// Format: SLTIU rx, immediate MIPS16e
1198// Purpose: Set on Less Than Immediate Unsigned (Extended)
1199// To record the result of a less-than comparison with a constant.
1200//
1201def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1202
1203//
1204// Format: SLT rx, ry MIPS16e
1205// Purpose: Set on Less Than
1206// To record the result of a less-than comparison.
1207//
1208def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1209  let Defs = [T8];
1210}
1211
1212def SltCCRxRy16: FCCRR16_ins<"slt">;
1213
1214// Format: SLTU rx, ry MIPS16e
1215// Purpose: Set on Less Than Unsigned
1216// To record the result of an unsigned less-than comparison.
1217//
1218def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1219  let Defs = [T8];
1220}
1221
1222def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1223  let isCodeGenOnly=1;
1224  let Defs = [T8];
1225}
1226
1227
1228def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1229//
1230// Format: SRAV ry, rx MIPS16e
1231// Purpose: Shift Word Right Arithmetic Variable
1232// To execute an arithmetic right-shift of a word by a variable
1233// number of bits.
1234//
1235def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1236
1237
1238//
1239// Format: SRA rx, ry, sa MIPS16e
1240// Purpose: Shift Word Right Arithmetic (Extended)
1241// To execute an arithmetic right-shift of a word by a fixed
1242// number of bits-1 to 8 bits.
1243//
1244def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1245
1246
1247//
1248// Format: SRLV ry, rx MIPS16e
1249// Purpose: Shift Word Right Logical Variable
1250// To execute a logical right-shift of a word by a variable
1251// number of bits.
1252//
1253def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1254
1255
1256//
1257// Format: SRL rx, ry, sa MIPS16e
1258// Purpose: Shift Word Right Logical (Extended)
1259// To execute a logical right-shift of a word by a fixed
1260// number of bits-1 to 31 bits.
1261//
1262def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1263
1264//
1265// Format: SUBU rz, rx, ry MIPS16e
1266// Purpose: Subtract Unsigned Word
1267// To subtract 32-bit integers
1268//
1269def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1270
1271//
1272// Format: SW ry, offset(rx) MIPS16e
1273// Purpose: Store Word (Extended)
1274// To store a word to memory.
1275//
1276def SwRxRyOffMemX16:
1277  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1278
1279//
1280// Format: SW rx, offset(sp) MIPS16e
1281// Purpose: Store Word rx (SP-Relative)
1282// To store an SP-relative word to memory.
1283//
1284def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1285  <0b11010, "sw", IIStore>, MayStore;
1286
1287//
1288//
1289// Format: XOR rx, ry MIPS16e
1290// Purpose: Xor
1291// To do a bitwise logical XOR.
1292//
1293def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1294
1295class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1296  let Predicates = [InMips16Mode];
1297}
1298
1299// Unary Arith/Logic
1300//
1301class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1302  Mips16Pat<(OpNode CPU16Regs:$r),
1303            (I CPU16Regs:$r)>;
1304
1305def: ArithLogicU_pat<not, NotRxRy16>;
1306def: ArithLogicU_pat<ineg, NegRxRy16>;
1307
1308class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1309  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1310            (I CPU16Regs:$l, CPU16Regs:$r)>;
1311
1312def: ArithLogic16_pat<add, AdduRxRyRz16>;
1313def: ArithLogic16_pat<and, AndRxRxRy16>;
1314def: ArithLogic16_pat<mul, MultRxRyRz16>;
1315def: ArithLogic16_pat<or, OrRxRxRy16>;
1316def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1317def: ArithLogic16_pat<xor, XorRxRxRy16>;
1318
1319// Arithmetic and logical instructions with 2 register operands.
1320
1321class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1322  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1323            (I CPU16Regs:$in, imm_type:$imm)>;
1324
1325def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1326def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1327def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1328def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1329def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1330
1331class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1332  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1333            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1334
1335def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1336def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1337def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1338
1339class LoadM16_pat<PatFrag OpNode, Instruction I> :
1340  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1341
1342def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1343def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1344def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1345def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1346def: LoadM16_pat<load, LwRxRyOffMemX16>;
1347
1348class StoreM16_pat<PatFrag OpNode, Instruction I> :
1349  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1350            (I CPU16Regs:$r, addr16:$addr)>;
1351
1352def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1353def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1354def: StoreM16_pat<store, SwRxRyOffMemX16>;
1355
1356// Unconditional branch
1357class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1358  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1359    let Predicates = [InMips16Mode];
1360  }
1361
1362def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1363                (Jal16 tglobaladdr:$dst)>;
1364
1365def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1366                (Jal16 texternalsym:$dst)>;
1367
1368// Indirect branch
1369def: Mips16Pat<
1370  (brind CPU16Regs:$rs),
1371  (JrcRx16 CPU16Regs:$rs)>;
1372
1373// Jump and Link (Call)
1374let isCall=1, hasDelaySlot=0 in
1375def JumpLinkReg16:
1376  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1377              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1378
1379// Mips16 pseudos
1380let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1381  hasExtraSrcRegAllocReq = 1 in
1382def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1383
1384
1385// setcc patterns
1386
1387class SetCC_R16<PatFrag cond_op, Instruction I>:
1388  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1389            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1390
1391class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1392  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1393            (I CPU16Regs:$rx, imm_type:$imm16)>;
1394
1395
1396def: Mips16Pat<(i32  addr16:$addr),
1397               (AddiuRxRyOffMemX16  addr16:$addr)>;
1398
1399
1400// Large (>16 bit) immediate loads
1401def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1402
1403// Carry MipsPatterns
1404def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1405                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1406def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1407                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1408def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1409                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1410
1411//
1412// Some branch conditional patterns are not generated by llvm at this time.
1413// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1414// comparison they are used and for unsigned a different pattern is used.
1415// I am pushing upstream from the full mips16 port and it seemed that I needed
1416// these earlier and the mips32 port has these but now I cannot create test
1417// cases that use these patterns. While I sort this all out I will leave these
1418// extra patterns commented out and if I can be sure they are really not used,
1419// I will delete the code. I don't want to check the code in uncommented without
1420// a valid test case. In some cases, the compiler is generating patterns with
1421// setcc instead and earlier I had implemented setcc first so may have masked
1422// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1423// figure out how to enable the brcond patterns or else possibly new
1424// combinations of of brcond and setcc.
1425//
1426//
1427// bcond-seteq
1428//
1429def: Mips16Pat
1430  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1431   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1432  >;
1433
1434
1435def: Mips16Pat
1436  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1437   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1438  >;
1439
1440def: Mips16Pat
1441  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1442   (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
1443  >;
1444
1445//
1446// bcond-setgt (do we need to have this pair of setlt, setgt??)
1447//
1448def: Mips16Pat
1449  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1450   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1451  >;
1452
1453//
1454// bcond-setge
1455//
1456def: Mips16Pat
1457  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1458   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1459  >;
1460
1461//
1462// never called because compiler transforms a >= k to a > (k-1)
1463def: Mips16Pat
1464  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1465   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1466  >;
1467
1468//
1469// bcond-setlt
1470//
1471def: Mips16Pat
1472  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1473   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1474  >;
1475
1476def: Mips16Pat
1477  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1478   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1479  >;
1480
1481//
1482// bcond-setle
1483//
1484def: Mips16Pat
1485  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1486   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1487  >;
1488
1489//
1490// bcond-setne
1491//
1492def: Mips16Pat
1493  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1494   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1495  >;
1496
1497def: Mips16Pat
1498  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1499   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1500  >;
1501
1502def: Mips16Pat
1503  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1504   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1505  >;
1506
1507//
1508// This needs to be there but I forget which code will generate it
1509//
1510def: Mips16Pat
1511  <(brcond CPU16Regs:$rx, bb:$targ16),
1512   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1513  >;
1514
1515//
1516
1517//
1518// bcond-setugt
1519//
1520//def: Mips16Pat
1521//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1522//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1523//  >;
1524
1525//
1526// bcond-setuge
1527//
1528//def: Mips16Pat
1529//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1530//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1531//  >;
1532
1533
1534//
1535// bcond-setult
1536//
1537//def: Mips16Pat
1538//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1539//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1540//  >;
1541
1542def: UncondBranch16_pat<br, Bimm16>;
1543
1544// Small immediates
1545def: Mips16Pat<(i32 immSExt16:$in),
1546               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1547
1548def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1549
1550//
1551// MipsDivRem
1552//
1553def: Mips16Pat
1554  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1555   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1556
1557//
1558// MipsDivRemU
1559//
1560def: Mips16Pat
1561  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1562   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1563
1564//  signed a,b
1565//  x = (a>=b)?x:y
1566//
1567//  if !(a < b) x = y
1568//
1569def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1570                 CPU16Regs:$x, CPU16Regs:$y),
1571                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1572                 CPU16Regs:$a, CPU16Regs:$b)>;
1573
1574//  signed a,b
1575//  x = (a>b)?x:y
1576//
1577//  if  (b < a) x = y
1578//
1579def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1580                 CPU16Regs:$x, CPU16Regs:$y),
1581                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1582                 CPU16Regs:$b, CPU16Regs:$a)>;
1583
1584// unsigned a,b
1585// x = (a>=b)?x:y
1586//
1587// if !(a < b) x = y;
1588//
1589def : Mips16Pat<
1590  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1591   CPU16Regs:$x, CPU16Regs:$y),
1592  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1593   CPU16Regs:$a, CPU16Regs:$b)>;
1594
1595//  unsigned a,b
1596//  x = (a>b)?x:y
1597//
1598//  if (b < a) x = y
1599//
1600def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1601                 CPU16Regs:$x, CPU16Regs:$y),
1602                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1603                 CPU16Regs:$b, CPU16Regs:$a)>;
1604
1605// signed
1606// x = (a >= k)?x:y
1607// due to an llvm optimization, i don't think that this will ever
1608// be used. This is transformed into x = (a > k-1)?x:y
1609//
1610//
1611
1612//def : Mips16Pat<
1613//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1614//   CPU16Regs:$T, CPU16Regs:$F),
1615//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1616//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1617
1618//def : Mips16Pat<
1619//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1620//   CPU16Regs:$T, CPU16Regs:$F),
1621//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1622//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1623
1624// signed
1625// x = (a < k)?x:y
1626//
1627// if !(a < k) x = y;
1628//
1629def : Mips16Pat<
1630  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1631   CPU16Regs:$x, CPU16Regs:$y),
1632  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1633   CPU16Regs:$a, immSExt16:$b)>;
1634
1635
1636//
1637//
1638// signed
1639// x = (a <= b)? x : y
1640//
1641// if  (b < a) x = y
1642//
1643def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1644                 CPU16Regs:$x, CPU16Regs:$y),
1645                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1646                 CPU16Regs:$b, CPU16Regs:$a)>;
1647
1648//
1649// unnsigned
1650// x = (a <= b)? x : y
1651//
1652// if  (b < a) x = y
1653//
1654def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1655                 CPU16Regs:$x, CPU16Regs:$y),
1656                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1657                 CPU16Regs:$b, CPU16Regs:$a)>;
1658
1659//
1660// signed/unsigned
1661// x = (a == b)? x : y
1662//
1663// if (a != b) x = y
1664//
1665def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1666                 CPU16Regs:$x, CPU16Regs:$y),
1667                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1668                 CPU16Regs:$b, CPU16Regs:$a)>;
1669
1670//
1671// signed/unsigned
1672// x = (a == 0)? x : y
1673//
1674// if (a != 0) x = y
1675//
1676def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1677                 CPU16Regs:$x, CPU16Regs:$y),
1678                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1679                 CPU16Regs:$a)>;
1680
1681
1682//
1683// signed/unsigned
1684// x = (a == k)? x : y
1685//
1686// if (a != k) x = y
1687//
1688def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1689                 CPU16Regs:$x, CPU16Regs:$y),
1690                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1691                 CPU16Regs:$a, immZExt16:$k)>;
1692
1693
1694//
1695// signed/unsigned
1696// x = (a != b)? x : y
1697//
1698// if (a == b) x = y
1699//
1700//
1701def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1702                 CPU16Regs:$x, CPU16Regs:$y),
1703                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1704                 CPU16Regs:$b, CPU16Regs:$a)>;
1705
1706//
1707// signed/unsigned
1708// x = (a != 0)? x : y
1709//
1710// if (a == 0) x = y
1711//
1712def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1713                 CPU16Regs:$x, CPU16Regs:$y),
1714                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1715                 CPU16Regs:$a)>;
1716
1717// signed/unsigned
1718// x = (a)? x : y
1719//
1720// if (!a) x = y
1721//
1722def : Mips16Pat<(select  CPU16Regs:$a,
1723                 CPU16Regs:$x, CPU16Regs:$y),
1724      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1725       CPU16Regs:$a)>;
1726
1727
1728//
1729// signed/unsigned
1730// x = (a != k)? x : y
1731//
1732// if (a == k) x = y
1733//
1734def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1735                 CPU16Regs:$x, CPU16Regs:$y),
1736                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1737                 CPU16Regs:$a, immZExt16:$k)>;
1738
1739//
1740// When writing C code to test setxx these patterns,
1741// some will be transformed into
1742// other things. So we test using C code but using -O3 and -O0
1743//
1744// seteq
1745//
1746def : Mips16Pat
1747  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1748   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1749
1750def : Mips16Pat
1751  <(seteq CPU16Regs:$lhs, 0),
1752   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1753
1754
1755//
1756// setge
1757//
1758
1759def: Mips16Pat
1760  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1761   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1762   (LiRxImmX16 1))>;
1763
1764//
1765// For constants, llvm transforms this to:
1766// x > (k -1) and then reverses the operands to use setlt. So this pattern
1767// is not used now by the compiler. (Presumably checking that k-1 does not
1768// overflow). The compiler never uses this at a the current time, due to
1769// other optimizations.
1770//
1771//def: Mips16Pat
1772//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1773//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1774//   (LiRxImmX16 1))>;
1775
1776// This catches the x >= -32768 case by transforming it to  x > -32769
1777//
1778def: Mips16Pat
1779  <(setgt CPU16Regs:$lhs, -32769),
1780   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1781   (LiRxImmX16 1))>;
1782
1783//
1784// setgt
1785//
1786//
1787
1788def: Mips16Pat
1789  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1790   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1791
1792//
1793// setle
1794//
1795def: Mips16Pat
1796  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1797   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1798
1799//
1800// setlt
1801//
1802def: SetCC_R16<setlt, SltCCRxRy16>;
1803
1804def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1805
1806//
1807// setne
1808//
1809def : Mips16Pat
1810  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1811   (SltuCCRxRy16 (LiRxImmX16 0),
1812   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1813
1814
1815//
1816// setuge
1817//
1818def: Mips16Pat
1819  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1820   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1821   (LiRxImmX16 1))>;
1822
1823// this pattern will never be used because the compiler will transform
1824// x >= k to x > (k - 1) and then use SLT
1825//
1826//def: Mips16Pat
1827//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1828//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1829//   (LiRxImmX16 1))>;
1830
1831//
1832// setugt
1833//
1834def: Mips16Pat
1835  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1836   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1837
1838//
1839// setule
1840//
1841def: Mips16Pat
1842  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1843   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1844
1845//
1846// setult
1847//
1848def: SetCC_R16<setult, SltuCCRxRy16>;
1849
1850def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1851
1852def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1853               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1854
1855// hi/lo relocs
1856def : Mips16Pat<(MipsHi tblockaddress:$in),
1857                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1858def : Mips16Pat<(MipsHi tglobaladdr:$in),
1859                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1860def : Mips16Pat<(MipsHi tjumptable:$in),
1861                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1862def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1863                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1864
1865def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1866
1867// wrapper_pic
1868class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1869  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1870            (ADDiuOp RC:$gp, node:$in)>;
1871
1872
1873def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1874def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1875
1876def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1877                (LbuRxRyOffMemX16  addr16:$src)>;
1878def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1879                (LhuRxRyOffMemX16  addr16:$src)>;
1880
1881def: Mips16Pat<(trap), (Break16)>;
1882
1883def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1884                (SebRx16 CPU16Regs:$val)>;
1885
1886def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1887                (SehRx16 CPU16Regs:$val)>;
1888
1889def GotPrologue16:   
1890  MipsPseudo16<
1891    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1892    (ins simm16:$immHi, simm16:$immLo),
1893    ".align 2\n\tli\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1894
1895// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1896def cpinst_operand : Operand<i32> {
1897  // let PrintMethod = "printCPInstOperand";
1898}
1899
1900// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1901// the function.  The first operand is the ID# for this instruction, the second
1902// is the index into the MachineConstantPool that this is, the third is the
1903// size in bytes of this constant pool entry.
1904//
1905let neverHasSideEffects = 1, isNotDuplicable = 1 in
1906def CONSTPOOL_ENTRY :
1907MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1908                      i32imm:$size), "foo", []>;
1909
1910