HexagonVLIWPacketizer.cpp revision 263508
1//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple VLIW packetizer using DFA. The packetizer works on
11// machine basic blocks. For each instruction I in BB, the packetizer consults
12// the DFA to see if machine resources are available to execute I. If so, the
13// packetizer checks if I depends on any instruction J in the current packet.
14// If no dependency is found, I is added to current packet and machine resource
15// is marked as taken. If any dependency is found, a target API call is made to
16// prune the dependence.
17//
18//===----------------------------------------------------------------------===//
19#define DEBUG_TYPE "packets"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/ScheduleDAG.h"
26#include "llvm/CodeGen/ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/LatencyPriorityQueue.h"
28#include "llvm/CodeGen/SchedulerRegistry.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/MachineFunctionAnalysis.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/MC/MCInstrItineraries.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "Hexagon.h"
45#include "HexagonTargetMachine.h"
46#include "HexagonRegisterInfo.h"
47#include "HexagonSubtarget.h"
48#include "HexagonMachineFunctionInfo.h"
49
50#include <map>
51#include <vector>
52
53using namespace llvm;
54
55static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56      cl::ZeroOrMore, cl::Hidden, cl::init(true),
57      cl::desc("Allow non-solo packetization of volatile memory references"));
58
59namespace llvm {
60  void initializeHexagonPacketizerPass(PassRegistry&);
61}
62
63
64namespace {
65  class HexagonPacketizer : public MachineFunctionPass {
66
67  public:
68    static char ID;
69    HexagonPacketizer() : MachineFunctionPass(ID) {
70      initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71    }
72
73    void getAnalysisUsage(AnalysisUsage &AU) const {
74      AU.setPreservesCFG();
75      AU.addRequired<MachineDominatorTree>();
76      AU.addRequired<MachineBranchProbabilityInfo>();
77      AU.addPreserved<MachineDominatorTree>();
78      AU.addRequired<MachineLoopInfo>();
79      AU.addPreserved<MachineLoopInfo>();
80      MachineFunctionPass::getAnalysisUsage(AU);
81    }
82
83    const char *getPassName() const {
84      return "Hexagon Packetizer";
85    }
86
87    bool runOnMachineFunction(MachineFunction &Fn);
88  };
89  char HexagonPacketizer::ID = 0;
90
91  class HexagonPacketizerList : public VLIWPacketizerList {
92
93  private:
94
95    // Has the instruction been promoted to a dot-new instruction.
96    bool PromotedToDotNew;
97
98    // Has the instruction been glued to allocframe.
99    bool GlueAllocframeStore;
100
101    // Has the feeder instruction been glued to new value jump.
102    bool GlueToNewValueJump;
103
104    // Check if there is a dependence between some instruction already in this
105    // packet and this instruction.
106    bool Dependence;
107
108    // Only check for dependence if there are resources available to
109    // schedule this instruction.
110    bool FoundSequentialDependence;
111
112    /// \brief A handle to the branch probability pass.
113   const MachineBranchProbabilityInfo *MBPI;
114
115   // Track MIs with ignored dependece.
116   std::vector<MachineInstr*> IgnoreDepMIs;
117
118  public:
119    // Ctor.
120    HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
121                          MachineDominatorTree &MDT,
122                          const MachineBranchProbabilityInfo *MBPI);
123
124    // initPacketizerState - initialize some internal flags.
125    void initPacketizerState();
126
127    // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
128    bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB);
129
130    // isSoloInstruction - return true if instruction MI can not be packetized
131    // with any other instruction, which means that MI itself is a packet.
132    bool isSoloInstruction(MachineInstr *MI);
133
134    // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
135    // together.
136    bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ);
137
138    // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
139    // and SUJ.
140    bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ);
141
142    MachineBasicBlock::iterator addToPacket(MachineInstr *MI);
143  private:
144    bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
145    bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
146                         MachineBasicBlock::iterator &MII,
147                         const TargetRegisterClass* RC);
148    bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
149                            unsigned DepReg,
150                            std::map <MachineInstr*, SUnit*> MIToSUnit,
151                            MachineBasicBlock::iterator &MII,
152                            const TargetRegisterClass* RC);
153    bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
154                              unsigned DepReg,
155                              std::map <MachineInstr*, SUnit*> MIToSUnit,
156                              MachineBasicBlock::iterator &MII);
157    bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
158                                   unsigned DepReg,
159                                   std::map <MachineInstr*, SUnit*> MIToSUnit);
160    bool DemoteToDotOld(MachineInstr* MI);
161    bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
162                    std::map <MachineInstr*, SUnit*> MIToSUnit);
163    bool RestrictingDepExistInPacket(MachineInstr*,
164                    unsigned, std::map <MachineInstr*, SUnit*>);
165    bool isNewifiable(MachineInstr* MI);
166    bool isCondInst(MachineInstr* MI);
167    bool tryAllocateResourcesForConstExt(MachineInstr* MI);
168    bool canReserveResourcesForConstExt(MachineInstr *MI);
169    void reserveResourcesForConstExt(MachineInstr* MI);
170    bool isNewValueInst(MachineInstr* MI);
171  };
172}
173
174INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
175                      false, false)
176INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
177INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
178INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
179INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
180INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
181                    false, false)
182
183
184// HexagonPacketizerList Ctor.
185HexagonPacketizerList::HexagonPacketizerList(
186  MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
187  const MachineBranchProbabilityInfo *MBPI)
188  : VLIWPacketizerList(MF, MLI, MDT, true){
189  this->MBPI = MBPI;
190}
191
192bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
193  const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
194  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
195  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
196  const MachineBranchProbabilityInfo *MBPI =
197    &getAnalysis<MachineBranchProbabilityInfo>();
198  // Instantiate the packetizer.
199  HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
200
201  // DFA state table should not be empty.
202  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
203
204  //
205  // Loop over all basic blocks and remove KILL pseudo-instructions
206  // These instructions confuse the dependence analysis. Consider:
207  // D0 = ...   (Insn 0)
208  // R0 = KILL R0, D0 (Insn 1)
209  // R0 = ... (Insn 2)
210  // Here, Insn 1 will result in the dependence graph not emitting an output
211  // dependence between Insn 0 and Insn 2. This can lead to incorrect
212  // packetization
213  //
214  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
215       MBB != MBBe; ++MBB) {
216    MachineBasicBlock::iterator End = MBB->end();
217    MachineBasicBlock::iterator MI = MBB->begin();
218    while (MI != End) {
219      if (MI->isKill()) {
220        MachineBasicBlock::iterator DeleteMI = MI;
221        ++MI;
222        MBB->erase(DeleteMI);
223        End = MBB->end();
224        continue;
225      }
226      ++MI;
227    }
228  }
229
230  // Loop over all of the basic blocks.
231  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
232       MBB != MBBe; ++MBB) {
233    // Find scheduling regions and schedule / packetize each region.
234    unsigned RemainingCount = MBB->size();
235    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
236        RegionEnd != MBB->begin();) {
237      // The next region starts above the previous region. Look backward in the
238      // instruction stream until we find the nearest boundary.
239      MachineBasicBlock::iterator I = RegionEnd;
240      for(;I != MBB->begin(); --I, --RemainingCount) {
241        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, Fn))
242          break;
243      }
244      I = MBB->begin();
245
246      // Skip empty scheduling regions.
247      if (I == RegionEnd) {
248        RegionEnd = llvm::prior(RegionEnd);
249        --RemainingCount;
250        continue;
251      }
252      // Skip regions with one instruction.
253      if (I == llvm::prior(RegionEnd)) {
254        RegionEnd = llvm::prior(RegionEnd);
255        continue;
256      }
257
258      Packetizer.PacketizeMIs(MBB, I, RegionEnd);
259      RegionEnd = I;
260    }
261  }
262
263  return true;
264}
265
266
267static bool IsIndirectCall(MachineInstr* MI) {
268  return ((MI->getOpcode() == Hexagon::CALLR) ||
269          (MI->getOpcode() == Hexagon::CALLRv3));
270}
271
272// Reserve resources for constant extender. Trigure an assertion if
273// reservation fail.
274void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
275  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
276  MachineFunction *MF = MI->getParent()->getParent();
277  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
278                                                  MI->getDebugLoc());
279
280  if (ResourceTracker->canReserveResources(PseudoMI)) {
281    ResourceTracker->reserveResources(PseudoMI);
282    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
283  } else {
284    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
285    llvm_unreachable("can not reserve resources for constant extender.");
286  }
287  return;
288}
289
290bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
291  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
292  assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
293         "Should only be called for constant extended instructions");
294  MachineFunction *MF = MI->getParent()->getParent();
295  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
296                                                  MI->getDebugLoc());
297  bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
298  MF->DeleteMachineInstr(PseudoMI);
299  return CanReserve;
300}
301
302// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
303// true, otherwise, return false.
304bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
305  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
306  MachineFunction *MF = MI->getParent()->getParent();
307  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
308                                                  MI->getDebugLoc());
309
310  if (ResourceTracker->canReserveResources(PseudoMI)) {
311    ResourceTracker->reserveResources(PseudoMI);
312    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
313    return true;
314  } else {
315    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
316    return false;
317  }
318}
319
320
321bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
322                                          SDep::Kind DepType,
323                                          unsigned DepReg) {
324
325  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
326  const HexagonRegisterInfo* QRI =
327              (const HexagonRegisterInfo *) TM.getRegisterInfo();
328
329  // Check for lr dependence
330  if (DepReg == QRI->getRARegister()) {
331    return true;
332  }
333
334  if (QII->isDeallocRet(MI)) {
335    if (DepReg == QRI->getFrameRegister() ||
336        DepReg == QRI->getStackRegister())
337      return true;
338  }
339
340  // Check if this is a predicate dependence
341  const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
342  if (RC == &Hexagon::PredRegsRegClass) {
343    return true;
344  }
345
346  //
347  // Lastly check for an operand used in an indirect call
348  // If we had an attribute for checking if an instruction is an indirect call,
349  // then we could have avoided this relatively brittle implementation of
350  // IsIndirectCall()
351  //
352  // Assumes that the first operand of the CALLr is the function address
353  //
354  if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
355    MachineOperand MO = MI->getOperand(0);
356    if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
357      return true;
358    }
359  }
360
361  return false;
362}
363
364static bool IsRegDependence(const SDep::Kind DepType) {
365  return (DepType == SDep::Data || DepType == SDep::Anti ||
366          DepType == SDep::Output);
367}
368
369static bool IsDirectJump(MachineInstr* MI) {
370  return (MI->getOpcode() == Hexagon::JMP);
371}
372
373static bool IsSchedBarrier(MachineInstr* MI) {
374  switch (MI->getOpcode()) {
375  case Hexagon::BARRIER:
376    return true;
377  }
378  return false;
379}
380
381static bool IsControlFlow(MachineInstr* MI) {
382  return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
383}
384
385static bool IsLoopN(MachineInstr *MI) {
386  return (MI->getOpcode() == Hexagon::LOOP0_i ||
387          MI->getOpcode() == Hexagon::LOOP0_r);
388}
389
390/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
391/// callee-saved register.
392static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
393                                     const TargetRegisterInfo *TRI) {
394  for (const uint16_t *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
395    unsigned CalleeSavedReg = *CSR;
396    if (MI->modifiesRegister(CalleeSavedReg, TRI))
397      return true;
398  }
399  return false;
400}
401
402// Returns true if an instruction can be promoted to .new predicate
403// or new-value store.
404bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
405  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
406  if ( isCondInst(MI) || QII->mayBeNewStore(MI))
407    return true;
408  else
409    return false;
410}
411
412bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
413  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
414  const MCInstrDesc& TID = MI->getDesc();
415                                    // bug 5670: until that is fixed,
416                                    // this portion is disabled.
417  if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
418      || QII->isConditionalTransfer(MI)
419      || QII->isConditionalALU32(MI)
420      || QII->isConditionalLoad(MI)
421      || QII->isConditionalStore(MI)) {
422    return true;
423  }
424  return false;
425}
426
427
428// Promote an instructiont to its .new form.
429// At this time, we have already made a call to CanPromoteToDotNew
430// and made sure that it can *indeed* be promoted.
431bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
432                        SDep::Kind DepType, MachineBasicBlock::iterator &MII,
433                        const TargetRegisterClass* RC) {
434
435  assert (DepType == SDep::Data);
436  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
437
438  int NewOpcode;
439  if (RC == &Hexagon::PredRegsRegClass)
440    NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
441  else
442    NewOpcode = QII->GetDotNewOp(MI);
443  MI->setDesc(QII->get(NewOpcode));
444
445  return true;
446}
447
448bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
449  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
450  int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
451  MI->setDesc(QII->get(NewOpcode));
452  return true;
453}
454
455enum PredicateKind {
456  PK_False,
457  PK_True,
458  PK_Unknown
459};
460
461/// Returns true if an instruction is predicated on p0 and false if it's
462/// predicated on !p0.
463static PredicateKind getPredicateSense(MachineInstr* MI,
464                                       const HexagonInstrInfo *QII) {
465  if (!QII->isPredicated(MI))
466    return PK_Unknown;
467
468  if (QII->isPredicatedTrue(MI))
469    return PK_True;
470
471  return PK_False;
472}
473
474static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
475                                               const HexagonInstrInfo *QII) {
476  assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
477#ifndef NDEBUG
478  // Post Increment means duplicates. Use dense map to find duplicates in the
479  // list. Caution: Densemap initializes with the minimum of 64 buckets,
480  // whereas there are at most 5 operands in the post increment.
481  DenseMap<unsigned,  unsigned> DefRegsSet;
482  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
483    if (MI->getOperand(opNum).isReg() &&
484        MI->getOperand(opNum).isDef()) {
485      DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
486    }
487
488  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
489    if (MI->getOperand(opNum).isReg() &&
490        MI->getOperand(opNum).isUse()) {
491      if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
492        return MI->getOperand(opNum);
493      }
494    }
495#else
496  if (MI->getDesc().mayLoad()) {
497    // The 2nd operand is always the post increment operand in load.
498    assert(MI->getOperand(1).isReg() &&
499                "Post increment operand has be to a register.");
500    return (MI->getOperand(1));
501  }
502  if (MI->getDesc().mayStore()) {
503    // The 1st operand is always the post increment operand in store.
504    assert(MI->getOperand(0).isReg() &&
505                "Post increment operand has be to a register.");
506    return (MI->getOperand(0));
507  }
508#endif
509  // we should never come here.
510  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
511}
512
513// get the value being stored
514static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
515  // value being stored is always the last operand.
516  return (MI->getOperand(MI->getNumOperands()-1));
517}
518
519// can be new value store?
520// Following restrictions are to be respected in convert a store into
521// a new value store.
522// 1. If an instruction uses auto-increment, its address register cannot
523//    be a new-value register. Arch Spec 5.4.2.1
524// 2. If an instruction uses absolute-set addressing mode,
525//    its address register cannot be a new-value register.
526//    Arch Spec 5.4.2.1.TODO: This is not enabled as
527//    as absolute-set address mode patters are not implemented.
528// 3. If an instruction produces a 64-bit result, its registers cannot be used
529//    as new-value registers. Arch Spec 5.4.2.2.
530// 4. If the instruction that sets a new-value register is conditional, then
531//    the instruction that uses the new-value register must also be conditional,
532//    and both must always have their predicates evaluate identically.
533//    Arch Spec 5.4.2.3.
534// 5. There is an implied restriction of a packet can not have another store,
535//    if there is a  new value store in the packet. Corollary, if there is
536//    already a store in a packet, there can not be a new value store.
537//    Arch Spec: 3.4.4.2
538bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
539                MachineInstr *PacketMI, unsigned DepReg,
540                std::map <MachineInstr*, SUnit*> MIToSUnit) {
541  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
542  // Make sure we are looking at the store, that can be promoted.
543  if (!QII->mayBeNewStore(MI))
544    return false;
545
546  // Make sure there is dependency and can be new value'ed
547  if (GetStoreValueOperand(MI).isReg() &&
548      GetStoreValueOperand(MI).getReg() != DepReg)
549    return false;
550
551  const HexagonRegisterInfo* QRI =
552                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
553  const MCInstrDesc& MCID = PacketMI->getDesc();
554  // first operand is always the result
555
556  const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
557
558  // if there is already an store in the packet, no can do new value store
559  // Arch Spec 3.4.4.2.
560  for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
561         VE = CurrentPacketMIs.end();
562       (VI != VE); ++VI) {
563    SUnit* PacketSU = MIToSUnit[*VI];
564    if (PacketSU->getInstr()->getDesc().mayStore() ||
565        // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
566        // then we don't need this
567        PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
568        PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
569      return false;
570  }
571
572  if (PacketRC == &Hexagon::DoubleRegsRegClass) {
573    // new value store constraint: double regs can not feed into new value store
574    // arch spec section: 5.4.2.2
575    return false;
576  }
577
578  // Make sure it's NOT the post increment register that we are going to
579  // new value.
580  if (QII->isPostIncrement(MI) &&
581      MI->getDesc().mayStore() &&
582      GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
583    return false;
584  }
585
586  if (QII->isPostIncrement(PacketMI) &&
587      PacketMI->getDesc().mayLoad() &&
588      GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
589    // if source is post_inc, or absolute-set addressing,
590    // it can not feed into new value store
591    //  r3 = memw(r2++#4)
592    //  memw(r30 + #-1404) = r2.new -> can not be new value store
593    // arch spec section: 5.4.2.1
594    return false;
595  }
596
597  // If the source that feeds the store is predicated, new value store must
598  // also be predicated.
599  if (QII->isPredicated(PacketMI)) {
600    if (!QII->isPredicated(MI))
601      return false;
602
603    // Check to make sure that they both will have their predicates
604    // evaluate identically
605    unsigned predRegNumSrc = 0;
606    unsigned predRegNumDst = 0;
607    const TargetRegisterClass* predRegClass = NULL;
608
609    // Get predicate register used in the source instruction
610    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
611      if ( PacketMI->getOperand(opNum).isReg())
612      predRegNumSrc = PacketMI->getOperand(opNum).getReg();
613      predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
614      if (predRegClass == &Hexagon::PredRegsRegClass) {
615        break;
616      }
617    }
618    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
619        ("predicate register not found in a predicated PacketMI instruction"));
620
621    // Get predicate register used in new-value store instruction
622    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
623      if ( MI->getOperand(opNum).isReg())
624      predRegNumDst = MI->getOperand(opNum).getReg();
625      predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
626      if (predRegClass == &Hexagon::PredRegsRegClass) {
627        break;
628      }
629    }
630    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
631            ("predicate register not found in a predicated MI instruction"));
632
633    // New-value register producer and user (store) need to satisfy these
634    // constraints:
635    // 1) Both instructions should be predicated on the same register.
636    // 2) If producer of the new-value register is .new predicated then store
637    // should also be .new predicated and if producer is not .new predicated
638    // then store should not be .new predicated.
639    // 3) Both new-value register producer and user should have same predicate
640    // sense, i.e, either both should be negated or both should be none negated.
641
642    if (( predRegNumDst != predRegNumSrc) ||
643          QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
644          getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
645      return false;
646    }
647  }
648
649  // Make sure that other than the new-value register no other store instruction
650  // register has been modified in the same packet. Predicate registers can be
651  // modified by they should not be modified between the producer and the store
652  // instruction as it will make them both conditional on different values.
653  // We already know this to be true for all the instructions before and
654  // including PacketMI. Howerver, we need to perform the check for the
655  // remaining instructions in the packet.
656
657  std::vector<MachineInstr*>::iterator VI;
658  std::vector<MachineInstr*>::iterator VE;
659  unsigned StartCheck = 0;
660
661  for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
662      (VI != VE); ++VI) {
663    SUnit* TempSU = MIToSUnit[*VI];
664    MachineInstr* TempMI = TempSU->getInstr();
665
666    // Following condition is true for all the instructions until PacketMI is
667    // reached (StartCheck is set to 0 before the for loop).
668    // StartCheck flag is 1 for all the instructions after PacketMI.
669    if (TempMI != PacketMI && !StartCheck) // start processing only after
670      continue;                            // encountering PacketMI
671
672    StartCheck = 1;
673    if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
674      continue;
675
676    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
677      if (MI->getOperand(opNum).isReg() &&
678          TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
679                                               QRI))
680        return false;
681    }
682  }
683
684  // Make sure that for non POST_INC stores:
685  // 1. The only use of reg is DepReg and no other registers.
686  //    This handles V4 base+index registers.
687  //    The following store can not be dot new.
688  //    Eg.   r0 = add(r0, #3)a
689  //          memw(r1+r0<<#2) = r0
690  if (!QII->isPostIncrement(MI) &&
691      GetStoreValueOperand(MI).isReg() &&
692      GetStoreValueOperand(MI).getReg() == DepReg) {
693    for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
694      if (MI->getOperand(opNum).isReg() &&
695          MI->getOperand(opNum).getReg() == DepReg) {
696        return false;
697      }
698    }
699    // 2. If data definition is because of implicit definition of the register,
700    //    do not newify the store. Eg.
701    //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
702    //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
703    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
704      if (PacketMI->getOperand(opNum).isReg() &&
705          PacketMI->getOperand(opNum).getReg() == DepReg &&
706          PacketMI->getOperand(opNum).isDef() &&
707          PacketMI->getOperand(opNum).isImplicit()) {
708        return false;
709      }
710    }
711  }
712
713  // Can be dot new store.
714  return true;
715}
716
717// can this MI to promoted to either
718// new value store or new value jump
719bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
720                SUnit *PacketSU, unsigned DepReg,
721                std::map <MachineInstr*, SUnit*> MIToSUnit,
722                MachineBasicBlock::iterator &MII)
723{
724
725  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
726  const HexagonRegisterInfo* QRI =
727                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
728  if (!QRI->Subtarget.hasV4TOps() ||
729      !QII->mayBeNewStore(MI))
730    return false;
731
732  MachineInstr *PacketMI = PacketSU->getInstr();
733
734  // Check to see the store can be new value'ed.
735  if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
736    return true;
737
738  // Check to see the compare/jump can be new value'ed.
739  // This is done as a pass on its own. Don't need to check it here.
740  return false;
741}
742
743// Check to see if an instruction can be dot new
744// There are three kinds.
745// 1. dot new on predicate - V2/V3/V4
746// 2. dot new on stores NV/ST - V4
747// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
748bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
749                              SUnit *PacketSU, unsigned DepReg,
750                              std::map <MachineInstr*, SUnit*> MIToSUnit,
751                              MachineBasicBlock::iterator &MII,
752                              const TargetRegisterClass* RC )
753{
754  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
755  // Already a dot new instruction.
756  if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
757    return false;
758
759  if (!isNewifiable(MI))
760    return false;
761
762  // predicate .new
763  if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
764      return true;
765  else if (RC != &Hexagon::PredRegsRegClass &&
766      !QII->mayBeNewStore(MI)) // MI is not a new-value store
767    return false;
768  else {
769    // Create a dot new machine instruction to see if resources can be
770    // allocated. If not, bail out now.
771    int NewOpcode = QII->GetDotNewOp(MI);
772    const MCInstrDesc &desc = QII->get(NewOpcode);
773    DebugLoc dl;
774    MachineInstr *NewMI =
775                    MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
776    bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
777    MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
778
779    if (!ResourcesAvailable)
780      return false;
781
782    // new value store only
783    // new new value jump generated as a passes
784    if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
785      return false;
786    }
787  }
788  return true;
789}
790
791// Go through the packet instructions and search for anti dependency
792// between them and DepReg from MI
793// Consider this case:
794// Trying to add
795// a) %R1<def> = TFRI_cdNotPt %P3, 2
796// to this packet:
797// {
798//   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
799//   c) %P3<def> = TFR_PdRs %R23
800//   d) %R1<def> = TFRI_cdnPt %P3, 4
801//  }
802// The P3 from a) and d) will be complements after
803// a)'s P3 is converted to .new form
804// Anti Dep between c) and b) is irrelevant for this case
805bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
806      unsigned DepReg,
807      std::map <MachineInstr*, SUnit*> MIToSUnit) {
808
809  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
810  SUnit* PacketSUDep = MIToSUnit[MI];
811
812  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
813       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
814
815    // We only care for dependencies to predicated instructions
816    if(!QII->isPredicated(*VIN)) continue;
817
818    // Scheduling Unit for current insn in the packet
819    SUnit* PacketSU = MIToSUnit[*VIN];
820
821    // Look at dependencies between current members of the packet
822    // and predicate defining instruction MI.
823    // Make sure that dependency is on the exact register
824    // we care about.
825    if (PacketSU->isSucc(PacketSUDep)) {
826      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
827        if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
828            (PacketSU->Succs[i].getKind() == SDep::Anti) &&
829            (PacketSU->Succs[i].getReg() == DepReg)) {
830          return true;
831        }
832      }
833    }
834  }
835
836  return false;
837}
838
839
840/// Gets the predicate register of a predicated instruction.
841static unsigned getPredicatedRegister(MachineInstr *MI,
842                                      const HexagonInstrInfo *QII) {
843  /// We use the following rule: The first predicate register that is a use is
844  /// the predicate register of a predicated instruction.
845
846  assert(QII->isPredicated(MI) && "Must be predicated instruction");
847
848  for (MachineInstr::mop_iterator OI = MI->operands_begin(),
849       OE = MI->operands_end(); OI != OE; ++OI) {
850    MachineOperand &Op = *OI;
851    if (Op.isReg() && Op.getReg() && Op.isUse() &&
852        Hexagon::PredRegsRegClass.contains(Op.getReg()))
853      return Op.getReg();
854  }
855
856  llvm_unreachable("Unknown instruction operand layout");
857
858  return 0;
859}
860
861// Given two predicated instructions, this function detects whether
862// the predicates are complements
863bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
864     MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
865
866  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
867
868  // If we don't know the predicate sense of the instructions bail out early, we
869  // need it later.
870  if (getPredicateSense(MI1, QII) == PK_Unknown ||
871      getPredicateSense(MI2, QII) == PK_Unknown)
872    return false;
873
874  // Scheduling unit for candidate
875  SUnit* SU = MIToSUnit[MI1];
876
877  // One corner case deals with the following scenario:
878  // Trying to add
879  // a) %R24<def> = TFR_cPt %P0, %R25
880  // to this packet:
881  //
882  // {
883  //   b) %R25<def> = TFR_cNotPt %P0, %R24
884  //   c) %P0<def> = CMPEQri %R26, 1
885  // }
886  //
887  // On general check a) and b) are complements, but
888  // presence of c) will convert a) to .new form, and
889  // then it is not a complement
890  // We attempt to detect it by analyzing  existing
891  // dependencies in the packet
892
893  // Analyze relationships between all existing members of the packet.
894  // Look for Anti dependecy on the same predicate reg
895  // as used in the candidate
896  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
897       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
898
899    // Scheduling Unit for current insn in the packet
900    SUnit* PacketSU = MIToSUnit[*VIN];
901
902    // If this instruction in the packet is succeeded by the candidate...
903    if (PacketSU->isSucc(SU)) {
904      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
905        // The corner case exist when there is true data
906        // dependency between candidate and one of current
907        // packet members, this dep is on predicate reg, and
908        // there already exist anti dep on the same pred in
909        // the packet.
910        if (PacketSU->Succs[i].getSUnit() == SU &&
911            PacketSU->Succs[i].getKind() == SDep::Data &&
912            Hexagon::PredRegsRegClass.contains(
913              PacketSU->Succs[i].getReg()) &&
914            // Here I know that *VIN is predicate setting instruction
915            // with true data dep to candidate on the register
916            // we care about - c) in the above example.
917            // Now I need to see if there is an anti dependency
918            // from c) to any other instruction in the
919            // same packet on the pred reg of interest
920            RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
921                                        MIToSUnit)) {
922           return false;
923        }
924      }
925    }
926  }
927
928  // If the above case does not apply, check regular
929  // complement condition.
930  // Check that the predicate register is the same and
931  // that the predicate sense is different
932  // We also need to differentiate .old vs. .new:
933  // !p0 is not complimentary to p0.new
934  unsigned PReg1 = getPredicatedRegister(MI1, QII);
935  unsigned PReg2 = getPredicatedRegister(MI2, QII);
936  return ((PReg1 == PReg2) &&
937          Hexagon::PredRegsRegClass.contains(PReg1) &&
938          Hexagon::PredRegsRegClass.contains(PReg2) &&
939          (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
940          (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
941}
942
943// initPacketizerState - Initialize packetizer flags
944void HexagonPacketizerList::initPacketizerState() {
945
946  Dependence = false;
947  PromotedToDotNew = false;
948  GlueToNewValueJump = false;
949  GlueAllocframeStore = false;
950  FoundSequentialDependence = false;
951
952  return;
953}
954
955// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
956bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
957                                                    MachineBasicBlock *MBB) {
958  if (MI->isDebugValue())
959    return true;
960
961  // We must print out inline assembly
962  if (MI->isInlineAsm())
963    return false;
964
965  // We check if MI has any functional units mapped to it.
966  // If it doesn't, we ignore the instruction.
967  const MCInstrDesc& TID = MI->getDesc();
968  unsigned SchedClass = TID.getSchedClass();
969  const InstrStage* IS =
970                    ResourceTracker->getInstrItins()->beginStage(SchedClass);
971  unsigned FuncUnits = IS->getUnits();
972  return !FuncUnits;
973}
974
975// isSoloInstruction: - Returns true for instructions that must be
976// scheduled in their own packet.
977bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
978
979  if (MI->isInlineAsm())
980    return true;
981
982  if (MI->isEHLabel())
983    return true;
984
985  // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
986  // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
987  // They must not be grouped with other instructions in a packet.
988  if (IsSchedBarrier(MI))
989    return true;
990
991  return false;
992}
993
994// isLegalToPacketizeTogether:
995// SUI is the current instruction that is out side of the current packet.
996// SUJ is the current instruction inside the current packet against which that
997// SUI will be packetized.
998bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
999  MachineInstr *I = SUI->getInstr();
1000  MachineInstr *J = SUJ->getInstr();
1001  assert(I && J && "Unable to packetize null instruction!");
1002
1003  const MCInstrDesc &MCIDI = I->getDesc();
1004  const MCInstrDesc &MCIDJ = J->getDesc();
1005
1006  MachineBasicBlock::iterator II = I;
1007
1008  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1009  const HexagonRegisterInfo* QRI =
1010                      (const HexagonRegisterInfo *) TM.getRegisterInfo();
1011  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1012
1013  // Inline asm cannot go in the packet.
1014  if (I->getOpcode() == Hexagon::INLINEASM)
1015    llvm_unreachable("Should not meet inline asm here!");
1016
1017  if (isSoloInstruction(I))
1018    llvm_unreachable("Should not meet solo instr here!");
1019
1020  // A save callee-save register function call can only be in a packet
1021  // with instructions that don't write to the callee-save registers.
1022  if ((QII->isSaveCalleeSavedRegsCall(I) &&
1023       DoesModifyCalleeSavedReg(J, QRI)) ||
1024      (QII->isSaveCalleeSavedRegsCall(J) &&
1025       DoesModifyCalleeSavedReg(I, QRI))) {
1026    Dependence = true;
1027    return false;
1028  }
1029
1030  // Two control flow instructions cannot go in the same packet.
1031  if (IsControlFlow(I) && IsControlFlow(J)) {
1032    Dependence = true;
1033    return false;
1034  }
1035
1036  // A LoopN instruction cannot appear in the same packet as a jump or call.
1037  if (IsLoopN(I) &&
1038     (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1039    Dependence = true;
1040    return false;
1041  }
1042  if (IsLoopN(J) &&
1043     (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1044    Dependence = true;
1045    return false;
1046  }
1047
1048  // dealloc_return cannot appear in the same packet as a conditional or
1049  // unconditional jump.
1050  if (QII->isDeallocRet(I) &&
1051     (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1052    Dependence = true;
1053    return false;
1054  }
1055
1056
1057  // V4 allows dual store. But does not allow second store, if the
1058  // first store is not in SLOT0. New value store, new value jump,
1059  // dealloc_return and memop always take SLOT0.
1060  // Arch spec 3.4.4.2
1061  if (QRI->Subtarget.hasV4TOps()) {
1062    if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1063       (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1064      Dependence = true;
1065      return false;
1066    }
1067
1068    if ((QII->isMemOp(J) && MCIDI.mayStore())
1069        || (MCIDJ.mayStore() && QII->isMemOp(I))
1070        || (QII->isMemOp(J) && QII->isMemOp(I))) {
1071      Dependence = true;
1072      return false;
1073    }
1074
1075    //if dealloc_return
1076    if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1077      Dependence = true;
1078      return false;
1079    }
1080
1081    // If an instruction feeds new value jump, glue it.
1082    MachineBasicBlock::iterator NextMII = I;
1083    ++NextMII;
1084    if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1085      MachineInstr *NextMI = NextMII;
1086
1087      bool secondRegMatch = false;
1088      bool maintainNewValueJump = false;
1089
1090      if (NextMI->getOperand(1).isReg() &&
1091          I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1092        secondRegMatch = true;
1093        maintainNewValueJump = true;
1094      }
1095
1096      if (!secondRegMatch &&
1097           I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1098        maintainNewValueJump = true;
1099      }
1100
1101      for (std::vector<MachineInstr*>::iterator
1102            VI = CurrentPacketMIs.begin(),
1103             VE = CurrentPacketMIs.end();
1104           (VI != VE && maintainNewValueJump); ++VI) {
1105        SUnit* PacketSU = MIToSUnit[*VI];
1106
1107        // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1108        if (PacketSU->getInstr()->getDesc().isCall()) {
1109          Dependence = true;
1110          break;
1111        }
1112        // Validate
1113        // 1. Packet does not have a store in it.
1114        // 2. If the first operand of the nvj is newified, and the second
1115        //    operand is also a reg, it (second reg) is not defined in
1116        //    the same packet.
1117        // 3. If the second operand of the nvj is newified, (which means
1118        //    first operand is also a reg), first reg is not defined in
1119        //    the same packet.
1120        if (PacketSU->getInstr()->getDesc().mayStore()               ||
1121            PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1122            // Check #2.
1123            (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1124             PacketSU->getInstr()->modifiesRegister(
1125                               NextMI->getOperand(1).getReg(), QRI)) ||
1126            // Check #3.
1127            (secondRegMatch &&
1128             PacketSU->getInstr()->modifiesRegister(
1129                               NextMI->getOperand(0).getReg(), QRI))) {
1130          Dependence = true;
1131          break;
1132        }
1133      }
1134      if (!Dependence)
1135        GlueToNewValueJump = true;
1136      else
1137        return false;
1138    }
1139  }
1140
1141  if (SUJ->isSucc(SUI)) {
1142    for (unsigned i = 0;
1143         (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1144         ++i) {
1145
1146      if (SUJ->Succs[i].getSUnit() != SUI) {
1147        continue;
1148      }
1149
1150      SDep::Kind DepType = SUJ->Succs[i].getKind();
1151
1152      // For direct calls:
1153      // Ignore register dependences for call instructions for
1154      // packetization purposes except for those due to r31 and
1155      // predicate registers.
1156      //
1157      // For indirect calls:
1158      // Same as direct calls + check for true dependences to the register
1159      // used in the indirect call.
1160      //
1161      // We completely ignore Order dependences for call instructions
1162      //
1163      // For returns:
1164      // Ignore register dependences for return instructions like jumpr,
1165      // dealloc return unless we have dependencies on the explicit uses
1166      // of the registers used by jumpr (like r31) or dealloc return
1167      // (like r29 or r30).
1168      //
1169      // TODO: Currently, jumpr is handling only return of r31. So, the
1170      // following logic (specificaly IsCallDependent) is working fine.
1171      // We need to enable jumpr for register other than r31 and then,
1172      // we need to rework the last part, where it handles indirect call
1173      // of that (IsCallDependent) function. Bug 6216 is opened for this.
1174      //
1175      unsigned DepReg = 0;
1176      const TargetRegisterClass* RC = NULL;
1177      if (DepType == SDep::Data) {
1178        DepReg = SUJ->Succs[i].getReg();
1179        RC = QRI->getMinimalPhysRegClass(DepReg);
1180      }
1181      if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1182          (!IsRegDependence(DepType) ||
1183            !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1184        /* do nothing */
1185      }
1186
1187      // For instructions that can be promoted to dot-new, try to promote.
1188      else if ((DepType == SDep::Data) &&
1189               CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1190               PromoteToDotNew(I, DepType, II, RC)) {
1191        PromotedToDotNew = true;
1192        /* do nothing */
1193      }
1194
1195      else if ((DepType == SDep::Data) &&
1196               (QII->isNewValueJump(I))) {
1197        /* do nothing */
1198      }
1199
1200      // For predicated instructions, if the predicates are complements
1201      // then there can be no dependence.
1202      else if (QII->isPredicated(I) &&
1203               QII->isPredicated(J) &&
1204          ArePredicatesComplements(I, J, MIToSUnit)) {
1205        /* do nothing */
1206
1207      }
1208      else if (IsDirectJump(I) &&
1209               !MCIDJ.isBranch() &&
1210               !MCIDJ.isCall() &&
1211               (DepType == SDep::Order)) {
1212        // Ignore Order dependences between unconditional direct branches
1213        // and non-control-flow instructions
1214        /* do nothing */
1215      }
1216      else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1217               (DepType != SDep::Output)) {
1218        // Ignore all dependences for jumps except for true and output
1219        // dependences
1220        /* do nothing */
1221      }
1222
1223      // Ignore output dependences due to superregs. We can
1224      // write to two different subregisters of R1:0 for instance
1225      // in the same cycle
1226      //
1227
1228      //
1229      // Let the
1230      // If neither I nor J defines DepReg, then this is a
1231      // superfluous output dependence. The dependence must be of the
1232      // form:
1233      //  R0 = ...
1234      //  R1 = ...
1235      // and there is an output dependence between the two instructions
1236      // with
1237      // DepReg = D0
1238      // We want to ignore these dependences.
1239      // Ideally, the dependence constructor should annotate such
1240      // dependences. We can then avoid this relatively expensive check.
1241      //
1242      else if (DepType == SDep::Output) {
1243        // DepReg is the register that's responsible for the dependence.
1244        unsigned DepReg = SUJ->Succs[i].getReg();
1245
1246        // Check if I and J really defines DepReg.
1247        if (I->definesRegister(DepReg) ||
1248            J->definesRegister(DepReg)) {
1249          FoundSequentialDependence = true;
1250          break;
1251        }
1252      }
1253
1254      // We ignore Order dependences for
1255      // 1. Two loads unless they are volatile.
1256      // 2. Two stores in V4 unless they are volatile.
1257      else if ((DepType == SDep::Order) &&
1258               !I->hasOrderedMemoryRef() &&
1259               !J->hasOrderedMemoryRef()) {
1260        if (QRI->Subtarget.hasV4TOps() &&
1261            // hexagonv4 allows dual store.
1262            MCIDI.mayStore() && MCIDJ.mayStore()) {
1263          /* do nothing */
1264        }
1265        // store followed by store-- not OK on V2
1266        // store followed by load -- not OK on all (OK if addresses
1267        // are not aliased)
1268        // load followed by store -- OK on all
1269        // load followed by load  -- OK on all
1270        else if ( !MCIDJ.mayStore()) {
1271          /* do nothing */
1272        }
1273        else {
1274          FoundSequentialDependence = true;
1275          break;
1276        }
1277      }
1278
1279      // For V4, special case ALLOCFRAME. Even though there is dependency
1280      // between ALLOCAFRAME and subsequent store, allow it to be
1281      // packetized in a same packet. This implies that the store is using
1282      // caller's SP. Hense, offset needs to be updated accordingly.
1283      else if (DepType == SDep::Data
1284               && QRI->Subtarget.hasV4TOps()
1285               && J->getOpcode() == Hexagon::ALLOCFRAME
1286               && (I->getOpcode() == Hexagon::STrid
1287                   || I->getOpcode() == Hexagon::STriw
1288                   || I->getOpcode() == Hexagon::STrib)
1289               && I->getOperand(0).getReg() == QRI->getStackRegister()
1290               && QII->isValidOffset(I->getOpcode(),
1291                                     I->getOperand(1).getImm() -
1292                                     (FrameSize + HEXAGON_LRFP_SIZE)))
1293      {
1294        GlueAllocframeStore = true;
1295        // Since this store is to be glued with allocframe in the same
1296        // packet, it will use SP of the previous stack frame, i.e
1297        // caller's SP. Therefore, we need to recalculate offset according
1298        // to this change.
1299        I->getOperand(1).setImm(I->getOperand(1).getImm() -
1300                                        (FrameSize + HEXAGON_LRFP_SIZE));
1301      }
1302
1303      //
1304      // Skip over anti-dependences. Two instructions that are
1305      // anti-dependent can share a packet
1306      //
1307      else if (DepType != SDep::Anti) {
1308        FoundSequentialDependence = true;
1309        break;
1310      }
1311    }
1312
1313    if (FoundSequentialDependence) {
1314      Dependence = true;
1315      return false;
1316    }
1317  }
1318
1319  return true;
1320}
1321
1322// isLegalToPruneDependencies
1323bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1324  MachineInstr *I = SUI->getInstr();
1325  assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1326
1327  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1328
1329  if (Dependence) {
1330
1331    // Check if the instruction was promoted to a dot-new. If so, demote it
1332    // back into a dot-old.
1333    if (PromotedToDotNew) {
1334      DemoteToDotOld(I);
1335    }
1336
1337    // Check if the instruction (must be a store) was glued with an Allocframe
1338    // instruction. If so, restore its offset to its original value, i.e. use
1339    // curent SP instead of caller's SP.
1340    if (GlueAllocframeStore) {
1341      I->getOperand(1).setImm(I->getOperand(1).getImm() +
1342                                             FrameSize + HEXAGON_LRFP_SIZE);
1343    }
1344
1345    return false;
1346  }
1347  return true;
1348}
1349
1350MachineBasicBlock::iterator
1351HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1352
1353    MachineBasicBlock::iterator MII = MI;
1354    MachineBasicBlock *MBB = MI->getParent();
1355
1356    const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1357
1358    if (GlueToNewValueJump) {
1359
1360      ++MII;
1361      MachineInstr *nvjMI = MII;
1362      assert(ResourceTracker->canReserveResources(MI));
1363      ResourceTracker->reserveResources(MI);
1364      if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1365          !tryAllocateResourcesForConstExt(MI)) {
1366        endPacket(MBB, MI);
1367        ResourceTracker->reserveResources(MI);
1368        assert(canReserveResourcesForConstExt(MI) &&
1369               "Ensure that there is a slot");
1370        reserveResourcesForConstExt(MI);
1371        // Reserve resources for new value jump constant extender.
1372        assert(canReserveResourcesForConstExt(MI) &&
1373               "Ensure that there is a slot");
1374        reserveResourcesForConstExt(nvjMI);
1375        assert(ResourceTracker->canReserveResources(nvjMI) &&
1376               "Ensure that there is a slot");
1377
1378      } else if (   // Extended instruction takes two slots in the packet.
1379        // Try reserve and allocate 4-byte in the current packet first.
1380        (QII->isExtended(nvjMI)
1381            && (!tryAllocateResourcesForConstExt(nvjMI)
1382                || !ResourceTracker->canReserveResources(nvjMI)))
1383        || // For non-extended instruction, no need to allocate extra 4 bytes.
1384        (!QII->isExtended(nvjMI) &&
1385              !ResourceTracker->canReserveResources(nvjMI)))
1386      {
1387        endPacket(MBB, MI);
1388        // A new and empty packet starts.
1389        // We are sure that the resources requirements can be satisfied.
1390        // Therefore, do not need to call "canReserveResources" anymore.
1391        ResourceTracker->reserveResources(MI);
1392        if (QII->isExtended(nvjMI))
1393          reserveResourcesForConstExt(nvjMI);
1394      }
1395      // Here, we are sure that "reserveResources" would succeed.
1396      ResourceTracker->reserveResources(nvjMI);
1397      CurrentPacketMIs.push_back(MI);
1398      CurrentPacketMIs.push_back(nvjMI);
1399    } else {
1400      if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
1401          && (   !tryAllocateResourcesForConstExt(MI)
1402              || !ResourceTracker->canReserveResources(MI)))
1403      {
1404        endPacket(MBB, MI);
1405        // Check if the instruction was promoted to a dot-new. If so, demote it
1406        // back into a dot-old
1407        if (PromotedToDotNew) {
1408          DemoteToDotOld(MI);
1409        }
1410        reserveResourcesForConstExt(MI);
1411      }
1412      // In case that "MI" is not an extended insn,
1413      // the resource availability has already been checked.
1414      ResourceTracker->reserveResources(MI);
1415      CurrentPacketMIs.push_back(MI);
1416    }
1417    return MII;
1418}
1419
1420//===----------------------------------------------------------------------===//
1421//                         Public Constructor Functions
1422//===----------------------------------------------------------------------===//
1423
1424FunctionPass *llvm::createHexagonPacketizer() {
1425  return new HexagonPacketizer();
1426}
1427
1428