ARMFastISel.cpp revision 263508
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Module.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49using namespace llvm;
50
51extern cl::opt<bool> EnableARMLongCalls;
52
53namespace {
54
55  // All possible address modes, plus some.
56  typedef struct Address {
57    enum {
58      RegBase,
59      FrameIndexBase
60    } BaseType;
61
62    union {
63      unsigned Reg;
64      int FI;
65    } Base;
66
67    int Offset;
68
69    // Innocuous defaults for our address.
70    Address()
71     : BaseType(RegBase), Offset(0) {
72       Base.Reg = 0;
73     }
74  } Address;
75
76class ARMFastISel : public FastISel {
77
78  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
79  /// make the right decision when generating code for different targets.
80  const ARMSubtarget *Subtarget;
81  const TargetMachine &TM;
82  const TargetInstrInfo &TII;
83  const TargetLowering &TLI;
84  ARMFunctionInfo *AFI;
85
86  // Convenience variables to avoid some queries.
87  bool isThumb2;
88  LLVMContext *Context;
89
90  public:
91    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
92                         const TargetLibraryInfo *libInfo)
93    : FastISel(funcInfo, libInfo),
94      TM(funcInfo.MF->getTarget()),
95      TII(*TM.getInstrInfo()),
96      TLI(*TM.getTargetLowering()) {
97      Subtarget = &TM.getSubtarget<ARMSubtarget>();
98      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
99      isThumb2 = AFI->isThumbFunction();
100      Context = &funcInfo.Fn->getContext();
101    }
102
103    // Code from FastISel.cpp.
104  private:
105    unsigned FastEmitInst_(unsigned MachineInstOpcode,
106                           const TargetRegisterClass *RC);
107    unsigned FastEmitInst_r(unsigned MachineInstOpcode,
108                            const TargetRegisterClass *RC,
109                            unsigned Op0, bool Op0IsKill);
110    unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
111                             const TargetRegisterClass *RC,
112                             unsigned Op0, bool Op0IsKill,
113                             unsigned Op1, bool Op1IsKill);
114    unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
115                              const TargetRegisterClass *RC,
116                              unsigned Op0, bool Op0IsKill,
117                              unsigned Op1, bool Op1IsKill,
118                              unsigned Op2, bool Op2IsKill);
119    unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
120                             const TargetRegisterClass *RC,
121                             unsigned Op0, bool Op0IsKill,
122                             uint64_t Imm);
123    unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
124                             const TargetRegisterClass *RC,
125                             unsigned Op0, bool Op0IsKill,
126                             const ConstantFP *FPImm);
127    unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
128                              const TargetRegisterClass *RC,
129                              unsigned Op0, bool Op0IsKill,
130                              unsigned Op1, bool Op1IsKill,
131                              uint64_t Imm);
132    unsigned FastEmitInst_i(unsigned MachineInstOpcode,
133                            const TargetRegisterClass *RC,
134                            uint64_t Imm);
135    unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
136                             const TargetRegisterClass *RC,
137                             uint64_t Imm1, uint64_t Imm2);
138
139    unsigned FastEmitInst_extractsubreg(MVT RetVT,
140                                        unsigned Op0, bool Op0IsKill,
141                                        uint32_t Idx);
142
143    // Backend specific FastISel code.
144  private:
145    virtual bool TargetSelectInstruction(const Instruction *I);
146    virtual unsigned TargetMaterializeConstant(const Constant *C);
147    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
148    virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
149                                     const LoadInst *LI);
150    virtual bool FastLowerArguments();
151  private:
152  #include "ARMGenFastISel.inc"
153
154    // Instruction selection routines.
155  private:
156    bool SelectLoad(const Instruction *I);
157    bool SelectStore(const Instruction *I);
158    bool SelectBranch(const Instruction *I);
159    bool SelectIndirectBr(const Instruction *I);
160    bool SelectCmp(const Instruction *I);
161    bool SelectFPExt(const Instruction *I);
162    bool SelectFPTrunc(const Instruction *I);
163    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
164    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
165    bool SelectIToFP(const Instruction *I, bool isSigned);
166    bool SelectFPToI(const Instruction *I, bool isSigned);
167    bool SelectDiv(const Instruction *I, bool isSigned);
168    bool SelectRem(const Instruction *I, bool isSigned);
169    bool SelectCall(const Instruction *I, const char *IntrMemName);
170    bool SelectIntrinsicCall(const IntrinsicInst &I);
171    bool SelectSelect(const Instruction *I);
172    bool SelectRet(const Instruction *I);
173    bool SelectTrunc(const Instruction *I);
174    bool SelectIntExt(const Instruction *I);
175    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
176
177    // Utility routines.
178  private:
179    unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum,
180                                      unsigned Op);
181    bool isTypeLegal(Type *Ty, MVT &VT);
182    bool isLoadTypeLegal(Type *Ty, MVT &VT);
183    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
184                    bool isZExt);
185    bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
186                     unsigned Alignment = 0, bool isZExt = true,
187                     bool allocReg = true);
188    bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
189                      unsigned Alignment = 0);
190    bool ARMComputeAddress(const Value *Obj, Address &Addr);
191    void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
192    bool ARMIsMemCpySmall(uint64_t Len);
193    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
194                               unsigned Alignment);
195    unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
196    unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
197    unsigned ARMMaterializeInt(const Constant *C, MVT VT);
198    unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
199    unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
200    unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
201    unsigned ARMSelectCallOp(bool UseReg);
202    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
203
204    // Call handling routines.
205  private:
206    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
207                                  bool Return,
208                                  bool isVarArg);
209    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
210                         SmallVectorImpl<unsigned> &ArgRegs,
211                         SmallVectorImpl<MVT> &ArgVTs,
212                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
213                         SmallVectorImpl<unsigned> &RegArgs,
214                         CallingConv::ID CC,
215                         unsigned &NumBytes,
216                         bool isVarArg);
217    unsigned getLibcallReg(const Twine &Name);
218    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
219                    const Instruction *I, CallingConv::ID CC,
220                    unsigned &NumBytes, bool isVarArg);
221    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
222
223    // OptionalDef handling routines.
224  private:
225    bool isARMNEONPred(const MachineInstr *MI);
226    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
227    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
228    void AddLoadStoreOperands(MVT VT, Address &Addr,
229                              const MachineInstrBuilder &MIB,
230                              unsigned Flags, bool useAM3);
231};
232
233} // end anonymous namespace
234
235#include "ARMGenCallingConv.inc"
236
237// DefinesOptionalPredicate - This is different from DefinesPredicate in that
238// we don't care about implicit defs here, just places we'll need to add a
239// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
240bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
241  if (!MI->hasOptionalDef())
242    return false;
243
244  // Look to see if our OptionalDef is defining CPSR or CCR.
245  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
246    const MachineOperand &MO = MI->getOperand(i);
247    if (!MO.isReg() || !MO.isDef()) continue;
248    if (MO.getReg() == ARM::CPSR)
249      *CPSR = true;
250  }
251  return true;
252}
253
254bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
255  const MCInstrDesc &MCID = MI->getDesc();
256
257  // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
258  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
259       AFI->isThumb2Function())
260    return MI->isPredicable();
261
262  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
263    if (MCID.OpInfo[i].isPredicate())
264      return true;
265
266  return false;
267}
268
269// If the machine is predicable go ahead and add the predicate operands, if
270// it needs default CC operands add those.
271// TODO: If we want to support thumb1 then we'll need to deal with optional
272// CPSR defs that need to be added before the remaining operands. See s_cc_out
273// for descriptions why.
274const MachineInstrBuilder &
275ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
276  MachineInstr *MI = &*MIB;
277
278  // Do we use a predicate? or...
279  // Are we NEON in ARM mode and have a predicate operand? If so, I know
280  // we're not predicable but add it anyways.
281  if (isARMNEONPred(MI))
282    AddDefaultPred(MIB);
283
284  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
285  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
286  bool CPSR = false;
287  if (DefinesOptionalPredicate(MI, &CPSR)) {
288    if (CPSR)
289      AddDefaultT1CC(MIB);
290    else
291      AddDefaultCC(MIB);
292  }
293  return MIB;
294}
295
296unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II,
297                                               unsigned Op, unsigned OpNum) {
298  if (TargetRegisterInfo::isVirtualRegister(Op)) {
299    const TargetRegisterClass *RegClass =
300        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
301    if (!MRI.constrainRegClass(Op, RegClass)) {
302      // If it's not legal to COPY between the register classes, something
303      // has gone very wrong before we got here.
304      unsigned NewOp = createResultReg(RegClass);
305      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
306                              TII.get(TargetOpcode::COPY), NewOp).addReg(Op));
307      return NewOp;
308    }
309  }
310  return Op;
311}
312
313unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
314                                    const TargetRegisterClass* RC) {
315  unsigned ResultReg = createResultReg(RC);
316  const MCInstrDesc &II = TII.get(MachineInstOpcode);
317
318  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
319  return ResultReg;
320}
321
322unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
323                                     const TargetRegisterClass *RC,
324                                     unsigned Op0, bool Op0IsKill) {
325  unsigned ResultReg = createResultReg(RC);
326  const MCInstrDesc &II = TII.get(MachineInstOpcode);
327
328  // Make sure the input operand is sufficiently constrained to be legal
329  // for this instruction.
330  Op0 = constrainOperandRegClass(II, Op0, 1);
331  if (II.getNumDefs() >= 1) {
332    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
333                   .addReg(Op0, Op0IsKill * RegState::Kill));
334  } else {
335    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
336                   .addReg(Op0, Op0IsKill * RegState::Kill));
337    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
338                   TII.get(TargetOpcode::COPY), ResultReg)
339                   .addReg(II.ImplicitDefs[0]));
340  }
341  return ResultReg;
342}
343
344unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
345                                      const TargetRegisterClass *RC,
346                                      unsigned Op0, bool Op0IsKill,
347                                      unsigned Op1, bool Op1IsKill) {
348  unsigned ResultReg = createResultReg(RC);
349  const MCInstrDesc &II = TII.get(MachineInstOpcode);
350
351  // Make sure the input operands are sufficiently constrained to be legal
352  // for this instruction.
353  Op0 = constrainOperandRegClass(II, Op0, 1);
354  Op1 = constrainOperandRegClass(II, Op1, 2);
355
356  if (II.getNumDefs() >= 1) {
357    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
358                   .addReg(Op0, Op0IsKill * RegState::Kill)
359                   .addReg(Op1, Op1IsKill * RegState::Kill));
360  } else {
361    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
362                   .addReg(Op0, Op0IsKill * RegState::Kill)
363                   .addReg(Op1, Op1IsKill * RegState::Kill));
364    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
365                           TII.get(TargetOpcode::COPY), ResultReg)
366                   .addReg(II.ImplicitDefs[0]));
367  }
368  return ResultReg;
369}
370
371unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
372                                       const TargetRegisterClass *RC,
373                                       unsigned Op0, bool Op0IsKill,
374                                       unsigned Op1, bool Op1IsKill,
375                                       unsigned Op2, bool Op2IsKill) {
376  unsigned ResultReg = createResultReg(RC);
377  const MCInstrDesc &II = TII.get(MachineInstOpcode);
378
379  // Make sure the input operands are sufficiently constrained to be legal
380  // for this instruction.
381  Op0 = constrainOperandRegClass(II, Op0, 1);
382  Op1 = constrainOperandRegClass(II, Op1, 2);
383  Op2 = constrainOperandRegClass(II, Op1, 3);
384
385  if (II.getNumDefs() >= 1) {
386    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
387                   .addReg(Op0, Op0IsKill * RegState::Kill)
388                   .addReg(Op1, Op1IsKill * RegState::Kill)
389                   .addReg(Op2, Op2IsKill * RegState::Kill));
390  } else {
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
392                   .addReg(Op0, Op0IsKill * RegState::Kill)
393                   .addReg(Op1, Op1IsKill * RegState::Kill)
394                   .addReg(Op2, Op2IsKill * RegState::Kill));
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
396                           TII.get(TargetOpcode::COPY), ResultReg)
397                   .addReg(II.ImplicitDefs[0]));
398  }
399  return ResultReg;
400}
401
402unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
403                                      const TargetRegisterClass *RC,
404                                      unsigned Op0, bool Op0IsKill,
405                                      uint64_t Imm) {
406  unsigned ResultReg = createResultReg(RC);
407  const MCInstrDesc &II = TII.get(MachineInstOpcode);
408
409  // Make sure the input operand is sufficiently constrained to be legal
410  // for this instruction.
411  Op0 = constrainOperandRegClass(II, Op0, 1);
412  if (II.getNumDefs() >= 1) {
413    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
414                   .addReg(Op0, Op0IsKill * RegState::Kill)
415                   .addImm(Imm));
416  } else {
417    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
418                   .addReg(Op0, Op0IsKill * RegState::Kill)
419                   .addImm(Imm));
420    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
421                           TII.get(TargetOpcode::COPY), ResultReg)
422                   .addReg(II.ImplicitDefs[0]));
423  }
424  return ResultReg;
425}
426
427unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
428                                      const TargetRegisterClass *RC,
429                                      unsigned Op0, bool Op0IsKill,
430                                      const ConstantFP *FPImm) {
431  unsigned ResultReg = createResultReg(RC);
432  const MCInstrDesc &II = TII.get(MachineInstOpcode);
433
434  // Make sure the input operand is sufficiently constrained to be legal
435  // for this instruction.
436  Op0 = constrainOperandRegClass(II, Op0, 1);
437  if (II.getNumDefs() >= 1) {
438    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
439                   .addReg(Op0, Op0IsKill * RegState::Kill)
440                   .addFPImm(FPImm));
441  } else {
442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
443                   .addReg(Op0, Op0IsKill * RegState::Kill)
444                   .addFPImm(FPImm));
445    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
446                           TII.get(TargetOpcode::COPY), ResultReg)
447                   .addReg(II.ImplicitDefs[0]));
448  }
449  return ResultReg;
450}
451
452unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
453                                       const TargetRegisterClass *RC,
454                                       unsigned Op0, bool Op0IsKill,
455                                       unsigned Op1, bool Op1IsKill,
456                                       uint64_t Imm) {
457  unsigned ResultReg = createResultReg(RC);
458  const MCInstrDesc &II = TII.get(MachineInstOpcode);
459
460  // Make sure the input operands are sufficiently constrained to be legal
461  // for this instruction.
462  Op0 = constrainOperandRegClass(II, Op0, 1);
463  Op1 = constrainOperandRegClass(II, Op1, 2);
464  if (II.getNumDefs() >= 1) {
465    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
466                   .addReg(Op0, Op0IsKill * RegState::Kill)
467                   .addReg(Op1, Op1IsKill * RegState::Kill)
468                   .addImm(Imm));
469  } else {
470    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
471                   .addReg(Op0, Op0IsKill * RegState::Kill)
472                   .addReg(Op1, Op1IsKill * RegState::Kill)
473                   .addImm(Imm));
474    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
475                           TII.get(TargetOpcode::COPY), ResultReg)
476                   .addReg(II.ImplicitDefs[0]));
477  }
478  return ResultReg;
479}
480
481unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
482                                     const TargetRegisterClass *RC,
483                                     uint64_t Imm) {
484  unsigned ResultReg = createResultReg(RC);
485  const MCInstrDesc &II = TII.get(MachineInstOpcode);
486
487  if (II.getNumDefs() >= 1) {
488    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
489                   .addImm(Imm));
490  } else {
491    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
492                   .addImm(Imm));
493    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494                           TII.get(TargetOpcode::COPY), ResultReg)
495                   .addReg(II.ImplicitDefs[0]));
496  }
497  return ResultReg;
498}
499
500unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
501                                      const TargetRegisterClass *RC,
502                                      uint64_t Imm1, uint64_t Imm2) {
503  unsigned ResultReg = createResultReg(RC);
504  const MCInstrDesc &II = TII.get(MachineInstOpcode);
505
506  if (II.getNumDefs() >= 1) {
507    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
508                    .addImm(Imm1).addImm(Imm2));
509  } else {
510    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
511                    .addImm(Imm1).addImm(Imm2));
512    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
513                            TII.get(TargetOpcode::COPY),
514                            ResultReg)
515                    .addReg(II.ImplicitDefs[0]));
516  }
517  return ResultReg;
518}
519
520unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
521                                                 unsigned Op0, bool Op0IsKill,
522                                                 uint32_t Idx) {
523  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
524  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
525         "Cannot yet extract from physregs");
526
527  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
528                          DL, TII.get(TargetOpcode::COPY), ResultReg)
529                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
530  return ResultReg;
531}
532
533// TODO: Don't worry about 64-bit now, but when this is fixed remove the
534// checks from the various callers.
535unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
536  if (VT == MVT::f64) return 0;
537
538  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
539  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
540                          TII.get(ARM::VMOVSR), MoveReg)
541                  .addReg(SrcReg));
542  return MoveReg;
543}
544
545unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
546  if (VT == MVT::i64) return 0;
547
548  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
549  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
550                          TII.get(ARM::VMOVRS), MoveReg)
551                  .addReg(SrcReg));
552  return MoveReg;
553}
554
555// For double width floating point we need to materialize two constants
556// (the high and the low) into integer registers then use a move to get
557// the combined constant into an FP reg.
558unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
559  const APFloat Val = CFP->getValueAPF();
560  bool is64bit = VT == MVT::f64;
561
562  // This checks to see if we can use VFP3 instructions to materialize
563  // a constant, otherwise we have to go through the constant pool.
564  if (TLI.isFPImmLegal(Val, VT)) {
565    int Imm;
566    unsigned Opc;
567    if (is64bit) {
568      Imm = ARM_AM::getFP64Imm(Val);
569      Opc = ARM::FCONSTD;
570    } else {
571      Imm = ARM_AM::getFP32Imm(Val);
572      Opc = ARM::FCONSTS;
573    }
574    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
575    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
576                            DestReg)
577                    .addImm(Imm));
578    return DestReg;
579  }
580
581  // Require VFP2 for loading fp constants.
582  if (!Subtarget->hasVFP2()) return false;
583
584  // MachineConstantPool wants an explicit alignment.
585  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
586  if (Align == 0) {
587    // TODO: Figure out if this is correct.
588    Align = TD.getTypeAllocSize(CFP->getType());
589  }
590  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
591  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
592  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
593
594  // The extra reg is for addrmode5.
595  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
596                          DestReg)
597                  .addConstantPoolIndex(Idx)
598                  .addReg(0));
599  return DestReg;
600}
601
602unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
603
604  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
605    return false;
606
607  // If we can do this in a single instruction without a constant pool entry
608  // do so now.
609  const ConstantInt *CI = cast<ConstantInt>(C);
610  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
611    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
612    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
613      &ARM::GPRRegClass;
614    unsigned ImmReg = createResultReg(RC);
615    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
616                            TII.get(Opc), ImmReg)
617                    .addImm(CI->getZExtValue()));
618    return ImmReg;
619  }
620
621  // Use MVN to emit negative constants.
622  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
623    unsigned Imm = (unsigned)~(CI->getSExtValue());
624    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
625      (ARM_AM::getSOImmVal(Imm) != -1);
626    if (UseImm) {
627      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
628      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
629      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
630                              TII.get(Opc), ImmReg)
631                      .addImm(Imm));
632      return ImmReg;
633    }
634  }
635
636  // Load from constant pool.  For now 32-bit only.
637  if (VT != MVT::i32)
638    return false;
639
640  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
641
642  // MachineConstantPool wants an explicit alignment.
643  unsigned Align = TD.getPrefTypeAlignment(C->getType());
644  if (Align == 0) {
645    // TODO: Figure out if this is correct.
646    Align = TD.getTypeAllocSize(C->getType());
647  }
648  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
649
650  if (isThumb2)
651    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
652                            TII.get(ARM::t2LDRpci), DestReg)
653                    .addConstantPoolIndex(Idx));
654  else
655    // The extra immediate is for addrmode2.
656    DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
657    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
658                            TII.get(ARM::LDRcp), DestReg)
659                    .addConstantPoolIndex(Idx)
660                    .addImm(0));
661
662  return DestReg;
663}
664
665unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
666  // For now 32-bit only.
667  if (VT != MVT::i32) return 0;
668
669  Reloc::Model RelocM = TM.getRelocationModel();
670  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
671  const TargetRegisterClass *RC = isThumb2 ?
672    (const TargetRegisterClass*)&ARM::rGPRRegClass :
673    (const TargetRegisterClass*)&ARM::GPRRegClass;
674  unsigned DestReg = createResultReg(RC);
675
676  // FastISel TLS support on non-Darwin is broken, punt to SelectionDAG.
677  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
678  bool IsThreadLocal = GVar && GVar->isThreadLocal();
679  if (!Subtarget->isTargetDarwin() && IsThreadLocal) return 0;
680
681  // Use movw+movt when possible, it avoids constant pool entries.
682  // Darwin targets don't support movt with Reloc::Static, see
683  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
684  // static movt relocations.
685  if (Subtarget->useMovt() &&
686      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
687    unsigned Opc;
688    switch (RelocM) {
689    case Reloc::PIC_:
690      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
691      break;
692    case Reloc::DynamicNoPIC:
693      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
694      break;
695    default:
696      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
697      break;
698    }
699    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
700                            DestReg).addGlobalAddress(GV));
701  } else {
702    // MachineConstantPool wants an explicit alignment.
703    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
704    if (Align == 0) {
705      // TODO: Figure out if this is correct.
706      Align = TD.getTypeAllocSize(GV->getType());
707    }
708
709    if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
710      return ARMLowerPICELF(GV, Align, VT);
711
712    // Grab index.
713    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
714      (Subtarget->isThumb() ? 4 : 8);
715    unsigned Id = AFI->createPICLabelUId();
716    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
717                                                                ARMCP::CPValue,
718                                                                PCAdj);
719    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
720
721    // Load value.
722    MachineInstrBuilder MIB;
723    if (isThumb2) {
724      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
725      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
726        .addConstantPoolIndex(Idx);
727      if (RelocM == Reloc::PIC_)
728        MIB.addImm(Id);
729      AddOptionalDefs(MIB);
730    } else {
731      // The extra immediate is for addrmode2.
732      DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
733      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
734                    DestReg)
735        .addConstantPoolIndex(Idx)
736        .addImm(0);
737      AddOptionalDefs(MIB);
738
739      if (RelocM == Reloc::PIC_) {
740        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
741        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
742
743        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
744                                          DL, TII.get(Opc), NewDestReg)
745                                  .addReg(DestReg)
746                                  .addImm(Id);
747        AddOptionalDefs(MIB);
748        return NewDestReg;
749      }
750    }
751  }
752
753  if (IsIndirect) {
754    MachineInstrBuilder MIB;
755    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
756    if (isThumb2)
757      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
758                    TII.get(ARM::t2LDRi12), NewDestReg)
759            .addReg(DestReg)
760            .addImm(0);
761    else
762      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
763                    NewDestReg)
764            .addReg(DestReg)
765            .addImm(0);
766    DestReg = NewDestReg;
767    AddOptionalDefs(MIB);
768  }
769
770  return DestReg;
771}
772
773unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
774  EVT CEVT = TLI.getValueType(C->getType(), true);
775
776  // Only handle simple types.
777  if (!CEVT.isSimple()) return 0;
778  MVT VT = CEVT.getSimpleVT();
779
780  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
781    return ARMMaterializeFP(CFP, VT);
782  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
783    return ARMMaterializeGV(GV, VT);
784  else if (isa<ConstantInt>(C))
785    return ARMMaterializeInt(C, VT);
786
787  return 0;
788}
789
790// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
791
792unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
793  // Don't handle dynamic allocas.
794  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
795
796  MVT VT;
797  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
798
799  DenseMap<const AllocaInst*, int>::iterator SI =
800    FuncInfo.StaticAllocaMap.find(AI);
801
802  // This will get lowered later into the correct offsets and registers
803  // via rewriteXFrameIndex.
804  if (SI != FuncInfo.StaticAllocaMap.end()) {
805    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
806    unsigned ResultReg = createResultReg(RC);
807    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
808    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
809                            TII.get(Opc), ResultReg)
810                            .addFrameIndex(SI->second)
811                            .addImm(0));
812    return ResultReg;
813  }
814
815  return 0;
816}
817
818bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
819  EVT evt = TLI.getValueType(Ty, true);
820
821  // Only handle simple types.
822  if (evt == MVT::Other || !evt.isSimple()) return false;
823  VT = evt.getSimpleVT();
824
825  // Handle all legal types, i.e. a register that will directly hold this
826  // value.
827  return TLI.isTypeLegal(VT);
828}
829
830bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
831  if (isTypeLegal(Ty, VT)) return true;
832
833  // If this is a type than can be sign or zero-extended to a basic operation
834  // go ahead and accept it now.
835  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
836    return true;
837
838  return false;
839}
840
841// Computes the address to get to an object.
842bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
843  // Some boilerplate from the X86 FastISel.
844  const User *U = NULL;
845  unsigned Opcode = Instruction::UserOp1;
846  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
847    // Don't walk into other basic blocks unless the object is an alloca from
848    // another block, otherwise it may not have a virtual register assigned.
849    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
850        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
851      Opcode = I->getOpcode();
852      U = I;
853    }
854  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
855    Opcode = C->getOpcode();
856    U = C;
857  }
858
859  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
860    if (Ty->getAddressSpace() > 255)
861      // Fast instruction selection doesn't support the special
862      // address spaces.
863      return false;
864
865  switch (Opcode) {
866    default:
867    break;
868    case Instruction::BitCast:
869      // Look through bitcasts.
870      return ARMComputeAddress(U->getOperand(0), Addr);
871    case Instruction::IntToPtr:
872      // Look past no-op inttoptrs.
873      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
874        return ARMComputeAddress(U->getOperand(0), Addr);
875      break;
876    case Instruction::PtrToInt:
877      // Look past no-op ptrtoints.
878      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
879        return ARMComputeAddress(U->getOperand(0), Addr);
880      break;
881    case Instruction::GetElementPtr: {
882      Address SavedAddr = Addr;
883      int TmpOffset = Addr.Offset;
884
885      // Iterate through the GEP folding the constants into offsets where
886      // we can.
887      gep_type_iterator GTI = gep_type_begin(U);
888      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
889           i != e; ++i, ++GTI) {
890        const Value *Op = *i;
891        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
892          const StructLayout *SL = TD.getStructLayout(STy);
893          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
894          TmpOffset += SL->getElementOffset(Idx);
895        } else {
896          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
897          for (;;) {
898            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
899              // Constant-offset addressing.
900              TmpOffset += CI->getSExtValue() * S;
901              break;
902            }
903            if (canFoldAddIntoGEP(U, Op)) {
904              // A compatible add with a constant operand. Fold the constant.
905              ConstantInt *CI =
906              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
907              TmpOffset += CI->getSExtValue() * S;
908              // Iterate on the other operand.
909              Op = cast<AddOperator>(Op)->getOperand(0);
910              continue;
911            }
912            // Unsupported
913            goto unsupported_gep;
914          }
915        }
916      }
917
918      // Try to grab the base operand now.
919      Addr.Offset = TmpOffset;
920      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
921
922      // We failed, restore everything and try the other options.
923      Addr = SavedAddr;
924
925      unsupported_gep:
926      break;
927    }
928    case Instruction::Alloca: {
929      const AllocaInst *AI = cast<AllocaInst>(Obj);
930      DenseMap<const AllocaInst*, int>::iterator SI =
931        FuncInfo.StaticAllocaMap.find(AI);
932      if (SI != FuncInfo.StaticAllocaMap.end()) {
933        Addr.BaseType = Address::FrameIndexBase;
934        Addr.Base.FI = SI->second;
935        return true;
936      }
937      break;
938    }
939  }
940
941  // Try to get this in a register if nothing else has worked.
942  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
943  return Addr.Base.Reg != 0;
944}
945
946void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
947  bool needsLowering = false;
948  switch (VT.SimpleTy) {
949    default: llvm_unreachable("Unhandled load/store type!");
950    case MVT::i1:
951    case MVT::i8:
952    case MVT::i16:
953    case MVT::i32:
954      if (!useAM3) {
955        // Integer loads/stores handle 12-bit offsets.
956        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
957        // Handle negative offsets.
958        if (needsLowering && isThumb2)
959          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
960                            Addr.Offset > -256);
961      } else {
962        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
963        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
964      }
965      break;
966    case MVT::f32:
967    case MVT::f64:
968      // Floating point operands handle 8-bit offsets.
969      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
970      break;
971  }
972
973  // If this is a stack pointer and the offset needs to be simplified then
974  // put the alloca address into a register, set the base type back to
975  // register and continue. This should almost never happen.
976  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
977    const TargetRegisterClass *RC = isThumb2 ?
978      (const TargetRegisterClass*)&ARM::tGPRRegClass :
979      (const TargetRegisterClass*)&ARM::GPRRegClass;
980    unsigned ResultReg = createResultReg(RC);
981    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
982    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
983                            TII.get(Opc), ResultReg)
984                            .addFrameIndex(Addr.Base.FI)
985                            .addImm(0));
986    Addr.Base.Reg = ResultReg;
987    Addr.BaseType = Address::RegBase;
988  }
989
990  // Since the offset is too large for the load/store instruction
991  // get the reg+offset into a register.
992  if (needsLowering) {
993    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
994                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
995    Addr.Offset = 0;
996  }
997}
998
999void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
1000                                       const MachineInstrBuilder &MIB,
1001                                       unsigned Flags, bool useAM3) {
1002  // addrmode5 output depends on the selection dag addressing dividing the
1003  // offset by 4 that it then later multiplies. Do this here as well.
1004  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
1005    Addr.Offset /= 4;
1006
1007  // Frame base works a bit differently. Handle it separately.
1008  if (Addr.BaseType == Address::FrameIndexBase) {
1009    int FI = Addr.Base.FI;
1010    int Offset = Addr.Offset;
1011    MachineMemOperand *MMO =
1012          FuncInfo.MF->getMachineMemOperand(
1013                                  MachinePointerInfo::getFixedStack(FI, Offset),
1014                                  Flags,
1015                                  MFI.getObjectSize(FI),
1016                                  MFI.getObjectAlignment(FI));
1017    // Now add the rest of the operands.
1018    MIB.addFrameIndex(FI);
1019
1020    // ARM halfword load/stores and signed byte loads need an additional
1021    // operand.
1022    if (useAM3) {
1023      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
1024      MIB.addReg(0);
1025      MIB.addImm(Imm);
1026    } else {
1027      MIB.addImm(Addr.Offset);
1028    }
1029    MIB.addMemOperand(MMO);
1030  } else {
1031    // Now add the rest of the operands.
1032    MIB.addReg(Addr.Base.Reg);
1033
1034    // ARM halfword load/stores and signed byte loads need an additional
1035    // operand.
1036    if (useAM3) {
1037      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
1038      MIB.addReg(0);
1039      MIB.addImm(Imm);
1040    } else {
1041      MIB.addImm(Addr.Offset);
1042    }
1043  }
1044  AddOptionalDefs(MIB);
1045}
1046
1047bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
1048                              unsigned Alignment, bool isZExt, bool allocReg) {
1049  unsigned Opc;
1050  bool useAM3 = false;
1051  bool needVMOV = false;
1052  const TargetRegisterClass *RC;
1053  switch (VT.SimpleTy) {
1054    // This is mostly going to be Neon/vector support.
1055    default: return false;
1056    case MVT::i1:
1057    case MVT::i8:
1058      if (isThumb2) {
1059        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1060          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
1061        else
1062          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1063      } else {
1064        if (isZExt) {
1065          Opc = ARM::LDRBi12;
1066        } else {
1067          Opc = ARM::LDRSB;
1068          useAM3 = true;
1069        }
1070      }
1071      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1072      break;
1073    case MVT::i16:
1074      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1075        return false;
1076
1077      if (isThumb2) {
1078        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1079          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1080        else
1081          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1082      } else {
1083        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1084        useAM3 = true;
1085      }
1086      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1087      break;
1088    case MVT::i32:
1089      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1090        return false;
1091
1092      if (isThumb2) {
1093        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1094          Opc = ARM::t2LDRi8;
1095        else
1096          Opc = ARM::t2LDRi12;
1097      } else {
1098        Opc = ARM::LDRi12;
1099      }
1100      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1101      break;
1102    case MVT::f32:
1103      if (!Subtarget->hasVFP2()) return false;
1104      // Unaligned loads need special handling. Floats require word-alignment.
1105      if (Alignment && Alignment < 4) {
1106        needVMOV = true;
1107        VT = MVT::i32;
1108        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1109        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1110      } else {
1111        Opc = ARM::VLDRS;
1112        RC = TLI.getRegClassFor(VT);
1113      }
1114      break;
1115    case MVT::f64:
1116      if (!Subtarget->hasVFP2()) return false;
1117      // FIXME: Unaligned loads need special handling.  Doublewords require
1118      // word-alignment.
1119      if (Alignment && Alignment < 4)
1120        return false;
1121
1122      Opc = ARM::VLDRD;
1123      RC = TLI.getRegClassFor(VT);
1124      break;
1125  }
1126  // Simplify this down to something we can handle.
1127  ARMSimplifyAddress(Addr, VT, useAM3);
1128
1129  // Create the base instruction, then add the operands.
1130  if (allocReg)
1131    ResultReg = createResultReg(RC);
1132  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1133  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1134                                    TII.get(Opc), ResultReg);
1135  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1136
1137  // If we had an unaligned load of a float we've converted it to an regular
1138  // load.  Now we must move from the GRP to the FP register.
1139  if (needVMOV) {
1140    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1141    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1142                            TII.get(ARM::VMOVSR), MoveReg)
1143                    .addReg(ResultReg));
1144    ResultReg = MoveReg;
1145  }
1146  return true;
1147}
1148
1149bool ARMFastISel::SelectLoad(const Instruction *I) {
1150  // Atomic loads need special handling.
1151  if (cast<LoadInst>(I)->isAtomic())
1152    return false;
1153
1154  // Verify we have a legal type before going any further.
1155  MVT VT;
1156  if (!isLoadTypeLegal(I->getType(), VT))
1157    return false;
1158
1159  // See if we can handle this address.
1160  Address Addr;
1161  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1162
1163  unsigned ResultReg;
1164  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1165    return false;
1166  UpdateValueMap(I, ResultReg);
1167  return true;
1168}
1169
1170bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1171                               unsigned Alignment) {
1172  unsigned StrOpc;
1173  bool useAM3 = false;
1174  switch (VT.SimpleTy) {
1175    // This is mostly going to be Neon/vector support.
1176    default: return false;
1177    case MVT::i1: {
1178      unsigned Res = createResultReg(isThumb2 ?
1179        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1180        (const TargetRegisterClass*)&ARM::GPRRegClass);
1181      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1182      SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1183      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1184                              TII.get(Opc), Res)
1185                      .addReg(SrcReg).addImm(1));
1186      SrcReg = Res;
1187    } // Fallthrough here.
1188    case MVT::i8:
1189      if (isThumb2) {
1190        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1191          StrOpc = ARM::t2STRBi8;
1192        else
1193          StrOpc = ARM::t2STRBi12;
1194      } else {
1195        StrOpc = ARM::STRBi12;
1196      }
1197      break;
1198    case MVT::i16:
1199      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1200        return false;
1201
1202      if (isThumb2) {
1203        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1204          StrOpc = ARM::t2STRHi8;
1205        else
1206          StrOpc = ARM::t2STRHi12;
1207      } else {
1208        StrOpc = ARM::STRH;
1209        useAM3 = true;
1210      }
1211      break;
1212    case MVT::i32:
1213      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1214        return false;
1215
1216      if (isThumb2) {
1217        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1218          StrOpc = ARM::t2STRi8;
1219        else
1220          StrOpc = ARM::t2STRi12;
1221      } else {
1222        StrOpc = ARM::STRi12;
1223      }
1224      break;
1225    case MVT::f32:
1226      if (!Subtarget->hasVFP2()) return false;
1227      // Unaligned stores need special handling. Floats require word-alignment.
1228      if (Alignment && Alignment < 4) {
1229        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1230        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1231                                TII.get(ARM::VMOVRS), MoveReg)
1232                        .addReg(SrcReg));
1233        SrcReg = MoveReg;
1234        VT = MVT::i32;
1235        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1236      } else {
1237        StrOpc = ARM::VSTRS;
1238      }
1239      break;
1240    case MVT::f64:
1241      if (!Subtarget->hasVFP2()) return false;
1242      // FIXME: Unaligned stores need special handling.  Doublewords require
1243      // word-alignment.
1244      if (Alignment && Alignment < 4)
1245          return false;
1246
1247      StrOpc = ARM::VSTRD;
1248      break;
1249  }
1250  // Simplify this down to something we can handle.
1251  ARMSimplifyAddress(Addr, VT, useAM3);
1252
1253  // Create the base instruction, then add the operands.
1254  SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1255  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1256                                    TII.get(StrOpc))
1257                            .addReg(SrcReg);
1258  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1259  return true;
1260}
1261
1262bool ARMFastISel::SelectStore(const Instruction *I) {
1263  Value *Op0 = I->getOperand(0);
1264  unsigned SrcReg = 0;
1265
1266  // Atomic stores need special handling.
1267  if (cast<StoreInst>(I)->isAtomic())
1268    return false;
1269
1270  // Verify we have a legal type before going any further.
1271  MVT VT;
1272  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1273    return false;
1274
1275  // Get the value to be stored into a register.
1276  SrcReg = getRegForValue(Op0);
1277  if (SrcReg == 0) return false;
1278
1279  // See if we can handle this address.
1280  Address Addr;
1281  if (!ARMComputeAddress(I->getOperand(1), Addr))
1282    return false;
1283
1284  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1285    return false;
1286  return true;
1287}
1288
1289static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1290  switch (Pred) {
1291    // Needs two compares...
1292    case CmpInst::FCMP_ONE:
1293    case CmpInst::FCMP_UEQ:
1294    default:
1295      // AL is our "false" for now. The other two need more compares.
1296      return ARMCC::AL;
1297    case CmpInst::ICMP_EQ:
1298    case CmpInst::FCMP_OEQ:
1299      return ARMCC::EQ;
1300    case CmpInst::ICMP_SGT:
1301    case CmpInst::FCMP_OGT:
1302      return ARMCC::GT;
1303    case CmpInst::ICMP_SGE:
1304    case CmpInst::FCMP_OGE:
1305      return ARMCC::GE;
1306    case CmpInst::ICMP_UGT:
1307    case CmpInst::FCMP_UGT:
1308      return ARMCC::HI;
1309    case CmpInst::FCMP_OLT:
1310      return ARMCC::MI;
1311    case CmpInst::ICMP_ULE:
1312    case CmpInst::FCMP_OLE:
1313      return ARMCC::LS;
1314    case CmpInst::FCMP_ORD:
1315      return ARMCC::VC;
1316    case CmpInst::FCMP_UNO:
1317      return ARMCC::VS;
1318    case CmpInst::FCMP_UGE:
1319      return ARMCC::PL;
1320    case CmpInst::ICMP_SLT:
1321    case CmpInst::FCMP_ULT:
1322      return ARMCC::LT;
1323    case CmpInst::ICMP_SLE:
1324    case CmpInst::FCMP_ULE:
1325      return ARMCC::LE;
1326    case CmpInst::FCMP_UNE:
1327    case CmpInst::ICMP_NE:
1328      return ARMCC::NE;
1329    case CmpInst::ICMP_UGE:
1330      return ARMCC::HS;
1331    case CmpInst::ICMP_ULT:
1332      return ARMCC::LO;
1333  }
1334}
1335
1336bool ARMFastISel::SelectBranch(const Instruction *I) {
1337  const BranchInst *BI = cast<BranchInst>(I);
1338  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1339  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1340
1341  // Simple branch support.
1342
1343  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1344  // behavior.
1345  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1346    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1347
1348      // Get the compare predicate.
1349      // Try to take advantage of fallthrough opportunities.
1350      CmpInst::Predicate Predicate = CI->getPredicate();
1351      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1352        std::swap(TBB, FBB);
1353        Predicate = CmpInst::getInversePredicate(Predicate);
1354      }
1355
1356      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1357
1358      // We may not handle every CC for now.
1359      if (ARMPred == ARMCC::AL) return false;
1360
1361      // Emit the compare.
1362      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1363        return false;
1364
1365      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1366      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1367      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1368      FastEmitBranch(FBB, DL);
1369      FuncInfo.MBB->addSuccessor(TBB);
1370      return true;
1371    }
1372  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1373    MVT SourceVT;
1374    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1375        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1376      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1377      unsigned OpReg = getRegForValue(TI->getOperand(0));
1378      OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1379      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1380                              TII.get(TstOpc))
1381                      .addReg(OpReg).addImm(1));
1382
1383      unsigned CCMode = ARMCC::NE;
1384      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1385        std::swap(TBB, FBB);
1386        CCMode = ARMCC::EQ;
1387      }
1388
1389      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1390      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1391      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1392
1393      FastEmitBranch(FBB, DL);
1394      FuncInfo.MBB->addSuccessor(TBB);
1395      return true;
1396    }
1397  } else if (const ConstantInt *CI =
1398             dyn_cast<ConstantInt>(BI->getCondition())) {
1399    uint64_t Imm = CI->getZExtValue();
1400    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1401    FastEmitBranch(Target, DL);
1402    return true;
1403  }
1404
1405  unsigned CmpReg = getRegForValue(BI->getCondition());
1406  if (CmpReg == 0) return false;
1407
1408  // We've been divorced from our compare!  Our block was split, and
1409  // now our compare lives in a predecessor block.  We musn't
1410  // re-compare here, as the children of the compare aren't guaranteed
1411  // live across the block boundary (we *could* check for this).
1412  // Regardless, the compare has been done in the predecessor block,
1413  // and it left a value for us in a virtual register.  Ergo, we test
1414  // the one-bit value left in the virtual register.
1415  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1416  CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1417  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1418                  .addReg(CmpReg).addImm(1));
1419
1420  unsigned CCMode = ARMCC::NE;
1421  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1422    std::swap(TBB, FBB);
1423    CCMode = ARMCC::EQ;
1424  }
1425
1426  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1427  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1428                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1429  FastEmitBranch(FBB, DL);
1430  FuncInfo.MBB->addSuccessor(TBB);
1431  return true;
1432}
1433
1434bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1435  unsigned AddrReg = getRegForValue(I->getOperand(0));
1436  if (AddrReg == 0) return false;
1437
1438  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1439  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1440                  .addReg(AddrReg));
1441
1442  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1443  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1444    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1445
1446  return true;
1447}
1448
1449bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1450                             bool isZExt) {
1451  Type *Ty = Src1Value->getType();
1452  EVT SrcEVT = TLI.getValueType(Ty, true);
1453  if (!SrcEVT.isSimple()) return false;
1454  MVT SrcVT = SrcEVT.getSimpleVT();
1455
1456  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1457  if (isFloat && !Subtarget->hasVFP2())
1458    return false;
1459
1460  // Check to see if the 2nd operand is a constant that we can encode directly
1461  // in the compare.
1462  int Imm = 0;
1463  bool UseImm = false;
1464  bool isNegativeImm = false;
1465  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1466  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1467  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1468    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1469        SrcVT == MVT::i1) {
1470      const APInt &CIVal = ConstInt->getValue();
1471      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1472      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1473      // then a cmn, because there is no way to represent 2147483648 as a
1474      // signed 32-bit int.
1475      if (Imm < 0 && Imm != (int)0x80000000) {
1476        isNegativeImm = true;
1477        Imm = -Imm;
1478      }
1479      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1480        (ARM_AM::getSOImmVal(Imm) != -1);
1481    }
1482  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1483    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1484      if (ConstFP->isZero() && !ConstFP->isNegative())
1485        UseImm = true;
1486  }
1487
1488  unsigned CmpOpc;
1489  bool isICmp = true;
1490  bool needsExt = false;
1491  switch (SrcVT.SimpleTy) {
1492    default: return false;
1493    // TODO: Verify compares.
1494    case MVT::f32:
1495      isICmp = false;
1496      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1497      break;
1498    case MVT::f64:
1499      isICmp = false;
1500      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1501      break;
1502    case MVT::i1:
1503    case MVT::i8:
1504    case MVT::i16:
1505      needsExt = true;
1506    // Intentional fall-through.
1507    case MVT::i32:
1508      if (isThumb2) {
1509        if (!UseImm)
1510          CmpOpc = ARM::t2CMPrr;
1511        else
1512          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1513      } else {
1514        if (!UseImm)
1515          CmpOpc = ARM::CMPrr;
1516        else
1517          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1518      }
1519      break;
1520  }
1521
1522  unsigned SrcReg1 = getRegForValue(Src1Value);
1523  if (SrcReg1 == 0) return false;
1524
1525  unsigned SrcReg2 = 0;
1526  if (!UseImm) {
1527    SrcReg2 = getRegForValue(Src2Value);
1528    if (SrcReg2 == 0) return false;
1529  }
1530
1531  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1532  if (needsExt) {
1533    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1534    if (SrcReg1 == 0) return false;
1535    if (!UseImm) {
1536      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1537      if (SrcReg2 == 0) return false;
1538    }
1539  }
1540
1541  const MCInstrDesc &II = TII.get(CmpOpc);
1542  SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1543  if (!UseImm) {
1544    SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1545    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1546                    .addReg(SrcReg1).addReg(SrcReg2));
1547  } else {
1548    MachineInstrBuilder MIB;
1549    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1550      .addReg(SrcReg1);
1551
1552    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1553    if (isICmp)
1554      MIB.addImm(Imm);
1555    AddOptionalDefs(MIB);
1556  }
1557
1558  // For floating point we need to move the result to a comparison register
1559  // that we can then use for branches.
1560  if (Ty->isFloatTy() || Ty->isDoubleTy())
1561    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1562                            TII.get(ARM::FMSTAT)));
1563  return true;
1564}
1565
1566bool ARMFastISel::SelectCmp(const Instruction *I) {
1567  const CmpInst *CI = cast<CmpInst>(I);
1568
1569  // Get the compare predicate.
1570  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1571
1572  // We may not handle every CC for now.
1573  if (ARMPred == ARMCC::AL) return false;
1574
1575  // Emit the compare.
1576  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1577    return false;
1578
1579  // Now set a register based on the comparison. Explicitly set the predicates
1580  // here.
1581  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1582  const TargetRegisterClass *RC = isThumb2 ?
1583    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1584    (const TargetRegisterClass*)&ARM::GPRRegClass;
1585  unsigned DestReg = createResultReg(RC);
1586  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1587  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1588  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1589  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1590          .addReg(ZeroReg).addImm(1)
1591          .addImm(ARMPred).addReg(ARM::CPSR);
1592
1593  UpdateValueMap(I, DestReg);
1594  return true;
1595}
1596
1597bool ARMFastISel::SelectFPExt(const Instruction *I) {
1598  // Make sure we have VFP and that we're extending float to double.
1599  if (!Subtarget->hasVFP2()) return false;
1600
1601  Value *V = I->getOperand(0);
1602  if (!I->getType()->isDoubleTy() ||
1603      !V->getType()->isFloatTy()) return false;
1604
1605  unsigned Op = getRegForValue(V);
1606  if (Op == 0) return false;
1607
1608  unsigned Result = createResultReg(&ARM::DPRRegClass);
1609  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1610                          TII.get(ARM::VCVTDS), Result)
1611                  .addReg(Op));
1612  UpdateValueMap(I, Result);
1613  return true;
1614}
1615
1616bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1617  // Make sure we have VFP and that we're truncating double to float.
1618  if (!Subtarget->hasVFP2()) return false;
1619
1620  Value *V = I->getOperand(0);
1621  if (!(I->getType()->isFloatTy() &&
1622        V->getType()->isDoubleTy())) return false;
1623
1624  unsigned Op = getRegForValue(V);
1625  if (Op == 0) return false;
1626
1627  unsigned Result = createResultReg(&ARM::SPRRegClass);
1628  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1629                          TII.get(ARM::VCVTSD), Result)
1630                  .addReg(Op));
1631  UpdateValueMap(I, Result);
1632  return true;
1633}
1634
1635bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1636  // Make sure we have VFP.
1637  if (!Subtarget->hasVFP2()) return false;
1638
1639  MVT DstVT;
1640  Type *Ty = I->getType();
1641  if (!isTypeLegal(Ty, DstVT))
1642    return false;
1643
1644  Value *Src = I->getOperand(0);
1645  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1646  if (!SrcEVT.isSimple())
1647    return false;
1648  MVT SrcVT = SrcEVT.getSimpleVT();
1649  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1650    return false;
1651
1652  unsigned SrcReg = getRegForValue(Src);
1653  if (SrcReg == 0) return false;
1654
1655  // Handle sign-extension.
1656  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1657    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1658                                       /*isZExt*/!isSigned);
1659    if (SrcReg == 0) return false;
1660  }
1661
1662  // The conversion routine works on fp-reg to fp-reg and the operand above
1663  // was an integer, move it to the fp registers if possible.
1664  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1665  if (FP == 0) return false;
1666
1667  unsigned Opc;
1668  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1669  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1670  else return false;
1671
1672  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1673  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1674                          ResultReg)
1675                  .addReg(FP));
1676  UpdateValueMap(I, ResultReg);
1677  return true;
1678}
1679
1680bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1681  // Make sure we have VFP.
1682  if (!Subtarget->hasVFP2()) return false;
1683
1684  MVT DstVT;
1685  Type *RetTy = I->getType();
1686  if (!isTypeLegal(RetTy, DstVT))
1687    return false;
1688
1689  unsigned Op = getRegForValue(I->getOperand(0));
1690  if (Op == 0) return false;
1691
1692  unsigned Opc;
1693  Type *OpTy = I->getOperand(0)->getType();
1694  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1695  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1696  else return false;
1697
1698  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1699  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1700  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1701                          ResultReg)
1702                  .addReg(Op));
1703
1704  // This result needs to be in an integer register, but the conversion only
1705  // takes place in fp-regs.
1706  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1707  if (IntReg == 0) return false;
1708
1709  UpdateValueMap(I, IntReg);
1710  return true;
1711}
1712
1713bool ARMFastISel::SelectSelect(const Instruction *I) {
1714  MVT VT;
1715  if (!isTypeLegal(I->getType(), VT))
1716    return false;
1717
1718  // Things need to be register sized for register moves.
1719  if (VT != MVT::i32) return false;
1720
1721  unsigned CondReg = getRegForValue(I->getOperand(0));
1722  if (CondReg == 0) return false;
1723  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1724  if (Op1Reg == 0) return false;
1725
1726  // Check to see if we can use an immediate in the conditional move.
1727  int Imm = 0;
1728  bool UseImm = false;
1729  bool isNegativeImm = false;
1730  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1731    assert (VT == MVT::i32 && "Expecting an i32.");
1732    Imm = (int)ConstInt->getValue().getZExtValue();
1733    if (Imm < 0) {
1734      isNegativeImm = true;
1735      Imm = ~Imm;
1736    }
1737    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1738      (ARM_AM::getSOImmVal(Imm) != -1);
1739  }
1740
1741  unsigned Op2Reg = 0;
1742  if (!UseImm) {
1743    Op2Reg = getRegForValue(I->getOperand(2));
1744    if (Op2Reg == 0) return false;
1745  }
1746
1747  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1748  CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
1749  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1750                  .addReg(CondReg).addImm(0));
1751
1752  unsigned MovCCOpc;
1753  const TargetRegisterClass *RC;
1754  if (!UseImm) {
1755    RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1756    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1757  } else {
1758    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1759    if (!isNegativeImm)
1760      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1761    else
1762      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1763  }
1764  unsigned ResultReg = createResultReg(RC);
1765  if (!UseImm) {
1766    Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1767    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1768    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1769    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1770  } else {
1771    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1772    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1773    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1774  }
1775  UpdateValueMap(I, ResultReg);
1776  return true;
1777}
1778
1779bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1780  MVT VT;
1781  Type *Ty = I->getType();
1782  if (!isTypeLegal(Ty, VT))
1783    return false;
1784
1785  // If we have integer div support we should have selected this automagically.
1786  // In case we have a real miss go ahead and return false and we'll pick
1787  // it up later.
1788  if (Subtarget->hasDivide()) return false;
1789
1790  // Otherwise emit a libcall.
1791  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1792  if (VT == MVT::i8)
1793    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1794  else if (VT == MVT::i16)
1795    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1796  else if (VT == MVT::i32)
1797    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1798  else if (VT == MVT::i64)
1799    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1800  else if (VT == MVT::i128)
1801    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1802  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1803
1804  return ARMEmitLibcall(I, LC);
1805}
1806
1807bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1808  MVT VT;
1809  Type *Ty = I->getType();
1810  if (!isTypeLegal(Ty, VT))
1811    return false;
1812
1813  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1814  if (VT == MVT::i8)
1815    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1816  else if (VT == MVT::i16)
1817    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1818  else if (VT == MVT::i32)
1819    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1820  else if (VT == MVT::i64)
1821    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1822  else if (VT == MVT::i128)
1823    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1824  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1825
1826  return ARMEmitLibcall(I, LC);
1827}
1828
1829bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1830  EVT DestVT  = TLI.getValueType(I->getType(), true);
1831
1832  // We can get here in the case when we have a binary operation on a non-legal
1833  // type and the target independent selector doesn't know how to handle it.
1834  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1835    return false;
1836
1837  unsigned Opc;
1838  switch (ISDOpcode) {
1839    default: return false;
1840    case ISD::ADD:
1841      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1842      break;
1843    case ISD::OR:
1844      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1845      break;
1846    case ISD::SUB:
1847      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1848      break;
1849  }
1850
1851  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1852  if (SrcReg1 == 0) return false;
1853
1854  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1855  // in the instruction, rather then materializing the value in a register.
1856  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1857  if (SrcReg2 == 0) return false;
1858
1859  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1860  SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1861  SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1862  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1863                          TII.get(Opc), ResultReg)
1864                  .addReg(SrcReg1).addReg(SrcReg2));
1865  UpdateValueMap(I, ResultReg);
1866  return true;
1867}
1868
1869bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1870  EVT FPVT = TLI.getValueType(I->getType(), true);
1871  if (!FPVT.isSimple()) return false;
1872  MVT VT = FPVT.getSimpleVT();
1873
1874  // We can get here in the case when we want to use NEON for our fp
1875  // operations, but can't figure out how to. Just use the vfp instructions
1876  // if we have them.
1877  // FIXME: It'd be nice to use NEON instructions.
1878  Type *Ty = I->getType();
1879  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1880  if (isFloat && !Subtarget->hasVFP2())
1881    return false;
1882
1883  unsigned Opc;
1884  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1885  switch (ISDOpcode) {
1886    default: return false;
1887    case ISD::FADD:
1888      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1889      break;
1890    case ISD::FSUB:
1891      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1892      break;
1893    case ISD::FMUL:
1894      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1895      break;
1896  }
1897  unsigned Op1 = getRegForValue(I->getOperand(0));
1898  if (Op1 == 0) return false;
1899
1900  unsigned Op2 = getRegForValue(I->getOperand(1));
1901  if (Op2 == 0) return false;
1902
1903  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1904  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1905                          TII.get(Opc), ResultReg)
1906                  .addReg(Op1).addReg(Op2));
1907  UpdateValueMap(I, ResultReg);
1908  return true;
1909}
1910
1911// Call Handling Code
1912
1913// This is largely taken directly from CCAssignFnForNode
1914// TODO: We may not support all of this.
1915CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1916                                           bool Return,
1917                                           bool isVarArg) {
1918  switch (CC) {
1919  default:
1920    llvm_unreachable("Unsupported calling convention");
1921  case CallingConv::Fast:
1922    if (Subtarget->hasVFP2() && !isVarArg) {
1923      if (!Subtarget->isAAPCS_ABI())
1924        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1925      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1926      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1927    }
1928    // Fallthrough
1929  case CallingConv::C:
1930    // Use target triple & subtarget features to do actual dispatch.
1931    if (Subtarget->isAAPCS_ABI()) {
1932      if (Subtarget->hasVFP2() &&
1933          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1934        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1935      else
1936        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1937    } else
1938        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1939  case CallingConv::ARM_AAPCS_VFP:
1940    if (!isVarArg)
1941      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1942    // Fall through to soft float variant, variadic functions don't
1943    // use hard floating point ABI.
1944  case CallingConv::ARM_AAPCS:
1945    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1946  case CallingConv::ARM_APCS:
1947    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1948  case CallingConv::GHC:
1949    if (Return)
1950      llvm_unreachable("Can't return in GHC call convention");
1951    else
1952      return CC_ARM_APCS_GHC;
1953  }
1954}
1955
1956bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1957                                  SmallVectorImpl<unsigned> &ArgRegs,
1958                                  SmallVectorImpl<MVT> &ArgVTs,
1959                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1960                                  SmallVectorImpl<unsigned> &RegArgs,
1961                                  CallingConv::ID CC,
1962                                  unsigned &NumBytes,
1963                                  bool isVarArg) {
1964  SmallVector<CCValAssign, 16> ArgLocs;
1965  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1966  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1967                             CCAssignFnForCall(CC, false, isVarArg));
1968
1969  // Check that we can handle all of the arguments. If we can't, then bail out
1970  // now before we add code to the MBB.
1971  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1972    CCValAssign &VA = ArgLocs[i];
1973    MVT ArgVT = ArgVTs[VA.getValNo()];
1974
1975    // We don't handle NEON/vector parameters yet.
1976    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1977      return false;
1978
1979    // Now copy/store arg to correct locations.
1980    if (VA.isRegLoc() && !VA.needsCustom()) {
1981      continue;
1982    } else if (VA.needsCustom()) {
1983      // TODO: We need custom lowering for vector (v2f64) args.
1984      if (VA.getLocVT() != MVT::f64 ||
1985          // TODO: Only handle register args for now.
1986          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1987        return false;
1988    } else {
1989      switch (ArgVT.SimpleTy) {
1990      default:
1991        return false;
1992      case MVT::i1:
1993      case MVT::i8:
1994      case MVT::i16:
1995      case MVT::i32:
1996        break;
1997      case MVT::f32:
1998        if (!Subtarget->hasVFP2())
1999          return false;
2000        break;
2001      case MVT::f64:
2002        if (!Subtarget->hasVFP2())
2003          return false;
2004        break;
2005      }
2006    }
2007  }
2008
2009  // At the point, we are able to handle the call's arguments in fast isel.
2010
2011  // Get a count of how many bytes are to be pushed on the stack.
2012  NumBytes = CCInfo.getNextStackOffset();
2013
2014  // Issue CALLSEQ_START
2015  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2016  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2017                          TII.get(AdjStackDown))
2018                  .addImm(NumBytes));
2019
2020  // Process the args.
2021  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2022    CCValAssign &VA = ArgLocs[i];
2023    unsigned Arg = ArgRegs[VA.getValNo()];
2024    MVT ArgVT = ArgVTs[VA.getValNo()];
2025
2026    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
2027           "We don't handle NEON/vector parameters yet.");
2028
2029    // Handle arg promotion, etc.
2030    switch (VA.getLocInfo()) {
2031      case CCValAssign::Full: break;
2032      case CCValAssign::SExt: {
2033        MVT DestVT = VA.getLocVT();
2034        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
2035        assert (Arg != 0 && "Failed to emit a sext");
2036        ArgVT = DestVT;
2037        break;
2038      }
2039      case CCValAssign::AExt:
2040        // Intentional fall-through.  Handle AExt and ZExt.
2041      case CCValAssign::ZExt: {
2042        MVT DestVT = VA.getLocVT();
2043        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
2044        assert (Arg != 0 && "Failed to emit a zext");
2045        ArgVT = DestVT;
2046        break;
2047      }
2048      case CCValAssign::BCvt: {
2049        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
2050                                 /*TODO: Kill=*/false);
2051        assert(BC != 0 && "Failed to emit a bitcast!");
2052        Arg = BC;
2053        ArgVT = VA.getLocVT();
2054        break;
2055      }
2056      default: llvm_unreachable("Unknown arg promotion!");
2057    }
2058
2059    // Now copy/store arg to correct locations.
2060    if (VA.isRegLoc() && !VA.needsCustom()) {
2061      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2062              VA.getLocReg())
2063        .addReg(Arg);
2064      RegArgs.push_back(VA.getLocReg());
2065    } else if (VA.needsCustom()) {
2066      // TODO: We need custom lowering for vector (v2f64) args.
2067      assert(VA.getLocVT() == MVT::f64 &&
2068             "Custom lowering for v2f64 args not available");
2069
2070      CCValAssign &NextVA = ArgLocs[++i];
2071
2072      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2073             "We only handle register args!");
2074
2075      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2076                              TII.get(ARM::VMOVRRD), VA.getLocReg())
2077                      .addReg(NextVA.getLocReg(), RegState::Define)
2078                      .addReg(Arg));
2079      RegArgs.push_back(VA.getLocReg());
2080      RegArgs.push_back(NextVA.getLocReg());
2081    } else {
2082      assert(VA.isMemLoc());
2083      // Need to store on the stack.
2084      Address Addr;
2085      Addr.BaseType = Address::RegBase;
2086      Addr.Base.Reg = ARM::SP;
2087      Addr.Offset = VA.getLocMemOffset();
2088
2089      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2090      assert(EmitRet && "Could not emit a store for argument!");
2091    }
2092  }
2093
2094  return true;
2095}
2096
2097bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2098                             const Instruction *I, CallingConv::ID CC,
2099                             unsigned &NumBytes, bool isVarArg) {
2100  // Issue CALLSEQ_END
2101  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2102  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2103                          TII.get(AdjStackUp))
2104                  .addImm(NumBytes).addImm(0));
2105
2106  // Now the return value.
2107  if (RetVT != MVT::isVoid) {
2108    SmallVector<CCValAssign, 16> RVLocs;
2109    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2110    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2111
2112    // Copy all of the result registers out of their specified physreg.
2113    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2114      // For this move we copy into two registers and then move into the
2115      // double fp reg we want.
2116      MVT DestVT = RVLocs[0].getValVT();
2117      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2118      unsigned ResultReg = createResultReg(DstRC);
2119      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2120                              TII.get(ARM::VMOVDRR), ResultReg)
2121                      .addReg(RVLocs[0].getLocReg())
2122                      .addReg(RVLocs[1].getLocReg()));
2123
2124      UsedRegs.push_back(RVLocs[0].getLocReg());
2125      UsedRegs.push_back(RVLocs[1].getLocReg());
2126
2127      // Finally update the result.
2128      UpdateValueMap(I, ResultReg);
2129    } else {
2130      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2131      MVT CopyVT = RVLocs[0].getValVT();
2132
2133      // Special handling for extended integers.
2134      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2135        CopyVT = MVT::i32;
2136
2137      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2138
2139      unsigned ResultReg = createResultReg(DstRC);
2140      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2141              ResultReg).addReg(RVLocs[0].getLocReg());
2142      UsedRegs.push_back(RVLocs[0].getLocReg());
2143
2144      // Finally update the result.
2145      UpdateValueMap(I, ResultReg);
2146    }
2147  }
2148
2149  return true;
2150}
2151
2152bool ARMFastISel::SelectRet(const Instruction *I) {
2153  const ReturnInst *Ret = cast<ReturnInst>(I);
2154  const Function &F = *I->getParent()->getParent();
2155
2156  if (!FuncInfo.CanLowerReturn)
2157    return false;
2158
2159  // Build a list of return value registers.
2160  SmallVector<unsigned, 4> RetRegs;
2161
2162  CallingConv::ID CC = F.getCallingConv();
2163  if (Ret->getNumOperands() > 0) {
2164    SmallVector<ISD::OutputArg, 4> Outs;
2165    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
2166
2167    // Analyze operands of the call, assigning locations to each operand.
2168    SmallVector<CCValAssign, 16> ValLocs;
2169    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2170    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2171                                                 F.isVarArg()));
2172
2173    const Value *RV = Ret->getOperand(0);
2174    unsigned Reg = getRegForValue(RV);
2175    if (Reg == 0)
2176      return false;
2177
2178    // Only handle a single return value for now.
2179    if (ValLocs.size() != 1)
2180      return false;
2181
2182    CCValAssign &VA = ValLocs[0];
2183
2184    // Don't bother handling odd stuff for now.
2185    if (VA.getLocInfo() != CCValAssign::Full)
2186      return false;
2187    // Only handle register returns for now.
2188    if (!VA.isRegLoc())
2189      return false;
2190
2191    unsigned SrcReg = Reg + VA.getValNo();
2192    EVT RVEVT = TLI.getValueType(RV->getType());
2193    if (!RVEVT.isSimple()) return false;
2194    MVT RVVT = RVEVT.getSimpleVT();
2195    MVT DestVT = VA.getValVT();
2196    // Special handling for extended integers.
2197    if (RVVT != DestVT) {
2198      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2199        return false;
2200
2201      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2202
2203      // Perform extension if flagged as either zext or sext.  Otherwise, do
2204      // nothing.
2205      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2206        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2207        if (SrcReg == 0) return false;
2208      }
2209    }
2210
2211    // Make the copy.
2212    unsigned DstReg = VA.getLocReg();
2213    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2214    // Avoid a cross-class copy. This is very unlikely.
2215    if (!SrcRC->contains(DstReg))
2216      return false;
2217    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2218            DstReg).addReg(SrcReg);
2219
2220    // Add register to return instruction.
2221    RetRegs.push_back(VA.getLocReg());
2222  }
2223
2224  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2225  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2226                                    TII.get(RetOpc));
2227  AddOptionalDefs(MIB);
2228  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2229    MIB.addReg(RetRegs[i], RegState::Implicit);
2230  return true;
2231}
2232
2233unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2234  if (UseReg)
2235    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2236  else
2237    return isThumb2 ? ARM::tBL : ARM::BL;
2238}
2239
2240unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2241  // Manually compute the global's type to avoid building it when unnecessary.
2242  Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2243  EVT LCREVT = TLI.getValueType(GVTy);
2244  if (!LCREVT.isSimple()) return 0;
2245
2246  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2247                                       GlobalValue::ExternalLinkage, 0, Name);
2248  assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2249  return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2250}
2251
2252// A quick function that will emit a call for a named libcall in F with the
2253// vector of passed arguments for the Instruction in I. We can assume that we
2254// can emit a call for any libcall we can produce. This is an abridged version
2255// of the full call infrastructure since we won't need to worry about things
2256// like computed function pointers or strange arguments at call sites.
2257// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2258// with X86.
2259bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2260  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2261
2262  // Handle *simple* calls for now.
2263  Type *RetTy = I->getType();
2264  MVT RetVT;
2265  if (RetTy->isVoidTy())
2266    RetVT = MVT::isVoid;
2267  else if (!isTypeLegal(RetTy, RetVT))
2268    return false;
2269
2270  // Can't handle non-double multi-reg retvals.
2271  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2272    SmallVector<CCValAssign, 16> RVLocs;
2273    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2274    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2275    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2276      return false;
2277  }
2278
2279  // Set up the argument vectors.
2280  SmallVector<Value*, 8> Args;
2281  SmallVector<unsigned, 8> ArgRegs;
2282  SmallVector<MVT, 8> ArgVTs;
2283  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2284  Args.reserve(I->getNumOperands());
2285  ArgRegs.reserve(I->getNumOperands());
2286  ArgVTs.reserve(I->getNumOperands());
2287  ArgFlags.reserve(I->getNumOperands());
2288  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2289    Value *Op = I->getOperand(i);
2290    unsigned Arg = getRegForValue(Op);
2291    if (Arg == 0) return false;
2292
2293    Type *ArgTy = Op->getType();
2294    MVT ArgVT;
2295    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2296
2297    ISD::ArgFlagsTy Flags;
2298    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2299    Flags.setOrigAlign(OriginalAlignment);
2300
2301    Args.push_back(Op);
2302    ArgRegs.push_back(Arg);
2303    ArgVTs.push_back(ArgVT);
2304    ArgFlags.push_back(Flags);
2305  }
2306
2307  // Handle the arguments now that we've gotten them.
2308  SmallVector<unsigned, 4> RegArgs;
2309  unsigned NumBytes;
2310  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2311                       RegArgs, CC, NumBytes, false))
2312    return false;
2313
2314  unsigned CalleeReg = 0;
2315  if (EnableARMLongCalls) {
2316    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2317    if (CalleeReg == 0) return false;
2318  }
2319
2320  // Issue the call.
2321  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2322  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2323                                    DL, TII.get(CallOpc));
2324  // BL / BLX don't take a predicate, but tBL / tBLX do.
2325  if (isThumb2)
2326    AddDefaultPred(MIB);
2327  if (EnableARMLongCalls)
2328    MIB.addReg(CalleeReg);
2329  else
2330    MIB.addExternalSymbol(TLI.getLibcallName(Call));
2331
2332  // Add implicit physical register uses to the call.
2333  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2334    MIB.addReg(RegArgs[i], RegState::Implicit);
2335
2336  // Add a register mask with the call-preserved registers.
2337  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2338  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2339
2340  // Finish off the call including any return values.
2341  SmallVector<unsigned, 4> UsedRegs;
2342  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2343
2344  // Set all unused physreg defs as dead.
2345  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2346
2347  return true;
2348}
2349
2350bool ARMFastISel::SelectCall(const Instruction *I,
2351                             const char *IntrMemName = 0) {
2352  const CallInst *CI = cast<CallInst>(I);
2353  const Value *Callee = CI->getCalledValue();
2354
2355  // Can't handle inline asm.
2356  if (isa<InlineAsm>(Callee)) return false;
2357
2358  // Allow SelectionDAG isel to handle tail calls.
2359  if (CI->isTailCall()) return false;
2360
2361  // Check the calling convention.
2362  ImmutableCallSite CS(CI);
2363  CallingConv::ID CC = CS.getCallingConv();
2364
2365  // TODO: Avoid some calling conventions?
2366
2367  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2368  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2369  bool isVarArg = FTy->isVarArg();
2370
2371  // Handle *simple* calls for now.
2372  Type *RetTy = I->getType();
2373  MVT RetVT;
2374  if (RetTy->isVoidTy())
2375    RetVT = MVT::isVoid;
2376  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2377           RetVT != MVT::i8  && RetVT != MVT::i1)
2378    return false;
2379
2380  // Can't handle non-double multi-reg retvals.
2381  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2382      RetVT != MVT::i16 && RetVT != MVT::i32) {
2383    SmallVector<CCValAssign, 16> RVLocs;
2384    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2385    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2386    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2387      return false;
2388  }
2389
2390  // Set up the argument vectors.
2391  SmallVector<Value*, 8> Args;
2392  SmallVector<unsigned, 8> ArgRegs;
2393  SmallVector<MVT, 8> ArgVTs;
2394  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2395  unsigned arg_size = CS.arg_size();
2396  Args.reserve(arg_size);
2397  ArgRegs.reserve(arg_size);
2398  ArgVTs.reserve(arg_size);
2399  ArgFlags.reserve(arg_size);
2400  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2401       i != e; ++i) {
2402    // If we're lowering a memory intrinsic instead of a regular call, skip the
2403    // last two arguments, which shouldn't be passed to the underlying function.
2404    if (IntrMemName && e-i <= 2)
2405      break;
2406
2407    ISD::ArgFlagsTy Flags;
2408    unsigned AttrInd = i - CS.arg_begin() + 1;
2409    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2410      Flags.setSExt();
2411    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2412      Flags.setZExt();
2413
2414    // FIXME: Only handle *easy* calls for now.
2415    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2416        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2417        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2418        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2419      return false;
2420
2421    Type *ArgTy = (*i)->getType();
2422    MVT ArgVT;
2423    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2424        ArgVT != MVT::i1)
2425      return false;
2426
2427    unsigned Arg = getRegForValue(*i);
2428    if (Arg == 0)
2429      return false;
2430
2431    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2432    Flags.setOrigAlign(OriginalAlignment);
2433
2434    Args.push_back(*i);
2435    ArgRegs.push_back(Arg);
2436    ArgVTs.push_back(ArgVT);
2437    ArgFlags.push_back(Flags);
2438  }
2439
2440  // Handle the arguments now that we've gotten them.
2441  SmallVector<unsigned, 4> RegArgs;
2442  unsigned NumBytes;
2443  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2444                       RegArgs, CC, NumBytes, isVarArg))
2445    return false;
2446
2447  bool UseReg = false;
2448  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2449  if (!GV || EnableARMLongCalls) UseReg = true;
2450
2451  unsigned CalleeReg = 0;
2452  if (UseReg) {
2453    if (IntrMemName)
2454      CalleeReg = getLibcallReg(IntrMemName);
2455    else
2456      CalleeReg = getRegForValue(Callee);
2457
2458    if (CalleeReg == 0) return false;
2459  }
2460
2461  // Issue the call.
2462  unsigned CallOpc = ARMSelectCallOp(UseReg);
2463  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2464                                    DL, TII.get(CallOpc));
2465
2466  unsigned char OpFlags = 0;
2467
2468  // Add MO_PLT for global address or external symbol in the PIC relocation
2469  // model.
2470  if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2471    OpFlags = ARMII::MO_PLT;
2472
2473  // ARM calls don't take a predicate, but tBL / tBLX do.
2474  if(isThumb2)
2475    AddDefaultPred(MIB);
2476  if (UseReg)
2477    MIB.addReg(CalleeReg);
2478  else if (!IntrMemName)
2479    MIB.addGlobalAddress(GV, 0, OpFlags);
2480  else
2481    MIB.addExternalSymbol(IntrMemName, OpFlags);
2482
2483  // Add implicit physical register uses to the call.
2484  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2485    MIB.addReg(RegArgs[i], RegState::Implicit);
2486
2487  // Add a register mask with the call-preserved registers.
2488  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2489  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2490
2491  // Finish off the call including any return values.
2492  SmallVector<unsigned, 4> UsedRegs;
2493  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2494    return false;
2495
2496  // Set all unused physreg defs as dead.
2497  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2498
2499  return true;
2500}
2501
2502bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2503  return Len <= 16;
2504}
2505
2506bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2507                                        uint64_t Len, unsigned Alignment) {
2508  // Make sure we don't bloat code by inlining very large memcpy's.
2509  if (!ARMIsMemCpySmall(Len))
2510    return false;
2511
2512  while (Len) {
2513    MVT VT;
2514    if (!Alignment || Alignment >= 4) {
2515      if (Len >= 4)
2516        VT = MVT::i32;
2517      else if (Len >= 2)
2518        VT = MVT::i16;
2519      else {
2520        assert (Len == 1 && "Expected a length of 1!");
2521        VT = MVT::i8;
2522      }
2523    } else {
2524      // Bound based on alignment.
2525      if (Len >= 2 && Alignment == 2)
2526        VT = MVT::i16;
2527      else {
2528        VT = MVT::i8;
2529      }
2530    }
2531
2532    bool RV;
2533    unsigned ResultReg;
2534    RV = ARMEmitLoad(VT, ResultReg, Src);
2535    assert (RV == true && "Should be able to handle this load.");
2536    RV = ARMEmitStore(VT, ResultReg, Dest);
2537    assert (RV == true && "Should be able to handle this store.");
2538    (void)RV;
2539
2540    unsigned Size = VT.getSizeInBits()/8;
2541    Len -= Size;
2542    Dest.Offset += Size;
2543    Src.Offset += Size;
2544  }
2545
2546  return true;
2547}
2548
2549bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2550  // FIXME: Handle more intrinsics.
2551  switch (I.getIntrinsicID()) {
2552  default: return false;
2553  case Intrinsic::frameaddress: {
2554    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2555    MFI->setFrameAddressIsTaken(true);
2556
2557    unsigned LdrOpc;
2558    const TargetRegisterClass *RC;
2559    if (isThumb2) {
2560      LdrOpc =  ARM::t2LDRi12;
2561      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2562    } else {
2563      LdrOpc =  ARM::LDRi12;
2564      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2565    }
2566
2567    const ARMBaseRegisterInfo *RegInfo =
2568          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2569    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2570    unsigned SrcReg = FramePtr;
2571
2572    // Recursively load frame address
2573    // ldr r0 [fp]
2574    // ldr r0 [r0]
2575    // ldr r0 [r0]
2576    // ...
2577    unsigned DestReg;
2578    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2579    while (Depth--) {
2580      DestReg = createResultReg(RC);
2581      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2582                              TII.get(LdrOpc), DestReg)
2583                      .addReg(SrcReg).addImm(0));
2584      SrcReg = DestReg;
2585    }
2586    UpdateValueMap(&I, SrcReg);
2587    return true;
2588  }
2589  case Intrinsic::memcpy:
2590  case Intrinsic::memmove: {
2591    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2592    // Don't handle volatile.
2593    if (MTI.isVolatile())
2594      return false;
2595
2596    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2597    // we would emit dead code because we don't currently handle memmoves.
2598    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2599    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2600      // Small memcpy's are common enough that we want to do them without a call
2601      // if possible.
2602      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2603      if (ARMIsMemCpySmall(Len)) {
2604        Address Dest, Src;
2605        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2606            !ARMComputeAddress(MTI.getRawSource(), Src))
2607          return false;
2608        unsigned Alignment = MTI.getAlignment();
2609        if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2610          return true;
2611      }
2612    }
2613
2614    if (!MTI.getLength()->getType()->isIntegerTy(32))
2615      return false;
2616
2617    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2618      return false;
2619
2620    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2621    return SelectCall(&I, IntrMemName);
2622  }
2623  case Intrinsic::memset: {
2624    const MemSetInst &MSI = cast<MemSetInst>(I);
2625    // Don't handle volatile.
2626    if (MSI.isVolatile())
2627      return false;
2628
2629    if (!MSI.getLength()->getType()->isIntegerTy(32))
2630      return false;
2631
2632    if (MSI.getDestAddressSpace() > 255)
2633      return false;
2634
2635    return SelectCall(&I, "memset");
2636  }
2637  case Intrinsic::trap: {
2638    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(
2639      Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2640    return true;
2641  }
2642  }
2643}
2644
2645bool ARMFastISel::SelectTrunc(const Instruction *I) {
2646  // The high bits for a type smaller than the register size are assumed to be
2647  // undefined.
2648  Value *Op = I->getOperand(0);
2649
2650  EVT SrcVT, DestVT;
2651  SrcVT = TLI.getValueType(Op->getType(), true);
2652  DestVT = TLI.getValueType(I->getType(), true);
2653
2654  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2655    return false;
2656  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2657    return false;
2658
2659  unsigned SrcReg = getRegForValue(Op);
2660  if (!SrcReg) return false;
2661
2662  // Because the high bits are undefined, a truncate doesn't generate
2663  // any code.
2664  UpdateValueMap(I, SrcReg);
2665  return true;
2666}
2667
2668unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2669                                    bool isZExt) {
2670  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2671    return 0;
2672  if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2673    return 0;
2674
2675  // Table of which combinations can be emitted as a single instruction,
2676  // and which will require two.
2677  static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2678    //            ARM                     Thumb
2679    //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2680    //    ext:     s  z      s  z          s  z      s  z
2681    /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2682    /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2683    /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2684  };
2685
2686  // Target registers for:
2687  //  - For ARM can never be PC.
2688  //  - For 16-bit Thumb are restricted to lower 8 registers.
2689  //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2690  static const TargetRegisterClass *RCTbl[2][2] = {
2691    // Instructions: Two                     Single
2692    /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2693    /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2694  };
2695
2696  // Table governing the instruction(s) to be emitted.
2697  static const struct InstructionTable {
2698    uint32_t Opc   : 16;
2699    uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2700    uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2701    uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2702  } IT[2][2][3][2] = {
2703    { // Two instructions (first is left shift, second is in this table).
2704      { // ARM                Opc           S  Shift             Imm
2705        /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2706        /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2707        /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2708        /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2709        /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2710        /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2711      },
2712      { // Thumb              Opc           S  Shift             Imm
2713        /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2714        /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2715        /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2716        /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2717        /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2718        /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2719      }
2720    },
2721    { // Single instruction.
2722      { // ARM                Opc           S  Shift             Imm
2723        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2724        /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2725        /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2726        /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2727        /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2728        /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2729      },
2730      { // Thumb              Opc           S  Shift             Imm
2731        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2732        /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2733        /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2734        /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2735        /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2736        /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2737      }
2738    }
2739  };
2740
2741  unsigned SrcBits = SrcVT.getSizeInBits();
2742  unsigned DestBits = DestVT.getSizeInBits();
2743  (void) DestBits;
2744  assert((SrcBits < DestBits) && "can only extend to larger types");
2745  assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2746         "other sizes unimplemented");
2747  assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2748         "other sizes unimplemented");
2749
2750  bool hasV6Ops = Subtarget->hasV6Ops();
2751  unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2752  assert((Bitness < 3) && "sanity-check table bounds");
2753
2754  bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2755  const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2756  const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2757  unsigned Opc = ITP->Opc;
2758  assert(ARM::KILL != Opc && "Invalid table entry");
2759  unsigned hasS = ITP->hasS;
2760  ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2761  assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2762         "only MOVsi has shift operand addressing mode");
2763  unsigned Imm = ITP->Imm;
2764
2765  // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2766  bool setsCPSR = &ARM::tGPRRegClass == RC;
2767  unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2768  unsigned ResultReg;
2769  // MOVsi encodes shift and immediate in shift operand addressing mode.
2770  // The following condition has the same value when emitting two
2771  // instruction sequences: both are shifts.
2772  bool ImmIsSO = (Shift != ARM_AM::no_shift);
2773
2774  // Either one or two instructions are emitted.
2775  // They're always of the form:
2776  //   dst = in OP imm
2777  // CPSR is set only by 16-bit Thumb instructions.
2778  // Predicate, if any, is AL.
2779  // S bit, if available, is always 0.
2780  // When two are emitted the first's result will feed as the second's input,
2781  // that value is then dead.
2782  unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2783  for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2784    ResultReg = createResultReg(RC);
2785    bool isLsl = (0 == Instr) && !isSingleInstr;
2786    unsigned Opcode = isLsl ? LSLOpc : Opc;
2787    ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2788    unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2789    bool isKill = 1 == Instr;
2790    MachineInstrBuilder MIB = BuildMI(
2791        *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg);
2792    if (setsCPSR)
2793      MIB.addReg(ARM::CPSR, RegState::Define);
2794    SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2795    AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2796    if (hasS)
2797      AddDefaultCC(MIB);
2798    // Second instruction consumes the first's result.
2799    SrcReg = ResultReg;
2800  }
2801
2802  return ResultReg;
2803}
2804
2805bool ARMFastISel::SelectIntExt(const Instruction *I) {
2806  // On ARM, in general, integer casts don't involve legal types; this code
2807  // handles promotable integers.
2808  Type *DestTy = I->getType();
2809  Value *Src = I->getOperand(0);
2810  Type *SrcTy = Src->getType();
2811
2812  bool isZExt = isa<ZExtInst>(I);
2813  unsigned SrcReg = getRegForValue(Src);
2814  if (!SrcReg) return false;
2815
2816  EVT SrcEVT, DestEVT;
2817  SrcEVT = TLI.getValueType(SrcTy, true);
2818  DestEVT = TLI.getValueType(DestTy, true);
2819  if (!SrcEVT.isSimple()) return false;
2820  if (!DestEVT.isSimple()) return false;
2821
2822  MVT SrcVT = SrcEVT.getSimpleVT();
2823  MVT DestVT = DestEVT.getSimpleVT();
2824  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2825  if (ResultReg == 0) return false;
2826  UpdateValueMap(I, ResultReg);
2827  return true;
2828}
2829
2830bool ARMFastISel::SelectShift(const Instruction *I,
2831                              ARM_AM::ShiftOpc ShiftTy) {
2832  // We handle thumb2 mode by target independent selector
2833  // or SelectionDAG ISel.
2834  if (isThumb2)
2835    return false;
2836
2837  // Only handle i32 now.
2838  EVT DestVT = TLI.getValueType(I->getType(), true);
2839  if (DestVT != MVT::i32)
2840    return false;
2841
2842  unsigned Opc = ARM::MOVsr;
2843  unsigned ShiftImm;
2844  Value *Src2Value = I->getOperand(1);
2845  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2846    ShiftImm = CI->getZExtValue();
2847
2848    // Fall back to selection DAG isel if the shift amount
2849    // is zero or greater than the width of the value type.
2850    if (ShiftImm == 0 || ShiftImm >=32)
2851      return false;
2852
2853    Opc = ARM::MOVsi;
2854  }
2855
2856  Value *Src1Value = I->getOperand(0);
2857  unsigned Reg1 = getRegForValue(Src1Value);
2858  if (Reg1 == 0) return false;
2859
2860  unsigned Reg2 = 0;
2861  if (Opc == ARM::MOVsr) {
2862    Reg2 = getRegForValue(Src2Value);
2863    if (Reg2 == 0) return false;
2864  }
2865
2866  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2867  if(ResultReg == 0) return false;
2868
2869  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2870                                    TII.get(Opc), ResultReg)
2871                            .addReg(Reg1);
2872
2873  if (Opc == ARM::MOVsi)
2874    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2875  else if (Opc == ARM::MOVsr) {
2876    MIB.addReg(Reg2);
2877    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2878  }
2879
2880  AddOptionalDefs(MIB);
2881  UpdateValueMap(I, ResultReg);
2882  return true;
2883}
2884
2885// TODO: SoftFP support.
2886bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2887
2888  switch (I->getOpcode()) {
2889    case Instruction::Load:
2890      return SelectLoad(I);
2891    case Instruction::Store:
2892      return SelectStore(I);
2893    case Instruction::Br:
2894      return SelectBranch(I);
2895    case Instruction::IndirectBr:
2896      return SelectIndirectBr(I);
2897    case Instruction::ICmp:
2898    case Instruction::FCmp:
2899      return SelectCmp(I);
2900    case Instruction::FPExt:
2901      return SelectFPExt(I);
2902    case Instruction::FPTrunc:
2903      return SelectFPTrunc(I);
2904    case Instruction::SIToFP:
2905      return SelectIToFP(I, /*isSigned*/ true);
2906    case Instruction::UIToFP:
2907      return SelectIToFP(I, /*isSigned*/ false);
2908    case Instruction::FPToSI:
2909      return SelectFPToI(I, /*isSigned*/ true);
2910    case Instruction::FPToUI:
2911      return SelectFPToI(I, /*isSigned*/ false);
2912    case Instruction::Add:
2913      return SelectBinaryIntOp(I, ISD::ADD);
2914    case Instruction::Or:
2915      return SelectBinaryIntOp(I, ISD::OR);
2916    case Instruction::Sub:
2917      return SelectBinaryIntOp(I, ISD::SUB);
2918    case Instruction::FAdd:
2919      return SelectBinaryFPOp(I, ISD::FADD);
2920    case Instruction::FSub:
2921      return SelectBinaryFPOp(I, ISD::FSUB);
2922    case Instruction::FMul:
2923      return SelectBinaryFPOp(I, ISD::FMUL);
2924    case Instruction::SDiv:
2925      return SelectDiv(I, /*isSigned*/ true);
2926    case Instruction::UDiv:
2927      return SelectDiv(I, /*isSigned*/ false);
2928    case Instruction::SRem:
2929      return SelectRem(I, /*isSigned*/ true);
2930    case Instruction::URem:
2931      return SelectRem(I, /*isSigned*/ false);
2932    case Instruction::Call:
2933      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2934        return SelectIntrinsicCall(*II);
2935      return SelectCall(I);
2936    case Instruction::Select:
2937      return SelectSelect(I);
2938    case Instruction::Ret:
2939      return SelectRet(I);
2940    case Instruction::Trunc:
2941      return SelectTrunc(I);
2942    case Instruction::ZExt:
2943    case Instruction::SExt:
2944      return SelectIntExt(I);
2945    case Instruction::Shl:
2946      return SelectShift(I, ARM_AM::lsl);
2947    case Instruction::LShr:
2948      return SelectShift(I, ARM_AM::lsr);
2949    case Instruction::AShr:
2950      return SelectShift(I, ARM_AM::asr);
2951    default: break;
2952  }
2953  return false;
2954}
2955
2956namespace {
2957// This table describes sign- and zero-extend instructions which can be
2958// folded into a preceding load. All of these extends have an immediate
2959// (sometimes a mask and sometimes a shift) that's applied after
2960// extension.
2961const struct FoldableLoadExtendsStruct {
2962  uint16_t Opc[2];  // ARM, Thumb.
2963  uint8_t ExpectedImm;
2964  uint8_t isZExt     : 1;
2965  uint8_t ExpectedVT : 7;
2966} FoldableLoadExtends[] = {
2967  { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2968  { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2969  { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2970  { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2971  { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2972};
2973}
2974
2975/// \brief The specified machine instr operand is a vreg, and that
2976/// vreg is being provided by the specified load instruction.  If possible,
2977/// try to fold the load as an operand to the instruction, returning true if
2978/// successful.
2979bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2980                                      const LoadInst *LI) {
2981  // Verify we have a legal type before going any further.
2982  MVT VT;
2983  if (!isLoadTypeLegal(LI->getType(), VT))
2984    return false;
2985
2986  // Combine load followed by zero- or sign-extend.
2987  // ldrb r1, [r0]       ldrb r1, [r0]
2988  // uxtb r2, r1     =>
2989  // mov  r3, r2         mov  r3, r1
2990  if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2991    return false;
2992  const uint64_t Imm = MI->getOperand(2).getImm();
2993
2994  bool Found = false;
2995  bool isZExt;
2996  for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2997       i != e; ++i) {
2998    if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2999        (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
3000        MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
3001      Found = true;
3002      isZExt = FoldableLoadExtends[i].isZExt;
3003    }
3004  }
3005  if (!Found) return false;
3006
3007  // See if we can handle this address.
3008  Address Addr;
3009  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
3010
3011  unsigned ResultReg = MI->getOperand(0).getReg();
3012  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
3013    return false;
3014  MI->eraseFromParent();
3015  return true;
3016}
3017
3018unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
3019                                     unsigned Align, MVT VT) {
3020  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
3021  ARMConstantPoolConstant *CPV =
3022    ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
3023  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
3024
3025  unsigned Opc;
3026  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
3027  // Load value.
3028  if (isThumb2) {
3029    DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
3030    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
3031                            TII.get(ARM::t2LDRpci), DestReg1)
3032                    .addConstantPoolIndex(Idx));
3033    Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
3034  } else {
3035    // The extra immediate is for addrmode2.
3036    DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
3037    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
3038                            DL, TII.get(ARM::LDRcp), DestReg1)
3039                    .addConstantPoolIndex(Idx).addImm(0));
3040    Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
3041  }
3042
3043  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
3044  if (GlobalBaseReg == 0) {
3045    GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
3046    AFI->setGlobalBaseReg(GlobalBaseReg);
3047  }
3048
3049  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
3050  DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
3051  DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
3052  GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
3053  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
3054                                    DL, TII.get(Opc), DestReg2)
3055                            .addReg(DestReg1)
3056                            .addReg(GlobalBaseReg);
3057  if (!UseGOTOFF)
3058    MIB.addImm(0);
3059  AddOptionalDefs(MIB);
3060
3061  return DestReg2;
3062}
3063
3064bool ARMFastISel::FastLowerArguments() {
3065  if (!FuncInfo.CanLowerReturn)
3066    return false;
3067
3068  const Function *F = FuncInfo.Fn;
3069  if (F->isVarArg())
3070    return false;
3071
3072  CallingConv::ID CC = F->getCallingConv();
3073  switch (CC) {
3074  default:
3075    return false;
3076  case CallingConv::Fast:
3077  case CallingConv::C:
3078  case CallingConv::ARM_AAPCS_VFP:
3079  case CallingConv::ARM_AAPCS:
3080  case CallingConv::ARM_APCS:
3081    break;
3082  }
3083
3084  // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3085  // which are passed in r0 - r3.
3086  unsigned Idx = 1;
3087  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3088       I != E; ++I, ++Idx) {
3089    if (Idx > 4)
3090      return false;
3091
3092    if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3093        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3094        F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3095      return false;
3096
3097    Type *ArgTy = I->getType();
3098    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3099      return false;
3100
3101    EVT ArgVT = TLI.getValueType(ArgTy);
3102    if (!ArgVT.isSimple()) return false;
3103    switch (ArgVT.getSimpleVT().SimpleTy) {
3104    case MVT::i8:
3105    case MVT::i16:
3106    case MVT::i32:
3107      break;
3108    default:
3109      return false;
3110    }
3111  }
3112
3113
3114  static const uint16_t GPRArgRegs[] = {
3115    ARM::R0, ARM::R1, ARM::R2, ARM::R3
3116  };
3117
3118  const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3119  Idx = 0;
3120  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3121       I != E; ++I, ++Idx) {
3122    unsigned SrcReg = GPRArgRegs[Idx];
3123    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3124    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3125    // Without this, EmitLiveInCopies may eliminate the livein if its only
3126    // use is a bitcast (which isn't turned into an instruction).
3127    unsigned ResultReg = createResultReg(RC);
3128    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
3129            ResultReg).addReg(DstReg, getKillRegState(true));
3130    UpdateValueMap(I, ResultReg);
3131  }
3132
3133  return true;
3134}
3135
3136namespace llvm {
3137  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3138                                const TargetLibraryInfo *libInfo) {
3139    const TargetMachine &TM = funcInfo.MF->getTarget();
3140
3141    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
3142    // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
3143    bool UseFastISel = false;
3144    UseFastISel |= Subtarget->isTargetIOS() && !Subtarget->isThumb1Only();
3145    UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
3146    UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
3147
3148    if (UseFastISel) {
3149      // iOS always has a FP for backtracking, force other targets
3150      // to keep their FP when doing FastISel. The emitted code is
3151      // currently superior, and in cases like test-suite's lencod
3152      // FastISel isn't quite correct when FP is eliminated.
3153      TM.Options.NoFramePointerElim = true;
3154      return new ARMFastISel(funcInfo, libInfo);
3155    }
3156    return 0;
3157  }
3158}
3159